101
|
Espinas NA, Tu LN, Furci L, Shimajiri Y, Harukawa Y, Miura S, Takuno S, Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet 2020; 16:e1008637. [PMID: 32187179 PMCID: PMC7145194 DOI: 10.1371/journal.pgen.1008637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/09/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama city, Kanagawa, Japan
| | - Le Ngoc Tu
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Yasuka Shimajiri
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- EditForce, Fukuoka, Japan
| | - Yoshiko Harukawa
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Saori Miura
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
102
|
Tzelepis G, Hodén KP, Fogelqvist J, Åsman AKM, Vetukuri RR, Dixelius C. Dominance of Mating Type A1 and Indication of Epigenetic Effects During Early Stages of Mating in Phytophthora infestans. Front Microbiol 2020; 11:252. [PMID: 32153537 PMCID: PMC7046690 DOI: 10.3389/fmicb.2020.00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
The potato late blight pathogen Phytophthora infestans has both an asexual and a sexual mode of reproduction. In Scandinavia, the pathogen is reproducing sexually on a regular basis, whereas clonal lineages dominate in other geographical regions. This study aimed at elucidating events or key genes underlying this difference in sexual behavior. First, the transcriptomes of eight strains, known as either clonal or sexual, were compared during early stages of mating. Principal component analysis (PCA) divided the samples in two clusters A and B and a clear grouping of the mating samples together with the A1 mating type parents was observed. Induction of genes encoding DNA adenine N6-methylation (6mA) methyl-transferases clearly showed a bias toward the cluster A. In contrast, the Avrblb2 effector gene family was highly induced in most of the mating samples and was associated with cluster B in the PCA, similarly to genes coding for acetyl-transferases, which play an important role in RXLR modification prior to secretion. Avrblb2 knock-down strains displayed a reduction in virulence and oospore formation, suggesting a role during the mating process. In conclusion, a number of gene candidates important for the reproductive processes were revealed. The results suggest a possible epigenetic influence and involvement of specific RXLR effectors in mating-related processes.
Collapse
Affiliation(s)
- Georgios Tzelepis
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Fogelqvist
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna K M Åsman
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
103
|
Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R, Jackson D, Yang X, Zhang Z. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun 2020; 11:988. [PMID: 32080171 PMCID: PMC7033126 DOI: 10.1038/s41467-020-14746-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/30/2020] [Indexed: 11/09/2022] Open
Abstract
Increasing grain yield of maize (Zea mays L.) is required to meet the rapidly expanding demands for maize-derived food, feed, and fuel. Breeders have enhanced grain productivity of maize hybrids by pyramiding desirable characteristics for larger ears. However, loci selected for improving grain productivity remain largely unclear. Here, we show that a serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 (KNR6) determines pistillate floret number and ear length. Overexpression of KNR6 or introgression of alleles lacking the insertions of two transposable elements in the regulatory region of KNR6 can significantly enhance grain yield. Further in vitro evidences indicate that KNR6 can interact with an Arf GTPase-activating protein (AGAP) and its phosphorylation by KNR6 may affect ear length and kernel number. This finding provides knowledge basis to enhance maize hybrids grain yield.
Collapse
Affiliation(s)
- Haitao Jia
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Manfei Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Weiya Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, P. R. China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Yinan Jian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhixing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaomeng Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yanfang Du
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ran Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, P. R. China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
104
|
Abstract
Epigenetic changes influence gene expression and contribute to the modulation of biological processes in response to the environment. Transgenerational epigenetic changes in gene expression have been described in many eukaryotes. However, plants appear to have a stronger propensity for inheriting novel epialleles. This mini-review discusses how plant traits, such as meristematic growth, totipotency, and incomplete epigenetic erasure in gametes promote epiallele inheritance. Additionally, we highlight how plant biology may be inherently tailored to reap the benefits of epigenetic metastability. Importantly, environmentally triggered small RNA expression and subsequent epigenetic changes may allow immobile plants to adapt themselves, and possibly their progeny, to thrive in local environments. The change of epigenetic states through the passage of generations has ramifications for evolution in the natural and agricultural world. In populations containing little genetic diversity, such as elite crop germplasm or habitually self-reproducing species, epigenetics may provide an important source of heritable phenotypic variation. Basic understanding of the processes that direct epigenetic shifts in the genome may allow for breeding or bioengineering for improved plant traits that do not require changes to DNA sequence.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
105
|
Morphological diversity within a core collection of subterranean clover (Trifolium subterraneum L.): Lessons in pasture adaptation from the wild. PLoS One 2020; 15:e0223699. [PMID: 31914457 PMCID: PMC6949112 DOI: 10.1371/journal.pone.0223699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022] Open
Abstract
Subterranean clover (Trifolium subterraneum L.) is a diploid self-pollinated annual pasture legume native to the Mediterranean region and widely sown in southern Australia and other countries with Mediterranean-type climates. This study utilised a core collection of 97 lines, representing around 80% of the genetic diversity of the species, to examine morphological diversity within subterranean clover. A total of 23 quantitative agro-morphological and 13 semi-quantitative morphological marker traits were assayed on the core collection and 28 diverse Australian cultivars as spaced plants in a replicated common garden experiment. Relationships between these traits and 24 climatic and edaphic parameters at their sites of origin were also examined within the core collection. Significant diversity was present for all traits. The Australian cultivars had similar levels of diversity to the core collection for several traits. Among the agro-morphological traits, time to flowering, leaf size and petiole diameter in mid-winter, plant area in late winter, maximum stem length, content of the oestogenic isoflavone biochanin A and total isoflavone content, were correlated with seven or more environmental variables. These can be considered highly adaptive, being the result of strong environmental selection pressure over time. For the first time in a clover species, morphological markers, including leaf mark, anthocyanin pigmentation and pubescence traits, have been associated with rainfall and soil parameters. This suggests they either have an adaptive role or the genes controlling them may be linked to other genes controlling adaptive traits. This study demonstrated the value of core collections to examine diversity within much larger global collections. It also identified adaptive traits from wild plants that can be utilised to develop more productive and persistent subterranean clover cultivars. The high heritability of these traits indicates that selection gains can be readily made.
Collapse
|
106
|
McKeown P, Spillane C. An Overview of Current Research in Plant Epigenetic and Epigenomic Phenomena. Methods Mol Biol 2020; 2093:3-13. [PMID: 32088885 DOI: 10.1007/978-1-0716-0179-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological phenomena defined as having an "epigenetic" component (according to various definitions) have been extensively studied in plant systems and illuminated many mechanisms by which gene expression is regulated and patterns of expression inherited through cell divisions. This second volume of Plant Epigenetics and Epigenomics: Methods in Molecular Biology builds on the work of its predecessor to describe cutting-edge tools for plant epigenetic and epigenomic research, and embrace crop and forestry species as well as natural populations and further insights from model species. In this chapter, the historical background to plant epigenetic and epigenomic research is summarized, and key considerations for the interpretation of current data are outlined.
Collapse
Affiliation(s)
- Peter McKeown
- Plant and Agribiosciences Research Centre, Ryan Institute, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| | - Charles Spillane
- Plant and Agribiosciences Research Centre, Ryan Institute, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
107
|
Hu L, Li N, Zhang Z, Meng X, Dong Q, Xu C, Gong L, Liu B. CG hypomethylation leads to complex changes in DNA methylation and transpositional burst of diverse transposable elements in callus cultures of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:188-203. [PMID: 31529551 DOI: 10.1111/tpj.14531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
CG methylation (m CG) is essential for preserving genome stability in mammals, but this link remains obscure in plants. OsMET1-2, a major rice DNA methyltransferase, plays critical roles in maintaining m CG in rice. Null mutation of OsMET1-2 causes massive CG hypomethylation, rendering the mutant suitable to address the role of m CG in maintaining genome integrity in plants. Here, we analyzed m CG dynamics and genome stability in tissue cultures of OsMET1-2 homozygous (-/-) and heterozygous (+/-) mutants, and isogenic wild-type (WT). We found m CG levels in cultures of -/- were substantially lower than in those of WT and +/-, as expected. Unexpectedly, m CG levels in 1- and 3-year cultures of -/- were 77.6% and 48.7% higher, respectively, than in shoot, from which the cultures were initiated, suggesting substantial regain of m CG in -/- cultures, which contrasts to the general trend of m CG loss in all WT plant tissue cultures hitherto studied. Transpositional burst of diverse transposable elements (TEs) occurred only in -/- cultures, although no elevation of genome-wide mutation rate in the form of single nucleotide polymorphisms was detected. Altogether, our results establish an essential role of m CG in retaining TE immobility and hence genome stability in rice and likely in plants in general.
Collapse
Affiliation(s)
- Lanjuan Hu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- College of Plant Sciences, Faculty of Agriculture, Jilin University, Changchun, 130062, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
108
|
Tracy SR, Nagel KA, Postma JA, Fassbender H, Wasson A, Watt M. Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities. TRENDS IN PLANT SCIENCE 2020; 25:105-118. [PMID: 31806535 DOI: 10.1016/j.tplants.2019.10.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.
Collapse
Affiliation(s)
- Saoirse R Tracy
- School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
| | - Kerstin A Nagel
- Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
| | - Johannes A Postma
- Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
| | - Heike Fassbender
- Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
| | - Anton Wasson
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Michelle Watt
- Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany.
| |
Collapse
|
109
|
Sarkies P. Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Semin Cell Dev Biol 2020; 97:106-115. [PMID: 31228598 PMCID: PMC6945114 DOI: 10.1016/j.semcdb.2019.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
Recently interest in multi-generational epigenetic phenomena have been fuelled by highly reproducible intergenerational and transgenerational inheritance paradigms in several model organisms. Such paradigms are essential in order to begin to use genetics to unpick the mechanistic bases of how epigenetic information may be transmitted between generations; indeed great strides have been made towards understanding these mechanisms. Far less well understood is the relationship between epigenetic inheritance, ecology and evolution. In this review I focus on potential connections between laboratory studies of transgenerational epigenetic inheritance phenomena and evolutionary processes that occur in natural populations. In the first section, I consider whether transgenerational epigenetic inheritance might provide an advantage to organisms over the short term in adapting to their environment. Second, I consider whether epigenetic changes can contribute to the evolution of species by contributing to stable phenotypic variation within a population. Finally I discuss whether epigenetic changes could influence evolution by either directly or indirectly promoting DNA sequence changes that could impact phenotypic divergence. Additionally, I will discuss how epigenetic changes could influence the evolution of human cancer and thus be directly relevant for the development of this disease.
Collapse
Affiliation(s)
- Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W120NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W120NN, United Kingdom.
| |
Collapse
|
110
|
Abstract
Cytosine methylation as a reversible chromatin mark has been investigated extensively for its influence on gene silencing and the regulation of its dynamic association-disassociation at specific sites within a eukaryotic genome. With the remarkable reductions in cost and time associated with whole-genome DNA sequence analysis, coupled with the high fidelity of bisulfite-treated DNA sequencing, single nucleotide resolution of cytosine methylation repatterning within even very large genomes is increasingly achievable. What remains a challenge is the analysis of genome-wide methylome datasets and, consequently, a clear understanding of the overall influence of methylation repatterning on gene expression or vice versa. Reported data have sometimes been subject to stringent data filtering methods that can serve to skew downstream biological interpretation. These complications derive from methylome analysis procedures that vary widely in method and parameter setting. DNA methylation as a chromatin feature that influences DNA stability can be dynamic and rapidly responsive to environmental change. Consequently, methods to discriminate background "noise" of the system from biological signal in response to specific perturbation is essential in some types of experiments. We describe numerous aspects of whole-genome bisulfite sequence data that must be contemplated as well as the various steps of methylome data analysis which impact the biological interpretation of the final output.
Collapse
|
111
|
Bertozzi TM, Ferguson-Smith AC. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin Cell Dev Biol 2020; 97:93-105. [PMID: 31551132 DOI: 10.1016/j.semcdb.2019.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Many epigenetic differences between individuals are driven by genetic variation. Mammalian metastable epialleles are unusual in that they show variable DNA methylation states between genetically identical individuals. The occurrence of such states across generations has resulted in their consideration by many as strong evidence for epigenetic inheritance in mammals, with the classic Avy and AxinFu mouse models - each products of repeat element insertions - being the most widely accepted examples. Equally, there has been interest in exploring their use as epigenetic biosensors given their susceptibility to environmental compromise. Here we review the classic murine metastable epialleles as well as more recently identified candidates, with the aim of providing a more holistic understanding of their biology. We consider the extent to which epigenetic inheritance occurs at metastable epialleles and explore the limited mechanistic insights into the establishment of their variable epigenetic states. We discuss their environmental modulation and their potential relevance in genome regulation. In light of recent whole-genome screens for novel metastable epialleles, we point out the need to reassess their biological relevance in multi-generational studies and we highlight their value as a model to study repeat element silencing as well as the mechanisms and consequences of mammalian epigenetic stochasticity.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
112
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020. [PMID: 33193691 DOI: 10.3389/fgene.2020.576086/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
113
|
Mackenzie SA, Kundariya H. Organellar protein multi-functionality and phenotypic plasticity in plants. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190182. [PMID: 31787051 PMCID: PMC6939364 DOI: 10.1098/rstb.2019.0182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the increasing impact of climate instability on agricultural and ecological systems has come a heightened sense of urgency to understand plant adaptation mechanisms in more detail. Plant species have a remarkable ability to disperse their progeny to a wide range of environments, demonstrating extraordinary resiliency mechanisms that incorporate epigenetics and transgenerational stability. Surprisingly, some of the underlying versatility of plants to adapt to abiotic and biotic stress emerges from the neofunctionalization of organelles and organellar proteins. We describe evidence of possible plastid specialization and multi-functional organellar protein features that serve to enhance plant phenotypic plasticity. These features appear to rely on, for example, spatio-temporal regulation of plastid composition, and unusual interorganellar protein targeting and retrograde signalling features that facilitate multi-functionalization. Although we report in detail on three such specializations, involving MSH1, WHIRLY1 and CUE1 proteins in Arabidopsis, there is ample reason to believe that these represent only a fraction of what is yet to be discovered as we begin to elaborate cross-species diversity. Recent observations suggest that plant proteins previously defined in one context may soon be rediscovered in new roles and that much more detailed investigation of proteins that show subcellular multi-targeting may be warranted. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| |
Collapse
|
114
|
Xu J, Chen G, Hermanson PJ, Xu Q, Sun C, Chen W, Kan Q, Li M, Crisp PA, Yan J, Li L, Springer NM, Li Q. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol 2019; 20:243. [PMID: 31744513 PMCID: PMC6862797 DOI: 10.1186/s13059-019-1859-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and biological functions of DNA methylation at a population scale in maize. RESULTS We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986 metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some traits that only show significant associations with DMRs and not with SNPs. CONCLUSIONS These results suggest that DNA methylation can provide unique information to explain phenotypic variation in maize.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Peter J. Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changshuo Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenqing Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiuxin Kan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Peter A. Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
115
|
Ben Maamar M, King SE, Nilsson E, Beck D, Skinner MK. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev Biol 2019; 458:106-119. [PMID: 31682807 PMCID: PMC6987017 DOI: 10.1016/j.ydbio.2019.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Epigenetic transgenerational inheritance potentially impacts disease etiology, phenotypic variation, and evolution. An increasing number of environmental factors from nutrition to toxicants have been shown to promote the epigenetic transgenerational inheritance of disease. Previous observations have demonstrated that the agricultural fungicide vinclozolin and pesticide DDT (dichlorodiphenyltrichloroethane) induce transgenerational sperm epimutations involving DNA methylation, ncRNA, and histone modifications or retention. These two environmental toxicants were used to investigate the impacts of parent-of-origin outcross on the epigenetic transgenerational inheritance of disease. Male and female rats were collected from a paternal outcross (POC) or a maternal outcross (MOC) F4 generation control and exposure lineages for pathology and epigenetic analysis. This model allows the parental allelic transmission of disease and epimutations to be investigated. There was increased pathology incidence in the MOC F4 generation male prostate, kidney, obesity, and multiple diseases through a maternal allelic transmission. The POC F4 generation female offspring had increased pathology incidence for kidney, obesity and multiple types of diseases through the paternal allelic transmission. Some disease such as testis or ovarian pathology appear to be transmitted through the combined actions of both male and female alleles. Analysis of the F4 generation sperm epigenomes identified differential DNA methylated regions (DMRs) in a genome-wide analysis. Observations demonstrate that DDT and vinclozolin have the potential to promote the epigenetic transgenerational inheritance of disease and sperm epimutations to the outcross F4 generation in a sex specific and exposure specific manner. The parent-of-origin allelic transmission observed appears similar to the process involved with imprinted-like genes.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
116
|
David I, Canario L, Combes S, Demars J. Intergenerational Transmission of Characters Through Genetics, Epigenetics, Microbiota, and Learning in Livestock. Front Genet 2019; 10:1058. [PMID: 31737041 PMCID: PMC6834772 DOI: 10.3389/fgene.2019.01058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Evolutionary biologists studying wild species have demonstrated that genetic and non-genetic sources of information are inherited across generations and are therefore responsible for phenotypic resemblance between relatives. Although it has been postulated that non-genetic sources of inheritance are important in natural selection, they are not taken into account for livestock selection that is based on genetic inheritance only. According to the natural selection theory, the contribution of non-genetic inheritance may be significant for the transmission of characters. If this theory is confirmed in livestock, not considering non-genetic means of transmission in selection schemes might prevent achieving maximum progress in the livestock populations being selected. The present discussion paper reviews the different mechanisms of genetic and non-genetic inheritance reported in the literature as occurring in livestock species. Non-genetic sources of inheritance comprise information transmitted via physical means, such as epigenetic and microbiota inheritance, and those transmitted via learning mechanisms: behavioral, cultural and ecological inheritance. In the first part of this paper we review the evidence that suggests that both genetic and non-genetic information contribute to inheritance in livestock (i.e. transmitted from one generation to the next and causing phenotypic differences between individuals) and discuss how the environment may influence non-genetic inherited factors. Then, in a second step, we consider methods for favoring the transmission of non-genetic inherited factors by estimating and selecting animals on their extended transmissible value and/or introducing favorable non-genetic factors via the animals’ environment.
Collapse
Affiliation(s)
- Ingrid David
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| |
Collapse
|
117
|
Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019; 12:62. [PMID: 31601251 PMCID: PMC6786280 DOI: 10.1186/s13072-019-0307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation. RESULTS Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue. CONCLUSIONS Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
Collapse
Affiliation(s)
- Keith D Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - James P B Lloyd
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Center, Norwich, UK.
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
118
|
Rajon E, Charlat S. (In)exhaustible Suppliers for Evolution? Epistatic Selection Tunes the Adaptive Potential of Nongenetic Inheritance. Am Nat 2019; 194:470-481. [PMID: 31490728 DOI: 10.1086/704772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nongenetic inheritance media-from methyl-accepting cytosines to culture-tend to mutate more frequently than DNA sequences. Whether this makes them inexhaustible suppliers for adaptive evolution will depend on the effect of nongenetic mutations (hereafter, epimutations) on fitness-related traits. Here we investigate how these effects might themselves evolve, specifically whether natural selection may set boundaries to the adaptive potential of nongenetic inheritance media because of their higher mutability. In our model, the genetic and epigenetic contributions to a nonneutral phenotype are controlled by an epistatic modifier locus, which evolves under the combined effects of drift and selection. We show that a pure genetic control evolves when the environment is stable-provided that the population is large-such that the phenotype becomes robust to frequent epimutations. When the environment fluctuates, however, selection on the modifier locus also fluctuates and can overall produce a large nongenetic contribution to the phenotype, especially when the epimutation rate matches the rate of environmental variation. We further show that selection on the modifier locus is generally insensitive to recombination, meaning it is mostly direct, that is, not relying on subsequent effects in future generations. These results suggest that unstable inheritance media might significantly contribute to fitness variation of traits subject to highly variable selective pressures but little to traits responding to scarcely variable aspects of the environment. More generally, our study demonstrates that the rate of mutation and the adaptive potential of any inheritance media should not be seen as independent properties.
Collapse
|
119
|
van Moorsel SJ, Schmid MW, Wagemaker NCAM, van Gurp T, Schmid B, Vergeer P. Evidence for rapid evolution in a grassland biodiversity experiment. Mol Ecol 2019; 28:4097-4117. [PMID: 31336411 DOI: 10.1111/mec.15191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
In long-term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Subsequent glasshouse experiments showed that these strengthened positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypothesized that community diversity had acted as a selective agent, resulting in the emergence of plant monoculture and mixture types with differing genetic composition. To test our hypothesis, we grew offspring from plants that were grown for eleven years in monoculture or mixture environments in a biodiversity experiment (Jena Experiment) under controlled glasshouse conditions in monocultures or two-species mixtures. We used epiGBS, a genotyping-by-sequencing approach combined with bisulphite conversion, to provide integrative genetic and epigenetic (i.e., DNA methylation) data. We observed significant divergence in genetic and DNA methylation data according to selection history in three out of five perennial grassland species, namely Galium mollugo, Prunella vulgaris and Veronica chamaedrys, with DNA methylation differences mostly reflecting the genetic differences. In addition, current diversity levels in the glasshouse had weak effects on epigenetic variation. However, given the limited genome coverage of the reference-free bisulphite method epiGBS, it remains unclear how much of the differences in DNA methylation was independent of underlying genetic differences. Our results thus suggest that selection of genetic variants, and possibly epigenetic variants, caused the rapid emergence of monoculture and mixture types within plant species in the Jena Experiment.
Collapse
Affiliation(s)
- Sofia J van Moorsel
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| | - Marc W Schmid
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland.,MWSchmid GmbH, Zürich, Switzerland
| | - Niels C A M Wagemaker
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland.,Department of Geography, University of Zürich, Zürich, Switzerland
| | - Philippine Vergeer
- Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.,Department of Environmental Sciences, Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
120
|
Wang C, Wang C, Zou J, Yang Y, Li Z, Zhu S. Epigenetics in the plant-virus interaction. PLANT CELL REPORTS 2019; 38:1031-1038. [PMID: 31065780 DOI: 10.1007/s00299-019-02414-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/25/2019] [Indexed: 05/23/2023]
Abstract
Plants have developed diverse molecular mechanisms to resist viruses. RNA silencing plays a dominant role in antiviral defense. Recent studies have correlated plant antiviral silencing to epigenetic modification in genomic DNA and protein by remodeling the expression levels of coding genes. The plant host methylation level is reprogrammed in response to viral challenge. Genomes of some viruses have been implicated in the epigenetic modification via small RNA-mediated transcriptional gene silencing and post-transcriptional gene silencing. These mechanisms can be primed prior to a virus attack through methylation changes for antiviral defense. This review highlights the findings concerning the methylation changes in plant-virus interactions and demonstrates a possible direction to improve the understanding of plant host methylation regulation in response to viral infection.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jingze Zou
- College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Yunshu Yang
- Beijing Academy of Food Sciences, Beijing, 100162, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Shuifang Zhu
- College of Plant Protection, China Agricultural University, Beijing, 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
121
|
Abstract
The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.
Collapse
|
122
|
Tuscher JJ, Day JJ. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol Dis 2019; 132:104591. [PMID: 31470104 DOI: 10.1016/j.nbd.2019.104591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Modifications to DNA and histone proteins serve a critical regulatory role in the developing and adult brain, and over a decade of research has established the importance of these "epigenetic" modifications in a wide variety of brain functions across the lifespan. Epigenetic patterns orchestrate gene expression programs that establish the phenotypic diversity of various cellular classes in the central nervous system, play a key role in experience-dependent gene regulation in the adult brain, and are commonly implicated in neurodevelopmental, psychiatric, and neurodegenerative disease states. In addition to these established roles, emerging evidence indicates that epigenetic information can potentially be transmitted to offspring, giving rise to inter- and trans-generational epigenetic inheritance phenotypes. However, our understanding of the cellular events that participate in this information transfer is incomplete, and the ability of this transfer to overcome complete epigenetic reprogramming during embryonic development is highly controversial. This review explores the existing literature on multigenerational epigenetic mechanisms in the central nervous system. First, we focus on the cellular mechanisms that may perpetuate or counteract this type of information transfer, and consider how epigenetic modification in germline and somatic cells regulate important aspects of cellular and organismal development. Next, we review the potential phenotypes resulting from ancestral experiences that impact gene regulatory modifications, including how these changes may give rise to unique metabolic phenotypes. Finally, we discuss several caveats and technical limitations that influence multigenerational epigenetic effects. We argue that studies reporting multigenerational epigenetic changes impacting the central nervous system must be interpreted with caution, and provide suggestions for how epigenetic information transfer can be mechanistically disentangled from genetic and environmental influences on brain function.
Collapse
Affiliation(s)
- Jennifer J Tuscher
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
123
|
Rey O, Eizaguirre C, Angers B, Baltazar‐Soares M, Sagonas K, Prunier JG, Blanchet S. Linking epigenetics and biological conservation: Towards a
conservation epigenetics
perspective. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13429] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Olivier Rey
- CNRS UMR 5244, Interactions Hôtes‐Pathogènes‐Environnements (IHPE) Université de Perpignan Via Domitia Perpignan France
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Bernard Angers
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | | | - Kostas Sagonas
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Jérôme G. Prunier
- Evolution et Diversité Biologique, École Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA), CNRS, UPS, UMR5174 Institut de Recherche pour le Développement (IRD) Toulouse France
| | - Simon Blanchet
- Evolution et Diversité Biologique, École Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA), CNRS, UPS, UMR5174 Institut de Recherche pour le Développement (IRD) Toulouse France
- Station d'Ecologie Théorique et Expérimentale, UMR5321, CNRS Université Paul Sabatier (UP) Moulis France
| |
Collapse
|
124
|
Banerjee AK, Guo W, Huang Y. Genetic and epigenetic regulation of phenotypic variation in invasive plants – linking research trends towards a unified framework. NEOBIOTA 2019. [DOI: 10.3897/neobiota.49.33723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phenotypic variation in the introduced range of an invasive species can be modified by genetic variation, environmental conditions and their interaction, as well as stochastic events like genetic drift. Recent studies found that epigenetic modifications may also contribute to phenotypic variation being independent of genetic changes. Despite gaining profound ecological insights from empirical studies, understanding the relative contributions of these molecular mechanisms behind phenotypic variation has received little attention for invasive plant species in particular.
This review therefore aimed at summarizing and synthesizing information on the genetic and epigenetic basis of phenotypic variation of alien invasive plants in the introduced range and their evolutionary consequences. Transgenerational inheritance of epigenetic modifications was highlighted focusing on its influence on microevolution of the invasive plant species. We presented a comprehensive account of epigenetic regulation of phenotypic variation and its role in plant invasion in the presence of reduced standing genetic variation, inbreeding depression and associated genomic events which have often been observed during introduction and range expansion of an invasive alien species. Finally, taking clues from the studies conducted so far, we proposed a unified framework of future experimental approaches to understand ecological and evolutionary aspects of phenotypic variation. This holistic approach, being aligned to the invasion process in particular (introduction-establishment-spread), was intended to understand the molecular mechanisms of phenotypic variation of an invasive species in its introduced range and to disentangle the effects of standing genetic variation and epigenetic regulation of phenotypic variation.
Collapse
|
125
|
David I, Ricard A. A Unified Model for Inclusive Inheritance in Livestock Species. Genetics 2019; 212:1075-1099. [PMID: 31209104 PMCID: PMC6707455 DOI: 10.1534/genetics.119.302375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
For years, animal selection in livestock species has been performed by selecting animals based on genetic inheritance. However, evolutionary studies have reported that nongenetic information that drives natural selection can also be inherited across generations (epigenetic, microbiota, environmental inheritance). In response to this finding, the concept of inclusive heritability, which combines all sources of information inherited across generations, was developed. To better predict the transmissible potential of each animal by taking into account these diverse sources of inheritance and improve selection in livestock species, we propose the "transmissibility model." Similarly to the animal model, this model uses pedigree and phenotypic information to estimate variance components and predict the transmissible potential of an individual, but differs by estimating the path coefficients of inherited information from parent to offspring instead of using a set value of 0.5 for both the sire and the dam (additive genetic relationship matrix). We demonstrated the structural identifiability of the transmissibility model, and performed a practical identifiability and power study of the model. We also performed simulations to compare the performances of the animal and transmissibility models for estimating the covariances between relatives and predicting the transmissible potential under different combinations of sources of inheritance. The transmissibility model provided similar results to the animal model when inheritance was of genetic origin only, but outperformed the animal model for estimating the covariances between relatives and predicting the transmissible potential when the proportion of inheritance of nongenetic origin was high or when the sire and dam path coefficients were very different.
Collapse
Affiliation(s)
- Ingrid David
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Anne Ricard
- GABI, INRA, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313, 78352 Jouy-en-Josas, France
- Institut Français du Cheval et de l'Equitation, Département Recherche et Innovation, 61310 Exmes, France
| |
Collapse
|
126
|
Sadler-Riggleman I, Klukovich R, Nilsson E, Beck D, Xie Y, Yan W, Skinner MK. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz013. [PMID: 31528361 PMCID: PMC6736068 DOI: 10.1093/eep/dvz013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 07/19/2019] [Indexed: 05/12/2023]
Abstract
Male reproductive health has been in decline for decades with dropping sperm counts and increasing infertility, which has created a significant societal and economic burden. Between the 1970s and now, a general decline of over 50% in sperm concentration has been observed in the population. Environmental toxicant-induced epigenetic transgenerational inheritance has been shown to affect testis pathology and sperm count. Sertoli cells have an essential role in spermatogenesis by providing physical and nutritional support for developing germ cells. The current study was designed to further investigate the transgenerational epigenetic changes in the rat Sertoli cell epigenome and transcriptome that are associated with the onset of testis disease. Gestating female F0 generation rats were transiently exposed during the period of fetal gonadal sex determination to the environmental toxicants, such as dichlorodiphenyltrichloroethane (DDT) or vinclozolin. The F1 generation offspring were bred (i.e. intercross within the lineage) to produce the F2 generation grand-offspring that were then bred to produce the transgenerational F3 generation (i.e. great-grand-offspring) with no sibling or cousin breeding used. The focus of the current study was to investigate the transgenerational testis disease etiology, so F3 generation rats were utilized. The DNA and RNA were obtained from purified Sertoli cells isolated from postnatal 20-day-old male testis of F3 generation rats. Transgenerational alterations in DNA methylation, noncoding RNA, and gene expression were observed in the Sertoli cells from vinclozolin and DDT lineages when compared to the control (vehicle exposed) lineage. Genes associated with abnormal Sertoli cell function and testis pathology were identified, and the transgenerational impacts of vinclozolin and DDT were determined. Alterations in critical gene pathways, such as the pyruvate metabolism pathway, were identified. Observations suggest that ancestral exposures to environmental toxicants promote the epigenetic transgenerational inheritance of Sertoli cell epigenetic and transcriptome alterations that associate with testis abnormalities. These epigenetic alterations appear to be critical factors in the developmental and generational origins of testis pathologies and male infertility.
Collapse
Affiliation(s)
- Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
127
|
Li N, Xu C, Zhang A, Lv R, Meng X, Lin X, Gong L, Wendel JF, Liu B. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. THE NEW PHYTOLOGIST 2019; 223:979-992. [PMID: 30919978 DOI: 10.1111/nph.15820] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies. Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome-wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs. Progenies of the tetraploid rice were genomically diverse due to genome-wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome-wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs. Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
128
|
Johnson JS, Cantrell RS, Cosner C, Hartig F, Hastings A, Rogers HS, Schupp EW, Shea K, Teller BJ, Yu X, Zurell D, Pufal G. Rapid changes in seed dispersal traits may modify plant responses to global change. AOB PLANTS 2019; 11:plz020. [PMID: 31198528 PMCID: PMC6548345 DOI: 10.1093/aobpla/plz020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/26/2019] [Indexed: 05/22/2023]
Abstract
When climatic or environmental conditions change, plant populations must either adapt to these new conditions, or track their niche via seed dispersal. Adaptation of plants to different abiotic environments has mostly been discussed with respect to physiological and demographic parameters that allow local persistence. However, rapid modifications in response to changing environmental conditions can also affect seed dispersal, both via plant traits and via their dispersal agents. Studying such changes empirically is challenging, due to the high variability in dispersal success, resulting from environmental heterogeneity, and substantial phenotypic variability of dispersal-related traits of seeds and their dispersers. The exact mechanisms that drive rapid changes are often not well understood, but the ecological implications of these processes are essential determinants of dispersal success, and deserve more attention from ecologists, especially in the context of adaptation to global change. We outline the evidence for rapid changes in seed dispersal traits by discussing variability due to plasticity or genetics broadly, and describe the specific traits and biological systems in which variability in dispersal is being studied, before discussing some of the potential underlying mechanisms. We then address future research needs and propose a simulation model that incorporates phenotypic plasticity in seed dispersal. We close with a call to action and encourage ecologists and biologist to embrace the challenge of better understanding rapid changes in seed dispersal and their consequences for the reaction of plant populations to global change.
Collapse
Affiliation(s)
- Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, OR, USA
| | | | - Chris Cosner
- Department of Mathematics, The University of Miami, Coral Gables, FL, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Behavior, Iowa State University, Ames, IA, USA
| | - Eugene W Schupp
- Department of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Brittany J Teller
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Xiao Yu
- Department of Mathematics, The University of Miami, Coral Gables, FL, USA
| | - Damaris Zurell
- Department of Geography, Humboldt-University Berlin, Berlin, Germany
- Department of Land Change and Science, Swiss Federal Institute WSL, Birmensdorf, Switzerland
| | - Gesine Pufal
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
129
|
Herrera CM, Medrano M, Pérez R, Bazaga P, Alonso C. Within-plant heterogeneity in fecundity and herbivory induced by localized DNA hypomethylation in the perennial herb Helleborus foetidus. AMERICAN JOURNAL OF BOTANY 2019; 106:798-806. [PMID: 31157419 DOI: 10.1002/ajb2.1291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Phenotypic heterogeneity of reiterated, homologous structures produced by individual plants has ecological consequences for plants and their animal consumers. This paper examines experimentally the epigenetic mosaicism hypothesis, which postulates that within-plant variation in traits of reiterated structures may partly arise from different parts of the same genetic individual differing in patterns or extent of genomic DNA methylation. METHODS Leaves of paired ramets borne by field-growing Helleborus foetidus plants were infiltrated periodically over the entire flowering period with either a water solution of the demethylating agent zebularine or just water as the control. The effects of the zebularine treatment were assessed by quantifying genome-wide DNA cytosine methylation in leaves and monitoring inflorescence growth and flower production, number of ovules per flower, pollination success, fruit set, seed set, seed size, and distribution of sap-feeding insects. RESULTS Genomic DNA from leaves in zebularine-treated ramets was significantly less methylated than DNA from leaves in control ones. Inflorescences in treated ramets grew smaller and produced fewer flowers, with fewer ovules and lower follicle and seed set, but did not differ from inflorescences in untreated ramets in pollination success or seed size. The zebularine treatment influenced the within-plant distribution of sap-feeding insects. CONCLUSIONS Experimental manipulation of genomic DNA methylation level in leaves of wild-growing H. foetidus plants induced considerable within-plant heterogeneity in phenotypic (inflorescences, flowers, fecundity) and ecologically relevant traits (herbivore distribution), which supports the hypothesis that epigenetic mosaicism may partly account for within-plant variation.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
130
|
Skinner MK, Nilsson E, Sadler-Riggleman I, Beck D, Ben Maamar M, McCarrey JR. Transgenerational sperm DNA methylation epimutation developmental origins following ancestral vinclozolin exposure. Epigenetics 2019; 14:721-739. [PMID: 31079544 PMCID: PMC6557599 DOI: 10.1080/15592294.2019.1614417] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A number of environmental factors from nutrition to toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. This requires alterations in the germline (sperm or egg) epigenome. Previously, the agricultural fungicide vinclozolin was found to promote the transgenerational inheritance of sperm differential DNA methylation regions (DMRs) termed epimutations that help mediate this epigenetic inheritance. The current study was designed to investigate the developmental origins of the transgenerational DMRs during gametogenesis. Male control and vinclozolin lineage F3 generation rats were used as a source of embryonic day 13 (E13) primordial germ cells, embryonic day 16 (E16) prospermatogonia, postnatal day 10 (P10) spermatogonia, adult pachytene spermatocytes, round spermatids, caput epididymal spermatozoa, and caudal sperm. The DMRs between the control versus vinclozolin lineage samples were determined for each developmental stage. The top 100 statistically significant DMRs for each stage were compared. The developmental origins of the caudal epididymal sperm DMRs were assessed. The chromosomal locations and genomic features of the different stage DMRs were investigated. In addition, the DMR associated genes were identified. Previous studies have demonstrated alterations in the DMRs of primordial germ cells (PGCs). Interestingly, the majority of the DMRs identified in the current study for the caudal sperm originated during the spermatogenic process in the testis. A cascade of epigenetic alterations initiated in the PGCs appears to be required to alter the epigenetic programming during spermatogenesis to modify the sperm epigenome involved in the transgenerational epigenetic inheritance phenomenon.
Collapse
Affiliation(s)
- Michael K Skinner
- a Center for Reproductive Biology, School of Biological Sciences , Washington State University , Pullman , WA , USA
| | - Eric Nilsson
- a Center for Reproductive Biology, School of Biological Sciences , Washington State University , Pullman , WA , USA
| | - Ingrid Sadler-Riggleman
- a Center for Reproductive Biology, School of Biological Sciences , Washington State University , Pullman , WA , USA
| | - Daniel Beck
- a Center for Reproductive Biology, School of Biological Sciences , Washington State University , Pullman , WA , USA
| | - Millissia Ben Maamar
- a Center for Reproductive Biology, School of Biological Sciences , Washington State University , Pullman , WA , USA
| | - John R McCarrey
- b Department of Biology , University of Texas at San Antonio , San Antonio , TX , USA
| |
Collapse
|
131
|
Liégard B, Baillet V, Etcheverry M, Joseph E, Lariagon C, Lemoine J, Evrard A, Colot V, Gravot A, Manzanares‐Dauleux MJ, Jubault M. Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:468-479. [PMID: 30393890 PMCID: PMC6587750 DOI: 10.1111/nph.15579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/26/2018] [Indexed: 05/02/2023]
Abstract
Quantitative disease resistance, often influenced by environmental factors, is thought to be the result of DNA sequence variants segregating at multiple loci. However, heritable differences in DNA methylation, so-called transgenerational epigenetic variants, also could contribute to quantitative traits. Here, we tested this possibility using the well-characterized quantitative resistance of Arabidopsis to clubroot, a Brassica major disease caused by Plasmodiophora brassicae. For that, we used the epigenetic recombinant inbred lines (epiRIL) derived from the cross ddm1-2 × Col-0, which show extensive epigenetic variation but limited DNA sequence variation. Quantitative loci under epigenetic control (QTLepi ) mapping was carried out on 123 epiRIL infected with P. brassicae and using various disease-related traits. EpiRIL displayed a wide range of continuous phenotypic responses. Twenty QTLepi were detected across the five chromosomes, with a bona fide epigenetic origin for 16 of them. The effect of five QTLepi was dependent on temperature conditions. Six QTLepi co-localized with previously identified clubroot resistance genes and QTL in Arabidopsis. Co-localization of clubroot resistance QTLepi with previously detected DNA-based QTL reveals a complex model in which a combination of allelic and epiallelic variations interacts with the environment to lead to variation in clubroot quantitative resistance.
Collapse
Affiliation(s)
- Benjamin Liégard
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Victoire Baillet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Mathilde Etcheverry
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Evens Joseph
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | | | - Jocelyne Lemoine
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Aurélie Evrard
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Antoine Gravot
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | | | - Mélanie Jubault
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| |
Collapse
|
132
|
Gáspár B, Bossdorf O, Durka W. Structure, stability and ecological significance of natural epigenetic variation: a large-scale survey in Plantago lanceolata. THE NEW PHYTOLOGIST 2019; 221:1585-1596. [PMID: 30222201 DOI: 10.1111/nph.15487] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
Within-species diversity is an important driver of ecological and evolutionary processes. Recent research has found that plants can harbour significant epigenetic diversity, but its extent, stability and ecological significance in natural populations is largely unexplored. We analysed genetic, epigenetic and phenotypic variation in a large number of natural grassland populations of Plantago lanceolata, covering a broad geographical and environmental range. Within-population diversity and among-population differentiation were calculated from genetic and epigenetic marker data and from measurements of phenotypic traits, both for plants in the field and for the F1 generation grown in a common environment. We found weak but significant epigenetic population structure. A large part of the epigenetic population differences observed in the field was maintained in a common environment. Epigenetic differences were consistently related to genetic and environmental variation, and to a lesser degree to phenotypic variation and land use, with more grazed populations harbouring greater epigenetic diversity. Our study demonstrates that epigenetic diversity exists in natural populations of a common grassland species, and that at least part of this epigenetic diversity is stable, nonrandom and related to environmental variation. Experimental and more detailed molecular studies are needed to elucidate the mechanistic basis of these observed patterns.
Collapse
Affiliation(s)
- Bence Gáspár
- Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
133
|
Takahashi S, Osabe K, Fukushima N, Takuno S, Miyaji N, Shimizu M, Takasaki-Yasuda T, Suzuki Y, Dennis ES, Seki M, Fujimoto R. Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in Brassica rapa L. DNA Res 2019; 25:511-520. [PMID: 29982343 PMCID: PMC6191303 DOI: 10.1093/dnares/dsy021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Epigenetic gene regulation is crucial to plant life and can involve dynamic interactions between various histone modifications, DNA methylation, and small RNAs. Detailed analysis of epigenome information is anticipated to reveal how the DNA sequence of the genome is translated into the plant’s phenotype. The aim of this study was to map the DNA methylation state at the whole genome level and to clarify the relationship between DNA methylation and transcription, small RNA expression, and histone H3 lysine 9 di-methylation (H3K9me2) in Brassica rapa. We performed whole genome bisulfite sequencing, small RNA sequencing, and chromatin immunoprecipitation sequencing using H3K9me2 antibody in a Chinese cabbage inbred line, RJKB-T24, and examined the impact of epigenetic states on transcription. Cytosine methylation in DNA was analysed in different sequence contexts (CG, CHG, and CHH) (where H could be A, C, or T) and position (promoter, exon, intron, terminator, interspersed repeat regions), and the H3K9me2 and 24 nucleotide small interfering RNAs (24 nt-siRNA) were overlaid onto the B. rapa reference genome. The epigenome was compared with that of Arabidopsis thaliana and the relationship between the position of DNA methylation and gene expression, and the involvement of 24 nt siRNAs and H3K9me2 are discussed.
Collapse
Affiliation(s)
- Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kenji Osabe
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Naoki Fukushima
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita Kitakami, Iwate, Japan
| | | | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Elizabeth S Dennis
- CSIRO Agriculture and Food, Canberra, ACT, Australia.,University of Technology, Sydney, Broadway, NSW, Australia
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Saitama, Japan.,RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, Japan
| |
Collapse
|
134
|
Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. eLife 2019; 8:40655. [PMID: 30608232 PMCID: PMC6342528 DOI: 10.7554/elife.40655] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Variation in DNA methylation enables plants to inherit traits independently of changes to DNA sequence. Here, we have screened an Arabidopsis population of epigenetic recombinant inbred lines (epiRILs) for resistance against Hyaloperonospora arabidopsidis (Hpa). These lines share the same genetic background, but show variation in heritable patterns of DNA methylation. We identified four epigenetic quantitative trait loci (epiQTLs) that provide quantitative resistance without reducing plant growth or resistance to other (a)biotic stresses. Phenotypic characterisation and RNA-sequencing analysis revealed that Hpa-resistant epiRILs are primed to activate defence responses at the relatively early stages of infection. Collectively, our results show that hypomethylation at selected pericentromeric regions is sufficient to provide quantitative disease resistance, which is associated with genome-wide priming of defence-related genes. Based on comparisons of global gene expression and DNA methylation between the wild-type and resistant epiRILs, we discuss mechanisms by which the pericentromeric epiQTLs could regulate the defence-related transcriptome. In plants, animals and microbes genetic information is encoded by DNA, which are made up of sequences of building blocks, called nucleotide bases. These sequences can be separated into sections known as genes that each encode specific traits. It was previously thought that only changes to the sequence of bases in a DNA molecule could alter the traits passed on to future generations. However, it has recently become clear that some traits can also be inherited through modifications to the DNA that do not alter its sequence. One such modification is to attach a tag, known as a methyl group, to a nucleotide base known as cytosine. These methyl tags can be added to, or removed from, DNA to create different patterns of methylation. Previous studies have shown that plants whose DNA is less methylated than normal (‘hypo-methylated’) are more resistant to plant diseases. However, the location and identity of the hypo-methylated DNA regions controlling this resistance remained unknown. To address this problem, Furci, Jain et al. studied how DNA methylation in a small weed known as Arabidopsis thaliana affects how well the plants can resist a disease known as downy mildew. Furci, Jain et al. studied a population of over 100 A. thaliana lines that have the same DNA sequences but different patterns of DNA methylation. The experiments identified four DNA locations that were less methylated in lines with enhanced resistance to downy mildew. Importantly, this form of resistance did not appear to reduce how well the plants grew, or make them less able to resist other diseases or environmental stresses. The results of further experiments suggested that reduced methylation at the four DNA regions prime the plant’s immune system, enabling a faster and stronger activation of a multitude of defence genes across the genome after attack by downy mildew. The next steps following on from this work are to investigate exactly how the four DNA regions with reduced methylation can prime so many different defence genes in the plant. Further research is also needed to determine whether it is possible to breed crop plants with lower levels of methylation at specific DNA locations to improve disease resistance, but without decreasing the amount and quality of food produced.
Collapse
Affiliation(s)
- Leonardo Furci
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ritushree Jain
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Joost Stassen
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Australia
| | - David Roquis
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Victoire Baillet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Jurriaan Ton
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
135
|
Mothersill C, Abend M, Bréchignac F, Copplestone D, Geras'kin S, Goodman J, Horemans N, Jeggo P, McBride W, Mousseau TA, O'Hare A, Papineni RVL, Powathil G, Schofield PN, Seymour C, Sutcliffe J, Austin B. The tubercular badger and the uncertain curve:- The need for a multiple stressor approach in environmental radiation protection. ENVIRONMENTAL RESEARCH 2019; 168:130-140. [PMID: 30296640 DOI: 10.1016/j.envres.2018.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
This article presents the results of a workshop held in Stirling, Scotland in June 2018, called to examine critically the effects of low-dose ionising radiation on the ecosphere. The meeting brought together participants from the fields of low- and high-dose radiobiology and those working in radioecology to discuss the effects that low doses of radiation have on non-human biota. In particular, the shape of the low-dose response relationship and the extent to which the effects of low-dose and chronic exposure may be predicted from high dose rate exposures were discussed. It was concluded that high dose effects were not predictive of low dose effects. It followed that the tools presently available were deemed insufficient to reliably predict risk of low dose exposures in ecosystems. The workshop participants agreed on three major recommendations for a path forward. First, as treating radiation as a single or unique stressor was considered insufficient, the development of a multidisciplinary approach is suggested to address key concerns about multiple stressors in the ecosphere. Second, agreed definitions are needed to deal with the multiplicity of factors determining outcome to low dose exposures as a term can have different meanings in different disciplines. Third, appropriate tools need to be developed to deal with the different time, space and organisation level scales. These recommendations permit a more accurate picture of prospective risks.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Francois Bréchignac
- Institute for Radioprotection and Nuclear Safety (IRSN) & International Union of Radioecology, Centre du Cadarache, Bldg 229, St Paul-lez-Durance, France.
| | - David Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Stanislav Geras'kin
- Russian Institute of Radiology & Agroecology, Kievskoe shosse, 109km, Obninsk 249020, Russia.
| | - Jessica Goodman
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Nele Horemans
- Belgian Nuclear Research Centre SCK CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol, Belgium.
| | - Penny Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| | - William McBride
- University of California Los Angeles, David Geffen School of Medicine, Department of Radiation Oncology, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | - Anthony O'Hare
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Rao V L Papineni
- Department of Surgery, University of Kansas Medical Center - KUMC (Adjunct), and PACT & Health, Branford, CT, USA.
| | - Gibin Powathil
- Department of Mathematics, College of Science, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK.
| | - Paul N Schofield
- Dept of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Jill Sutcliffe
- Low Level Radiation and Health Conference, Ingrams Farm Fittleworth Road, Wisborough Green RH14 0JA, West Sussex, UK.
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
136
|
Charlesworth B. Mutational load, inbreeding depression and heterosis in subdivided populations. Mol Ecol 2018; 27:4991-5003. [DOI: 10.1111/mec.14933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
137
|
Yoshida T, Tarutani Y, Kakutani T, Kawabe A. DNA Methylation Diversification at the Integrated Organellar DNA-Like Sequence. Genes (Basel) 2018; 9:genes9120602. [PMID: 30513997 PMCID: PMC6316516 DOI: 10.3390/genes9120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
Plants have a lot of diversity in epigenetic modifications such as DNA methylation in their natural populations or cultivars. Although many studies observing the epigenetic diversity within and among species have been reported, the mechanisms how these variations are generated are still not clear. In addition to the de novo spontaneous epi-mutation, the intra- and inter-specific crossing can also cause a change of epigenetic modifications in their progenies. Here we report an example of diversification of DNA methylation by crossing and succeeding selfing. We traced the inheritance pattern of epigenetic modification during the crossing experiment between two natural strains Columbia (Col), and Landsberg electa (Ler) in model plant Arabidopsis thaliana to observe the inheritance of DNA methylation in two organellar DNA-like sequence regions in the nuclear genome. Because organellar DNA integration to the nuclear genome is common in flowering plants and these sequences are occasionally methylated, such DNA could be the novel source of plant genome evolution. The amplicon sequencing, using bisulfite-converted DNA and a next-generation auto-sequencer, was able to efficiently track the heredity of DNA methylation in F1 and F2 populations. One region showed hypomethylation in the F1 population and succeeding elevation of DNA methylation with large variance in the F2 population. The methylation level of Col and Ler alleles in F2 heterozygotes showed a significant positive correlation, implying the trans-chromosomal effect on DNA methylation. The results may suggest the possible mechanism causing the natural epigenetic diversity within plant populations.
Collapse
Affiliation(s)
- Takanori Yoshida
- Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
- Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Akira Kawabe
- Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| |
Collapse
|
138
|
Ben Maamar M, Nilsson E, Sadler-Riggleman I, Beck D, McCarrey JR, Skinner MK. Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure. Dev Biol 2018; 445:280-293. [PMID: 30500333 DOI: 10.1016/j.ydbio.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Epigenetic alterations in the germline can be triggered by a number of different environmental factors from diet to toxicants. These environmentally induced germline changes can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. In previous studies, the pesticide DDT was shown to promote the transgenerational inheritance of sperm differential DNA methylation regions (DMRs), also called epimutations, which can in part mediate this epigenetic inheritance. In the current study, the developmental origins of the transgenerational DMRs during gametogenesis have been investigated. Male control and DDT lineage F3 generation rats were used to isolate embryonic day 16 (E16) prospermatogonia, postnatal day 10 (P10) spermatogonia, adult pachytene spermatocytes, round spermatids, caput epididymal spermatozoa, and caudal sperm. The DMRs between the control versus DDT lineage samples were determined at each developmental stage. The top 100 statistically significant DMRs at each stage were compared and the developmental origins of the caudal epididymal sperm DMRs were assessed. The chromosomal locations and genomic features of the different stage DMRs were analyzed. Although previous studies have demonstrated alterations in the DMRs of primordial germ cells (PGCs), the majority of the DMRs identified in the caudal sperm originated during the spermatogonia stages in the testis. Interestingly, a cascade of epigenetic alterations initiated in the PGCs is required to alter the epigenetic programming during spermatogenesis to obtain the sperm epigenetics involved in the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
139
|
Abstract
Inheritance of genomic DNA underlies the vast majority of biological inheritance, yet it has been clear for decades that additional epigenetic information can be passed on to future generations. Here, we review major model systems for transgenerational epigenetic inheritance via the germline in multicellular organisms. In addition to surveying examples of epivariation that may arise stochastically or in response to unknown stimuli, we also discuss the induction of heritable epigenetic changes by genetic or environmental perturbations. Mechanistically, we discuss the increasingly well-understood molecular pathways responsible for epigenetic inheritance, with a focus on the unusual features of the germline epigenome.
Collapse
Affiliation(s)
- Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
140
|
Raju SKK, Shao M, Sanchez R, Xu Y, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1836-1847. [PMID: 29570925 PMCID: PMC6181216 DOI: 10.1111/pbi.12919] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 05/17/2023]
Abstract
Epigenetic variation has been associated with a wide range of adaptive phenotypes in plants, but there exist few direct means for exploiting this variation. RNAi suppression of the plant-specific gene, MutS HOMOLOG1 (MSH1), in multiple plant species produces a range of developmental changes accompanied by modulation of defence, phytohormone and abiotic stress response pathways along with methylome repatterning. This msh1-conditioned developmental reprogramming is retained independent of transgene segregation, giving rise to transgene-null 'memory' effects. An isogenic memory line crossed to wild type produces progeny families displaying increased variation in adaptive traits that respond to selection. This study investigates amenability of the MSH1 system for inducing agronomically valuable epigenetic variation in soybean. We developed MSH1 epi-populations by crossing with msh1-acquired soybean memory lines. Derived soybean epi-lines showed increase in variance for multiple yield-related traits including pods per plant, seed weight and maturity time in both glasshouse and field trials. Selected epi-F2:4 and epi-F2:5 lines showed an increase in seed yield over wild type. By epi-F2:6, we observed a return of MSH1-derived enhanced growth back to wild-type levels. Epi-populations also showed evidence of reduced epitype-by-environment (e × E) interaction, indicating higher yield stability. Transcript profiling of epi-lines identified putative signatures of enhanced growth behaviour across generations. Genes related to cell cycle, abscisic acid biosynthesis and auxin response, particularly SMALL AUXIN UP RNAs (SAURs), were differentially expressed in epi-F2:4 lines that showed increased yield when compared to epi-F2:6 . These data support the potential of MSH1-derived epigenetic variation in plant breeding for enhanced yield and yield stability.
Collapse
Affiliation(s)
| | - Mon‐Ray Shao
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Robersy Sanchez
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
Departments of Biology and Plant SciencePennsylvania State UniversityUniversity ParkPAUSA
| | - Ying‐Zhi Xu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ajay Sandhu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
SyngentaWoodlandCAUSA
| | - George Graef
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Sally Mackenzie
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
Departments of Biology and Plant SciencePennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
141
|
Schmid MW, Heichinger C, Coman Schmid D, Guthörl D, Gagliardini V, Bruggmann R, Aluri S, Aquino C, Schmid B, Turnbull LA, Grossniklaus U. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun 2018; 9:4446. [PMID: 30361538 PMCID: PMC6202389 DOI: 10.1038/s41467-018-06932-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
In plants, transgenerational inheritance of some epialleles has been demonstrated but it remains controversial whether epigenetic variation is subject to selection and contributes to adaptation. Simulating selection in a rapidly changing environment, we compare phenotypic traits and epigenetic variation between Arabidopsis thaliana populations grown for five generations under selection and their genetically nearly identical ancestors. Selected populations of two distinct genotypes show significant differences in flowering time and plant architecture, which are maintained for at least 2–3 generations in the absence of selection. While we cannot detect consistent genetic changes, we observe a reduction of epigenetic diversity and changes in the methylation state of about 50,000 cytosines, some of which are associated with phenotypic changes. Thus, we propose that epigenetic variation is subject to selection and can contribute to rapid adaptive responses, although the extent to which epigenetics plays a role in adaptation is still unclear. Whether plant epigenetic variation is subject to selection and contributes to adaptation is under debate. Here, the authors compare DNA methylation and phenotypes of Arabidopsis lines subject to simulated selection and their nearly isogenic ancestors and provide evidence that epigenetic variation contributes to adaptive responses.
Collapse
Affiliation(s)
- Marc W Schmid
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.,Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland.,Service and Support for Science IT, University of Zurich, Stampfenbachstrasse 73, 8006, Zurich, Switzerland.,MWSchmid GmbH, Möhrlistrasse 25, 8006, Zurich, Switzerland
| | - Christian Heichinger
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.,Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland.,L. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Diana Coman Schmid
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.,Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland.,Scientific IT Services, ETH Zurich, Weinbergstrasse 11, 8092, Zurich, Switzerland
| | - Daniela Guthörl
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.,Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.,Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Hochschulstrasse 6, 3012, Bern, Switzerland
| | - Sirisha Aluri
- Functional Genomics Center Zurich, ETH and University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Catharine Aquino
- Functional Genomics Center Zurich, ETH and University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Bernhard Schmid
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lindsay A Turnbull
- Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland. .,Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich and University of Basel, Tannenstrasse 1, 8092, Zurich, Switzerland.
| |
Collapse
|
142
|
Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc Natl Acad Sci U S A 2018; 115:E9145-E9152. [PMID: 30201727 PMCID: PMC6166847 DOI: 10.1073/pnas.1805371115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While clonally propagated individuals should share identical genomes, there is often substantial phenotypic variation among them. Both genetic and epigenetic modifications induced during regeneration have been associated with this phenomenon. Here we investigated the fate of the epigenome after asexual propagation by generating clonal individuals from differentiated somatic cells through the manipulation of a zygotic transcription factor. We found that phenotypic novelty in clonal progeny was linked to epigenetic imprints that reflect the organ used for regeneration. Some of these organ-specific imprints can be maintained during the cloning process and subsequent rounds of meiosis. Our findings are fundamental for understanding the significance of epigenetic variability arising from asexual reproduction and have significant implications for future biotechnological applications. Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells. This unique developmental plasticity is commonly observed in nature, where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs. While organ-specific epigenetic marks are not passed on during sexual reproduction, the fate of epigenetic marks during asexual reproduction and the implications for clonal progeny remain unclear. Here we report that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced. The altered marks are inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the identity of the founder tissue. Consequently, clonal plants display distinct interactions with beneficial and pathogenic microorganisms. Our results demonstrate how novel phenotypic variation in plants can be unlocked through altered inheritance of epigenetic marks upon asexual propagation.
Collapse
|
143
|
Hao DC, Xiao PG. Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
144
|
Taudt A, Roquis D, Vidalis A, Wardenaar R, Johannes F, Colomé-Tatché M. METHimpute: imputation-guided construction of complete methylomes from WGBS data. BMC Genomics 2018; 19:444. [PMID: 29879918 PMCID: PMC5992726 DOI: 10.1186/s12864-018-4641-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Whole-genome bisulfite sequencing (WGBS) has become the standard method for interrogating plant methylomes at base resolution. However, deep WGBS measurements remain cost prohibitive for large, complex genomes and for population-level studies. As a result, most published plant methylomes are sequenced far below saturation, with a large proportion of cytosines having either missing data or insufficient coverage. RESULTS Here we present METHimpute, a Hidden Markov Model (HMM) based imputation algorithm for the analysis of WGBS data. Unlike existing methods, METHimpute enables the construction of complete methylomes by inferring the methylation status and level of all cytosines in the genome regardless of coverage. Application of METHimpute to maize, rice and Arabidopsis shows that the algorithm infers cytosine-resolution methylomes with high accuracy from data as low as 6X, compared to data with 60X, thus making it a cost-effective solution for large-scale studies. CONCLUSIONS METHimpute provides methylation status calls and levels for all cytosines in the genome regardless of coverage, thus yielding complete methylomes even with low-coverage WGBS datasets. The method has been extensively tested in plants, but should also be applicable to other species. An implementation is available on Bioconductor.
Collapse
Affiliation(s)
- Aaron Taudt
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, Groningen, NL-9713 AV The Netherlands
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
| | - David Roquis
- Department of Plant Sciences, Hans Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
| | - Amaryllis Vidalis
- Department of Plant Sciences, Hans Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
| | - René Wardenaar
- Department of Plant Sciences, Hans Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
| | - Frank Johannes
- Department of Plant Sciences, Hans Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, Groningen, NL-9713 AV The Netherlands
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Erlenmeyer-Forum 2, Freising, 85354 Germany
| |
Collapse
|
145
|
Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy016. [PMID: 30038800 PMCID: PMC6051467 DOI: 10.1093/eep/dvy016] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Ancestral environmental exposures such as toxicants, abnormal nutrition or stress can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. These environmental factors induce the epigenetic reprogramming of the germline (sperm and egg). The germline epimutations can in turn increase disease susceptibility of subsequent generations of the exposed ancestors. A variety of environmental factors, species and exposure specificity of this induced epigenetic transgenerational inheritance of disease is discussed with a consideration of generational toxicology. The molecular mechanisms and processes involved in the ability of these inherited epimutations to increase disease susceptibility are discussed. In addition to altered disease susceptibility, the potential impact of the epigenetic inheritance on phenotypic variation and evolution is considered. Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; Fax: +1-509-335-2176; E-mail:
| |
Collapse
|
146
|
Ben Maamar M, Sadler-Riggleman I, Beck D, McBirney M, Nilsson E, Klukovich R, Xie Y, Tang C, Yan W, Skinner MK. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy010. [PMID: 29732173 PMCID: PMC5920293 DOI: 10.1093/eep/dvy010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
Epigenetic transgenerational inheritance of disease and phenotypic variation can be induced by several toxicants, such as vinclozolin. This phenomenon can involve DNA methylation, non-coding RNA (ncRNA) and histone retention, and/or modification in the germline (e.g. sperm). These different epigenetic marks are called epimutations and can transmit in part the transgenerational phenotypes. This study was designed to investigate the vinclozolin-induced concurrent alterations of a number of different epigenetic factors, including DNA methylation, ncRNA, and histone retention in rat sperm. Gestating females (F0 generation) were exposed transiently to vinclozolin during fetal gonadal development. The directly exposed F1 generation fetus, the directly exposed germline within the fetus that will generate the F2 generation, and the transgenerational F3 generation sperm were studied. DNA methylation and ncRNA were altered in each generation rat sperm with the direct exposure F1 and F2 generations being distinct from the F3 generation epimutations. Interestingly, an increased number of differential histone retention sites were found in the F3 generation vinclozolin sperm, but not in the F1 or F2 generations. All three different epimutation types were affected in the vinclozolin lineage transgenerational sperm (F3 generation). The direct exposure generations (F1 and F2) epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene pathways associated with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Our results show that the three different types of epimutations are involved and integrated in the mediation of the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, MS557, Reno, NV 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, MS557, Reno, NV 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, MS557, Reno, NV 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, MS557, Reno, NV 89557, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
147
|
Herrera CM, Alonso C, Medrano M, Pérez R, Bazaga P. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia. AMERICAN JOURNAL OF BOTANY 2018; 105:741-748. [PMID: 29727470 DOI: 10.1002/ajb2.1074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. METHODS We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. KEY RESULTS Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. CONCLUSIONS Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de, Sevilla, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
148
|
Neeb ZT, Nowacki M. RNA-mediated transgenerational inheritance in ciliates and plants. Chromosoma 2018; 127:19-27. [PMID: 29230532 PMCID: PMC5818585 DOI: 10.1007/s00412-017-0655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states.
Collapse
Affiliation(s)
- Zachary T Neeb
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
149
|
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018; 11:8. [PMID: 29482626 PMCID: PMC5827984 DOI: 10.1186/s13072-018-0178-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Environmental toxicants such as DDT have been shown to induce the epigenetic transgenerational inheritance of disease (e.g., obesity) through the germline. The current study was designed to investigate the DDT-induced concurrent alterations of a number of different epigenetic processes including DNA methylation, non-coding RNA (ncRNA) and histone retention in sperm. METHODS Gestating females were exposed transiently to DDT during fetal gonadal development, and then, the directly exposed F1 generation, the directly exposed germline F2 generation and the transgenerational F3 generation sperm were investigated. RESULTS DNA methylation and ncRNA were altered in each generation sperm with the direct exposure F1 and F2 generations being predominantly distinct from the F3 generation epimutations. The piRNA and small tRNA were the most predominant classes of ncRNA altered. A highly conserved set of histone retention sites were found in the control lineage generations which was not significantly altered between generations, but a large number of new histone retention sites were found only in the transgenerational generation DDT lineage sperm. CONCLUSIONS Therefore, all three different epigenetic processes were concurrently altered as DDT induced the epigenetic transgenerational inheritance of sperm epimutations. The direct exposure generations sperm epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene associations with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Observations demonstrate all three epigenetic processes are involved in transgenerational inheritance. The different epigenetic processes appear to be integrated in mediating the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
150
|
Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:825-844. [PMID: 29444308 DOI: 10.1093/jxb/erx333] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Syahnada Jaya Syaifullah
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, v.v.i., Drásov, Czech Republic
| |
Collapse
|