101
|
Abstract
Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.
Collapse
|
102
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
103
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway. Front Cell Dev Biol 2016; 4:91. [PMID: 27626031 PMCID: PMC5003838 DOI: 10.3389/fcell.2016.00091] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra University Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra University Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra UniversityBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain; Tissue Regeneration Laboratory, Centro Nacional de Investigaciones CardiovascularesMadrid, Spain
| |
Collapse
|
104
|
Chatterjee B, Wolff DW, Jothi M, Mal M, Mal AK. p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program. Skelet Muscle 2016; 6:28. [PMID: 27551368 PMCID: PMC4993004 DOI: 10.1186/s13395-016-0100-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Master transcription factor MyoD can initiate the entire myogenic gene expression program which differentiates proliferating myoblasts into multinucleated myotubes. We previously demonstrated that histone methyltransferase KMT1A associates with and inhibits MyoD in proliferating myoblasts, and must be removed to allow differentiation to proceed. It is known that pro-myogenic signaling pathways such as PI3K/AKT and p38α MAPK play critical roles in enforcing associations between MyoD and transcriptional activators, while removing repressors. However, the mechanism which displaces KMT1A from MyoD, and the signals responsible, remain unknown. METHODS To investigate the role of p38α on MyoD-mediated differentiation, we utilized C2C12 myoblast cells as an in vitro model. p38α activity was either augmented via overexpression of a constitutively active upstream kinase or blocked via lentiviral delivery of a specific p38α shRNA or treatment with p38α/β inhibitor SB203580. Overexpression of KMT1A in these cells via lentiviral delivery was also used as a system wherein terminal differentiation is impeded by high levels of KMT1A. RESULTS The association of KMT1A and MyoD persisted, and differentiation was blocked in C2C12 myoblasts specifically after pharmacologic or genetic blockade of p38α. Conversely, forced activation of p38α was sufficient to activate MyoD and overcome the differentiation blockade in KMT1A-overexpressing C2C12 cells. Consistent with this finding, KMT1A phosphorylation during C2C12 differentiation correlated strongly with the activation of p38α. This phosphorylation was prevented by the inhibition of p38α. Biochemical studies further revealed that KMT1A can be a direct substrate for p38α. Importantly, chromatin immunoprecipitation (ChIP) studies show that the removal of KMT1A-mediated transcription repressive histone tri-methylation (H3K9me3) from the promoter of the Myogenin gene, a critical regulator of muscle differentiation, is dependent on p38α activity in C2C12 cells. Elevated p38α activity was also sufficient to remove this repressive H3K9me3 mark. Moreover, ChIP studies from C2C12 cells show that p38α activity is necessary and sufficient to establish active H3K9 acetylation on the Myogenin promoter. CONCLUSIONS Activation of p38α displaces KMT1A from MyoD to initiate myogenic gene expression upon induction of myoblasts differentiation.
Collapse
Affiliation(s)
- Biswanath Chatterjee
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - David W Wolff
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Department of Biotechnology, Bharathiar University, Coimbatore, 641046 Tamilnadu India
| | - Munmun Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Asoke K Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| |
Collapse
|
105
|
Leem YE, Jeong HJ, Kim HJ, Koh J, Kang K, Bae GU, Cho H, Kang JS. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation. PLoS One 2016; 11:e0158707. [PMID: 27380411 PMCID: PMC4933383 DOI: 10.1371/journal.pone.0158707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation.
Collapse
Affiliation(s)
- Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Jewoo Koh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - KyeongJin Kang
- Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| |
Collapse
|
106
|
Kirk SP, Oldham JM, Jeanplong F, Bass JJ. Insulin-like Growth Factor-II Delays Early but Enhances Late Regeneration of Skeletal Muscle. J Histochem Cytochem 2016; 51:1611-20. [PMID: 14623929 DOI: 10.1177/002215540305101205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study tested whether administration of insulin-like growth factor-II (IGF-II) enhances muscle regeneration. Rat biceps femoris muscle was damaged with notexin and then IGF-II was administered for up to 7 days. Results show that the proportion of nuclei containing or surrounded by immunoreactivity to MyoD, myogenin, and developmental myosin heavy chain (dMHC) is less in the IGF-II treatment group relative to the control group on days 1 (p=0.057), 2 (p=0.034), and 3 (p=0.047), respectively. This indicates a delay in muscle precursor cell (MPC) proliferation and differentiation with IGF-II administration. This effect was not associated with decreased binding capacity of the type 1 IGF receptor, as determined by receptor autoradiography in day 1 muscle sections (NS), but was associated with inhibition of phagocytic processes. The cross-sectional area of regenerating muscle fibers was significantly greater in the IGF-II treatment group than in the control group by day 7 (p=0.0092). The enhancing effect of IGF-II on late muscle regeneration, when the main process taking place is fiber enlargement, coincides with the period in which IGF-II is normally expressed by regenerating muscle, indicating that greater endogenous production of IGF-II would be associated with improved regeneration.
Collapse
Affiliation(s)
- Sonnie P Kirk
- Functional Muscle Genomics, AgResearch, Ruakura Agricultural Research Centre, Hamilton, New Zealand
| | | | | | | |
Collapse
|
107
|
|
108
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
109
|
Jin W, Peng J, Jiang S. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem Biophys Rep 2016; 6:209-219. [PMID: 28955879 PMCID: PMC5600456 DOI: 10.1016/j.bbrep.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle formation in vertebrates is derived from the paraxial mesoderm, which develops into myogenic precursor cells and finally differentiates into mature myofibers. This myogenic program involves temporal-spatial molecular events performed by transcription regulators (such as members of the Pax, MRFs and Six families) and signaling pathways (such as Wnts, BMP and Shh signaling). Epigenetic regulation, including histone post-translational modifications is crucial for controlling gene expression through recruitment of various chromatin-modifying enzymes that alter chromatin dynamics during myogenesis. The chromatin modifying enzymes are also recruited at regions of muscle gene regulation, coordinating transcription regulators to influence gene expression. In particular, the reversible methylation status of histone N-terminal tails provides the important regulatory mechanisms in either activation or repression of muscle genes. In this report, we review the recent literatures to deduce mechanisms underlying the epigenetic regulation of gene expression with a focus on histone methylation modification during embryo myogenesis and adult muscle regeneration. Recent results from different histone methylation/demethylation modifications have increased our understanding about the highly intricate layers of epigenetic regulations involved in myogenesis and cross-talk of histone enzymes with the muscle-specific transcriptional machinery. Myogenesis is influenced by regulation of transcription factors, signal pathways and post-transcriptional modifications. Histone methylation modifications as “on/off” switches regulated myogenic lineage commitment and differentiation. The myogenic regulatory factors and histone methylation modifications established dynamic regulatory mechanism.
Collapse
Key Words
- BMP4, bone morphogenic protein 4
- ChIP, chromatin immunoprecipitation
- Epigenetic
- H3K27, methylation of histone H3 lysine 27
- H3K4, methylation of histone H3 lysine 4
- H3K9, methylation of histone H3 lysine 9
- Histone methylation/demethylation modification
- KDMs, lysine demethyltransferases
- LSD1, lysine specific demethyltransferase 1
- MEF2, myocyte enhancer factor 2
- MRFs, myogenic regulatory factors
- Muscle differentiation
- Muscle progenitor cells
- Muscle regeneration
- Myogenesis
- PRC2, polycomb repressive complex 2
- SCs, satellite cells
- Shh, sonic hedgehog
- TSS, transcription start sites
- UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome
- bHLH, basic helix-loop-helix
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, PR China
| |
Collapse
|
110
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
111
|
Domingues-Faria C, Vasson MP, Goncalves-Mendes N, Boirie Y, Walrand S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev 2016; 26:22-36. [PMID: 26690801 DOI: 10.1016/j.arr.2015.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
Abstract
After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age.
Collapse
|
112
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
113
|
Sincennes MC, Brun CE, Rudnicki MA. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease. Stem Cells Transl Med 2016; 5:282-90. [PMID: 26798058 PMCID: PMC4807671 DOI: 10.5966/sctm.2015-0266] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent findings on epigenetic regulation in satellite stem cells and committed myoblasts. It also addresses the potential of epigenetic drugs, such as histone deacetylase inhibitors, and their molecular mechanism of action in muscle cells. Skeletal muscle regeneration is initiated by satellite cells, a population of adult stem cells that reside in the muscle tissue. The ability of satellite cells to self-renew and to differentiate into the muscle lineage is under transcriptional and epigenetic control. Satellite cells are characterized by an open and permissive chromatin state. The transcription factor Pax7 is necessary for satellite cell function. Pax7 is a nodal factor regulating the expression of genes associated with satellite cell growth and proliferation, while preventing differentiation. Pax7 recruits chromatin modifiers to DNA to induce expression of specific target genes involved in myogenic commitment following asymmetric division of muscle stem cells. Emerging evidence suggests that replacement of canonical histones with histone variants is an important regulatory mechanism controlling the ability of satellite cells and myoblasts to differentiate. Differentiation into the muscle lineage is associated with a global gene repression characterized by a decrease in histone acetylation with an increase in repressive histone marks. However, genes important for differentiation are upregulated by the specific action of histone acetyltransferases and other chromatin modifiers, in combination with several transcription factors, including MyoD and Mef2. Treatment with histone deacetylase (HDAC) inhibitors enhances muscle regeneration and is considered as a therapeutic approach in the treatment of muscular dystrophy. This review describes the recent findings on epigenetic regulation in satellite stem cells and committed myoblasts. The potential of epigenetic drugs, such as HDAC inhibitors, as well as their molecular mechanism of action in muscle cells, will be addressed. Significance This review summarizes recent findings concerning the epigenetic regulation of satellite cells in skeletal muscle.
Collapse
Affiliation(s)
- Marie-Claude Sincennes
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline E Brun
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
114
|
Blum R. Activation of muscle enhancers by MyoD and epigenetic modifiers. J Cell Biochem 2015; 115:1855-67. [PMID: 24905980 DOI: 10.1002/jcb.24854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 05/30/2014] [Indexed: 12/11/2022]
Abstract
The early 1980s revelation of cis-acting genomic elements, known as transcriptional enhancers, is still regarded as one of the fundamental discoveries in the genomic field. However, only with the emergence of genome-wide techniques has the genuine biological scope of enhancers begun to be fully uncovered. Massive scientific efforts of multiple laboratories rapidly advanced the overall perception that enhancers are typified by common epigenetic characteristics that distinguish their activating potential. Broadly, chromatin modifiers and transcriptional regulators lay down the essential foundations necessary for constituting enhancers in their activated form. Basing on genome-wide ChIP-sequencing of enhancer-related marks we identified myogenic enhancers before and after muscle differentiation and discovered that MyoD was bound to nearly a third of condition-specific enhancers. Experimental studies that tested the deposition patterns of enhancer-related epigenetic marks in MyoD-null myoblasts revealed the high dependency that a specific set of muscle enhancers have towards this transcriptional regulator. Re-expression of MyoD restored the deposition of enhancer-related marks at myotube-specific enhancers and partially at myoblasts-specific enhancers. Our proposed mechanistic model suggests that MyoD is involved in recruitment of methyltransferase Set7, acetyltransferase p300 and deposition of H3K4me1 and H3K27ac at myogenic enhancers. In addition, MyoD binding at enhancers is associated with PolII occupancy and with local noncoding transcription. Modulation of muscle enhancers is suggested to be coordinated via transcription factors docking, including c-Jun and Jdp2 that bind to muscle enhancers in a MyoD-dependent manner. We hypothesize that distinct transcription factors may act as placeholders and mediate the assembly of newly formed myogenic enhancers.
Collapse
Affiliation(s)
- Roy Blum
- Laura and Isaac Perlmutter Cancer Center, Department of Pathology, New York University School of Medicine, 522 1st Avenue, New York, New York, 10016
| |
Collapse
|
115
|
Sasi Kumar K, Ramadhas A, Nayak S, Kaniyappan S, Dayma K, Radha V. C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2629-39. [DOI: 10.1016/j.bbamcr.2015.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
|
116
|
Gardner S, Gross SM, David LL, Klimek JE, Rotwein P. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190. Am J Physiol Cell Physiol 2015; 309:C491-500. [PMID: 26246429 DOI: 10.1152/ajpcell.00184.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.
Collapse
Affiliation(s)
- Samantha Gardner
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - John E Klimek
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
117
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
118
|
Gurriarán-Rodríguez U, Santos-Zas I, González-Sánchez J, Beiroa D, Moresi V, Mosteiro CS, Lin W, Viñuela JE, Señarís J, García-Caballero T, Casanueva FF, Nogueiras R, Gallego R, Renaud JM, Adamo S, Pazos Y, Camiña JP. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling. Mol Ther 2015; 23:1003-1021. [PMID: 25762009 DOI: 10.1038/mt.2015.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Current address: Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Daniel Beiroa
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Fisiología, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Viviana Moresi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy; Interuniversity Institute of Myology, Rome, Italy
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Wei Lin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Juan E Viñuela
- Unidad de Inmunología, CHUS, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | | | - Felipe F Casanueva
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Fisiología, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy; Interuniversity Institute of Myology, Rome, Italy
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain.
| |
Collapse
|
119
|
Yi P, Chew LL, Zhang Z, Ren H, Wang F, Cong X, Zheng L, Luo Y, Ouyang H, Low BC, Zhou YT. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell 2014; 26:29-42. [PMID: 25378581 PMCID: PMC4279227 DOI: 10.1091/mbc.e14-03-0797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdo bridges scaffold proteins BNIP-2 and JLP to activate p38MAPK during myoblast differentiation. KIF5B is a novel interacting partner of BNIP-2 and promotes myogenic differentiation. KIF5B-dependent transport of BNIP-2 is essential for its promyogenic effects. The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.
Collapse
Affiliation(s)
- Peng Yi
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Li Chew
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Ziwang Zhang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hao Ren
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feiya Wang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoxia Cong
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liling Zheng
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Yan Luo
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Hongwei Ouyang
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Boon Chuan Low
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yi Ting Zhou
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
120
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Epigenetic control of adult skeletal muscle stem cell functions. FEBS J 2014; 282:1571-88. [PMID: 25251895 DOI: 10.1111/febs.13065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
Skeletal muscle regeneration in the adult (de novo myogenesis) depends on a resident population of muscle stem cells (satellite cells) that are normally quiescent. In response to injury or stress, satellite cells are activated and expand as myoblast cells that differentiate and fuse to form new muscle fibers or return to quiescence to maintain the stem cell pool (self-renewal). Satellite cell-dependent myogenesis is a well-characterized multi-step process orchestrated by muscle-specific transcription factors, such as Pax3/Pax7 and members of the MyoD family of muscle regulatory factors, and epigenetically controlled by mechanisms such as DNA methylation, covalent modification of histones and non-coding RNAs. Recent results from next-generation genome-wide sequencing have increased our understanding about the highly intricate layers of epigenetic regulation involved in satellite cell maintenance, activation, differentiation and self-renewal, and their cross-talk with the muscle-specific transcriptional machinery.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Spain
| | | | | |
Collapse
|
121
|
Forcales SV. The BAF60c-MyoD complex poises chromatin for rapid transcription. BIOARCHITECTURE 2014; 2:104-109. [PMID: 22880151 PMCID: PMC3414383 DOI: 10.4161/bioa.20970] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromatin remodeling by the SWI/SNF complex is required to activate the transcription of myogenic-specific genes. Our work addressed the details of how SWI/SNF is recruited to myogenic regulatory regions in response to differentiation signals. Surprisingly, the muscle determination factor MyoD and the SWI/SNF subunit BAF60c form a complex on the regulatory elements of MyoD-targeted genes in myogenic precursor cells. This Brg1-devoid MyoD-BAF60c complex flags the chromatin of myogenic-differentiation genes before transcription is activated. On differentiation, BAF60c phosphorylation on a conserved threonine by p38 α kinase promotes the incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which remodels the chromatin and activates transcription of MyoD-target genes. Downregulation of BAF60c expression prevents MyoD access to the chromatin and the proper loading of an active myogenic transcriptosome preventing the expression of hundreds of myogenic genes. Our data support an unprecedented two-step model by which (1) pre-assembled BAF60c-MyoD complex poises the chromatin of myogenic genes for rapid transcription; (2) chromatin-bound BAF60c "senses" the myogenic differentiation cues and recruits an active SWI/SNF complex to remodel the chromatin allowing transcriptional activation.
Collapse
Affiliation(s)
- Sonia-Vanina Forcales
- Institute of Predictive and Personalized Medicine of Cancer; Badalona, Barcelona, Spain
| |
Collapse
|
122
|
Sedighi M, Haghnegahdar A. Role of vitamin D3 in treatment of lumbar disc herniation--pain and sensory aspects: study protocol for a randomized controlled trial. Trials 2014; 15:373. [PMID: 25257359 PMCID: PMC4190421 DOI: 10.1186/1745-6215-15-373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vitamin D receptors have been identified in the spinal cord, nerve roots, dorsal root ganglia and glial cells, and its genetic polymorphism association with the development of lumbar disc degeneration and herniation has been documented. Metabolic effects of active vitamin D metabolites in the nucleus pulposus and annulus fibrosus cells have been studied. Lumbar disc herniation is a process that involves immune and inflammatory cells and processes that are targets for immune regulatory actions of vitamin D as a neurosteroid hormone. In addition to vitamin D's immune modulatory properties, its receptors have been identified in skeletal muscles. It also affects sensory neurons to modulate pain. In this study, we aim to study the role of vitamin D3 in discogenic pain and related sensory deficits. Additionally, we will address how post-treatment 25-hydroxy vitamin D3 level influences pain and sensory deficits severity. The cut-off value for serum 25-hydroxy vitamin D3 that would be efficacious in improving pain and sensory deficits in lumbar disc herniation will also be studied. METHODS/DESIGN We will conduct a randomized, placebo-controlled, double-blind clinical trial. Our study population will include 380 cases with one-level and unilateral lumbar disc herniation with duration of discogenic pain less than 8 weeks. Individuals who do not have any contraindications, will be divided into three groups based on serum 25-hydroxy vitamin D3 level, and each group will be randomized to receive either a single-dose 300,000-IU intramuscular injection of vitamin D3 or placebo. All patients will be under conservative treatment. Pre-treatment and post-treatment assessments will be performed with the McGill Pain Questionnaire and a visual analogue scale. For the 15-day duration of this study, questionnaires will be filled out during telephone interviews every 3 days (a total of five times). The initial and final interviews will be scheduled at our clinic. After 15 days, serum 25-hydroxy vitamin D3 levels will be measured for those who have received vitamin D3 (190 individuals). TRIAL REGISTRATION Iranian Registry for Clinical Trials ID: IRCT2014050317534N1 (trial registration: 5 June 2014).
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Neurosurgery, Shiraz Medical School, Shiraz University of Medical Sciences, PO Box 71345-1536, Shiraz, Iran.
| | | |
Collapse
|
123
|
Wales S, Hashemi S, Blais A, McDermott JC. Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling. Nucleic Acids Res 2014; 42:11349-62. [PMID: 25217591 PMCID: PMC4191398 DOI: 10.1093/nar/gku813] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MEF2 plays a profound role in the regulation of transcription in cardiac and skeletal muscle lineages. To define the overlapping and unique MEF2A genomic targets, we utilized ChIP-exo analysis of cardiomyocytes and skeletal myoblasts. Of the 2783 and 1648 MEF2A binding peaks in skeletal myoblasts and cardiomyocytes, respectively, 294 common binding sites were identified. Genomic targets were compared to differentially expressed genes in RNA-seq analysis of MEF2A depleted myogenic cells, revealing two prominent genetic networks. Genes largely associated with muscle development were down-regulated by loss of MEF2A while up-regulated genes reveal a previously unrecognized function of MEF2A in suppressing growth/proliferative genes. Several up-regulated (Tprg, Mctp2, Kitl, Prrx1, Dusp6) and down-regulated (Atp1a2, Hspb7, Tmem182, Sorbs2, Lmod3) MEF2A target genes were chosen for further investigation. Interestingly, siRNA targeting of the MEF2A/D heterodimer revealed a somewhat divergent role in the regulation of Dusp6, a MAPK phosphatase, in cardiac and skeletal myogenic lineages. Furthermore, MEF2D functions as a p38MAPK-dependent repressor of Dusp6 in myoblasts. These data illustrate that MEF2 orchestrates both common and non-overlapping programs of signal-dependent gene expression in skeletal and cardiac muscle lineages.
Collapse
Affiliation(s)
- Stephanie Wales
- Department of Biology, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3 Canada Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research on Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| | - Sara Hashemi
- Department of Biology, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3 Canada Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research on Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, K1H 8M5 Canada
| | - John C McDermott
- Department of Biology, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3 Canada Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research on Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research in Mass Spectrometry (CRMS), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| |
Collapse
|
124
|
Wagatsuma A, Sakuma K. Vitamin D signaling in myogenesis: potential for treatment of sarcopenia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:121254. [PMID: 25197630 PMCID: PMC4147791 DOI: 10.1155/2014/121254] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
Muscle mass and strength progressively decrease with age, which results in a condition known as sarcopenia. Sarcopenia would lead to physical disability, poor quality of life, and death. Therefore, much is expected of an effective intervention for sarcopenia. Epidemiologic, clinical, and laboratory evidence suggest an effect of vitamin D on muscle function. However, the precise molecular and cellular mechanisms remain to be elucidated. Recent studies suggest that vitamin D receptor (VDR) might be expressed in muscle fibers and vitamin D signaling via VDR plays a role in the regulation of myoblast proliferation and differentiation. Understanding how vitamin D signaling contributes to myogenesis will provide a valuable insight into an effective nutritional strategy to moderate sarcopenia. Here we will summarize the current knowledge about the effect of vitamin D on skeletal muscle and myogenic cells and discuss the potential for treatment of sarcopenia.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan
| |
Collapse
|
125
|
Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. JAKSTAT 2014; 2:e23282. [PMID: 24058805 PMCID: PMC3710318 DOI: 10.4161/jkst.23282] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Myogenic differentiation plays an important role in muscle regeneration and is regulated by two transcription factor families, MRFs and MEF2, which induce differentiation of myoblasts through expression of the muscle-specific gene, myogenin. In addition, many intracellular signaling pathways are also involved in myogenic differentiation, including p38 MAPK, ERK/MAPK and PI3K/AKT. The JAK-STAT pathway is activated by various cytokines and positively or negatively regulates the differentiation of myoblasts. JAK1 plays a notable role in proliferation; whereas, JAK2 and JAK3 function mainly in differentiation. The STATs, molecules downstream of JAK, regulate myogenesis. With JAK1, STAT1 promotes proliferation, while STAT3 has a dual effect on proliferation and differentiation. The JAK-STAT negative regulator, SOCS, is also associated with myogenesis; although, its role is controversial. In this review, we will discuss the role of the JAK-STAT pathway on myogenic differentiation.
Collapse
Affiliation(s)
- You-Na Jang
- Department of Physiology; Chronic Inflammatory Disease Research Center; Ajou University School of Medicine; Suwon, Korea
| | | |
Collapse
|
126
|
Brien P, Pugazhendhi D, Woodhouse S, Oxley D, Pell JM. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair. Stem Cells 2014; 31:1597-610. [PMID: 23592450 DOI: 10.1002/stem.1399] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 11/05/2022]
Abstract
Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.
Collapse
|
127
|
Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, Cruces-Sande M, Martín M, Ruiz-Gómez A, Ruiz-Gómez M, Lorenzo M, Fernández-Veledo S, Mayor F, Murga C, Nieto-Vázquez I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 2014; 6:299-311. [PMID: 24927997 DOI: 10.1093/jmcb/mju025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is an important serine/threonine-kinase regulating different membrane receptors and intracellular proteins. Attenuation of Drosophila Gprk2 in embryos or adult flies induced a defective differentiation of somatic muscles, loss of fibers, and a flightless phenotype. In vertebrates, GRK2 hemizygous mice contained less but more hypertrophied skeletal muscle fibers than wild-type littermates. In C2C12 myoblasts, overexpression of a GRK2 kinase-deficient mutant (K220R) caused precocious differentiation of cells into immature myotubes, which were wider in size and contained more fused nuclei, while GRK2 overexpression blunted differentiation. Moreover, p38MAPK and Akt pathways were activated at an earlier stage and to a greater extent in K220R-expressing cells or upon kinase downregulation, while the activation of both kinases was impaired in GRK2-overexpressing cells. The impaired differentiation and fewer fusion events promoted by enhanced GRK2 levels were recapitulated by a p38MAPK mutant, which was able to mimic the inhibitory phosphorylation of p38MAPK by GRK2, whereas the blunted differentiation observed in GRK2-expressing clones was rescued in the presence of a constitutively active upstream stimulator of the p38MAPK pathway. These results suggest that balanced GRK2 function is necessary for a timely and complete myogenic process.
Collapse
Affiliation(s)
- Lucia Garcia-Guerra
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain CIBER de enfermedades neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Rocío Vila-Bedmar
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | | | - Marta Cruces-Sande
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Margarita Lorenzo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Hospital Universitari de Tarragona Joan XXIII. IISPV. Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Federico Mayor
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Cristina Murga
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Iria Nieto-Vázquez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| |
Collapse
|
128
|
Li YP, Niu A, Wen Y. Regulation of myogenic activation of p38 MAPK by TACE-mediated TNFα release. Front Cell Dev Biol 2014; 2:21. [PMID: 25364728 PMCID: PMC4207040 DOI: 10.3389/fcell.2014.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/07/2014] [Indexed: 11/24/2022] Open
Abstract
The activation of p38 MAPK in myogenic precursor cells (MPCs) is a key signal for their exit of cell cycle and entry of the myogenic differentiation program. Therefore, identification of the signaling mechanism that activates p38 MAPK during this process is important for the understanding of the regulatory mechanism of muscle regeneration. This article reviews recent findings regarding the role of inflammatory cytokine tumor necrosis factor-α (TNFα) as a key activator of p38 MAPK during myogenesis in an autocrine/paracrine fashion, and the signaling mechanisms that converge upon TNFα converting enzyme (TACE) to release TNFα from differentiating MPCs in response to diverse regenerative stimuli.
Collapse
Affiliation(s)
- Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, TX, USA
| | - Airu Niu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, TX, USA
| | - Yefei Wen
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, TX, USA
| |
Collapse
|
129
|
Tu CF, Tsao KC, Lee SJ, Yang RB. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development. J Biol Chem 2014; 289:18928-42. [PMID: 24849601 DOI: 10.1074/jbc.m114.551929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and
| | - Ku-Chi Tsao
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Jye Lee
- the Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and the Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan,
| |
Collapse
|
130
|
Wang YX, Bentzinger CF, Rudnicki MA. Treating muscular dystrophy by stimulating intrinsic repair. Regen Med 2014; 8:237-40. [PMID: 23627818 DOI: 10.2217/rme.13.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | | |
Collapse
|
131
|
Wu YJ, Fang YH, Chi HC, Chang LC, Chung SY, Huang WC, Wang XW, Lee KW, Chen SL. Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One 2014; 9:e88450. [PMID: 24551104 PMCID: PMC3923792 DOI: 10.1371/journal.pone.0088450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available.
Collapse
Affiliation(s)
- Yi Ju Wu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yen Hsin Fang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hsiang Cheng Chi
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li Chiung Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei Chieh Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Xiao Wen Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan Wei Lee
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
132
|
Okamoto M, Tanaka H, Okada K, Kuroda Y, Nishimoto S, Murase T, Yoshikawa H. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway. Biochem Biophys Res Commun 2013; 443:871-5. [PMID: 24342621 DOI: 10.1016/j.bbrc.2013.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.
Collapse
Affiliation(s)
- Michio Okamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Kuroda
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
133
|
Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR, Wagers AJ, Zon LI. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 2013; 155:909-921. [PMID: 24209627 PMCID: PMC3902670 DOI: 10.1016/j.cell.2013.10.023] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors, and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin, and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle.
Collapse
Affiliation(s)
- Cong Xu
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadsharif Tabebordbar
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salvatore Iovino
- Harvard Medical School, Boston, MA 02115, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
| | - Christie Ciarlo
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jingxia Liu
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Castiglioni
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
- Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Emily Price
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisabeth R. Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C. Ronald Kahn
- Harvard Medical School, Boston, MA 02115, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
| | - Amy J. Wagers
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Joslin Diabetes Center, Boston, MA 02115, USA
| | - Leonard I. Zon
- Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
134
|
Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A, Choi YS, del Álamo JC, Engler AJ. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 2013; 31:2467-77. [PMID: 23897765 PMCID: PMC3833960 DOI: 10.1002/stem.1490] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/24/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Human mesenchymal stem cell (hMSC) proliferation, migration, and differentiation have all been linked to extracellular matrix stiffness, yet the signaling pathway(s) that are necessary for mechanotransduction remain unproven. Vinculin has been implicated as a mechanosensor in vitro, but here we demonstrate its ability to also regulate stem cell behavior, including hMSC differentiation. RNA interference-mediated vinculin knockdown significantly decreased stiffness-induced MyoD, a muscle transcription factor, but not Runx2, an osteoblast transcription factor, and impaired stiffness-mediated migration. A kinase binding accessibility screen predicted a cryptic MAPK1 signaling site in vinculin which could regulate these behaviors. Indeed, reintroduction of vinculin domains into knocked down cells indicated that MAPK1 binding site-containing vinculin constructs were necessary for hMSC expression of MyoD. Vinculin knockdown does not appear to interfere with focal adhesion assembly, significantly alter adhesive properties, or diminish cell traction force generation, indicating that its knockdown only adversely affected MAPK1 signaling. These data provide some of the first evidence that a force-sensitive adhesion protein can regulate stem cell fate.
Collapse
Affiliation(s)
- Andrew W. Holle
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Xinyi Tang
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Deepthi Vijayraghavan
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Ludovic G. Vincent
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Alexander Fuhrmann
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Yu Suk Choi
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego; La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093, USA
- Department of Biomedical Sciences Program, University of California, San Diego; La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine; La Jolla, CA 92037, USA
| |
Collapse
|
135
|
Puppa MJ, Gao S, Narsale AA, Carson JA. Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia. FASEB J 2013; 28:998-1009. [PMID: 24145720 DOI: 10.1096/fj.13-240580] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation is associated with cachexia-induced skeletal muscle mass loss in cancer. Levels of IL-6 cytokine family members are increased during cancer-related cachexia and induce intracellular signaling through glycoprotein130 (gp130). Although muscle STAT3 and circulating IL-6 are implicated in cancer-induced muscle wasting, there is limited understanding of muscle gp130's role in this process. Therefore, we investigated the role of skeletal muscle gp130 (skm-gp130) in cancer-induced alterations in the regulation of muscle protein turnover. Lewis lung carcinoma (LLC) cells were injected into 8-wk-old skm-gp130-knockout (KO) mice or wild-type mice. Skeletal muscle loss was attenuated by 16% in gp130-KO mice, which coincided with attenuated LLC-induced phosphorylation of muscle STAT3, p38, and FOXO3. gp130 KO did not restore mTOR inhibition or alter AMP-activated protein kinase (AMPK) expression. The induction of atrogin expression and p38 phosphorylation in C2C12 myotubes exposed to LLC-treated medium was attenuated by gp130 inhibition, but mTOR inhibition was not restored. STAT signaling inhibition in LLC-treated myotubes did not attenuate the induction of p38 or AMPK phosphorylation. We concluded that, during LLC-induced cachexia, skm-gp130 regulates muscle mass signaling through STAT3 and p38 for the activation of FOXO3 and atrogin, but does not directly regulate the suppression of mTOR.
Collapse
Affiliation(s)
- Melissa J Puppa
- 1University of South Carolina, Department of Exercise Science, Public Health Research Center, Room 405, 921 Assembly Street, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
136
|
Guirguis E, Hockman S, Chung YW, Ahmad F, Gavrilova O, Raghavachari N, Yang Y, Niu G, Chen X, Yu ZX, Liu S, Degerman E, Manganiello V. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice. Endocrinology 2013; 154:3152-67. [PMID: 23766131 PMCID: PMC3749478 DOI: 10.1210/en.2012-2185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.
Collapse
MESH Headings
- Adipogenesis/drug effects
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Adult Stem Cells/cytology
- Adult Stem Cells/drug effects
- Adult Stem Cells/metabolism
- Animals
- Biomarkers/metabolism
- Crosses, Genetic
- Cyclic AMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Dioxoles/pharmacology
- Enzyme Induction/drug effects
- Epididymis
- Gene Expression Profiling
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphodiesterase Inhibitors/pharmacology
- Quinolones/pharmacology
Collapse
Affiliation(s)
- Emilia Guirguis
- Pulmonary Cardiovascular Branch, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Leroy MC, Perroud J, Darbellay B, Bernheim L, Konig S. Epidermal growth factor receptor down-regulation triggers human myoblast differentiation. PLoS One 2013; 8:e71770. [PMID: 23967242 PMCID: PMC3744467 DOI: 10.1371/journal.pone.0071770] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/09/2013] [Indexed: 12/02/2022] Open
Abstract
Initiation of human myoblast differentiation requires a negative shift (hyperpolarization) of the resting potential of myoblasts that depends on the activation of Kir2.1 potassium channels. These channels are regulated by a tyrosine phosphorylation. Using human primary myoblast culture, we investigated a possible role of various receptor tyrosine kinases in the induction of the differentiation process. We found that Epidermal Growth Factor Receptor (EGFR) is a key regulator of myoblast differentiation. EGFR activity is down-regulated during early human myoblast differentiation, and this event is required for normal differentiation to take place. Furthermore, EGFR silencing in proliferation conditions was able to trigger the differentiation program. This occurs through an increase of Kir2.1 channel activity that, via a rise of store-operated Ca2+ entry, leads to the expression of myogenic transcription factors and muscle specific proteins (Myogenin, Myocyte Enhancer Factor 2 (MEF2), Myosin Heavy Chain (MyHC)). Finally, blocking myoblast cell cycle in proliferation conditions using a cdk4 inhibitor greatly decreased myoblast proliferation but was not able, on its own, to promote myoblast differentiation. Taken together, these results show that EGFR down-regulation is an early event that is required for the induction of myoblast differentiation.
Collapse
Affiliation(s)
- Marina C. Leroy
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Julie Perroud
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Basile Darbellay
- Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Stephane Konig
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
138
|
Fortier M, Figeac N, White RB, Knopp P, Zammit PS. Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells. Dev Biol 2013; 382:504-16. [PMID: 23911934 PMCID: PMC3898928 DOI: 10.1016/j.ydbio.2013.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/06/2013] [Accepted: 07/11/2013] [Indexed: 12/17/2022]
Abstract
Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells. Expression of S1PR3 is associated with non-cycling myoblasts. Constitutive expression of S1PR3 leads to reduced cell proliferation. Satellite cells lacking S1PR3 have enhanced proliferation. Muscle regeneration is improved in the absence of S1PR3. The dystrophic phenotype in mdx mice is improved by the absence of S1PR3.
Collapse
Affiliation(s)
- Mathieu Fortier
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | |
Collapse
|
139
|
Rashid AJ, Cole CJ, Josselyn SA. Emerging roles for MEF2 transcription factors in memory. GENES BRAIN AND BEHAVIOR 2013; 13:118-25. [PMID: 23790063 DOI: 10.1111/gbb.12058] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/19/2013] [Indexed: 01/08/2023]
Abstract
In the brain, transcription factors are critical for linking external stimuli to protein production, enabling neurons and neuronal networks to adapt to the ever-changing landscape. Gene transcription and protein synthesis are also vital for the formation of long-term memory. Members of the myocyte enhancer factor-2 (MEF2) family of transcription factors have a well-characterized role in the development of a variety of tissues, but their role in the adult brain is only beginning to be understood. Recent evidence indicates that MEF2 regulates the structural and synaptic plasticity underlying memory formation. However, in stark contrast to most other transcription factors implicated in memory, MEF2-mediated transcription constrains (rather than promotes) memory formation. Here, we review recent data examining the role of MEF2 in adult memory formation in rodents.
Collapse
Affiliation(s)
- A J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children; Department of Psychology; Department of Physiology; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
140
|
Blum R, Dynlacht BD. The role of MyoD1 and histone modifications in the activation of muscle enhancers. Epigenetics 2013; 8:778-84. [PMID: 23880568 PMCID: PMC3883780 DOI: 10.4161/epi.25441] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
MyoD1 is a key regulator that orchestrates skeletal muscle differentiation through the regulation of gene expression. Although many studies have focused on its role in transcriptional control at gene promoters, less is known regarding the role of MyoD1 in the assembly of active enhancers. Here, we discuss novel data that point to the ability of MyoD1 to mediate the assembly of active enhancers that augment the transcription of genes essential for muscle development and lineage specification. Based on genome-wide studies of epigenetic marks that typify active enhancers, we recently identified the compendium of distal regulatory elements that dictate transcriptional programs during myogenesis. Superimposition of MyoD1 binding sites upon the locations of muscle enhancers revealed its unequivocal binding to a core region of nearly a third of condition-specific muscle enhancers. Further studies exploring deposition of enhancer-related epigenetic marks in myoblasts lacking MyoD1 demonstrate the dependence of muscle enhancer assembly on the presence of MyoD1. We propose a model wherein MyoD1 mediates recruitment of Set7, H3K4me1, H3K27ac, p300, and RNAP II to MyoD1-bound enhancers to establish condition-specific activation of muscle genes. Moreover, muscle enhancers are modulated through coordinated binding of transcription factors, including c-Jun, Jdp2, Meis, and Runx1, which are recruited to muscle enhancers in a MyoD1-dependent manner. Thus, MyoD1 and enhancer-associated transcription factors function coordinately to assemble and regulate enhancers, thereby augmenting expression of muscle-related genes.
Collapse
Affiliation(s)
- Roy Blum
- Department of Pathology and Cancer Institute; Smilow Research Center; New York University School of Medicine; New York, NY USA
| | | |
Collapse
|
141
|
Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 2013; 280:4131-48. [PMID: 23663276 PMCID: PMC4163639 DOI: 10.1111/febs.12338] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/19/2022]
Abstract
Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL-6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to synthesize and release IL-6. Paradoxically, deleterious actions for IL-6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications.
Collapse
Affiliation(s)
- Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Institució Catalana de Recerca i Estudis Avançats (ICREA), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
| | | | | | | |
Collapse
|
142
|
Volloch V, Olsen BR. Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol 2013; 32:365-71. [PMID: 23792045 DOI: 10.1016/j.matbio.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/16/2023]
Abstract
This Perspective addresses one of the major puzzles of adipogenesis in adipose tissue, namely its resistance to cellular stress. It introduces a concept of "density" of integrin binding sites in extracellular matrix, proposes a cellular signaling explanation for the observed effects of matrix elasticity and of cell shape on mesenchymal stem cell differentiation, and discusses how specialized integrin binding sites in collagen IV-containing matrices guard two pivotal physiological and evolutionary processes: stress-resistant adipogenesis in adipose tissues and preservation of pluripotency of mesenchymal stem-like cells in their storage niches. Finally, it proposes strategies to suppress adipogenesis in adipose tissues.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
143
|
Ge Y, Waldemer RJ, Nalluri R, Nuzzi PD, Chen J. Flt3L is a novel regulator of skeletal myogenesis. J Cell Sci 2013; 126:3370-9. [PMID: 23704355 DOI: 10.1242/jcs.123950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Various cues initiate multiple signaling pathways to regulate the highly coordinated process of skeletal myogenesis. Myoblast differentiation comprises a series of ordered events starting with cell cycle withdrawal and ending with myocyte fusion, with each step probably controlled by multiple extracellular signals and intracellular signaling pathways. Here we report the identification of Fms-like tyrokine kinase 3 ligand (Flt3L) signaling as a novel regulator of skeletal myogenesis. Flt3L is a multifunctional cytokine in immune cells, but its involvement in skeletal muscle formation has not been reported. We found that Flt3L is expressed in C2C12 myoblasts, with levels increasing throughout differentiation. Knockdown of Flt3L, or its receptor Flt3, suppresses myoblast differentiation, which is rescued by recombinant Flt3L or Flt3, respectively. Differentiation is not rescued, however, by recombinant ligand when the receptor is knocked down, or vice versa, suggesting that Flt3L and Flt3 function together. Flt3L knockdown also inhibits differentiation in mouse primary myoblasts. Both Flt3L and Flt3 are highly expressed in nascent myofibers during muscle regeneration in vivo, and Flt3L siRNA impairs muscle regeneration, validating the physiological significance of Flt3L function in myogenesis. We have identified a cellular mechanism for the myogenic function of Flt3L, as we show that Flt3L promotes cell cycle exit that is necessary for myogenic differentiation. Furthermore, we identify Erk as a relevant target of Flt3L signaling during myogenesis, and demonstrate that Flt3L suppresses Erk signaling through p120RasGAP. In summary, our work reveals an unexpected role for an immunoregulatory cytokine in skeletal myogenesis and a new myogenic pathway.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue B107, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
144
|
Abstract
Myoblast fusion is a critical process that contributes to the growth of muscle during development and to the regeneration of myofibers upon injury. Myoblasts fuse with each other as well as with multinucleated myotubes to enlarge the myofiber. Initial studies demonstrated that myoblast fusion requires extracellular calcium and changes in cell membrane topography and cytoskeletal organization. More recent studies have identified several cell-surface and intracellular proteins that mediate myoblast fusion. Furthermore, emerging evidence suggests that myoblast fusion is also regulated by the activation of specific cell-signaling pathways that lead to the expression of genes whose products are essential for the fusion process and for modulating the activity of molecules that are involved in cytoskeletal rearrangement. Here, we review the roles of the major signaling pathways in mammalian myoblast fusion.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
145
|
Amirouche A, Tadesse H, Lunde JA, Bélanger G, Côté J, Jasmin BJ. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Hum Mol Genet 2013; 22:3093-111. [PMID: 23575223 DOI: 10.1093/hmg/ddt165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Faculty of Medicine, Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
146
|
Rahnert JA, Burkholder TJ. High-frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral. ACTA ACUST UNITED AC 2013; 216:2619-31. [PMID: 23531822 DOI: 10.1242/jeb.080705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High-frequency electrical stimulation (HFES) leads to muscle hypertrophy, and attention has been drawn to the high forces involved. However, both mechanical and metabolic stresses occur simultaneously, and both stimuli influence signaling cascades related to protein synthesis. This study aimed to identify the immediate signaling correlates of contraction-induced force and metabolic stresses under the hypothesis that HFES induces growth-related signaling through mechanical stimulation. Force-time integral (FTI) signaling in mouse tibialis anterior muscle was examined by separately manipulating the time of contraction to emphasize the metabolic aspect or the force of contraction to emphasize the mechanical aspect. When FTI was manipulated by changing the total time of activation, phosphorylation of p54 JNK, ERK and p70S6k(T421/S424) was independent of FTI, while phosphorylation of acetyl-CoA carboxylase and p38 correlated with FTI. When FTI was manipulated by changing the force of contraction, p54 JNK, ERK and p70S6k(T421/S424) were again independent of FTI, while phosphorylation of p38 and FAK correlated with FTI. Factor analysis identified a p38-mTOR signaling module that correlated with FTI in both experiments. The consistent link among p38, mTOR and FTI suggests that they form a connected signaling module sensitive to the mechanical aspects of FTI, separate from markers of metabolic load.
Collapse
Affiliation(s)
- Jill A Rahnert
- School of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA 30332-0356, USA
| | | |
Collapse
|
147
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
148
|
Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One 2013; 8:e57141. [PMID: 23451164 PMCID: PMC3579782 DOI: 10.1371/journal.pone.0057141] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
Cytokine interleukin-6 (IL-6) is an essential regulator of satellite cell-mediated hypertrophic muscle growth through the transcription factor signal transducer and activator of transcription 3 (STAT3). The importance of this pathway linked to the modulation of myogenic regulatory factors expression in rat skeletal muscle undergoing hypertrophy following resistance exercise, has not been investigated. In this study, the phosphorylation and nuclear localization of STAT3, together with IL-6/STAT3-responsive gene expression, were measured after both a single bout of resistance exercise and 10 weeks of training. Flexor Digitorum Profundus muscle samples from Wistar rats were obtained 2 and 6 hours after a single bout of resistance exercise and 72 h after the last bout of either 2, 4, or 10 weeks of resistance training. We observed an increase in IL-6 and SOCS3 mRNAs concomitant with phosphorylation of STAT1 and STAT3 after 2 and 6 hours of a single bout of exercise (p<0.05). STAT3-dependent early responsive genes such as CyclinD1 and cMyc were also upregulated whereas MyoD and Myf5 mRNAs were downregulated (p<0.05). BrdU-positive satellite cells increased at 2 and 6 hours after exercise (p<0.05). Muscle fiber hypertrophy reached up to 100% after 10 weeks of training and the mRNA expression of Myf5, c-Myc and Cyclin-D1 decreased, whereas IL-6 mRNA remained upregulated. We conclude that the IL-6/STAT1/STAT3 signaling pathway and its responsive genes after a single bout of resistance exercise are an important event regulating the SC pool and behavior involved in muscle hypertrophy after ten weeks of training in rat skeletal muscle.
Collapse
|
149
|
Pijet M, Pijet B, Litwiniuk A, Pajak B, Gajkowska B, Orzechowski A. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways. Cytokine 2013. [DOI: 10.1016/j.cyto.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
150
|
Wang M, Amano SU, Flach RJR, Chawla A, Aouadi M, Czech MP. Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation. Mol Cell Biol 2013; 33:678-87. [PMID: 23207904 PMCID: PMC3571342 DOI: 10.1128/mcb.00618-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/20/2012] [Indexed: 12/19/2022] Open
Abstract
Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-mediated expression of native Map4k4 in C2C12 cells attenuates each of these processes, indicating that Map4k4 is a negative regulator of myogenic differentiation and hypertrophy. Expression of a Map4k4 kinase-inactive mutant enhances myotube formation, suggesting that the kinase activity of Map4k4 is essential for its inhibition of muscle differentiation. Map4k4 regulation of myogenesis is unlikely to be mediated by classic mitogen-activated protein kinase (MAPK) signaling pathways, because no significant difference in phosphorylation of extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK) is observed in Map4k4-silenced cells. Furthermore, silencing of these other MAPKs does not result in a hypertrophic myotube phenotype like that seen with Map4k4 depletion. Uniquely, Map4k4 silencing upregulates the expression of the myogenic regulatory factor Myf5, whose depletion inhibits myogenesis. Furthermore, Myf5 is required for enhancement of myotube formation in Map4k4-silenced cells, while Myf5 overexpression rescues Map4k4-mediated inhibition of myogenic differentiation. These results demonstrate that Map4k4 is a novel suppressor of skeletal muscle differentiation, acting through a Myf5-dependent mechanism.
Collapse
Affiliation(s)
- Mengxi Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|