101
|
Iyer SS, Srivastava A. Degeneracy in molecular scale organization of biological membranes. SOFT MATTER 2020; 16:6752-6764. [PMID: 32628232 DOI: 10.1039/d0sm00619j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The scale-rich spatiotemporal organization in biological membranes has its origin in the differential inter- and intra-molecular interactions among their constituents. In this work, we explore the molecular-origin behind that variety and possible degeneracy in lateral organization in membranes. For our study, we post-process microsecond long all-atom molecular dynamics trajectories for three systems that exhibit fluid phase coexistence: (i) PSM/POPC/Chol (0.47/0.32/0.21), (ii) PSM/DOPC/Chol (0.43/0.38/0.19) and (iii) DPPC/DOPC/Chol (0.37/0.36/0.27). To distinguish the liquid ordered and disordered regions at molecular scales, we calculate the degree of non-affineness of individual lipids in their neighbourhood and track their topological rearrangements. Disconnectivity graph analysis with respect to membrane organization shows that the DPPC/DOPC/Chol and PSM/DOPC/Chol systems exhibit funnel-like energy landscapes as opposed to a highly frustrated energy landscape for the more biomimetic PSM/POPC/Chol system. We use these measurements to develop a continuous lattice Hamiltonian and evolve that using Monte Carlo simulated annealing to explore the possibility of structural degeneracy in membrane organization. Our data show that model membranes with lipid constituents that are biomimetic (PSM/POPC/Chol) have the ability to access a large range of membrane sub-structure space (higher degeneracy) as compared to the other two systems, which form only one kind of substructure even with changing composition. Since the spatiotemporal organization in biological membranes dictates the "molecular encounters" and in turn larger scale biological processes such as molecular transport, trafficking and cellular signalling, we posit that this structural degeneracy could enable access to a larger repository to functionally important molecular organization in systems with physiologically relevant compositions.
Collapse
Affiliation(s)
- Sahithya S Iyer
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
102
|
Svitkina TM. Actin Cell Cortex: Structure and Molecular Organization. Trends Cell Biol 2020; 30:556-565. [PMID: 32278656 PMCID: PMC7566779 DOI: 10.1016/j.tcb.2020.03.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
The actin cytoskeleton consists of structurally and biochemically different actin filament arrays. Among them, the actin cortex is thought to have key roles in cell mechanics, but remains a poorly characterized part of the actin cytoskeleton. The cell cortex is typically defined as a thin layer of actin meshwork that uniformly underlies the plasma membrane of the entire cell. However, this definition applies only to specific cases. In general, the cortex structure and subcellular distribution vary significantly across cell types and physiological states of the cell. In this review, I focus on our current knowledge of the structure and molecular composition of the cell cortex.
Collapse
Affiliation(s)
- Tatyana M Svitkina
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
103
|
Sansen T, Sanchez-Fuentes D, Rathar R, Colom-Diego A, El Alaoui F, Viaud J, Macchione M, de Rossi S, Matile S, Gaudin R, Bäcker V, Carretero-Genevrier A, Picas L. Mapping Cell Membrane Organization and Dynamics Using Soft Nanoimprint Lithography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29000-29012. [PMID: 32464046 DOI: 10.1021/acsami.0c05432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane shape is a key feature of many cellular processes, including cell differentiation, division, migration, and trafficking. The development of nanostructured surfaces allowing for the in situ manipulation of membranes in living cells is crucial to understand these processes, but this requires complicated and limited-access technologies. Here, we investigate the self-organization of cellular membranes by using a customizable and benchtop method allowing one to engineer 1D SiO2 nanopillar arrays of defined sizes and shapes on high-performance glass compatible with advanced microscopies. As a result of this original combination, we provide a mapping of the morphology-induced modulation of the cell membrane mechanics, dynamics and steady-state organization of key protein complexes implicated in cellular trafficking and signal transduction.
Collapse
Affiliation(s)
- T Sansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - D Sanchez-Fuentes
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - R Rathar
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - A Colom-Diego
- Biochemistry Department and School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - F El Alaoui
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - J Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC-UMR1048), Inserm and Université Toulouse 3, Avenue Jean Poulhès BP84225, 31432 Cedex 04 Toulouse, France
| | - M Macchione
- School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - S de Rossi
- MRI Imaging Facility, UMS BioCampus Montpellier, 34000 Montpellier, France
| | - S Matile
- School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - R Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - V Bäcker
- MRI Imaging Facility, UMS BioCampus Montpellier, 34000 Montpellier, France
| | - A Carretero-Genevrier
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - L Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| |
Collapse
|
104
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
105
|
Sankaran J, Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng 2020; 4:020901. [PMID: 32478279 PMCID: PMC7228782 DOI: 10.1063/1.5143945] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence spectroscopy has been a cornerstone of research in membrane dynamics and organization. Technological advances in fluorescence spectroscopy went hand in hand with discovery of various physicochemical properties of membranes at nanometric spatial and microsecond timescales. In this perspective, we discuss the various challenges associated with quantification of physicochemical properties of membranes and how various modes of fluorescence spectroscopy have overcome these challenges to shed light on the structure and organization of membranes. Finally, we discuss newer measurement strategies and data analysis tools to investigate the structure, dynamics, and organization of membranes.
Collapse
|
106
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
107
|
Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova M, Lyman E, Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 2020; 16:644-652. [PMID: 32367017 DOI: 10.1101/698837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/27/2020] [Indexed: 05/26/2023]
Abstract
A fundamental feature of cellular plasma membranes (PMs) is an asymmetric lipid distribution between the bilayer leaflets. However, neither the detailed, comprehensive compositions of individual PM leaflets nor how these contribute to structural membrane asymmetries have been defined. We report the distinct lipidomes and biophysical properties of both monolayers in living mammalian PMs. Phospholipid unsaturation is dramatically asymmetric, with the cytoplasmic leaflet being approximately twofold more unsaturated than the exoplasmic leaflet. Atomistic simulations and spectroscopy of leaflet-selective fluorescent probes reveal that the outer PM leaflet is more packed and less diffusive than the inner leaflet, with this biophysical asymmetry maintained in the endocytic system. The structural asymmetry of the PM is reflected in the asymmetric structures of protein transmembrane domains. These structural asymmetries are conserved throughout Eukaryota, suggesting fundamental cellular design principles.
Collapse
Affiliation(s)
- J H Lorent
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K R Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - L Ganesan
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - E Sezgin
- John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- SciLifeLab, Karolinska Institute, Stockholm, Sweden
| | - M Doktorova
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E Lyman
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - I Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
108
|
Jiang C, Li B, Dou SX, Wang PY, Li H. Quasi-Two-Dimensional Diffusion in Adherent Cells Revealed by Three-Dimensional Single Quantum Dot Tracking. CHINESE PHYSICS LETTERS 2020; 37:078701. [DOI: 10.1088/0256-307x/37/7/078701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Intracellular diffusion is critical for molecule translocation in cytoplasm and mediates many important cellular processes. Meanwhile, the diffusion dynamics is affected by the heterogeneous cytoplasm. Previous studies on intracellular diffusion are mainly based on two-dimensional (2D) measurements under the assumption that the three-dimensional (3D) diffusion is isotropic. However, the real behaviors of 3D diffusion of molecules in cytoplasm are still unclear. Here, we have built a 3D single-particle tracking (SPT) microscopy and studied the 3D diffusion of quantum dots (QDs) in adherent A549 cells. Notably, we found that the intracellular diffusion of QDs is quasi-2D, with the axial motion being severely confined. Further investigations demonstrated that disrupting the cytoskeleton component or endoplasmic reticulum (ER) does not alter the quasi-2D diffusion pattern, although ER reduces the diffusion rates and slightly relieves the constraint in the axial diffusion. The preferred quasi-2D diffusion is quite robust and attributed to the complex cytoarchitectures in the flat adherent cells. With the aid of 3D SPT method, the quasi-2D diffusion in cells was revealed, shedding new light on the physical nature of cytoplasm.
Collapse
|
109
|
Soares J, Araujo GRDS, Santana C, Matias D, Moura-Neto V, Farina M, Frases S, Viana NB, Romão L, Nussenzveig HM, Pontes B. Membrane Elastic Properties During Neural Precursor Cell Differentiation. Cells 2020; 9:E1323. [PMID: 32466390 PMCID: PMC7349228 DOI: 10.3390/cells9061323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023] Open
Abstract
Neural precursor cells differentiate into several cell types that display distinct functions. However, little is known about how cell surface mechanics vary during the differentiation process. Here, by precisely measuring membrane tension and bending modulus, we map their variations and correlate them with changes in neural precursor cell morphology along their distinct differentiation fates. Both cells maintained in culture as neural precursors as well as those plated in neurobasal medium reveal a decrease in membrane tension over the first hours of culture followed by stabilization, with no change in bending modulus. During astrocyte differentiation, membrane tension initially decreases and then increases after 72 h, accompanied by consolidation of glial fibrillary acidic protein expression and striking actin reorganization, while bending modulus increases following observed alterations. For oligodendrocytes, the changes in membrane tension are less abrupt over the first hours, but their values subsequently decrease, correlating with a shift from oligodendrocyte marker O4 to myelin basic protein expressions and a remarkable actin reorganization, while bending modulus remains constant. Oligodendrocytes at later differentiation stages show membrane vesicles with similar membrane tension but higher bending modulus as compared to the cell surface. Altogether, our results display an entire spectrum of how membrane elastic properties are varying, thus contributing to a better understanding of neural differentiation from a mechanobiological perspective.
Collapse
Affiliation(s)
- Juliana Soares
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
| | - Glauber R. de S. Araujo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (G.R.d.S.A.); (S.F.)
| | - Cintia Santana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - Diana Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, RJ 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, RJ 20231-092, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - Susana Frases
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (G.R.d.S.A.); (S.F.)
| | - Nathan B. Viana
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-942, Brazil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - H. Moysés Nussenzveig
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-942, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
| |
Collapse
|
110
|
Kalappurakkal JM, Sil P, Mayor S. Toward a new picture of the living plasma membrane. Protein Sci 2020; 29:1355-1365. [PMID: 32297381 DOI: 10.1002/pro.3874] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
Our understanding of the plasma membrane structure has undergone a major change since the proposal of the fluid mosaic model of Singer and Nicholson in the 1970s. In this model, the membrane, composed of over thousand lipid and protein species, is organized as a well-equilibrated two-dimensional fluid. Here, the distribution of lipids is largely expected to reflect a multicomponent system, and proteins are expected to be surrounded by an annulus of specialized lipid species. With the recognition that a multicomponent lipid membrane is capable of phase segregation, the membrane is expected to appear as patchwork quilt pattern of membrane domains. However, the constituents of a living membrane are far from being well equilibrated. The living cell membrane actively maintains a trans-bilayer asymmetry of composition, and its constituents are subject to a number of dynamic processes due to synthesis, lipid transfer as well as membrane traffic and turnover. Moreover, membrane constituents engage with the dynamic cytoskeleton of a living cell, and are both passively as well as actively manipulated by this engagement. The extracellular matrix and associated elements also interact with membrane proteins contributing to another layer of interaction. At the nano- and mesoscale, the organization of lipids and proteins emerge from these encounters, as well as from protein-protein, protein-lipid, and lipid-lipid interactions in the membrane. New methods to study the organization of membrane components at these scales have also been developed, and provide an opportunity to synthesize a new picture of the living cell surface as an active membrane composite.
Collapse
Affiliation(s)
- Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Parijat Sil
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
111
|
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 2020; 16:644-652. [PMID: 32367017 PMCID: PMC7246138 DOI: 10.1038/s41589-020-0529-6] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
A fundamental feature of cellular plasma membranes (PM) is asymmetric lipid distribution between the bilayer leaflets. However, neither the detailed, comprehensive compositions of individual PM leaflets, nor how these contribute to structural membrane asymmetries have been defined. We report the distinct lipidomes and biophysical properties of both monolayers in living mammalian PMs. Phospholipid unsaturation is dramatically asymmetric, with the cytoplasmic leaflet being ~2-fold more unsaturated than the exoplasmic. Atomistic simulations and spectroscopy of leaflet-selective fluorescent probes reveal that the outer PM leaflet is more packed and less diffusive than the inner leaflet, with this biophysical asymmetry maintained in the endocytic system. The structural asymmetry of the PM is reflected in asymmetric structures of protein transmembrane domains (TMD). These structural asymmetries are conserved throughout Eukaryota, suggesting fundamental cellular design principles.
Collapse
|
112
|
He W, Su Y, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Mol Biol Cell 2020; 31:1380-1391. [PMID: 32348189 PMCID: PMC7353135 DOI: 10.1091/mbc.e19-08-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have carried out a comparative study of the lateral motion of ganglioside GM1, which is a glycosphingolipid residing on the outer leaflet of the plasma membrane, and acetylcholine receptor (AChR), which is a well-characterized ion channel. Both the lipid molecules and the transmembrane proteins reside on the plasma membranes of live Xenopus muscle cells. From a thorough analysis of a large volume of individual molecular trajectories obtained from more than 300 live cells over a wide range of sampling rates and long durations, we find that the GM1s and AChRs share the same dynamic heterogeneity and non-Gaussian statistics. Our measurements with the ATP-depleted cells reveal that the diffusion dynamics of the GM1s and AChRs is uniformly affected by the intracellular ATP level of the living muscle cells, further demonstrating that membrane diffusion is strongly coupled to the dynamics of the underlying cortical actin network, as predicted by the dynamic picket-fence model.
Collapse
Affiliation(s)
- Wei He
- Nano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H Benjamin Peng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
113
|
The Plasma Membrane-An Integrating Compartment for Mechano-Signaling. PLANTS 2020; 9:plants9040505. [PMID: 32295309 PMCID: PMC7238056 DOI: 10.3390/plants9040505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/30/2022]
Abstract
Plants are able to sense their mechanical environment. This mechanical signal is used by the plant to determine its phenotypic features. This is true also at a smaller scale. Morphogenesis, both at the cell and tissue level, involves mechanical signals that influence specific patterns of gene expression and trigger signaling pathways. How a mechanical stress is perceived and how this signal is transduced into the cell remains a challenging question in the plant community. Among the structural components of plant cells, the plasma membrane has received very little attention. Yet, its position at the interface between the cell wall and the interior of the cell makes it a key factor at the nexus between biochemical and mechanical cues. So far, most of the key players that are described to perceive and maintain mechanical cell status and to respond to a mechanical stress are localized at or close to the plasma membrane. In this review, we will focus on the importance of the plasma membrane in mechano-sensing and try to illustrate how the composition of this dynamic compartment is involved in the regulatory processes of a cell to respond to mechanical stress.
Collapse
|
114
|
Kharche SA, Sengupta D. Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Opin Struct Biol 2020; 61:191-197. [DOI: 10.1016/j.sbi.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
115
|
Meza U, Delgado-Ramírez M, Romero-Méndez C, Sánchez-Armass S, Rodríguez-Menchaca AA. Functional marriage in plasma membrane: Critical cholesterol level-optimal protein activity. Br J Pharmacol 2020; 177:2456-2465. [PMID: 32060896 DOI: 10.1111/bph.15027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.
Collapse
Affiliation(s)
- Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Catalina Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
116
|
Jacobson K, Liu P, Lagerholm BC. The Lateral Organization and Mobility of Plasma Membrane Components. Cell 2020; 177:806-819. [PMID: 31051105 DOI: 10.1016/j.cell.2019.04.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
Over the last several decades, an impressive array of advanced microscopic and analytical tools, such as single-particle tracking and nanoscopic fluorescence correlation spectroscopy, has been applied to characterize the lateral organization and mobility of components in the plasma membrane. Such analysis can tell researchers about the local dynamic composition and structure of membranes and is important for predicting the outcome of membrane-based reactions. However, owing to the unresolved complexity of the membrane and the structures peripheral to it, identification of the detailed molecular origin of the interactions that regulate the organization and mobility of the membrane has not proceeded quickly. This Perspective presents an overview of how cell-surface structure may give rise to the types of lateral mobility that are observed and some potentially fruitful future directions to elucidate the architecture of these structures in more molecular detail.
Collapse
Affiliation(s)
- Ken Jacobson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
117
|
Griffié J, Peters R, Owen DM. An agent-based model of molecular aggregation at the cell membrane. PLoS One 2020; 15:e0226825. [PMID: 32032349 PMCID: PMC7006917 DOI: 10.1371/journal.pone.0226825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Molecular clustering at the plasma membrane has long been identified as a key process and is associated with regulating signalling pathways across cell types. Recent advances in microscopy, in particular the rise of super-resolution, have allowed the experimental observation of nanoscale molecular clusters in the plasma membrane. However, modelling approaches capable of recapitulating these observations are in their infancy, partly because of the extremely complex array of biophysical factors which influence molecular distributions and dynamics in the plasma membrane. We propose here a highly abstracted approach: an agent-based model dedicated to the study of molecular aggregation at the plasma membrane. We show that when molecules are modelled as though they can act (diffuse) in a manner which is influenced by their molecular neighbourhood, many of the distributions observed in cells can be recapitulated, even though such sensing and response is not possible for real membrane molecules. As such, agent-based offers a unique platform which may lead to a new understanding of how molecular clustering in extremely complex molecular environments can be abstracted, simulated and interpreted using simple rules.
Collapse
Affiliation(s)
- Juliette Griffié
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| | - Ruby Peters
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
| | - Dylan M. Owen
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| |
Collapse
|
118
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
119
|
Stanly TA, Fritzsche M, Banerji S, Shrestha D, Schneider F, Eggeling C, Jackson DG. The cortical actin network regulates avidity-dependent binding of hyaluronan by the lymphatic vessel endothelial receptor LYVE-1. J Biol Chem 2020; 295:5036-5050. [PMID: 32034091 PMCID: PMC7152780 DOI: 10.1074/jbc.ra119.011992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Tess A Stanly
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,Kennedy Institute for Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Suneale Banerji
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom .,Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
| | - David G Jackson
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
120
|
Gupta A, Korte T, Herrmann A, Wohland T. Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis. J Lipid Res 2020; 61:252-266. [PMID: 31857388 PMCID: PMC6997606 DOI: 10.1194/jlr.d119000364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
A fundamental feature of the eukaryotic cell membrane is the asymmetric arrangement of lipids in its two leaflets. A cell invests significant energy to maintain this asymmetry and uses it to regulate important biological processes, such as apoptosis and vesiculation. The dynamic coupling of the inner or cytoplasmic and outer or exofacial leaflets is a challenging open question in membrane biology. Here, we combined fluorescence lifetime imaging microscopy (FLIM) with imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) to differentiate the dynamics and organization of the two leaflets of live mammalian cells. We characterized the biophysical properties of fluorescent analogs of phosphatidylcholine, sphingomyelin, and phosphatidylserine in the plasma membrane of two mammalian cell lines (CHO-K1 and RBL-2H3). Because of their specific transverse membrane distribution, these probes allowed leaflet-specific investigation of the plasma membrane. We compared the results of the two methods having different temporal and spatial resolution. Fluorescence lifetimes of fluorescent lipid analogs were in ranges characteristic for the liquid ordered phase in the outer leaflet and for the liquid disordered phase in the inner leaflet. The observation of a more fluid inner leaflet was supported by free diffusion in the inner leaflet, with high average diffusion coefficients. The liquid ordered phase in the outer leaflet was accompanied by slower diffusion and diffusion with intermittent transient trapping. Our results show that the combination of FLIM and ITIR-FCS with specific fluorescent lipid analogs is a powerful tool for investigating lateral and transbilayer characteristics of plasma membrane in live cell lines.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences National University of Singapore, Singapore
| | - Thomas Korte
- Institute for Biology/Biophysics, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institute for Biology/Biophysics, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences National University of Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
121
|
Goswami D, Chen D, Yang Y, Gudla PR, Columbus J, Worthy K, Rigby M, Wheeler M, Mukhopadhyay S, Powell K, Burgan W, Wall V, Esposito D, Simanshu DK, Lightstone FC, Nissley DV, McCormick F, Turbyville T. Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. eLife 2020; 9:47654. [PMID: 31958057 PMCID: PMC7060043 DOI: 10.7554/elife.47654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/02/2020] [Indexed: 01/16/2023] Open
Abstract
The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable region side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here, we characterize RAS in live human and mouse cells using single-molecule-tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein’s globular domain. To understand the altered mobility of an oncogenic KRAS4b, we used complementary experimental and molecular dynamics simulation approaches to reveal a detailed mechanism.
Collapse
Affiliation(s)
- Debanjan Goswami
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Yue Yang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
| | - Prabhakar R Gudla
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - John Columbus
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Karen Worthy
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Megan Rigby
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Madeline Wheeler
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Suman Mukhopadhyay
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Katie Powell
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - William Burgan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Vanessa Wall
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, United States
| | - Thomas Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| |
Collapse
|
122
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
123
|
Bag N, Holowka DA, Baird BA. Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Mol Biol Cell 2020; 31:709-723. [PMID: 31895009 PMCID: PMC7202073 DOI: 10.1091/mbc.e19-10-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
124
|
Sibold J, Tewaag VE, Vagedes T, Mey I, Steinem C. Phase separation in pore-spanning membranes induced by differences in surface adhesion. Phys Chem Chem Phys 2020; 22:9308-9315. [DOI: 10.1039/d0cp00335b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A porous scaffold providing different adhesion energies alters the behaviour of coexisting phases in lipid membranes considerably.
Collapse
Affiliation(s)
- Jeremias Sibold
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Vera E. Tewaag
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Thomas Vagedes
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
- Max Planck Institute for Dynamics and Self-Organization
| |
Collapse
|
125
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
126
|
Gupta A, Muralidharan S, Torta F, Wenk MR, Wohland T. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183153. [PMID: 31857071 DOI: 10.1016/j.bbamem.2019.183153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The spatiotemporal dynamics of the plasma membrane is a consequence of fine-tuned interactions between membrane components. However, the precise identity of molecular factors that maintain this delicate balance, which is lost even in cell membrane derived mimics, remains elusive. Here, we use two cell lines, CHO-K1 and RBL-2H3, which show differences in outer membrane organization, dynamics, and cytoskeleton coupling, to investigate the underlying factors. To our surprise, knock-down of the cytoskeleton-interacting Immunoglobulin E receptor, which is abundant in RBL-2H3 but not in CHO-K1 cells, is not responsible for lipid confinement or cytoskeleton coupling. A subsequent lipidomic analysis of the two cell membranes revealed differences in total membrane ceramide content (C16 to C24). Analysis of the dynamics and organization of ceramide treated live cell membranes by imaging fluorescence correlation spectroscopy demonstrates that C24 and C16 saturated ceramides uniquely alter membrane dynamics by promoting the formation of cholesterol-independent domains and by elevating the inter-leaflet coupling.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore
| | - Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Federico Torta
- Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
127
|
Abstract
The notion that graded distributions of signals underlie the spatial organization of biological systems has long been a central pillar in the fields of cell and developmental biology. During morphogenesis, morphogens spread across tissues to guide development of the embryo. Similarly, a variety of dynamic gradients and pattern-forming networks have been discovered that shape subcellular organization. Here we discuss the principles of intracellular pattern formation by these intracellular morphogens and relate them to conceptually similar processes operating at the tissue scale. We will specifically review mechanisms for generating cellular asymmetry and consider how intracellular patterning networks are controlled and adapt to cellular geometry. Finally, we assess the general concept of intracellular gradients as a mechanism for positional control in light of current data, highlighting how the simple readout of fixed concentration thresholds fails to fully capture the complexity of spatial patterning processes occurring inside cells.
Collapse
Affiliation(s)
- Lars Hubatsch
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
128
|
Cohen AE, Shi Z. Do Cell Membranes Flow Like Honey or Jiggle Like Jello? Bioessays 2019; 42:e1900142. [DOI: 10.1002/bies.201900142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Adam E. Cohen
- Departments of Chemistry and Chemical Biology and PhysicsHarvard University Cambridge MA USA
- Howard Hughes Medical Institute Chevy Chase MD USA
| | - Zheng Shi
- Departments of Chemistry and Chemical Biology and PhysicsHarvard University Cambridge MA USA
| |
Collapse
|
129
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
130
|
Morise J, Suzuki KGN, Kitagawa A, Wakazono Y, Takamiya K, Tsunoyama TA, Nemoto YL, Takematsu H, Kusumi A, Oka S. AMPA receptors in the synapse turnover by monomer diffusion. Nat Commun 2019; 10:5245. [PMID: 31748519 PMCID: PMC6868016 DOI: 10.1038/s41467-019-13229-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
The number and subunit compositions of AMPA receptors (AMPARs), hetero- or homotetramers composed of four subunits GluA1–4, in the synapse is carefully tuned to sustain basic synaptic activity. This enables stimulation-induced synaptic plasticity, which is central to learning and memory. The AMPAR tetramers have been widely believed to be stable from their formation in the endoplasmic reticulum until their proteolytic decomposition. However, by observing GluA1 and GluA2 at the level of single molecules, we find that the homo- and heterotetramers are metastable, instantaneously falling apart into monomers, dimers, or trimers (in 100 and 200 ms, respectively), which readily form tetramers again. In the dendritic plasma membrane, GluA1 and GluA2 monomers and dimers are far more mobile than tetramers and enter and exit from the synaptic regions. We conclude that AMPAR turnover by lateral diffusion, essential for sustaining synaptic function, is largely done by monomers of AMPAR subunits, rather than preformed tetramers. The mechanisms regulating the turnover of the AMPARs in the synapse, which is critically important to sustain basic synaptic activity, remains unclear. In this study, authors used single-molecule imaging techniques to demonstrate that AMPAR tetramers are not stable entities and readily fall apart to dimers and monomers that could reform to tetramers at the synapse, and that rapidly diffusing monomers in the plasma membrane are primarily responsible for the AMPAR turnover in the synapse.
Collapse
Affiliation(s)
- Jyoji Morise
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, 501-1193, Japan. .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan.
| | - Ayaka Kitagawa
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshihiko Wakazono
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Kogo Takamiya
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, 904-0495, Japan
| | - Yuri L Nemoto
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, 904-0495, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, Aichi, 470-1192, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan. .,Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, 904-0495, Japan.
| | - Shogo Oka
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
131
|
Tamura F, Tanimoto Y, Nagai R, Hayashi F, Morigaki K. Self-Spreading of Phospholipid Bilayer in a Patterned Framework of Polymeric Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14696-14703. [PMID: 31613105 DOI: 10.1021/acs.langmuir.9b02685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipid bilayers spontaneously spread on a hydrophilic substrate such as glass in aqueous solution due to the energetic gain of surface wetting. This process (self-spreading) was utilized to form a patterned model biological membrane containing reconstituted membrane proteins. A mechanically stable framework of a polymerized lipid bilayer was first generated by the lithographic polymerization of a diacetylene phospholipid. Then, natural lipid membranes (fluid bilayers) were introduced into the channels between polymeric bilayers by the self-spreading from a phospholipid reservoir. The spreading velocity could be fitted into a slope of -0.5 in a double logarithmic plot versus time due to the balance between the spreading force and resistive drag. The preformed polymeric bilayer accelerated the spreading by the energetic gain of covering hydrophobic edges with a lipid bilayer. At the same time, the domains of the polymeric bilayer obstructed spreading, and the spreading velocity linearly decreased with their fractional coverage. Above the critical coverage of ca. 50%, self-spreading was completely blocked (percolation threshold) and the fluid bilayer was confined in the polymer-free regions. Nonspecific adsorption of lipids onto the surface of polymeric bilayers was negligible, which enabled a heightened signal-to-background ratio in the reconstitution and observation of membrane proteins. Self-spread bilayers had a higher density of lipids than those formed by the spontaneous rupture of vesicles (vesicle fusion), presumably due to the continual supply of lipid molecules from the reservoir. These features give the self-spreading important advantages for preparing patterned model membranes with reconstituted membrane proteins.
Collapse
|
132
|
Hu Y, Huang H, Chen M, Shen Y. Non-localized Increase in Lipid Content and Striation Pattern Formation Characterize the Sonoporated Plasma Membrane. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3005-3017. [PMID: 31421866 DOI: 10.1016/j.ultrasmedbio.2019.07.411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic cells can survive sonoporation and repair their plasma membrane wounds. However, it is not clear how the repaired plasma membranes will differ from the intact ones. To answer this question, we used high-resolution confocal microscopy and scanning electron microscopy to study plasma membrane lipid alterations induced by sonoporation. First, we found that the wound-induced increase in membrane lipid content was not limited to the sonoporation sites. The degree of lipid increase was dependent on pore distance, calcium influx and pore size. Second, we observed interesting lipid striation patterns on the sonoporated plasma membranes. This patterning effect was reversible in the cell subjected to small-scale sonoporation and could be recognized using digital image orientation analysis. Third, we showed that actin stress fibers underneath the plasma membrane hindered the addition and the protrusion of lipids to produce the patterning effect. Our findings demonstrated that the sonoporated and repaired plasma membranes have distinct lipid distribution characteristics.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China.
| | - Haoqiang Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| | - Mengting Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| |
Collapse
|
133
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
134
|
Goiko M, de Bruyn JR, Heit B. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking. Biophys J 2019; 114:2887-2899. [PMID: 29925025 DOI: 10.1016/j.bpj.2018.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 10/28/2022] Open
Abstract
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
135
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
136
|
Gao G, Zhu C, Liu E, Nabi IR. Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLoS Biol 2019; 17:e3000355. [PMID: 31469817 PMCID: PMC6742417 DOI: 10.1371/journal.pbio.3000355] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/12/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.
Collapse
Affiliation(s)
- Guang Gao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Chengjia Zhu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Emma Liu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
137
|
Jacobson K, Kapustina M. Going with the Flow (or Not). Biophys J 2019; 117:791-792. [PMID: 31422823 DOI: 10.1016/j.bpj.2019.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ken Jacobson
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
138
|
Taraska JW. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy. J Gen Physiol 2019; 151:974-985. [PMID: 31253697 PMCID: PMC6683668 DOI: 10.1085/jgp.201812227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Taraska reviews the imaging methods that are being used to understand the structure of the plasma membrane at the molecular level. The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.
Collapse
Affiliation(s)
- Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
139
|
Vakirlis N, Monerawela C, McManus G, Ribeiro O, McLysaght A, James T, Bond U. Evolutionary journey and characterisation of a novel pan-gene associated with beer strains of Saccharomyces cerevisiae. Yeast 2019; 36:425-437. [PMID: 30963617 DOI: 10.1002/yea.3391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
The sequencing of over a thousand Saccharomyces cerevisiae genomes revealed a complex pangenome. Over one third of the discovered genes are not present in the S. cerevisiae core genome but instead are often restricted to a subset of yeast isolates and thus may be important for adaptation to specific environmental niches. We refer to these genes as "pan-genes," being part of the pangenome but not the core genome. Here, we describe the evolutionary journey and characterisation of a novel pan-gene, originally named hypothetical (HYPO) open-reading frame. Phylogenetic analysis reveals that HYPO has been predominantly retained in S. cerevisiae strains associated with brewing but has been repeatedly lost in most other fungal species during evolution. There is also evidence that HYPO was horizontally transferred at least once, from S. cerevisiae to Saccharomyces paradoxus. The phylogenetic analysis of HYPO exemplifies the complexity and intricacy of evolutionary trajectories of genes within the S. cerevisiae pangenome. To examine possible functions for Hypo, we overexpressed a HYPO-GFP fusion protein in both S. cerevisiae and Saccharomyces pastorianus. The protein localised to the plasma membrane where it accumulated initially in distinct foci. Time-lapse fluorescent imaging revealed that when cells are grown in wort, Hypo-gfp fluorescence spreads throughout the membrane during cell growth. The overexpression of Hypo-gfp in S. cerevisiae or S. pastorianus strains did not significantly alter cell growth in medium-containing glucose, maltose, maltotriose, or wort at different concentrations.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Chandre Monerawela
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Orquidea Ribeiro
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Aoife McLysaght
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Tharappel James
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ursula Bond
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
140
|
Korchowiec B, Gorczyca M, Korchowiec J, Rubio-Magnieto J, Lotfallah AH, Luis SV, Rogalska E. The effect of protonation in a family of peptide based gemini amphiphiles on the interaction in Langmuir films. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
141
|
Tao K, Waletich JR, Arredondo F, Tyler BM. Manipulating Endoplasmic Reticulum-Plasma Membrane Tethering in Plants Through Fluorescent Protein Complementation. FRONTIERS IN PLANT SCIENCE 2019; 10:635. [PMID: 31191568 PMCID: PMC6547045 DOI: 10.3389/fpls.2019.00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay has been widely used to examine interactions between integral and peripheral proteins within putative plasma membrane (PM) microdomains. In the course of using BiFC assays to examine the co-localization of plasma membrane (PM) targeted receptor-like kinases (RLKs), such as FLS2, with PM micro-domain proteins such as remorins, we unexpectedly observed heterogeneous distribution patterns of fluorescence on the PM of Nicotiana benthamiana leaf cortical cells. These patterns appeared to co-localize with the endoplasmic reticulum (ER) and with ER-PM contact sites, and closely resembled patterns caused by over-expression of the ER-PM tether protein Synaptotagmin1 (SYT1). Using domain swap experiments with SYT1, we inferred that non-specific dimerization between FLS2-VenusN and VenusC-StRem1.3 could create artificial ER-PM tether proteins analogous to SYT1. The same patterns of ER-PM tethering were produced when a representative set of integral membrane proteins were partnered in BiFC complexes with PM-targeted peripheral membrane proteins, including PtdIns(4)P-binding proteins. We inferred that spontaneous formation of mature fluorescent proteins caused the BiFC complexes to trap the integral membrane proteins in the ER during delivery to the PM, producing a PM-ER tether. This phenomenon could be a useful tool to deliberately manipulate ER-PM tethering or to test protein membrane localization. However, this study also highlights the risk of using the BiFC assay to study membrane protein interactions in plants, due to the possibility of alterations in cellular structures and membrane organization, or misinterpretation of protein-protein interactions. A number of published studies using this approach may therefore need to be revisited.
Collapse
Affiliation(s)
- Kai Tao
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin R. Waletich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
142
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
143
|
Xu C, Fang Y, Yang Z, Jing Y, Zhang Y, Liu C, Liu W. MARCKS regulates tonic and chronic active B cell receptor signaling. Leukemia 2019; 33:710-729. [PMID: 30209404 DOI: 10.1038/s41375-018-0244-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
Abstract
Tonic or chronic active B-cell receptor (BCR) signaling is essential for the survival of normal or some malignant B cells, respectively. However, the molecular mechanism regulating the strength of these two types of BCR signaling remains unknown. Here, using high-speed high-resolution single-molecule tracking in live cells, we identified that PKCβ, STIM1, and IP3R1/2/3 molecules affected the lateral Brownian mobile behavior of BCRs on the plasma membrane of quiescent B cells, which was correlated to the strength of BCR signaling. Further mechanistic studies revealed that these three molecules influenced BCR mobility by regulating the membrane tethering of MARCKS to the inner leaflet of the plasma membrane. Indeed, membrane-untethered or deficiency of MARCKS significantly decreased, while membrane-tethered or overexpression of MARCKS drastically increased the lateral mobility of BCRs. Functional experiments indicated that the membrane-tethered MARCKS suppressed the survival and/or proliferation in both B-cell tumor cells and mouse primary splenic B cells in vitro and in vivo. Mechanistically, we found that membrane-tethered MARCKS increased BCR lateral mobility, and thus decreased BCR nanoclustering by disturbing the interaction between cortical F-actin and the inner leaflet of the plasma membrane, resulting in the suppression of the strength of both tonic and chronic active BCR signaling. Conclusively, MARCKS is a newly identified molecule regulating the strength of BCR signaling by modulating cytoskeleton and plasma membrane interactions, both in the physiological and pathological conditions, suggesting that MARCKS is a putative target for drug design.
Collapse
Affiliation(s)
- Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yan Fang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| |
Collapse
|
144
|
Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 2019; 21:25-31. [PMID: 30602766 DOI: 10.1038/s41556-018-0234-9] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023]
Abstract
Integrins are the major family of adhesion molecules that mediate cell adhesion to the extracellular matrix. They are essential for embryonic development and influence numerous diseases, including inflammation, cancer cell invasion and metastasis. In this Perspective, we discuss the current understanding of how talin, kindlin and mechanical forces regulate integrin affinity and avidity, and how integrin inactivators function in this framework.
Collapse
|
145
|
Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, Bertozzi CR, Tammi MI, Lidke DS, Johnson P, Mayor S, Jaqaman K, Grinstein S. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell 2018; 172:305-317.e10. [PMID: 29328918 DOI: 10.1016/j.cell.2017.12.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 01/17/2023]
Abstract
Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Phillip P Ostrowski
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot C Woods
- Departments of Chemistry and Molecular Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Departments of Chemistry and Molecular Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markku I Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Diane S Lidke
- Department of Pathology, Cancer Research Facility, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Satyajit Mayor
- Cellular Organization and Signaling, National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560 065, India
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| |
Collapse
|
146
|
Radoux A, Wilkie Y, Nüsse O. [Transmembrane pickets regulate phagocytosis by controlling lateral mobility of receptors]. Med Sci (Paris) 2018; 34:1003-1005. [PMID: 30526842 DOI: 10.1051/medsci/2018244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Arthur Radoux
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Yaël Wilkie
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Oliver Nüsse
- Laboratoire de chimie physique, UMR8000, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
147
|
Tanabe M, Ando K, Komatsu R, Morigaki K. Nanofluidic Biosensor Created by Bonding Patterned Model Cell Membrane and Silicone Elastomer with Silica Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802804. [PMID: 30345636 DOI: 10.1002/smll.201802804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Selective and sensitive detection of specific molecules in a solution containing diverse coexisting molecules is important in many biomedical and environmental applications, including diagnostics and pollutant detection. Here, a nanofluidic biosensor is developed to detect specific target molecules (e.g., toxin proteins) in the presence of nontarget molecules by bonding a patterned model cell membrane and a silicone elastomer (polydimethylsiloxane: PDMS) sheet using surface-modified silica nanoparticles as the adhesive layer. Owing to the uniform size of nanoparticles, a nanometric gap junction is formed between the fluid bilayer and PDMS (nanogap-junction). The thickness of the nanogap-junction is controlled by the size of the silica nanoparticles. Target molecules that specifically bind to the receptor molecules in the fluid bilayer are selectively transported into the nanogap-junction via lateral diffusion through the lipid membrane. A thinner gap formed with smaller nanoparticles can enhance the sensitivity (signal-to-background ratio) more effectively, owing to the suppression of nonspecific penetration of coexisting molecules. Silica nanoparticles also provide excellent mechanical robustness, realizing long-term stability of the gap structure. Nanogap-junction using silica nanoparticles provides a versatile platform for highly selective and sensitive sensing by realizing detection of specific target molecules in a solution containing more concentrated nontarget molecules.
Collapse
Affiliation(s)
- Masashi Tanabe
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| | - Koji Ando
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| | - Ryota Komatsu
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
148
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
149
|
REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog 2018; 14:e1007378. [PMID: 30419072 PMCID: PMC6258466 DOI: 10.1371/journal.ppat.1007378] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3's phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses. Viruses propagate in plants through membranous channels, called plasmodesmata, linking each cell to its neighboring cell. In this work, we challenge the role of the plasma membrane in the regulation of virus propagation. By studying the dynamics and the activation of a plant-specific protein called REMORIN, we found that the way this protein is organized inside the membrane is crucial to fulfill its function in the immunity of plants against viruses.
Collapse
|
150
|
Yasuda T, Slotte JP, Murata M. Nanosized Phase Segregation of Sphingomyelin and Dihydrosphigomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13426-13437. [PMID: 30350701 DOI: 10.1021/acs.langmuir.8b02637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we applied fluorescence spectroscopy, differential scanning calorimetry (DSC), and 2H NMR to elucidate the properties of nanoscopic segregated domains in stearoylsphingomyelin (SSM)/dioleoylphosphatidylcholine (DOPC) and dihydrostearoylsphingomyelin (dhSSM)/DOPC binary membranes. The results obtained from fluorescence measurements suggest the existence of gel-like domains with high fluidity in both SSM and dhSSM macroscopic gel phases. The DSC thermograms showed that DOPC destabilizes SM-rich gel-like domains to a much lesser extent compared to the same amount of cholesterol. It was also found that a stable lateral segregation occurs without cholesterol, indicating that SSM itself undergoes homophilic interactions to form small gel-like domains. 2H NMR experiments disclosed differences in the temperature-dependent ordering of SSM/DOPC and dhSSM/DOPC bilayers; the dhSSM membrane showed less miscibility with the DOPC fluid phase, higher thermal stability, and tighter packing. In addition, the NMR results suggest the formation of mid-sized gel-like aggregates consisting of dhSSM. These differences could be accounted for by homophilic interactions, as previously reported ( Yasuda Biophys. J. 2016 , 110 , 431 - 440 ). In the absence of cholesterol, the moderately strong sphingomyelin (SM)/SM affinity results in the formation of small gel-like domains, whereas a stronger dhSSM/dhSSM affinity leads to larger gel-like domains. Considering the similar physicochemical features of SSM and dhSSM, the present results suggest that the formation of nanosized domains of SM is better characterized by homophilic interactions than by SM-cholesterol interplay. These effects are considered important to the ordered domain formation of SMs in biological membranes.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Tykistökatu 6A , Turku FIN-20520 , Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Tykistökatu 6A , Turku FIN-20520 , Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|