101
|
Zhang C, Xue C, Li Y, Kong Q, Ren X, Li X, Shu D, Bi Y, Cao Y. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J 2010; 7:242. [PMID: 20849641 PMCID: PMC2949843 DOI: 10.1186/1743-422x-7-242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/18/2010] [Indexed: 11/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis.
Collapse
Affiliation(s)
- Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
López-Lastra M, Ramdohr P, Letelier A, Vallejos M, Vera-Otarola J, Valiente-Echeverría F. Translation initiation of viral mRNAs. Rev Med Virol 2010; 20:177-95. [PMID: 20440748 PMCID: PMC7169124 DOI: 10.1002/rmv.649] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viruses depend on cells for their replication but have evolved mechanisms to achieve this in an efficient and, in some instances, a cell‐type‐specific manner. The expression of viral proteins is frequently subject to translational control. The dominant target of such control is the initiation step of protein synthesis. Indeed, during the early stages of infection, viral mRNAs must compete with their host counterparts for the protein synthetic machinery, especially for the limited pool of eukaryotic translation initiation factors (eIFs) that mediate the recruitment of ribosomes to both viral and cellular mRNAs. To circumvent this competition viruses use diverse strategies so that ribosomes can be recruited selectively to viral mRNAs. In this review we focus on the initiation of protein synthesis and outline some of the strategies used by viruses to ensure efficient translation initiation of their mRNAs. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
103
|
Human Staufen1 protein interacts with influenza virus ribonucleoproteins and is required for efficient virus multiplication. J Virol 2010; 84:7603-12. [PMID: 20504931 DOI: 10.1128/jvi.00504-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus genome consists of 8 negative-stranded RNA segments. NS1 is a nonstructural protein that participates in different steps of the virus infectious cycle, including transcription, replication, and morphogenesis, and acts as a virulence factor. Human Staufen1 (hStau1), a protein involved in the transport and regulated translation of cellular mRNAs, was previously identified as a NS1-interacting factor. To investigate the possible role of hStau1 in the influenza virus infection, we characterized the composition of hStau1-containing granules isolated from virus-infected cells. Viral NS1 protein and ribonucleoproteins (RNPs) were identified in these complexes by Western blotting, and viral mRNAs and viral RNAs (vRNAs) were detected by reverse transcription (RT)-PCR. Also, colocalization of hStau1 with NS1, nucleoprotein (NP), and PA in the cytosol of virus-infected cells was shown by immunofluorescence. To analyze the role of hStau1 in the infection, we downregulated its expression by gene silencing. Human HEK293T cells or A549 cells were silenced using either short hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) targeting four independent sites in the hStau1 mRNA. The yield of influenza virus was reduced 5 to 10 times in the various hStau1-silenced cells compared to that in control silenced cells. The expression levels of viral proteins and their nucleocytoplasmic localization were not affected upon hStau1 silencing, but virus particle production, as determined by purification of virions from supernatants, was reduced. These results indicate a role for hStau1 in late events of the influenza virus infection, possibly during virus morphogenesis.
Collapse
|
104
|
Abstract
Infection of cultured cells with lytic animal viruses often results in the selective inhibition of host protein synthesis, whereas viral mRNA is efficiently translated under these circumstances. This phenomenon, known as "shut off," has been well described at the molecular level for some viruses, but there is not yet any direct or indirect evidence supporting the idea that it also should operate in animals infected with viruses. To address this issue, we constructed recombinant Sindbis virus (SV)-expressing reporter mRNA, the translation of which is sensitive or resistant to virus-induced shut off. As found in cultured cells, replication of SV in mouse brain was associated with a strong phosphorylation of eukaryotic initiation factor (eIF2) that prevented translation of reporter mRNA (luciferase and EGFP). Translation of these reporters was restored in vitro, in vivo, and ex vivo when a viral RNA structure, termed downstream hairpin loop, present in viral 26S mRNA, was placed at the 5' end of reporter mRNAs. By comparing the expression of shut off-sensitive and -resistant reporters, we unequivocally concluded that replication of SV in animal tissues is associated with a profound inhibition of nonviral mRNA translation. A strategy as simple as that followed here might be applicable to other viruses to evaluate their interference on host translation in infected animals.
Collapse
|
105
|
Miotto O, Heiny AT, Albrecht R, García-Sastre A, Tan TW, August JT, Brusic V. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains. PLoS One 2010; 5:e9025. [PMID: 20140252 PMCID: PMC2815782 DOI: 10.1371/journal.pone.0009025] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/27/2009] [Indexed: 12/11/2022] Open
Abstract
Background There is widespread concern that H5N1 avian influenza A viruses will emerge
as a pandemic threat, if they become capable of human-to-human (H2H)
transmission. Avian strains lack this capability, which suggests that it
requires important adaptive mutations. We performed a large-scale
comparative analysis of proteins from avian and human strains, to produce a
catalogue of mutations associated with H2H transmissibility, and to detect
their presence in avian isolates. Methodology/Principal Findings We constructed a dataset of influenza A protein sequences from 92,343 public
database records. Human and avian sequence subsets were compared, using a
method based on mutual information, to identify
characteristic sites where human isolates present
conserved mutations. The resulting catalogue comprises 68 characteristic
sites in eight internal proteins. Subtype variability prevented the
identification of adaptive mutations in the hemagglutinin and neuraminidase
proteins. The high number of sites in the ribonucleoprotein complex suggests
interdependence between mutations in multiple proteins. Characteristic sites
are often clustered within known functional regions, suggesting their
functional roles in cellular processes. By isolating and concatenating
characteristic site residues, we defined adaptation
signatures, which summarize the adaptive potential of specific
isolates. Most adaptive mutations emerged within three decades after the
1918 pandemic, and have remained remarkably stable thereafter. Two lineages
with stable internal protein constellations have circulated among humans
without reassorting. On the contrary, H5N1 avian and swine viruses reassort
frequently, causing both gains and losses of adaptive mutations. Conclusions Human host adaptation appears to be complex and systemic, involving nearly
all influenza proteins. Adaptation signatures suggest that the ability of
H5N1 strains to infect humans is related to the presence of an unusually
high number of adaptive mutations. However, these mutations appear unstable,
suggesting low pandemic potential of H5N1 in its current form. In addition,
adaptation signatures indicate that pandemic H1N1/09 strain possesses
multiple human-transmissibility mutations, though not an unusually high
number with respect to swine strains that infected humans in the past.
Adaptation signatures provide a novel tool for identifying zoonotic strains
with the potential to infect humans.
Collapse
Affiliation(s)
- Olivo Miotto
- Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Cytoplasmic PABP [poly(A)-binding protein] is a multifunctional protein with well-studied roles in mRNA translation and stability. In the present review, we examine recent evidence that the activity of PABP is altered during infection with a wide range of viruses, bringing about changes in its stability, complex formation and intracellular localization. Targeting of PABP by both RNA and DNA viruses highlights the role of PABP as a central regulator of gene expression.
Collapse
|
107
|
X-ray structures of NS1 effector domain mutants. Arch Biochem Biophys 2009; 494:198-204. [PMID: 19995550 DOI: 10.1016/j.abb.2009.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 11/21/2022]
Abstract
The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.
Collapse
|
108
|
Schneider J, Wolff T. Nuclear functions of the influenza A and B viruses NS1 proteins: do they play a role in viral mRNA export? Vaccine 2009; 27:6312-6. [PMID: 19840666 DOI: 10.1016/j.vaccine.2009.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/07/2009] [Indexed: 10/20/2022]
Abstract
Although it is known for decades that influenza viruses replicate and transcribe their genome in the nucleus of the host cell, there is little knowledge about the cellular and viral factors mediating the nuclear transport of viral mRNA transcripts to the cytoplasm. Efficient export of mature cellular mRNA is coupled to their synthesis by the RNA polymerase II and subsequent processing events such as splicing. This linkage necessitated influenza viruses to evolve a strategy to integrate their unspliced mRNAs generated by the viral polymerase into a cellular mRNA export pathway. Recent findings suggest that the major cellular mRNA export receptor Tap/NXF1 promotes the influenza virus mRNA export. Here, we review functions of the NS1 proteins of influenza A and B viruses and discuss the emerging evidence supporting a role of these viral factors in the export of viral mRNAs.
Collapse
Affiliation(s)
- Jana Schneider
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany.
| | | |
Collapse
|
109
|
Lee JH, Kim SH, Pascua PNQ, Song MS, Baek YH, Jin X, Choi JK, Kim CJ, Kim H, Choi YK. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression. Virology 2009; 397:89-99. [PMID: 19926108 DOI: 10.1016/j.virol.2009.10.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/18/2009] [Accepted: 10/27/2009] [Indexed: 01/01/2023]
Abstract
To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.
Collapse
Affiliation(s)
- Jun Han Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
111
|
Translation of mRNAs from vesicular stomatitis virus and vaccinia virus is differentially blocked in cells with depletion of eIF4GI and/or eIF4GII. J Mol Biol 2009; 394:506-21. [PMID: 19769989 DOI: 10.1016/j.jmb.2009.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/02/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022]
Abstract
Cytolytic viruses abrogate host protein synthesis to maximize the translation of their own mRNAs. In this study, we analyzed the eukaryotic initiation factor (eIF) 4G requirement for translation of vesicular stomatitis virus (VSV) and vaccinia virus (VV) mRNAs in HeLa cells using two different strategies: eIF4G depletion by small interfering RNAs or cleavage of eIF4G by expression of poliovirus 2A protease. Depletion of eIF4GI or eIF4GII moderately inhibits cellular protein synthesis, whereas silencing of both factors has only a slightly higher effect. Under these conditions, the extent of VSV protein synthesis is similar to that of nondepleted control cells, whereas VV expression is substantially reduced. Similar results were obtained when eIF4E was depleted. On the other hand, eIF4G cleavage by poliovirus 2A protease strongly inhibits translation of VV protein expression, whereas translation directed by VSV mRNAs is not abrogated, even though VSV mRNAs are capped. Therefore, the requirement for eIF4F activity is different for VV and VSV, suggesting that the molecular mechanism by which their mRNAs initiate their translation is also different. Consistent with these findings, eIF4GI does not colocalize with ribosomes in VSV-infected cells, while eIF2alpha locates at perinuclear sites coincident with ribosomes.
Collapse
|
112
|
The NS1 protein of the 1918 pandemic influenza virus blocks host interferon and lipid metabolism pathways. J Virol 2009; 83:10557-70. [PMID: 19706713 DOI: 10.1128/jvi.00330-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The "Spanish influenza" of 1918 claimed an unprecedented number of lives, yet the determinants of virulence for this virus are still not fully understood. Here, we used functional genomics and an in vitro human lung epithelial cell infection model to define the global host transcriptional response to the eight-gene 1918 virus. To better understand the role of the 1918 virus NS1 gene, we also evaluated the host response to a reassortant 1918 virus containing the NS1 gene from A/Texas/36/91 (a seasonal isolate of human influenza virus), as well as the host response to a reassortant of A/Texas/36/91 containing the 1918 NS1 gene. Genomic analyses revealed that the 1918 virus blocked the transcription of multiple interferon-stimulated genes and also downregulated a network of genes associated with lipid metabolism. In contrast, the expression of genes encoding chemokines and cytokines, which serve to attract infiltrating immune cells, was upregulated. Viruses containing the NS1 gene from A/Texas/36/91 induced a significant increase in type I interferon signaling but did not repress lipid metabolism. The 1918 NS1 gene may therefore have contributed to the virulence of the 1918 pandemic virus by disrupting the innate immune response, inducing hypercytokinemia, and by blocking the transcription of certain lipid-based proinflammatory mediators that function as part of the host antiviral response.
Collapse
|
113
|
Zhang L, Katz JM, Gwinn M, Dowling NF, Khoury MJ. Systems-based candidate genes for human response to influenza infection. INFECTION GENETICS AND EVOLUTION 2009; 9:1148-57. [PMID: 19647099 PMCID: PMC7106103 DOI: 10.1016/j.meegid.2009.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/20/2022]
Abstract
Influenza A is a serious respiratory illness that can be debilitating and may cause complications leading to hospitalization and death. The outcome of infection with the influenza A virus is determined by a complex interplay of viral and host factors. With the ongoing threat of seasonal influenza and the potential emergence of new, more virulent strains of influenza viruses, we need to develop a better understanding of genetic variation in the human population and its association with severe outcomes from influenza infection. We propose a list of approximately 100 systems-based candidate genes for future study of the genetic basis of influenza disease and immunity in humans, based on evidence in the published literature for their potential role in the pathogenesis of this infection: binding of the virus to receptors on the host cell surface; cleavability of HA by host proteases; virus replication in host cells; destruction of host cells by apoptosis; state of immunocompetence of the individual host; and viral infections predisposing to bacterial infection.
Collapse
Affiliation(s)
- Lyna Zhang
- Office of Public Health Genomics, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
114
|
Darapaneni V, Prabhaker VK, Kukol A. Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins. J Gen Virol 2009; 90:2124-33. [PMID: 19420157 DOI: 10.1099/vir.0.011270-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The non-structural protein 1 (NS1) of the influenza A virus and the NS2 protein, which is also known as nuclear export protein, play important roles in the infectious life cycle of the virus. The objective of this study was to find the degree of conservation in the NS proteins and to identify conserved sites of functional or structural importance that may be utilized as potential drug target sites. The analysis was based on 2620 amino acid sequences for the NS1 protein and 1195 sequences for the NS2 protein. The degree of conservation and potential binding sites were mapped onto the protein structures obtained from a combination of experimentally available structure fragments with predicted threading models. In addition to high conservation in protein regions of known function, novel highly conserved sites have been identified, namely Glu159, Thr171, Val192, Arg200, Glu208 and Gln218 on the NS1 protein and Ser24, Leu28, Arg66, Arg84, Ser93, Ile97 and Leu103 on the NS2 protein. Using the Q-SiteFinder binding site prediction algorithm, several highly conserved binding sites were found, including two spatially close sites on the NS1 protein, which could be targeted with a bivalent ligand that would interfere with double-stranded RNA binding. Altogether, this work reveals novel universally conserved residues that are candidates for protein-protein interactions and provide the basis for designing universal anti-influenza drugs.
Collapse
Affiliation(s)
- Vivek Darapaneni
- School of Life Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | | | |
Collapse
|
115
|
The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells. J Virol 2009; 83:6849-62. [PMID: 19403682 DOI: 10.1128/jvi.02323-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The NS1 protein of the influenza A virus is a potent virulence factor that inhibits type I interferon (IFN) synthesis, allowing the virus to overcome host defenses and replicate efficiently. However, limited studies have been conducted on NS1 function using human virus strains and primary human cells. We used NS1 truncated mutant influenza viruses derived from the human isolate influenza A/TX/91 (TX WT, where WT is wild type) to study the functions of NS1 in infected primary cells. Infection of primary differentiated human tracheo-bronchial epithelial cells with an NS1 truncated mutant demonstrated limited viral replication and enhanced type I IFN induction. Additionally, human dendritic cells (DCs) infected with human NS1 mutant viruses showed higher levels of activation and stimulated naïve T-cells better than TX WT virus-infected DCs. We also compared infections of DCs with TX WT and our previously characterized laboratory strain A/PR/8/34 (PR8) and its NS1 knockout strain, deltaNS1. TX WT-infected DCs displayed higher viral replication than PR8 but had decreased antiviral gene expression at late time points and reduced naïve T-cell stimulation compared to PR8 infections, suggesting an augmented inhibition of IFN production and human DC activation. Our findings show that human-derived influenza A viruses have a high capacity to inhibit the antiviral state in a human system, and here we have evaluated the possible mechanism of this inhibition. Lastly, C-terminal truncations in the NS1 protein of human influenza virus are sufficient to make the virus attenuated and more immunogenic, supporting its use as a live attenuated influenza vaccine in humans.
Collapse
|
116
|
Richt JA, García-Sastre A. Attenuated influenza virus vaccines with modified NS1 proteins. Curr Top Microbiol Immunol 2009; 333:177-95. [PMID: 19768406 DOI: 10.1007/978-3-540-92165-3_9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of reverse genetics techniques allowing the rescue of influenza virus from plasmid DNA has opened up the possibility of inserting mutations into the genome of this virus for the generation of novel live attenuated influenza virus vaccines. Modifications introduced into the viral NS1 gene via reverse genetics have resulted in attenuated influenza viruses with promising vaccine potential. One of the main functions of the NS1 protein of influenza virus is the inhibition of the innate host type I interferon-mediated antiviral response. Upon viral infection, influenza viruses with modified NS1 genes induce a robust local type I interferon response that limits their replication, resulting in disease attenuation in different animal models. Nevertheless, these viruses can be grown to high titers in cell- and egg-based substrates with deficiencies in the type I IFN system. Intranasal inoculation of mice, pigs, horses, and macaques with NS1-modified influenza virus strains induced robust humoral and cellular immune responses, and generated immune protection against challenge with wild-type virus. This protective response was not limited to homologous strains of influenza viruses, as reduced replication of heterologous strains was also demonstrated in animals vaccinated with NS1-modified viruses, indicating the induction of a broad cross-neutralizing response by these vaccine candidates. The immunogenicity of NS1-modified viruses correlated with enhanced activation of antigen-presenting cells. While further studies on their safety and efficacy are still needed, the results obtained so far indicate that NS1-modified viruses could represent a new generation of improved influenza virus vaccines, and they suggest that modifying viral interferon antagonists in other virus families is a promising strategy for the generation of live attenuated virus vaccines.
Collapse
Affiliation(s)
- Jüergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
117
|
Zohari S, Gyarmati P, Ejdersund A, Berglöf U, Thorén P, Ehrenberg M, Czifra G, Belák S, Waldenström J, Olsen B, Berg M. Phylogenetic analysis of the non-structural (NS) gene of influenza A viruses isolated from mallards in Northern Europe in 2005. Virol J 2008; 5:147. [PMID: 19077274 PMCID: PMC2625346 DOI: 10.1186/1743-422x-5-147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the important role of the non-structural 1 (NS) gene of influenza A in virulence of the virus is well established, our knowledge about the extent of variation in the NS gene pool of influenza A viruses in their natural reservoirs in Europe is incomplete. In this study we determined the subtypes and prevalence of influenza A viruses present in mallards in Northern Europe and further analysed the NS gene of these isolates in order to obtain a more detailed knowledge about the genetic variation of NS gene of influenza A virus in their natural hosts. RESULTS A total number of 45 influenza A viruses of different subtypes were studied. Eleven haemagglutinin- and nine neuraminidase subtypes in twelve combinations were found among the isolated viruses. Each NS gene reported here consisted of 890 nucleotides; there were no deletions or insertions. Phylogenetic analysis clearly shows that two distinct gene pools, corresponding to both NS allele A and B, were present at the same time in the same geographic location in the mallard populations in Northern Europe. A comparison of nucleotide sequences of isolated viruses revealed a substantial number of silent mutations, which results in high degree of homology in amino acid sequences. The degree of variation within the alleles is very low. In our study allele A viruses displays a maximum of 5% amino acid divergence while allele B viruses display only 2% amino acid divergence. All the viruses isolated from mallards in Northern Europe possessed the typical avian ESEV amino acid sequence at the C-terminal end of the NS1 protein. CONCLUSION Our finding indicates the existence of a large reservoir of different influenza A viruses in mallards population in Northern Europe. Although our phylogenetic analysis clearly shows that two distinct gene pools, corresponding to both NS allele A and B, were present in the mallards populations in Northern Europe, allele B viruses appear to be less common in natural host species than allele A, comprising only about 13% of the isolates sequenced in this study.
Collapse
Affiliation(s)
- Siamak Zohari
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Péter Gyarmati
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Anneli Ejdersund
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Ulla Berglöf
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Peter Thorén
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Maria Ehrenberg
- Unit for chemistry, environment and feed safety of National Veterinary Institute (SVA) Ulls väg 2B, SE 751 89 Uppsala, Sweden
| | - György Czifra
- Unit for Virology, Immunobiology, and Parasitology, SVA, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Sándor Belák
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | - Jonas Waldenström
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
- Section for Zoonotic Ecology and Epidemiology, Kalmar University, SE-321 85 Kalmar, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, SE 751 85 Uppsala, Sweden
- Section for Zoonotic Ecology and Epidemiology, Kalmar University, SE-321 85 Kalmar, Sweden
| | - Mikael Berg
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology, of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), and Department of Biomedical Sciences and Public Health, Section of Parasitology and Virology, SLU, Ulls väg 2B, SE-751 89 Uppsala, Sweden
| |
Collapse
|
118
|
Hale BG, Randall RE, Ortín J, Jackson D. The multifunctional NS1 protein of influenza A viruses. J Gen Virol 2008; 89:2359-2376. [PMID: 18796704 DOI: 10.1099/vir.0.2008/004606-0] [Citation(s) in RCA: 818] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The non-structural (NS1) protein of influenza A viruses is a non-essential virulence factor that has multiple accessory functions during viral infection. In recent years, the major role ascribed to NS1 has been its inhibition of host immune responses, especially the limitation of both interferon (IFN) production and the antiviral effects of IFN-induced proteins, such as dsRNA-dependent protein kinase R (PKR) and 2'5'-oligoadenylate synthetase (OAS)/RNase L. However, it is clear that NS1 also acts directly to modulate other important aspects of the virus replication cycle, including viral RNA replication, viral protein synthesis, and general host-cell physiology. Here, we review the current literature on this remarkably multifunctional viral protein. In the first part of this article, we summarize the basic biochemistry of NS1, in particular its synthesis, structure, and intracellular localization. We then discuss the various roles NS1 has in regulating viral replication mechanisms, host innate/adaptive immune responses, and cellular signalling pathways. We focus on the NS1-RNA and NS1-protein interactions that are fundamental to these processes, and highlight apparent strain-specific ways in which different NS1 proteins may act. In this regard, the contributions of certain NS1 functions to the pathogenicity of human and animal influenza A viruses are also discussed. Finally, we outline practical applications that future studies on NS1 may lead to, including the rational design and manufacture of influenza vaccines, the development of novel antiviral drugs, and the use of oncolytic influenza A viruses as potential anti-cancer agents.
Collapse
Affiliation(s)
- Benjamin G Hale
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Richard E Randall
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Jackson
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
119
|
Genetic characterization of the NS gene indicates co-circulation of two sub-lineages of highly pathogenic avian influenza virus of H5N1 subtype in Northern Europe in 2006. Virus Genes 2008; 36:117-25. [DOI: 10.1007/s11262-007-0188-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 01/05/2023]
|
120
|
Someya T, Hosono K, Morimura K, Takaku H, Kawai G. Recognition of a bulged RNA by peptides derived from the influenza NS1 protein. J Biochem 2007; 143:339-47. [PMID: 18039687 DOI: 10.1093/jb/mvm225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A competition assay for RNA binding by the influenza virus NS1 protein using model RNAs, U6-45, corresponding to U6 snRNA revealed that deletion of each of the three bulged-out parts reduced the NS1 protein binding and, in contrast, by deleting all three of the bulged-out parts, simultaneously, and thus producing a double-stranded RNA, the binding was recovered. A common feature of target RNAs of the NS1 protein, U6 snRNA, poly(A) and viral RNA, is the stretch of 'bulged-out' A residues. Thus, the NS1 protein was found to recognize either the stretch of 'bulged-out' A residues or dsRNA which is also a target of the NS1 protein. Furthermore, a basic peptide, NS1-2, derived from the helix-2 of the RNA binding site of NS1 protein was designed and its binding to the U6 snRNA was analysed by using a model RNA for U6 snRNA, U6-34. The NMR signals due to H8/H6 and H1' of U6-34 were assigned and their changes upon binding of NS1-2 were analysed. It was indicated that NS1-2 interacts with the residues in the bulge-out region of U6-34. These results suggest that NS1-2 recognizes the U6 snRNA in a similar manner to NS1 protein.
Collapse
Affiliation(s)
- Tatsuhiko Someya
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
121
|
Burgui I, Yángüez E, Sonenberg N, Nieto A. Influenza virus mRNA translation revisited: is the eIF4E cap-binding factor required for viral mRNA translation? J Virol 2007; 81:12427-38. [PMID: 17855553 PMCID: PMC2168979 DOI: 10.1128/jvi.01105-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/30/2007] [Indexed: 11/20/2022] Open
Abstract
Influenza virus mRNAs bear a short capped oligonucleotide sequence at their 5' ends derived from the host cell pre-mRNAs by a "cap-snatching" mechanism, followed immediately by a common viral sequence. At their 3' ends, they contain a poly(A) tail. Although cellular and viral mRNAs are structurally similar, influenza virus promotes the selective translation of its mRNAs despite the inhibition of host cell protein synthesis. The viral polymerase performs the cap snatching and binds selectively to the 5' common viral sequence. As viral mRNAs are recognized by their own cap-binding complex, we tested whether viral mRNA translation occurs without the contribution of the eIF4E protein, the cellular factor required for cap-dependent translation. Here, we show that influenza virus infection proceeds normally in different situations of functional impairment of the eIF4E factor. In addition, influenza virus polymerase binds to translation preinitiation complexes, and furthermore, under conditions of decreased eIF4GI association to cap structures, an increase in eIF4GI binding to these structures was found upon influenza virus infection. This is the first report providing evidence that influenza virus mRNA translation proceeds independently of a fully active translation initiation factor (eIF4E). The data reported are in agreement with a role of viral polymerase as a substitute for the eIF4E factor for viral mRNA translation.
Collapse
Affiliation(s)
- Idoia Burgui
- Centro Nacional de Biotecnología, CSIC Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
122
|
Baskin CR, Bielefeldt-Ohmann H, García-Sastre A, Tumpey TM, Van Hoeven N, Carter VS, Thomas MJ, Proll S, Solórzano A, Billharz R, Fornek JL, Thomas S, Chen CH, Clark EA, Murali-Krishna K, Katze MG. Functional genomic and serological analysis of the protective immune response resulting from vaccination of macaques with an NS1-truncated influenza virus. J Virol 2007; 81:11817-27. [PMID: 17715226 PMCID: PMC2168783 DOI: 10.1128/jvi.00590-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are still inadequately prepared for an influenza pandemic due to the lack of a vaccine effective for subtypes to which the majority of the human population has no prior immunity and which could be produced rapidly in sufficient quantities. There is therefore an urgent need to investigate novel vaccination approaches. Using a combination of genomic and traditional tools, this study compares the protective efficacy in macaques of an intrarespiratory live influenza virus vaccine produced by truncating NS1 in the human influenza A/Texas/36/91 (H1N1) virus with that of a conventional vaccine based on formalin-killed whole virus. After homologous challenge, animals in the live-vaccine group had greatly reduced viral replication and pathology in lungs and reduced upper respiratory inflammation. They also had lesser induction of innate immune pathways in lungs and of interferon-sensitive genes in bronchial epithelium. This postchallenge response contrasted with that shortly after vaccination, when more expression of interferon-sensitive genes was observed in bronchial cells from the live-vaccine group. This suggested induction of a strong innate immune response shortly after vaccination with the NS1-truncated virus, followed by greater maturity of the postchallenge immune response, as demonstrated with robust influenza virus-specific CD4+ T-cell proliferation, immunoglobulin G production, and transcriptional induction of T- and B-cell pathways in lung tissue. In conclusion, a single respiratory tract inoculation with an NS1-truncated influenza virus was effective in protecting nonhuman primates from homologous challenge. This protection was achieved in the absence of significant or long-lasting adverse effects and through induction of a robust adaptive immune response.
Collapse
Affiliation(s)
- C R Baskin
- Department of Comparative Medicine, University of Washington, Seattle, Washington 981951,USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Sorrell EM, Ramirez-Nieto GC, Gomez-Osorio IG, Perez DR. Genesis of pandemic influenza. Cytogenet Genome Res 2007; 117:394-402. [PMID: 17675883 DOI: 10.1159/000103203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/20/2006] [Indexed: 12/22/2022] Open
Abstract
During the last decade the number of reported outbreaks caused by highly pathogenic avian influenza (HPAI) in domestic poultry has drastically increased. At the same time, low pathogenic avian influenza (LPAI) strains, such as H9N2 in many parts of the Middle East and Asia and H6N2 in live bird markets in California, have become endemic. Each AI outbreak brings the concomitant possibility of poultry-to-human transmission. Indeed, human illness and death have resulted from such occasional transmissions with highly pathogenic avian H7N7 and H5N1 viruses while avian H9N2 viruses have been isolated from individuals with mild influenza. The transmission of avian influenza directly from poultry to humans has brought a sense of urgency in terms of understanding the mechanisms that lead to interspecies transmission of influenza. Domestic poultry species have been previously overlooked as potential intermediate hosts in the generation of influenza viruses with the capacity to infect humans. In this review, we will discuss molecular and epidemiological aspects that have led to the recurrent emergence of avian influenza strains with pandemic potential, with a particular emphasis on the current Asian H5N1 viruses.
Collapse
Affiliation(s)
- E M Sorrell
- University of Maryland, Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
124
|
Finkelstein DB, Mukatira S, Mehta PK, Obenauer JC, Su X, Webster RG, Naeve CW. Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 2007; 81:10292-9. [PMID: 17652405 PMCID: PMC2045501 DOI: 10.1128/jvi.00921-07] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Avian influenza viruses have adapted to human hosts, causing pandemics in humans. The key host-specific amino acid mutations required for an avian influenza virus to function in humans are unknown. Through multiple-sequence alignment and statistical testing of each aligned amino acid, we identified markers that discriminate human influenza viruses from avian influenza viruses. We applied strict thresholds to select only markers which are highly preserved in human influenza virus isolates over time. We found that a subset of these persistent host markers exist in all human pandemic influenza virus sequences from 1918, 1957, and 1968, while others are acquired as the virus becomes a seasonal influenza virus. We also show that human H5N1 influenza viruses are significantly more likely to contain the amino acid predominant in human strains for a few persistent host markers than avian H5N1 influenza viruses. This sporadic enrichment of amino acids present in human-hosted viruses may indicate that some H5N1 viruses have made modest adaptations to their new hosts in the recent past. The markers reported here should be useful in monitoring potential pandemic influenza viruses.
Collapse
Affiliation(s)
- David B Finkelstein
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, and Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Garaigorta U, Ortín J. Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. Nucleic Acids Res 2007; 35:4573-82. [PMID: 17488845 PMCID: PMC1950557 DOI: 10.1093/nar/gkm230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genome of influenza A virus consists of eight single-stranded RNA molecules of negative polarity. Their replication and transcription take place in the nucleus of infected cells using ribonucleoprotein complexes (RNPs) as templates. Two of the viral transcripts, those generated by RNPs 7 and 8, can be spliced and lead to two alternative protein products (M1 and M2, NS1 and NEP/NS2, respectively). Previous studies have shown that when expressed from cDNA, NS1 protein alters the splicing and transport of RNA polymerase II-driven transcripts. Here we used a transient replication/transcription system, in which RNP 8 is replicated and transcribed by recombinant RNA and proteins, to study the splicing and nucleo-cytoplasmic transport of true viral transcripts. Our results show that the encoded NS1 protein inhibits the splicing of the collinear transcript. This regulation is mediated by the N-terminal region of the protein but does not involve its RNA-binding activity. We also show that NS1 protein preferentially blocks the nucleo-cytoplasmic transport of the collinear RNP 8 transcript in an RNA-binding dependent manner. These results rule out previous models to explain the regulation of mRNA processing and transport by NS1 and underlines the relevance of NS1 protein in the control of virus gene expression.
Collapse
Affiliation(s)
| | - Juan Ortín
- *To whom correspondence should be addressed.+34-91-585-4557+34-91-585-4506
| |
Collapse
|
126
|
Rodríguez Pulido M, Serrano P, Sáiz M, Martínez-Salas E. Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins. Virology 2007; 364:466-74. [PMID: 17445855 DOI: 10.1016/j.virol.2007.03.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease virus (FMDV) infection induces major changes in the host cell including the shutoff of cellular protein synthesis. Here, protein extracts from FMDV-infected cells have been used to monitor changes in the profile of RNA-binding factors interacting with regulatory regions of the viral RNA. Relevant differences have been detected in the pattern of interaction with proteins prepared from either infected or uninfected cells with RNA probes encompassing the internal ribosome entry site (IRES), the 5' and 3'end regions. The binding patterns obtained for two divergent FMDV isolates showed differences depending on the viral isolate used. The identity of the host proteins giving a shifted binding pattern to RNA regulatory regions has been inferred by immunoblotting. Our results show that polypyrimidine tract-binding protein (PTB) and two subunits of translation initiation factor eIF3 interacting with the IRES undergo proteolytic processing during FMDV infection. In addition, poly(A)-binding protein (PABP), interacting with the 3'end of the viral RNA is partially processed. Proteolysis of eIF3a, eIF3b, PABP and PTB correlated with the extent of cytopathic effect induced by FMDV in infected cells.
Collapse
|
127
|
Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 2007; 81:7011-21. [PMID: 17442719 PMCID: PMC1933316 DOI: 10.1128/jvi.02581-06] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-alpha/beta) system. This virus-host interplay is dependent on the production of IFN-alpha/beta and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN regulatory factor 3 (IRF3) and blocking posttranscriptional processing of cellular mRNAs. Here we directly compare the abilities of NS1 gene products from three different human FLUAV (H1N1) strains to counteract the antiviral host response. We found that A/PR/8/34 NS1 has a strong capacity to inhibit IRF3 and activation of the IFN-beta promoter but is unable to suppress expression of other cellular genes. In contrast, the NS1 proteins of A/Tx/36/91 and of A/BM/1/18, the virus that caused the Spanish influenza pandemic, caused suppression of additional cellular gene expression. Thus, these NS1 proteins prevented the establishment of an IFN-induced antiviral state, allowing virus replication even in the presence of IFN. Interestingly, the block in gene expression was dependent on a newly described NS1 domain that is important for interaction with the cleavage and polyadenylation specificity factor (CPSF) component of the cellular pre-mRNA processing machinery but is not functional in A/PR/8/34 NS1. We identified the Phe-103 and Met-106 residues in NS1 as being critical for CPSF binding, together with the previously described C-terminal binding domain. Our results demonstrate the capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels and the existence of strain-specific differences that may modulate virus pathogenicity.
Collapse
Affiliation(s)
- Georg Kochs
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| | | | | |
Collapse
|
128
|
Rodriguez A, Pérez-González A, Nieto A. Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J Virol 2007; 81:5315-24. [PMID: 17344288 PMCID: PMC1900203 DOI: 10.1128/jvi.02129-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been described that influenza virus polymerase associates with RNA polymerase II (RNAP II). To gain information about the role of this interaction, we explored if changes in RNAP II occur during infection. Here we show that influenza virus causes the specific degradation of the hypophosphorylated form of the largest subunit of RNAP II without affecting the accumulation of its hyperphosphorylated forms. This effect is independent of the viral strain and the origin of the cells used. Analysis of synthesized mRNAs in isolated nuclei of infected cells indicated that transcription decreases concomitantly with RNAP II degradation. Moreover, this degradation correlated with the onset of viral transcription and replication. The ubiquitin-mediated proteasome pathway is not involved in virally induced RNAP II proteolysis. The expression of viral polymerase from its cloned cDNAs was sufficient to cause the degradation. Since the PA polymerase subunit has proteolytic activity, we tested its participation in the process. A recombinant virus that encodes a PA point mutant with decreased proteolytic activity and that has defects in replication delayed the effect, suggesting that PA's contribution to RNAP II degradation occurs during infection.
Collapse
Affiliation(s)
- A Rodriguez
- Centro Nacional de Biotecnología, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
129
|
Kapasi P, Chaudhuri S, Vyas K, Baus D, Komar AA, Fox PL, Merrick WC, Mazumder B. L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol Cell 2007; 25:113-26. [PMID: 17218275 PMCID: PMC1810376 DOI: 10.1016/j.molcel.2006.11.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/23/2006] [Accepted: 11/30/2006] [Indexed: 01/30/2023]
Abstract
Transcript-specific translational control restricts macrophage inflammatory gene expression. The proinflammatory cytokine interferon-gamma induces phosphorylation of ribosomal protein L13a and translocation from the 60S ribosomal subunit to the interferon-gamma-activated inhibitor of translation (GAIT) complex. This complex binds the 3'UTR of ceruloplasmin mRNA and blocks its translation. Here, we elucidate the molecular mechanism underlying repression by L13a. Translation of the GAIT element-containing reporter mRNA is sensitive to L13a-mediated silencing when driven by internal ribosome entry sites (IRESs) that require initiation factor eIF4G, but is resistant to silencing when driven by eIF4F-independent IRESs, demonstrating a critical role for eIF4G. Interaction of L13a with eIF4G blocks 43S recruitment without suppressing eIF4F complex formation. eIF4G attack, e.g., by virus, stress, or caspases, is a well-known mechanism of global inhibition of protein synthesis. However, our studies reveal a unique mechanism in which targeting of eIF4G by mRNA-bound L13a elicits transcript-specific translational repression.
Collapse
Affiliation(s)
- Purvi Kapasi
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Sujan Chaudhuri
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Keyur Vyas
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Diane Baus
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Paul L. Fox
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - William C. Merrick
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Barsanjit Mazumder
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
- *Correspondence: E-mail: , Phone: 216-687-2435, Fax: 216-687-2932
| |
Collapse
|
130
|
Banet-Noach C, Panshin A, Golender N, Simanov L, Rozenblut E, Pokamunski S, Pirak M, Tendler Y, García M, Gelman B, Pasternak R, Perk S. Genetic analysis of nonstructural genes (NS1 and NS2) of H9N2 and H5N1 viruses recently isolated in Israel. Virus Genes 2006; 34:157-68. [PMID: 17171546 DOI: 10.1007/s11262-006-0057-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
The avian influenza virus subtype H9N2 affects wild birds, domestic poultry, swine, and humans; it has circulated amongst domestic poultry in Israel during the last 6 years. The H5N1 virus was recorded in Israel for the first time in March 2006. Nonstructural (NS) genes and NS proteins are important in the life cycle of the avian influenza viruses. In the present study, NS genes of 21 examples of H9N2 and of two examples of H5N1 avian influenza viruses, isolated in Israel during 2000-2006, were completely sequenced and phylogenetically analyzed. All the H9N2 isolates fell into a single group that, in turn, was subdivided into three subgroups in accordance with the time of isolation; their NS1 and NS2 proteins possessed 230 and 121 amino acids, respectively. The NS1 protein of the H5N1 isolates had five amino acid deletions, which was typical of highly pathogenic H5N1 viruses isolated in various countries during 2005-2006. Comparative analysis showed that the NS proteins of the H9N2 Israeli isolates contained few amino acid sequences associated with high pathogenicity or human host specificity.
Collapse
Affiliation(s)
- Caroline Banet-Noach
- Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, P.O.B. 12, Beit Dagan, ZC, 50250, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Dauber B, Schneider J, Wolff T. Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonize production of alpha/beta interferon. J Virol 2006; 80:11667-77. [PMID: 16987984 PMCID: PMC1642593 DOI: 10.1128/jvi.01142-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Expression of alpha/beta interferon (IFN-alpha/beta) in virus-infected vertebrate cells is a key event in the establishment of a sustained antiviral response, which is triggered by double-stranded RNA (dsRNA) produced during viral replication. These antiviral cytokines initiate the expression of cellular proteins with activities that limit the replication and spread of the invading viruses. Within this response, the dsRNA-dependent protein kinase R (PKR) that is expressed at constitutive levels and upregulated by IFN-alpha/beta acts as an important antiviral effector that can block the cellular translational machinery. We previously demonstrated that efficient replication of influenza B virus depends on the viral dsRNA-binding NS1 protein that inhibits the transcriptional activation of IFN-alpha/beta genes. Here we tested the postulate that the viral NS1 protein counteracts antiviral responses through sequestering intracellular dsRNA by analyzing a collection of recombinant influenza B viruses. As expected, viruses expressing dsRNA-binding-defective NS1 proteins were strongly attenuated for replication in IFN-competent hosts. Interestingly, these virus mutants failed to prevent activation of PKR but could effectively limit IFN induction. Conversely, a mutant virus expressing the N-terminal dsRNA-binding domain of NS1 prevented PKR activation, but not IFN induction, suggesting an important role for the NS1 C-terminal part in silencing the activation route of IFN-alpha/beta genes. Thus, our findings indicate an unexpected mechanistic dichotomy of the influenza B virus NS1 protein in the suppression of antiviral responses, which involves at least one activity that is largely separable from dsRNA binding.
Collapse
Affiliation(s)
- Bianca Dauber
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | |
Collapse
|
132
|
Kash JC, Goodman AG, Korth MJ, Katze MG. Hijacking of the host-cell response and translational control during influenza virus infection. Virus Res 2006; 119:111-20. [PMID: 16630668 DOI: 10.1016/j.virusres.2005.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 09/23/2005] [Accepted: 10/20/2005] [Indexed: 11/17/2022]
Abstract
Influenza virus is a major public health problem with annual deaths in the US of 36,000 with pandemic outbreaks, such as in 1918, resulting in deaths exceeding 20 million worldwide. Recently, there is much concern over the introduction of highly pathogenic avian influenza H5N1 viruses into the human population. Influenza virus has evolved complex translational control strategies that utilize cap-dependent translation initiation mechanisms and involve the recruitment of both viral and host-cell proteins to preferentially synthesize viral proteins and prevent activation of antiviral responses. Influenza virus is a member of the Orthomyxoviridae family of negative-stranded, segmented RNA viruses and represents a particularly attractive model system as viral replication strategies are closely intertwined with normal cellular processes including the host defense and stress pathways. In this chapter, we review the parallels between translational control in influenza virus infected cells and in stressed cells with a focus on selective translation of viral mRNAs and the antagonism of the dsRNA and host antiviral responses. Moreover, we will discuss how the use of genomic technologies such as DNA microarrays and high through-put proteomics can be used to gain new insights into the control of protein synthesis during viral infection and provide a near comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- John C Kash
- Department of Microbiology, University of Washington School of Medicine, Box 358070, Seattle, WA 98195-8070, USA.
| | | | | | | |
Collapse
|
133
|
Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 2006; 80:2976-86. [PMID: 16501107 PMCID: PMC1395423 DOI: 10.1128/jvi.80.6.2976-2986.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have developed numerous mechanisms to usurp the host cell translation apparatus. Dengue virus (DEN) and other flaviviruses, such as West Nile and yellow fever viruses, contain a 5' m7GpppN-capped positive-sense RNA genome with a nonpolyadenylated 3' untranslated region (UTR) that has been presumed to undergo translation in a cap-dependent manner. However, the means by which the DEN genome is translated effectively in the presence of capped, polyadenylated cellular mRNAs is unknown. This report demonstrates that DEN replication and translation are not affected under conditions that inhibit cap-dependent translation by targeting the cap-binding protein eukaryotic initiation factor 4E, a key regulator of cellular translation. We further show that under cellular conditions in which translation factors are limiting, DEN can alternate between canonical cap-dependent translation initiation and a noncanonical mechanism that appears not to require a functional m7G cap. This DEN noncanonical translation is not mediated by an internal ribosome entry site but requires the interaction of the DEN 5' and 3' UTRs for activity, suggesting a novel strategy for translation of animal viruses.
Collapse
Affiliation(s)
- Dianna Edgil
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, Berkeley, California 94720-7360, USA
| | | | | |
Collapse
|
134
|
Garaigorta U, Falcón AM, Ortín J. Genetic analysis of influenza virus NS1 gene: a temperature-sensitive mutant shows defective formation of virus particles. J Virol 2006; 79:15246-57. [PMID: 16306596 PMCID: PMC1316024 DOI: 10.1128/jvi.79.24.15246-15257.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To perform a genetic analysis of the influenza A virus NS1 gene, a library of NS1 mutants was generated by PCR-mediated mutagenesis. A collection of mutant ribonucleic proteins containing the nonstructural genes was generated from the library that were rescued for an infectious virus mutant library by a novel RNP competition virus rescue procedure. Several temperature-sensitive (ts) mutant viruses were obtained by screening of the mutant library, and the sequences of their NS1 genes were determined. Most of the mutations identified led to amino acid exchanges and concentrated in the N-terminal region of the protein, but some of them occurred in the C-terminal region. Mutant 11C contained three mutations that led to amino acid exchanges, V18A, R44K, and S195P, all of which were required for the ts phenotype, and was characterized further. Several steps in the infection were slightly altered: (i) M1, M2, NS1, and neuraminidase (NA) accumulations were reduced and (ii) NS1 protein was retained in the nucleus in a temperature-independent manner, but these modifications could not justify the strong virus titer reduction at restrictive temperature. The most dramatic phenotype was the almost complete absence of virus particles in the culture medium, in spite of normal accumulation and nucleocytoplasmic export of virus RNPs. The function affected in the 11C mutant was required late in the infection, as documented by shift-up and shift-down experiments. The defect in virion production was not due to reduced NA expression, as virus yield could not be rescued by exogenous neuraminidase treatment. All together, the analysis of 11C mutant phenotype may indicate a role for NS1 protein in a late event in virus morphogenesis.
Collapse
Affiliation(s)
- Urtzi Garaigorta
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
135
|
Wang M, Hudak KA. A novel interaction of pokeweed antiviral protein with translation initiation factors 4G and iso4G: a potential indirect mechanism to access viral RNAs. Nucleic Acids Res 2006; 34:1174-81. [PMID: 16493141 PMCID: PMC1380256 DOI: 10.1093/nar/gkj520] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a ribosome inactivating protein recognized primarily for its ability to depurinate the sarcin/ricin loop of the large rRNA. Studies have demonstrated that PAP also depurinates other RNA templates, such as Human immunodeficiency virus-1 RNA and Brome mosaic virus RNAs. However, the mechanism by which PAP accesses viral RNAs is not known. Considering that PAP was shown recently to bind the m(7)G of the cap structure, we speculated that PAP may interact with other factors involved in translation initiation. By far western analysis, we show that PAP binds specifically to eIF4G and eIFiso4G of wheat germ and analysis with truncation mutants of eIFiso4G indicates that a region of this protein, between amino acids 511 and 624, is required for PAP binding activity. The yeast two-hybrid system supports these results by showing reduced growth and alpha-galactosidase expression with truncation in this region of eIFiso4G. PAP binds m(7)GTP-Sepharose and this interaction does not diminish the binding of PAP to purified eIFiso4G, indicating that a complex can form among the cap structure, PAP and eIFiso4G. We incubated PAP with uncapped and non-polyadenylated transcripts containing a 3' translation enhancer sequence (TE) known to increase translation of the RNA in an eIF4F dependent manner. We show that in the presence of wheat germ lysate, PAP depurinates the uncapped and non-polyadenylated transcripts containing a functional wild-type 3'TE, but does not depurinate messages containing a non-functional mutant 3'TE. These results support our hypothesis that binding of PAP to eIF4G and eIFiso4G can provide a mechanism for PAP to access both uncapped and capped viral RNAs for depurination.
Collapse
Affiliation(s)
| | - K. A. Hudak
- To whom correspondence should be addressed at Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada. Tel: +1 416 736 2100, ext. 33470; Fax: +1 416 736 5698;
| |
Collapse
|
136
|
Castelló A, Sanz MA, Molina S, Carrasco L. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G. J Mol Biol 2005; 355:942-56. [PMID: 16343528 DOI: 10.1016/j.jmb.2005.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 11/15/2022]
Abstract
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
137
|
Falcón AM, Fernandez-Sesma A, Nakaya Y, Moran TM, Ortín J, García-Sastre A. Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. J Gen Virol 2005; 86:2817-2821. [PMID: 16186237 DOI: 10.1099/vir.0.80991-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.
Collapse
Affiliation(s)
- Ana M Falcón
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ana Fernandez-Sesma
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Yurie Nakaya
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Thomas M Moran
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Juan Ortín
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
138
|
Quinlivan M, Zamarin D, García-Sastre A, Cullinane A, Chambers T, Palese P. Attenuation of equine influenza viruses through truncations of the NS1 protein. J Virol 2005; 79:8431-9. [PMID: 15956587 PMCID: PMC1143746 DOI: 10.1128/jvi.79.13.8431-8439.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine influenza is a common disease of the horse, causing significant morbidity worldwide. Here we describe the establishment of a plasmid-based reverse genetics system for equine influenza virus. Utilizing this system, we generated three mutant viruses encoding carboxy-terminally truncated NS1 proteins. We have previously shown that a recombinant human influenza virus lacking the NS1 gene (delNS1) could only replicate in interferon (IFN)-incompetent systems, suggesting that the NS1 protein is responsible for IFN antagonist activity. Contrary to previous findings with human influenza virus, we found that in the case of equine influenza virus, the length of the NS1 protein did not correlate with the level of attenuation of that virus. With equine influenza virus, the mutant virus with the shortest NS1 protein turned out to be the least attenuated. We speculate that the basis for attenuation of the equine NS1 mutant viruses generated is related to their level of NS1 protein expression. Our findings show that the recombinant mutant viruses are impaired in their ability to inhibit IFN production in vitro and they do not replicate as efficiently as the parental recombinant strain in embryonated hen eggs, in MDCK cells, or in vivo in a mouse model. Therefore, these attenuated mutant NS1 viruses may have potential as candidates for a live equine influenza vaccine.
Collapse
Affiliation(s)
- Michelle Quinlivan
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
139
|
Solórzano A, Webby RJ, Lager KM, Janke BH, García-Sastre A, Richt JA. Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J Virol 2005; 79:7535-43. [PMID: 15919908 PMCID: PMC1143661 DOI: 10.1128/jvi.79.12.7535-7543.2005] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-alpha/beta) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by using reverse genetics. The virulent wild-type A/Swine/Texas/4199-2/98 (TX/98) virus and various mutants encoding carboxy-truncated NS1 proteins were rescued. Growth properties of TX/98 viruses with mutated NS1, induction of IFN in tissue culture, and virulence-attenuation in pigs were analyzed and compared to those of the recombinant wild-type TX/98 virus. Our results indicate that deletions in the NS1 protein decrease the ability of the TX/98 virus to prevent IFN-alpha/beta synthesis in pig cells. Moreover, all NS1 mutant viruses were attenuated in pigs, and this correlated with the amount of IFN-alpha/beta induced in vitro. These data suggest that the NS1 protein of SIV is a virulence factor. Due to their attenuation, NS1-mutated swine influenza viruses might have a great potential as live attenuated vaccine candidates against SIV infections of pigs.
Collapse
|
140
|
Yamada H, Chounan R, Higashi Y, Kurihara N, Kido H. Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett 2005; 578:331-6. [PMID: 15589841 DOI: 10.1016/j.febslet.2004.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/26/2004] [Accepted: 11/09/2004] [Indexed: 11/21/2022]
Abstract
The influenza A virus PB1-F2 protein predominantly localizes in the mitochondria of virus-infected cells. A series of cDNAs encoding N- and C-terminal deletion mutants and site-directed mutagenesis of the basic residues of PB1-F2 appended to 3xFLAG revealed the domain from residues 46 to 75 to be both necessary and sufficient for mitochondrial targeting. In addition, the subdomain residues 63-75 and both Lys73 and Arg75 are minimally required for mitochondrial localization. Transfection of untagged- and 3xFLAG tagged-PB1-F2 into Vero, HeLa and MDCK cells changed the mitochondrial morphology from a filamentous to a dotted structure and suppressed the inner-membrane potential.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho 3-18-15, 770-8503, Japan
| | | | | | | | | |
Collapse
|
141
|
Ferko B, Stasakova J, Romanova J, Kittel C, Sereinig S, Katinger H, Egorov A. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 2004; 78:13037-45. [PMID: 15542655 PMCID: PMC524997 DOI: 10.1128/jvi.78.23.13037-13045.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We explored the immunogenic properties of influenza A viruses with altered NS1 genes (NS1 mutant viruses). NS1 mutant viruses expressing NS1 proteins with an impaired RNA-binding function or insertion of a longer foreign sequence did not replicate in murine lungs but still were capable of inducing a Th1-type immune response resulting in significant titers of virus-specific serum and mucosal immunoglobulin G2 (IgG2) and IgA, but with lower titers of IgG1. In contrast, replicating viruses elicited high titers of serum and mucosal IgG1 but less serum IgA. Replication-deficient NS1 mutant viruses induced a rapid local release of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Moreover, these viruses also elicited markedly higher levels of IFN-alpha/beta in serum than the wild-type virus. Comparable numbers of virus-specific primary CD8(+) T cells were determined in all of the groups of immunized mice. The most rapid onset of the recall CD8(+)-T-cell response upon the wild-type virus challenge was detected in mice primed with NS1 mutant viruses eliciting high levels of cytokines. It is noteworthy that there was one NS1 mutant virus encoding NS1 protein with a deletion of 40 amino acids predominantly in the RNA-binding domain that induced the highest levels of IFN-alpha/beta, IL-6 and IL-1beta after infection. Mice that were immunized with this virus were completely protected from the challenge infection. These findings indicate that a targeted modification of the RNA-binding domain of the NS1 protein is a valuable technique to generate replication-deficient, but immunogenic influenza virus vaccines.
Collapse
Affiliation(s)
- Boris Ferko
- Institute of Applied Microbiology, Muthgasse 18B, A-1190 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
142
|
Kittel C, Sereinig S, Ferko B, Stasakova J, Romanova J, Wolkerstorfer A, Katinger H, Egorov A. Rescue of influenza virus expressing GFP from the NS1 reading frame. Virology 2004; 324:67-73. [PMID: 15183054 DOI: 10.1016/j.virol.2004.03.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/18/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
In this study, several influenza NS1 mutants were examined for their growth ability in interferon (IFN)-deficient Vero cells treated with human interferon alpha (IFN-alpha). Mutants with an intact RNA binding domain showed similar growth properties as the wild-type virus, whereas viruses carrying an impaired RNA binding domain were dramatically attenuated. Relying on the ability of the first half of the NS1 protein to antagonize the IFN action, we established a rescue system for the NS gene based on the transfection of one plasmid expressing recombinant NS vRNA and subsequent coinfection with an IFN sensitive helper virus followed by adding of human IFN-alpha as a selection drug. Using this method, a recombinant influenza A virus expressing green fluorescence protein (GFP) from the NS1 reading frame was rescued. To ensure the posttranslational cleavage of GFP from the N-terminal 125 amino acids (aa) of NS1 protein, a peptide sequence comprising a caspase recognition site (CRS) was inserted upstream the GFP protein. Although a rather long sequence of 275 aa was inserted into the NS1 reading frame, the rescued recombinant vector appeared to be genetically stable while passaging in Vero cells and was able to replicate in PKR knockout mice.
Collapse
Affiliation(s)
- Christian Kittel
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Falcón AM, Marión RM, Zürcher T, Gómez P, Portela A, Nieto A, Ortín J. Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. J Virol 2004; 78:3880-8. [PMID: 15047804 PMCID: PMC374278 DOI: 10.1128/jvi.78.8.3880-3888.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus mutants expressing C-terminally deleted forms of the NS1 protein (NS1-81 and NS1-110) were generated by plasmid rescue. These viruses were temperature sensitive and showed a small plaque size at the permissive temperature. The accumulation of virion RNA in mutant virus-infected cells was reduced at the restrictive temperature, while the accumulation of cRNA or mRNA was not affected, indicating that the NS1 protein is involved in the control of transcription versus replication processes in the infection. The synthesis and accumulation of late virus proteins were reduced in NS1-81 mutant-infected cells at the permissive temperature and were essentially abolished for both viruses at the restrictive temperature, while synthesis and accumulation of nucleoprotein (NP) were unaffected. Probably as a consequence, the nucleocytoplasmic export of virus NP was strongly inhibited at the restrictive temperature. These results indicate that the NS1 protein is essential for nuclear and cytoplasmic steps during the virus cycle.
Collapse
Affiliation(s)
- Ana M Falcón
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
144
|
Bucher E, Hemmes H, de Haan P, Goldbach R, Prins M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 2004; 85:983-991. [PMID: 15039540 DOI: 10.1099/vir.0.19734-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA silencing comprises a set of sequence-specific RNA degradation pathways that occur in a wide range of eukaryotes, including animals, fungi and plants. A hallmark of RNA silencing is the presence of small interfering RNA molecules (siRNAs). The siRNAs are generated by cleavage of larger double-stranded RNAs (dsRNAs) and provide the sequence specificity for degradation of cognate RNA molecules. In plants, RNA silencing plays a key role in developmental processes and in control of virus replication. It has been shown that many plant viruses encode proteins, denoted RNA silencing suppressors, that interfere with this antiviral response. Although RNA silencing has been shown to occur in vertebrates, no relationship with inhibition of virus replication has been demonstrated to date. Here we show that the NS1 protein of human influenza A virus has an RNA silencing suppression activity in plants, similar to established RNA silencing suppressor proteins of plant viruses. In addition, NS1 was shown to be capable of binding siRNAs. The data presented here fit with a potential role for NS1 in counteracting innate antiviral responses in vertebrates by sequestering siRNAs.
Collapse
Affiliation(s)
- Etienne Bucher
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Hans Hemmes
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Peter de Haan
- Viruvation BV, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | - Rob Goldbach
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
145
|
Dauber B, Heins G, Wolff T. The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol 2004; 78:1865-72. [PMID: 14747551 PMCID: PMC369500 DOI: 10.1128/jvi.78.4.1865-1872.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We analyzed the functions of the influenza B virus nonstructural NS1-B protein, both by utilizing a constructed mutant virus (Delta NS1-B) lacking the NS1 gene and by testing the activities of the protein when expressed in cells. The mutant virus replicated to intermediate levels in 6-day-old embryonated chicken eggs that contain an immature interferon (IFN) system, whereas older eggs did not support viral propagation to a significant extent. The Delta NS1-B virus was a substantially stronger inducer of beta IFN (IFN-beta) transcripts in human lung epithelial cells than the wild type, and furthermore, transiently expressed NS1-B protein efficiently inhibited virus-dependent activation of the IFN-beta promoter. Interestingly, replication of the Delta NS1-B knockout virus was attenuated by more than 4 orders of magnitude in tissue culture cells containing or lacking functional IFN-alpha/beta genes. These findings show that the NS1-B protein functions as a viral IFN antagonist and indicate a further requirement of this protein for efficient viral replication that is unrelated to blocking IFN effects.
Collapse
|
146
|
Burgui I, Aragón T, Ortín J, Nieto A. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol 2004; 84:3263-3274. [PMID: 14645908 DOI: 10.1099/vir.0.19487-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has previously been shown that influenza virus NS1 protein enhances the translation of viral but not cellular mRNAs. This enhancement occurs by increasing the rate of translation initiation and requires the 5'UTR sequence, common to all viral mRNAs. In agreement with these findings, we show here that viral mRNAs, but not cellular mRNAs, are associated with NS1 during virus infection. We have previously reported that NS1 interacts with the translation initiation factor eIF4GI, next to its poly(A)-binding protein 1 (PABP1)-interacting domain and that NS1 and eIF4GI are associated in influenza virus-infected cells. Here we show that NS1, although capable of binding poly(A), does not compete with PABP1 for association with eIF4GI and, furthermore, that NS1 and PABP1 interact both in vivo and in vitro in an RNA-independent manner. The interaction maps between residues 365 and 535 in PABP1 and between residues 1 and 81 in NS1. These mapping studies, together with those previously reported for NS1-eIF4GI and PABP1-eIF4GI interactions, imply that the binding of all three proteins would be compatible. Collectively, these and previously published data suggest that NS1 interactions with eIF4GI and PABP1, as well as with viral mRNAs, could promote the specific recruitment of 43S complexes to the viral mRNAs.
Collapse
Affiliation(s)
- Idoia Burgui
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Tomás Aragón
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
147
|
Donelan NR, Basler CF, García-Sastre A. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol 2004; 77:13257-66. [PMID: 14645582 PMCID: PMC296096 DOI: 10.1128/jvi.77.24.13257-13266.2003] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-beta) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-beta production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.
Collapse
Affiliation(s)
- Nicola R Donelan
- Department of Microbiology. Microbiology Graduate School Training Program, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
148
|
García-Sastre A. Identification and characterization of viral antagonists of type I interferon in negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:249-80. [PMID: 15298172 DOI: 10.1007/978-3-662-06099-5_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interferons are cytokines secreted in response to viral infections with potent antiviral activity, and they represent a critical component of the innate immune response against viruses. It has now become apparent that many viruses have evolved different mechanisms to counteract the interferon response, allowing their efficient replication and propagation in their hosts. This review discusses how the development of reverse genetics techniques and the increase in our knowledge of the interferon response have led to the discovery of interferon-antagonistic functions of different genes of viruses belonging to the negative-strand RNA virus group. In many cases, these viral genes encode accessory pro- teins that are not required for viral infectivity but are critical for optimal replication and for virulence in the host.
Collapse
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
149
|
Abstract
A variety of viral strategies are utilized for dominance of the host-cell protein synthetic machinery, optimization of viral mRNA translation and evasion of host-cell antiviral responses that act at the translational level. Many viruses exploit regulated steps in the initiation of cellular protein synthesis to their own advantage. They have developed some rather unconventional means for mRNA translation, which were probably adapted from specialized cellular mRNA translation systems. Regardless of the type of translational tricks exploited, viruses typically ensure efficient viral translation, often at the expense of host-cell protein synthesis.
Collapse
Affiliation(s)
- Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
150
|
Catchpole AP, Mingay LJ, Fodor E, Brownlee GG. Alternative base pairs attenuate influenza A virus when introduced into the duplex region of the conserved viral RNA promoter of either the NS or the PA gene. J Gen Virol 2003; 84:507-515. [PMID: 12604800 DOI: 10.1099/vir.0.18795-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of plasmid-based rescue systems for influenza virus has allowed previous studies of the neuraminidase (NA) virion RNA (vRNA) promoter to be extended, in order to test the hypothesis that alternative base pairs in the conserved influenza virus vRNA promoter cause attenuation when introduced into other gene segments. Influenza A/WSN/33 viruses with alternative base pairs in the duplex region of the vRNA promoter of either the polymerase acidic (PA) or the NS (non-structural 1, NS1, and nuclear export, NEP, -encoding) gene have been rescued. Virus growth in MDBK cells demonstrated that one of the mutations, the D2 mutation (U-A replacing G-C at nucleotide positions 12'-11), caused significant virus attenuation when introduced into either the PA or the NS gene. The D2 mutation resulted in the reduction of PA- or NS-specific vRNA and mRNA levels in PA- or NS-recombinant viruses, respectively. Since the D2 mutation attenuates influenza virus when introduced into either the PA or the NS gene segments, or the NA gene segment, as demonstrated previously, this suggests that this mutation will lead to virus attenuation when introduced into any of the eight gene segments. Such a mutation may be useful in the production of live-attenuated viruses.
Collapse
Affiliation(s)
- A P Catchpole
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| | - L J Mingay
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| | - E Fodor
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| | - G G Brownlee
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|