101
|
Galvez-Cancino F, Lopez E, Lladser A. Analysis of Tissue-Resident Immune Cells from Mouse Skin and Lungs by Flow Cytometry. Methods Mol Biol 2019; 1913:217-222. [PMID: 30666610 DOI: 10.1007/978-1-4939-8979-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The heterogeneity and complexity of nonlymphoid tissues has become a major obstacle for the study of immune populations. For this reason, the generation of highly reproducible protocols that allow the analysis of immune cells in these tissues has become crucial for clinical and preclinical research. Here we describe an optimized method that allows the obtention of single-cell suspensions from the skin and lungs to analyze and quantify populations of tissue-resident memory CD8+ T cells by multi-parametric flow cytometry.
Collapse
Affiliation(s)
| | - Ernesto Lopez
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile
| | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile.
| |
Collapse
|
102
|
Kwon KW, Kim SJ, Kim H, Kim WS, Kang SM, Choi E, Ha SJ, Yoon JH, Shin SJ. IL-15 Generates IFN-γ-producing Cells Reciprocally Expressing Lymphoid-Myeloid Markers during Dendritic Cell Differentiation. Int J Biol Sci 2019; 15:464-480. [PMID: 30745835 PMCID: PMC6367559 DOI: 10.7150/ijbs.25743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/02/2018] [Indexed: 11/23/2022] Open
Abstract
Recently, interest in IL-15-differentiated cells has increased; however, the phenotypic definition of IL-15-differentiated bone marrow-derived cells (IL-15-DBMCs) is still under debate, particularly the generation of IFN-γ-producing innate cells such as premature NK (pre-mNK) cells, natural killer dendritic cells (NKDCs), interferon-producing killer dendritic cells (IKDCs), and type 1 innate lymphoid cells (ILC1s), all of which are IL-15-dependent. Here, we revisited the immunophenotypic characteristics of IFN-γ-producing IL-15-DBMCs and their functional role in the control of intracellular Mycobacterium tuberculosis (Mtb) infection. When comparing the cytokine levels between bone marrow-derived dendritic cells (BMDCs) and IL-15-DBMCs upon stimulation with various TLR agonists, only the CD11cint population of IL-15-DBMCs produced significant levels of IFN-γ, decreased levels of MHC-II, and increased levels of B220. Neither BMDCs nor IL-15-DBMCs were found to express DX5 or NK1.1, which are representative markers for the NK cell lineage and IKDCs. When the CD11cintB220+ population of IL-15-DBMCs was enriched, the Thy1.2+Sca-1+ population showed a marked increase in IFN-γ production. In addition, while depletion of the B220+ and Thy1.2+ populations of IL-15-DBMCs, but not the CD19+ population, inhibited IFN-γ production, enrichment of these cell populations increased IFN-γ. Ultimately, co-culture of sorted IFN-γ-producing B220+Thy1.2+ IL-15-DBMCs with Mtb-infected macrophages resulted in control of the intracellular growth of Mtb via the IFN-γ-nitric oxide axis in a donor cell number-dependent manner. Taken together, the results indicate that IFN-γ-producing IL-15-DBMCs could be redefined as CD11cintB220+Thy1.2+Sca-1+ cells, which phenotypically resemble both IKDCs and ILC1s, and may have therapeutic potential for controlling infectious intracellular bacteria such as Mtb.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, and Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
103
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
104
|
Thakur A, Rodríguez-Rodríguez C, Saatchi K, Rose F, Esposito T, Nosrati Z, Andersen P, Christensen D, Häfeli UO, Foged C. Dual-Isotope SPECT/CT Imaging of the Tuberculosis Subunit Vaccine H56/CAF01: Induction of Strong Systemic and Mucosal IgA and T-Cell Responses in Mice Upon Subcutaneous Prime and Intrapulmonary Boost Immunization. Front Immunol 2018; 9:2825. [PMID: 30555488 PMCID: PMC6284049 DOI: 10.3389/fimmu.2018.02825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains a global pandemic, despite the widespread use of the parenteral live attenuated Bacillus Calmette–Guérin (BCG) vaccine during the past decades. Mucosal administration of next generation TB vaccines has great potential, but developing a safe and efficacious mucosal vaccine is challenging. Hence, understanding the in vivo biodistribution and pharmacokinetics of mucosal vaccines is essential for shaping the desired immune response and for optimal spatiotemporal targeting of the appropriate effector cells in the lungs. A subunit vaccine consisting of the fusion antigen H56 (Ag85B-ESAT-6-Rv2660) and the liposome-based cationic adjuvant formulation (CAF01) confers efficient protection in preclinical animal models. In this study, we devise a novel immunization strategy for the H56/CAF01 vaccine, which comply with the intrapulmonary (i.pulmon.) route of immunization. We also describe a novel dual-isotope (111In/67Ga) radiolabeling approach, which enables simultaneous non-invasive and longitudinal SPECT/CT imaging and quantification of H56 and CAF01 upon parenteral prime and/or i.pulmon. boost immunization. Our results demonstrate that the vaccine is distributed evenly in the lungs, and there are pronounced differences in the pharmacokinetics of H56 and CAF01. We provide convincing evidence that the H56/CAF01 vaccine is not only well-tolerated when administered to the respiratory tract, but it also induces strong lung mucosal and systemic IgA and polyfunctional Th1 and Th17 responses after parenteral prime and i.pulmon. boost immunization. The study furthermore evaluate the application of SPECT/CT imaging for the investigation of vaccine biodistribution after parenteral and i.pulmon. immunization of mice.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Fabrice Rose
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tullio Esposito
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Zeynab Nosrati
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
105
|
Ryu S, Park JS, Kim HY, Kim JH. Lipid-Reactive T Cells in Immunological Disorders of the Lung. Front Immunol 2018; 9:2205. [PMID: 30319649 PMCID: PMC6168663 DOI: 10.3389/fimmu.2018.02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Regulation of T cell-mediated immunity in the lungs is critical for prevention of immune-related lung disorders and for host protection from pathogens. While the prevalent view of pulmonary T cell responses is based on peptide recognition by antigen receptors, called T cell receptors (TCR), on the T cell surface in the context of classical major histocompatibility complex (MHC) molecules, novel pathways involving the presentation of lipid antigens by cluster of differentiation 1 (CD1) molecules to lipid-reactive T cells are emerging as key players in pulmonary immune system. Whereas, genetic conservation of group II CD1 (CD1d) in mouse and human genomes facilitated numerous in vivo studies of CD1d-restricted invariant natural killer T (iNKT) cells in lung diseases, the recent development of human CD1-transgenic mice has made it possible to examine the physiological roles of group I CD1 (CD1a-c) molecules in lung immunity. Here, we discuss current understanding of the biology of CD1-reactive T cells with a specific focus on their roles in several pulmonary disorders.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Joon Seok Park
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
106
|
Protection against Staphylococcus aureus Colonization and Infection by B- and T-Cell-Mediated Mechanisms. mBio 2018; 9:mBio.01949-18. [PMID: 30327437 PMCID: PMC6191547 DOI: 10.1128/mbio.01949-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
S. aureus is a leading cause of healthcare- and community-associated bacterial infections. S. aureus causes various illnesses, including bacteremia, meningitis, endocarditis, pneumonia, osteomyelitis, sepsis, and skin and soft tissue infections. S. aureus colonizes between 20 and 80% of humans; carriers are at increased risk for infection and transmission to others. The spread of multidrug-resistant strains limits antibiotic treatment options. Vaccine development against S. aureus has been unsuccessful to date, likely due to an inadequate understanding about the mechanisms of immune defense against this pathogen. The significance of our work is in illustrating the necessity of generating multipronged B-cell, Th1-, and Th17-mediated responses to S. aureus antigens in conferring enhanced and broad protection against S. aureus invasive infection, skin and soft tissue infection, and mucosal colonization. Our work thus, provides important insights for future vaccine development against this pathogen. Staphylococcus aureus is a major cause of morbidity and mortality worldwide. S. aureus colonizes 20 to 80% of humans at any one time and causes a variety of illnesses. Strains that are resistant to common antibiotics further complicate management. S. aureus vaccine development has been unsuccessful so far, largely due to the incomplete understanding of the mechanisms of protection against this pathogen. Here, we studied the role of different aspects of adaptive immunity induced by an S. aureus vaccine in protection against S. aureus bacteremia, dermonecrosis, skin abscess, and gastrointestinal (GI) colonization. We show that, depending on the challenge model, the contributions of vaccine-induced S. aureus-specific antibody and Th1 and Th17 responses to protection are different: antibodies play a major role in reducing mortality during S. aureus bacteremia, whereas Th1 or Th17 responses are essential for prevention of S. aureus skin abscesses and the clearance of bacteria from the GI tract. Both antibody- and T-cell-mediated mechanisms contribute to prevention of S. aureus dermonecrosis. Engagement of all three immune pathways results in the most robust protection under each pathological condition. Therefore, our results suggest that eliciting multipronged humoral and cellular responses to S. aureus antigens may be critical to achieve effective and comprehensive immune defense against this pathogen.
Collapse
|
107
|
Fan X, Li N, Wang X, Zhang J, Xu M, Liu X, Wang B. Protective immune mechanisms of Yifei Tongluo, a Chinese herb formulation, in the treatment of mycobacterial infection. PLoS One 2018; 13:e0203678. [PMID: 30204794 PMCID: PMC6133367 DOI: 10.1371/journal.pone.0203678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/26/2018] [Indexed: 02/05/2023] Open
Abstract
Yifei Tongluo (YFTL) is a traditional Chinese medicine (TCM) formulation which has been shown clinical efficacy in treatment of patients with multidrug-resistant tuberculosis in China. However, the underlying mechanisms of the effects of YFTL are lacking. This study investigated the effects of YFTL on immune regulation with a mouse lung infection model with Bacille Calmette-Guérin (BCG). We found that compared with untreated mice, the lung mycobacterial load in YFTL-treated mice was significantly reduced, accompanied by alleviated pulmonary inflammation with reduction of pro-inflammatory cytokines and increase of prostaglandin E2 (PGE2). Flow cytometry analyses showed that Th1 cells were significantly higher in the lungs of YFTL-treated mice at early infection time. The results suggest that YFTL-treatment down-regulates pulmonary inflammation, which facilitates a rapid infiltration of Th1 cells into the lungs. Moreover, the Th1 cells in the lungs were resolved faster at later time concomitant with increased the regulatory T cells (Tregs). The reduction of mycobacterial burden associated with improved tissue pathology, faster Th1 cell trafficking, and accelerated resolution of Th1 cells in the lungs of YFTL-treated mice indicates that YFTL improves mycobacterial clearance by maintaining lung homeostasis and dynamically regulating T cells in the lung parenchyma, and suggests that YFTL can be used as host-directed therapies that target immune responses to mycobacterial infection.
Collapse
Affiliation(s)
- Xin Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meiyi Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
108
|
Jeron A, Boehme JD, Volckmar J, Gereke M, Yevsa T, Geffers R, Guzmán CA, Schreiber J, Stegemann-Koniszewski S, Bruder D. Respiratory Bordetella bronchiseptica Carriage is Associated with Broad Phenotypic Alterations of Peripheral CD4⁺CD25⁺ T Cells and Differentially Affects Immune Responses to Secondary Non-Infectious and Infectious Stimuli in Mice. Int J Mol Sci 2018; 19:E2602. [PMID: 30200513 PMCID: PMC6165163 DOI: 10.3390/ijms19092602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
The respiratory tract is constantly exposed to the environment and displays a favorable niche for colonizing microorganisms. However, the effects of respiratory bacterial carriage on the immune system and its implications for secondary responses remain largely unclear. We have employed respiratory carriage with Bordetella bronchiseptica as the underlying model to comprehensively address effects on subsequent immune responses. Carriage was associated with the stimulation of Bordetella-specific CD4⁺, CD8⁺, and CD4⁺CD25⁺Foxp3⁺ T cell responses, and broad transcriptional activation was observed in CD4⁺CD25⁺ T cells. Importantly, transfer of leukocytes from carriers to acutely B. bronchiseptica infected mice, resulted in a significantly increased bacterial burden in the recipient's upper respiratory tract. In contrast, we found that respiratory B. bronchiseptica carriage resulted in a significant benefit for the host in systemic infection with Listeria monocytogenes. Adaptive responses to vaccination and influenza A virus infection, were unaffected by B. bronchiseptica carriage. These data showed that there were significant immune modulatory processes triggered by B. bronchiseptica carriage, that differentially affect subsequent immune responses. Therefore, our results demonstrated the complexity of immune regulation induced by respiratory bacterial carriage, which can be beneficial or detrimental to the host, depending on the pathogen and the considered compartment.
Collapse
Affiliation(s)
- Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Julia D Boehme
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Julia Volckmar
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Marcus Gereke
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Tetyana Yevsa
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Jens Schreiber
- Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Sabine Stegemann-Koniszewski
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
- Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
109
|
Osthole Protects against Acute Lung Injury by Suppressing NF- κB-Dependent Inflammation. Mediators Inflamm 2018; 2018:4934592. [PMID: 30057486 PMCID: PMC6051001 DOI: 10.1155/2018/4934592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.
Collapse
|
110
|
Lata KS, Kumar S, Vaghasia V, Sharma P, Bhairappanvar SB, Soni S, Das J. Exploring Leptospiral proteomes to identify potential candidates for vaccine design against Leptospirosis using an immunoinformatics approach. Sci Rep 2018; 8:6935. [PMID: 29720698 PMCID: PMC5932004 DOI: 10.1038/s41598-018-25281-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Leptospirosis is the most widespread zoonotic disease, estimated to cause severe infection in more than one million people each year, particularly in developing countries of tropical areas. Several factors such as variable and nonspecific clinical manifestation, existence of large number of serovars and asymptomatic hosts spreading infection, poor sanitation and lack of an effective vaccine make prophylaxis difficult. Consequently, there is an urgent need to develop an effective vaccine to halt its spread all over the world. In this study, an immunoinformatics approach was employed to identify the most vital and effective immunogenic protein from the proteome of Leptospira interrogans serovar Copenhageni strain L1-130 that may be suitable to stimulate a significant immune response aiding in the development of peptide vaccine against leptospirosis. Both B-cell and T-cell (Helper T-lymphocyte (HTL) and cytotoxic T lymphocyte (CTL)) epitopes were predicted for the conserved and most immunogenic outer membrane lipoprotein. Further, the binding interaction of CTL epitopes with Major Histocompatibility Complex class I (MHC-I) was evaluated using docking techniques. A Molecular Dynamics Simulation study was also performed to evaluate the stability of the resulting epitope-MHC-I complexes. Overall, this study provides novel vaccine candidates and may prompt further development of vaccines against leptospirosis.
Collapse
Affiliation(s)
- Kumari Snehkant Lata
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Swapnil Kumar
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Vibhisha Vaghasia
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Priyanka Sharma
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Shivarudrappa B Bhairappanvar
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Subhash Soni
- Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Jayashankar Das
- Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India. .,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.
| |
Collapse
|
111
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
112
|
Shivangi, Meena LS. A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles. Appl Biochem Biotechnol 2018; 185:815-821. [DOI: 10.1007/s12010-018-2695-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
|
113
|
Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of Controlling Invasive Fungal Infections Using CD8 + T Cells. Front Immunol 2018; 8:1939. [PMID: 29358941 PMCID: PMC5766637 DOI: 10.3389/fimmu.2017.01939] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.
Collapse
Affiliation(s)
- Pappanaicken R. Kumaresan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thiago Aparecido da Silva
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
114
|
Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC. Human Pulmonary 3D Models For Translational Research. Biotechnol J 2018; 13:1700341. [PMID: 28865134 PMCID: PMC7161817 DOI: 10.1002/biot.201700341] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Lung diseases belong to the major causes of death worldwide. Recent innovative methodological developments now allow more and more for the use of primary human tissue and cells to model such diseases. In this regard, the review covers bronchial air-liquid interface cultures, precision cut lung slices as well as ex vivo cultures of explanted peripheral lung tissue and de-/re-cellularization models. Diseases such as asthma or infections are discussed and an outlook on further areas for development is given. Overall, the progress in ex vivo modeling by using primary human material could make translational research activities more efficient by simultaneously fostering the mechanistic understanding of human lung diseases while reducing animal usage in biomedical research.
Collapse
Affiliation(s)
- Katja Zscheppang
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Johanna Berg
- Department of BiotechnologyTechnical University of BerlinGustav‐Meyer‐Allee 25Berlin 13335Germany
| | - Sarah Hedtrich
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Leonie Verheyen
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Darcy E. Wagner
- Helmholtz Zentrum Munich, Lung Repair and Regeneration Unit, Comprehensive Pneumology CenterMember of the German Center for Lung ResearchMunichGermany
| | - Norbert Suttorp
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Stefan Hippenstiel
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Andreas C. Hocke
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| |
Collapse
|
115
|
Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther 2018; 181:169-182. [PMID: 28842273 PMCID: PMC5743757 DOI: 10.1016/j.pharmthera.2017.08.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asthma is a complex inflammatory disease characterized by airway inflammation and hyperresponsiveness. The mechanisms associated with the development and progression of asthma have been widely studied in multiple populations and animal models, and these have revealed involvement of various cell types and activation of intracellular signaling pathways that result in activation of inflammatory genes. Significant contributions of Toll-like-receptors (TLRs) and transcription factors such as NF-кB, have been reported as major contributors to inflammatory pathways. These have also recently been associated with mechanisms of oxidative biology. This is of important clinical significance as the observed inefficacy of current available treatments for severe asthma is widely attributed to oxidative stress. Therefore, targeting oxidizing molecules in conjunction with inflammatory mediators and transcription factors may present a novel therapeutic strategy for asthma. In this review, we summarize TLRs and NF-кB pathways in the context of exacerbation of asthma pathogenesis and oxidative biology, and we discuss the potential use of polyphenolic flavonoid compounds, known to target these pathways and possess antioxidant activity, as potential therapeutic agents for asthma.
Collapse
Affiliation(s)
- Vikas Mishra
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Departments of Pediatrics, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jaspreet Banga
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| | - Patricia Silveyra
- Departments of Pediatrics, The Pennsylvania State University, College of Medicine, Hershey, PA, USA; Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| |
Collapse
|
116
|
Zhou F, Li H, Gu L, Liu M, Xue CX, Cao B, Wang C. Risk factors for nosocomial infection among hospitalised severe influenza A(H1N1)pdm09 patients. Respir Med 2017; 134:86-91. [PMID: 29413513 DOI: 10.1016/j.rmed.2017.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Nosocomial infections following influenza are important causes of death, requiring early implementation of preventive measures, but predictors for nosocomial infection in the early stage remained undetermined. We aimed to determine risk factors that can help clinicians identify patients with high risk of nosocomial infection following influenza on admission. METHOD Using a database prospectively collected through a Chinese national network for hospitalised severe influenza A(H1N1)pdm09 patients, we compared the characteristics on admission between patients with and without nosocomial infection. RESULT A total of 2146 patients were enrolled in the final analysis with a median age of 36.0 years, male patients comprising 50.2% of the sample and 232 (10.8%) patients complicated with nosocomial infection. Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Staphylococcus aureus were the leading pathogens, and invasive fungal infection was found in 30 cases (12.9%). The in-hospital mortality was much higher in patients with nosocomial infection than those without (45.7% vs 11.8%, P < 0.001). Need for mechanical ventilation (OR: 3.336; 95% CI 2.362-4.712), sepsis (OR: 2.125; 95% CI 1.236-3.651), ICU admission on first day (OR: 2.074; 95% CI 1.425-3.019), lymphocytopenia (OR: 1.906; 95% CI 1.361-2.671), age > 65 years (OR: 1.83; 95% CI 1.04-3.21) and anaemia (OR: 1.39; 95% CI 1.39-2.79) were independently associated with nosocomial infection. CONCLUSION Need for mechanical ventilation, sepsis, ICU admission on first day, lymphocytopenia, older age and anaemia were independent risk factors that can help clinicians identify severe influenza A(H1N1)pdm09 patients at high risk of nosocomial infection.
Collapse
Affiliation(s)
- Fei Zhou
- Beijing Chao-Yang Hospital, Capital Medical University, No 8, Gongti Road, Chaoyang District, Beijing, 100020, China
| | - Hui Li
- Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Capital Medical University, No. 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Li Gu
- Beijing Chao-Yang Hospital, Capital Medical University, No 8, Gongti Road, Chaoyang District, Beijing, 100020, China
| | - Meng Liu
- Respiratory Department, Beijing Hospital of Traditional Chinese Medicine (TCM), Capital Medical University, No 23, Art Museum Backstreet, Dongcheng District, Beijing, 100010, China
| | - Chun-Xue Xue
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, No 82, Xinhua Shouth Road, Tongzhou District, Beijing, 101149, China
| | - Bin Cao
- Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Capital Medical University, No. 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Capital Medical University, No. 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
117
|
Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M, Soleimanpour S. Multi-stage subunit vaccines against Mycobacterium tuberculosis: an alternative to the BCG vaccine or a BCG-prime boost? Expert Rev Vaccines 2017; 17:31-44. [DOI: 10.1080/14760584.2018.1406309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arshid Yousefi-Avarvand
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
118
|
Scheffold A, Schwarz C, Bacher P. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections. Mycopathologia 2017; 183:213-226. [PMID: 29168073 DOI: 10.1007/s11046-017-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.
Collapse
Affiliation(s)
- Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Centre Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
119
|
Dewi IMW, van de Veerdonk FL, Gresnigt MS. The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. J Fungi (Basel) 2017; 3:E55. [PMID: 29371571 PMCID: PMC5753157 DOI: 10.3390/jof3040055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus-infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus. Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus-infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
Collapse
Affiliation(s)
- Intan M W Dewi
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
- Faculty of Medicine Universitas Padjadjaran, Jl. Eijkman No. 38, Bandung 40161, Indonesia.
| | - Frank L van de Veerdonk
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Mark S Gresnigt
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
120
|
Fujikura D, Muramatsu D, Toyomane K, Chiba S, Daito T, Iwai A, Kouwaki T, Okamoto M, Higashi H, Kida H, Oshiumi H. Aureobasidium pullulans-cultured fluid induces IL-18 production, leading to Th1-polarization during influenza A virus infection. J Biochem 2017; 163:31-38. [DOI: 10.1093/jb/mvx062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
|
121
|
Cantone M, Santos G, Wentker P, Lai X, Vera J. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection. Front Physiol 2017; 8:645. [PMID: 28912729 PMCID: PMC5582318 DOI: 10.3389/fphys.2017.00645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.
Collapse
Affiliation(s)
| | | | | | | | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum ErlangenErlangen, Germany
| |
Collapse
|
122
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
123
|
Vitenberga Z, Pilmane M. Inflammatory, anti-inflammatory and regulatory cytokines in relatively healthy lung tissue as an essential part of the local immune system. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017. [PMID: 28627525 DOI: 10.5507/bp.2017.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The innate and adaptive immune systems in lungs are maintained not only by immune cells but also by non-immune tissue structures, locally providing wide intercellular communication networks and regulating the local tissue immune response. AIMS The aim of this study was to determine the appearance and distribution of inflammatory, anti-inflammatory and regulatory cytokines in relatively healthy lung tissue samples. MATERIAL AND METHODS We evaluated lung tissue specimens obtained from 49 patients aged 9-95 years in relatively healthy study subjects. Tissue samples were examined by hematoxylin and eosin staining. Interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-7 (IL-7), and interleukin-10 (IL-10) were detected by an immunohistochemistry (IMH) method. The number of positive structures was counted semiquantitatively by microscopy. Non-parametric tests were used to analyse the data. RESULTS IL-1-positive cells were mostly found in the bronchial cartilage and alveolar epithelium. Immunoreactive lung macrophages were also found. The numbers of IL-4, IL-6, IL-7, and IL-10 containing cells were also found in the bronchial epithelium (in addition to those previously listed). The number of positive structures varied from occasional to moderate, but was graded higher in cartilage. Overall, fewer IL-1-positive cells and more IL-10-positive cells were found. Almost no positive structures for all examined cytokines were found in connective tissue and bronchial glands. CONCLUSIONS Relatively healthy lung tissue exhibits anti-inflammatory response patterns. The cytokine distribution and appearance suggest persistent stimulation of cytokine expression in lung tissue and indicate the presence of local regulatory and modulating patterns. The pronounced cytokine distribution in bronchial cartilage suggests the involvement of a compensatory local immune response in the supporting tissue.
Collapse
Affiliation(s)
- Zane Vitenberga
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, Riga, LV-1010, Latvia
| | - Mara Pilmane
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, Riga, LV-1010, Latvia
| |
Collapse
|
124
|
|
125
|
Nedrow JR, Josefsson A, Park S, Ranka S, Roy S, Sgouros G. Imaging of Programmed Cell Death Ligand 1: Impact of Protein Concentration on Distribution of Anti-PD-L1 SPECT Agents in an Immunocompetent Murine Model of Melanoma. J Nucl Med 2017; 58:1560-1566. [PMID: 28522738 DOI: 10.2967/jnumed.117.193268] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death ligand 1 (PD-L1) is part of an immune checkpoint system that is essential for preventing autoimmunity and cancer. Recent approaches in immunotherapy that target immune checkpoints have shown great promise in a variety of cancers, including metastatic melanoma. The use of targeted molecular imaging would help identify patients who will best respond to anti-PD-L1 treatment while potentially providing key information to limit immune-related adverse effects. Recently, we developed an antibody-based PD-L1-targeted SPECT agent-111In-diethylenetriaminepentaacetic acid (DTPA)-anti-PD-L1-to identify PD-L1-positive tumors in vivo. To best use such PD-L1-targeted imaging agents, it is important, as a first step, to understand how the signal is affected by different parameters. Methods: We evaluated the impact of protein concentration on the distribution of 111In-DTPA-anti-PD-L1 in a murine model of aggressive melanoma. Results:111In-DTPA-anti-PD-L1 (dissociation constant, 0.6 ± 0.1 nM) demonstrated increased uptake in B16F10 tumors at protein concentrations equaling or exceeding 1 mg/kg at 24 h and 3 mg/kg at 72 h. At 24 h, the PD-L1-rich spleen and lungs demonstrated decreasing uptake with increasing protein concentration. At 72 h, uptake in the thymus was significantly increased at protein concentrations of 3 mg/kg or greater. Both time points demonstrated increased tracer amounts remaining in circulation as the amount of cold antibody was increased. Conclusion: These studies demonstrate that 111In-DTPA-anti-PD-L1 is capable of identifying tumors that overexpresses PD-L1 and monitoring the impact of PD-L1-rich organs on the distribution of anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Jessie R Nedrow
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anders Josefsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sunju Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sagar Ranka
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanchita Roy
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
126
|
Han D, Walsh MC, Kim KS, Hong SW, Lee J, Yi J, Rivas G, Choi Y, Surh CD. Dendritic cell expression of the signaling molecule TRAF6 is required for immune tolerance in the lung. Int Immunol 2017; 29:71-78. [PMID: 28338920 PMCID: PMC5890897 DOI: 10.1093/intimm/dxx011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Immune tolerance in the lung is important for preventing hypersensitivity, such as allergic asthma. Maintenance of tolerance in the lung is established by coordinated activities of poorly understood cellular and molecular mechanisms, including participation of dendritic cells (DCs). We have previously identified DC expression of the signaling molecule TRAF6 as a non-redundant requirement for the maintenance of immune tolerance in the small intestine of mice. Because mucosal tissues share similarities in how they interact with exogenous antigens, we examined the role of DC-expressed TRAF6 in the lung. As with the intestine, we found that the absence TRAF6 expression by DCs led to spontaneous generation of Th2-associated immune responses and increased susceptibility to model antigen-induced asthma. To examine the role of commensal microbiota, mice deficient in TRAF6 in DCs were treated with broad-spectrum antibiotics and/or re-derived on a germ-free (GF) background. Interestingly, we found that antibiotics-treated specific pathogen-free, but not GF, mice showed restored immune tolerance in the absence of DC-expressed TRAF6. We further found that antibiotics mediate microbiota-independent effects on lung T cells to promote immune tolerance in the lung. This work provides both a novel tool for studying immune tolerance in the lung and an advance in our conceptual understanding of potentially common molecular mechanisms of immune tolerance in both the intestine and the lung.
Collapse
Affiliation(s)
- Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Junyoung Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Gloriany Rivas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea.,Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
127
|
Abstract
PURPOSE OF REVIEW Pneumonia is a common disease that becomes severe in a subset of patients, dependent on host biology including mechanisms of immune resistance and tissue resilience. This review emphasizes discoveries in pneumonia biology from 2016, highlighting questions and directions that are especially pressing or newly emerging. RECENT FINDINGS Novel cell-cell interactions mediating innate immune responses against microbes in the lung have been elucidated, between distinct leukocyte subtypes as well as between leukocytes and the structural cells of the lung. Adaptive immunity has received growing attention for determining the outcome of pneumonia, particularly the lung resident memory cells that arise from repeated prior respiratory infections and direct heterotypic recall responses. New tissue resilience components have been identified that contribute to anti-inflammatory, proresolution, tissue-protective, and reparative regeneration pathways in the infected lung. SUMMARY Recent findings will direct research into fundamental mechanisms of lung protection. Over the longer term, manipulating these pathways has implications for clinical practice, as strategies to bolster resistance and resilience have potential to ameliorate severe pneumonia.
Collapse
Affiliation(s)
- Joseph P. Mizgerd
- Professor of Medicine, Microbiology, and Biochemistry, Director, Pulmonary Center, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, Phone 617-638-5201, Fax 617-638-5227,
| |
Collapse
|
128
|
Trivedi MK, Mondal SC, Gangwar M, Jana S. Effect of a Novel Ashwagandha-based Herbomineral Formulation on Pro-inflammatory Cytokines Expression in Mouse Splenocyte Cells: A Potential Immunomodulator. Pharmacogn Mag 2017; 13:S90-S94. [PMID: 28479732 PMCID: PMC5407122 DOI: 10.4103/0973-1296.197709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Indexed: 01/12/2023] Open
Abstract
Background: Herbomineral formulations are momentous in an audience of worldwide by virtue of their holistic approach to life. These formulations are widely used as complementary therapies in immunocompromised patients including cancer. Still, there is the need of cost-effective and safe herbomineral-based formulation that can modulate immune response by the regulation of cytokines cascades. Objective: Current study, we investigated immunomodulatory effect of TEBEH in LPS-induced cytokines expression levels in mouse splenocytes in vitro. Materials and Methods: The most effective and safe concentrations of TEBEH were chosen by determining the cell viability of splenocytes using MTT assay. The pro-inflammatory cytokines such as TNF-α, IL-1β, MIP-1α, and IFN-γ were measured in cell supernatants using ELISA. Results: MTT data showed TEBEH formulation was found safe up to 10.53 μg/mL. At noncytotoxic concentrations (0.00001053–10.53 μg/mL), TEBEH significantly (P ≤ 0.001) inhibited the expressions of TNF-α, IL-1β, and MIP-1α in mouse splenocytes as compared with vehicle control. Conclusion: In summary, TEBEH may indeed promote an anti-inflammatory environment by suppression of pro-inflammatory cytokines. These observations indicated that TEBEH has potential effects in downregulating the immune system and might be developed as a useful anti-inflammatory product for various inflammatory disorders. SUMMARY The present study was undertaken to evaluate an immunomodulatory effect of the herbomineral formulation in LPS-induced mouse splenocytes with the measurement of cytokines expression such as TNF-α, IL-1β, MIP-1α and IFN-γ. The results showed that the expression of TNF-α, IL-1β, and MIP-1α was significantly down-regulated while, IFN-γ was significantly up-regulated in mouse splenocytes. It is hypothesized that modulation of the proinflammatory cytokines might occur via NF-κB pathway. Therefore, the herbomineral test formulation might act as an effective anti-inflammatory and immunomodulatory product, and this can be used as a complementary and alternative treatment for the prevention of various types of inflammatory and auto-immune disorders
Abbreviations used: LPS: Lipopolysaccharide, IL: Interleukin; NF-κB: Nuclear factor kappa-B, TNF-α: Tumor necrosis factor alpha, MIP-1α: Macrophage inflammatory protein-1α, IFN-γ: Interferon, MTT: 3-(4,5-diamethyl-2-thiazolyl)-2, 5-diphenyl-2Htetrazolium), ELISA: Enzyme linked immune sorbent assay, ANOVA: Analysis of variance
Collapse
Affiliation(s)
| | | | - Mayank Gangwar
- Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
| |
Collapse
|
129
|
Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y. Melatonin signaling in T cells: Functions and applications. J Pineal Res 2017; 62. [PMID: 28152213 DOI: 10.1111/jpi.12394] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T-cell-mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T-cell biology and the beneficial effects of melatonin in T-cell response-based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T-cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T-cell biology is associated with membrane and nuclear receptors as well as receptor-independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2-C/EBPα, are involved in the regulatory roles of melatonin in T-cell biology. Through modulation in T-cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T-cell fate determination, and T cell-based immune pathologies.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tiejun Li
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- School of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
130
|
Li YS, Luo W, Zhu SA, Lei GH. T Cells in Osteoarthritis: Alterations and Beyond. Front Immunol 2017; 8:356. [PMID: 28424692 PMCID: PMC5371609 DOI: 10.3389/fimmu.2017.00356] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although osteoarthritis (OA) has been traditionally regarded as a non-inflammatory disease, reports increasingly suggest that it is inflammatory, at least in certain patients. OA patients often exhibit inflammatory infiltration of synovial membranes by macrophages, T cells, mast cells, B cells, plasma cells, natural killer cells, dendritic cells, granulocytes, etc. Although previous reviews have summarized the knowledge of inflammation in the pathogenesis of OA, as far as we know, no report review our current understanding about T cells, especially, each T cell subtype, in the biology of OA. This review highlights the current understanding of the role of T cells in the pathogenesis of OA, with attention to Th1 cells, Th2 cells, Th9 cells, Th17 cells, Th22 cells, regulatory T cells, follicular helper T cells, cytotoxic T cells, T memory cells, and even unconventional T cells (e.g., γδ T cells and cluster of differentiation 1 restricted T cells). The findings highlight the importance of T cells to the development and progression of OA and suggest new therapeutic approaches for OA patients based on the manipulation of T-cell responses.
Collapse
Affiliation(s)
- Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Shou-An Zhu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
131
|
Wang H, Song L, Ju W, Wang X, Dong L, Zhang Y, Ya P, Yang C, Li F. The acute airway inflammation induced by PM 2.5 exposure and the treatment of essential oils in Balb/c mice. Sci Rep 2017; 7:44256. [PMID: 28276511 PMCID: PMC5343586 DOI: 10.1038/srep44256] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/03/2017] [Indexed: 01/17/2023] Open
Abstract
PM2.5 is the main particulate air pollutant whose aerodynamic diameter is less than 2.5 micron. The inflammation of various respiratory diseases are associated with PM2.5 inhalation. Pro-inflammatory cytokine IL-1β generated from effected cells usually plays a crucial role in many kinds of lung inflammatory reactions. The exacerbation of Th immune responses are identified in some PM2.5 related diseases. To elucidate the underlying mechanism of PM2.5-induced acute lung inflammation, we exposed Balb/c mice to PM2.5 intratracheally and established a mice model. Acute lung inflammation and increased IL-1β expression was observed after PM2.5 instillation. Regulatory factors of IL-1β (TLR4/MyD88 signaling pathway and NLRP3 inflammasome) participated in this lung inflammatory response as well. Treatment with compound essential oils (CEOs) substantially attenuated PM2.5-induced acute lung inflammation. The decreased IL-1β and Th immune responses after CEOs treatment were significant. PM2.5 may increase the secretion of IL-1β through TLR4/MyD88 and NLRP3 pathway resulting in murine airway inflammation. CEOs could attenuate the lung inflammation by reducing IL-1β and Th immune responses in this model. This study describes a potentially important mechanism of PM2.5-induced acute lung inflammation and that may bring about novel therapies for the inflammatory diseases associated with PM2.5 inhalation.
Collapse
Affiliation(s)
- Hetong Wang
- Dept of Chemistry, Dalian Medical University, Dalian 116044, Liaoning Province, People’s Republic of China
| | - Laiyu Song
- Dept of Immunological and Microbiological Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, People’s Republic of China
| | - Wenhui Ju
- Atmospheric Environment Research Institute, China Research Academy of Environmental Sciences, Beijing 100012, People’s Republic of China
| | - Xuguang Wang
- Environmental Monitoring Station of Langfan, Langfang Environmental Protection Bureau, Langfang 065000, Hebei Province, People’s Republic of China
| | - Lu Dong
- Dept of Chemistry, Dalian Medical University, Dalian 116044, Liaoning Province, People’s Republic of China
| | - Yining Zhang
- Dept of Chemistry, Dalian Medical University, Dalian 116044, Liaoning Province, People’s Republic of China
| | - Ping Ya
- Dept of Chemistry, Dalian Medical University, Dalian 116044, Liaoning Province, People’s Republic of China
| | - Chun Yang
- Dept of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, LiaoNing Province, People’s Republic of China
| | - Fasheng Li
- Dept of Chemistry, Dalian Medical University, Dalian 116044, Liaoning Province, People’s Republic of China
| |
Collapse
|
132
|
Ren W, Liu G, Yin J, Tan B, Wu G, Bazer FW, Peng Y, Yin Y. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 2017; 8:e2655. [PMID: 28252650 PMCID: PMC5386510 DOI: 10.1038/cddis.2016.222] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/25/2022]
Abstract
T-cell-mediated immune responses aim to protect mammals against cancers and infections, and are also involved in the pathogenesis of various inflammatory or autoimmune diseases. Cellular uptake and the utilization of nutrients is closely related to the T-cell fate decision and function. Research in this area has yielded surprising findings in the importance of amino-acid transporters for T-cell development, homeostasis, activation, differentiation and memory. In this review, we present current information on amino-acid transporters, such as LAT1 (l-leucine transporter), ASCT2 (l-glutamine transporter) and GAT-1 (γ-aminobutyric acid transporter-1), which are critically important for mediating peripheral naive T-cell homeostasis, activation and differentiation, especially for Th1 and Th17 cells, and even memory T cells. Mechanically, the influence of amino-acid transporters on T-cell fate decision may largely depend on the mechanistic target of rapamycin complex 1 (mTORC1) signaling. These discoveries remarkably demonstrate the role of amino-acid transporters in T-cell fate determination, and strongly indicate that manipulation of the amino-acid transporter-mTORC1 axis could ameliorate many inflammatory or autoimmune diseases associated with T-cell-based immune responses.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,University of the Chinese Academy of Sciences, Beijing 10008, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| |
Collapse
|
133
|
Kim H, Kwon KW, Kim WS, Shin SJ. Virulence-dependent induction of interleukin-10-producing-tolerogenic dendritic cells by Mycobacterium tuberculosis impedes optimal T helper type 1 proliferation. Immunology 2017; 151:177-190. [PMID: 28140445 DOI: 10.1111/imm.12721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium tuberculosis inhibits optimal T helper type 1 (Th1) responses during infection. However, the precise mechanisms by which virulent M. tuberculosis limits Th1 responses remain unclear. Here, we infected dendritic cells (DCs) with the virulent M. tuberculosis strain H37Rv or the attenuated strain H37Ra to investigate the phenotypic and functional alterations in DCs and resultant T-cell responses. H37Rv-infected DCs suppressed Th1 responses more strongly than H37Ra-infected DCs. Interestingly, H37Rv, but not H37Ra, impaired DC surface molecule expression (CD80, CD86 and MHC class II) due to prominent interleukin-10 (IL-10) production while augmenting the expression of tolerogenic molecules including PD-L1, CD103, Tim-3 and indoleamine 2,3-dioxygenase on DCs in a multiplicity-of-infection (MOI) -dependent manner. These results indicate that virulent M. tuberculosis drives immature DCs toward a tolerogenic phenotype. Notably, the tolerogenic phenotype of H37Rv-infected DCs was blocked in DCs generated from IL-10-/- mice or DCs treated with an IL-10-neutralizing monoclonal antibody, leading to restoration of Th1 polarization. These findings suggest that IL-10 induces a tolerogenic DC phenotype. Interestingly, p38 mitogen-activated protein kinase (MAPK) activation predominantly mediates IL-10 production; hence, H37Rv tends to induce a tolerogenic DC phenotype through expression of tolerogenic molecules in the p38 MAPK-IL-10 axis. Therefore, suppressing the tolerogenic cascade in DCs is a novel strategy for stimulating optimal protective T-cell responses against M. tuberculosis infection.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
134
|
Steiner EM, Schneider G, Schnell R. Binding and processing of β‐lactam antibiotics by the transpeptidase Ldt
Mt2
from
Mycobacterium tuberculosis. FEBS J 2017; 284:725-741. [DOI: 10.1111/febs.14010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Maria Steiner
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| |
Collapse
|
135
|
Wang B, Gan Z, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J. Integrated analysis neurimmiRs of tilapia (Oreochromis niloticus) involved in immune response to Streptococcus agalactiae, a pathogen causing meningoencephalitis in teleosts. FISH & SHELLFISH IMMUNOLOGY 2017; 61:44-60. [PMID: 27956091 DOI: 10.1016/j.fsi.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules and play important roles in a wide spectrum of biological processes, including in immune response. Recent years have witnessed considerable amount of research interest in studies on miRNA-mediated modulation gene function during neuroinflammation. Here, we evaluated Streptococcus agalactiae infected tilapia (Oreochromis niloticus) brain for the expression profile of miRNAs, potential functions and their correlation with genes involved in inflammatory pathways. A total of 1981 miRNAs were identified, including in 486 miRNAs which have homologues in the currently available databases and 1945 novel miRNAs. The expression levels of 547 miRNAs were significantly altered at 6 h-48 h post-bacterial infection, and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. Real-time PCR were implemented for 14 miRNAs co-expressed in five samples, and agreement was confirmed between the high-throughput sequencing and real-time PCR data. For the 486 differentially expressed miRNAs target 41,820 genes. GO and KEGG enrichment analysis revealed that some target genes of miRNAs were grouped mainly into the categories of apoptotic, signal pathwayand immune response. This is the first report of comprehensive identification of teleost miRNAs being differentially regulated in brain in normal conditions relating to bacterial infection.
Collapse
Affiliation(s)
- Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Zhen Gan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Ziwei Lin
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
136
|
Abstract
The discovery of the key roles of interleukin-17A (IL-17A) and IL-17A producing cells in inflammation, autoimmune diseases and host defense has led to the experimental targeting of the IL-17A pathway in animal models of diseases as well as in clinical trials in humans. These therapeutic agents include biological products that target IL-17A and IL-23, an upstream regulator of IL-17A production. IL-17A producing T helper cells (Th17 cells) are a distinct lineage from the Th1 and Th2 CD4+ lineages and have been suggested to represent a good drug target in certain inflammatory conditions. Targeting IL-17A has been proven to be a good approach as anti-IL-17A is FDA approved for the treatment of psoriasis in 2015. In host defense, IL-17A has been shown to be mostly beneficial against infection caused by extracellular bacteria and fungi. This review will overview the discovery of IL-17A, the receptors used by this cytokine and its role in mucosal immunity and inflammation.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
137
|
Liu SD, Zhang SM, Wang H, He JC, Yang XF, Du XL, Ma L. Identification of HLA-DRB1*09:01-restrictedMycobacterium tuberculosisCD4+T-cell epitopes. FEBS Lett 2016; 590:4541-4549. [DOI: 10.1002/1873-3468.12478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Su-Dong Liu
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Hui Wang
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Jian-Chun He
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Xiao-Fan Yang
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Xia-Lin Du
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Li Ma
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
- Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health; Southern Medical University; Guangzhou China
| |
Collapse
|
138
|
Cárdenas-Vargas A, Elizondo-Quiroga D, Gutierrez-Ortega A, Charles-Niño C, Pedroza-Roldán C. Evaluation of the Immunogenicity of a Potyvirus-Like Particle as an Adjuvant of a Synthetic Peptide. Viral Immunol 2016; 29:557-564. [PMID: 27834623 DOI: 10.1089/vim.2016.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improvement of current vaccines is highly necessary to increase immunogenicity levels and protection against several pathogens. Virus-like particles (VLPs) are promising approaches for vaccines because they emulate infectious virus structure, but lack any genetic material needed for replication. Plant viruses have emerged as a potential framework for VLP design, mainly because there is no preexisting immunity in mammals. In this study, we evaluated the scaffold of the papaya ringspot virus (PRSV) as a VLP adjuvant for a short synthetic peptide derived from the Hemagglutinin protein of AH1 N1 influenza virus-hemagglutinin (VLP-HA). Our results demonstrated that the adjuvant property of this VLP is highly similar to the trivalent influenza vaccine, showing comparable levels of IgG- and IgA-specific antibodies to HA-derived peptide in serum and feces of vaccinated mice, respectively. Furthermore, VLP-HA-immunized mice showed Th1-biased immune response as suggested by measuring IgG subclasses in comparison with the predominance of Th2-biased immune response in trivalent influenza vaccine dose-vaccinated mice. VLP-HA administration in mice induced comparable levels of activated CD4+- and CD8+-specific T lymphocytes for the HA-derived peptide. These results suggest the potential adjuvant capacity of the PRSV-VLP as a carrier for short synthetic peptides.
Collapse
Affiliation(s)
- Albertina Cárdenas-Vargas
- 1 Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , Guadalajara, México .,2 Departamento de Fisiología, Centro Universitario de Ciencias de la Salud , Guadalajara, México
| | - Darwin Elizondo-Quiroga
- 1 Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , Guadalajara, México
| | - Abel Gutierrez-Ortega
- 1 Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , Guadalajara, México
| | - Claudia Charles-Niño
- 3 Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara, México
| | - César Pedroza-Roldán
- 4 Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara , Zapopan, México
| |
Collapse
|
139
|
Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, Garg AV, Erb CJ, Bo M, Wang T, Chen W, Lee JS, Gaffen SL, Kolls JK. IL-17 Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against K. pneumoniae. Cell Host Microbe 2016; 20:596-605. [PMID: 27923703 DOI: 10.1016/j.chom.2016.10.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
The cytokine IL-17, and signaling via its heterodimeric IL-17RA/IL-17RC receptor, is critical for host defense against extracellular bacterial and fungal pathogens. Polarized lung epithelial cells express IL-17RA and IL-17RC basolaterally. However, their contribution to IL-17-dependent pulmonary defenses in vivo remains to be determined. To address this, we generated mice with conditional deletion of Il17ra or Il17rc in Scgb1a1-expressing club cells, a major component of the murine bronchiolar epithelium. These mice displayed an impaired ability to recruit neutrophils into the airway lumen in response to IL-17, a defect in bacterial clearance upon mucosal challenge with the pulmonary pathogen Klebsiella pneumoniae, and substantially reduced epithelial expression of the chemokine Cxcl5. Neutrophil recruitment and bacterial clearance were restored by intranasal administration of recombinant CXCL5. Our data show that IL-17R signaling in the lung epithelium plays a critical role in establishing chemokine gradients that are essential for mucosal immunity against pulmonary bacterial pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Giraldina Trevejo-Nunez
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily E Way
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David M Ricks
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carla J Erb
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Meihua Bo
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ting Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Janet S Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
140
|
Choi HG, Choi S, Back YW, Park HS, Bae HS, Choi CH, Kim HJ. Mycobacterium tuberculosis Rv2882c Protein Induces Activation of Macrophages through TLR4 and Exhibits Vaccine Potential. PLoS One 2016; 11:e0164458. [PMID: 27711141 PMCID: PMC5053528 DOI: 10.1371/journal.pone.0164458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Macrophages constitute the first line of defense against Mycobacterium tuberculosis and are critical in linking innate and adaptive immunity. Therefore, the identification and characterization of mycobacterial proteins that modulate macrophage function are essential for understanding tuberculosis pathogenesis. In this study, we identified the novel macrophage-activating protein, Rv2882c, from M. tuberculosis culture filtrate proteins. Recombinant Rv2882c protein activated macrophages to secrete pro-inflammatory cytokines and express co-stimulatory and major histocompatibility complex molecules via Toll-like receptor 4, myeloid differentiation primary response protein 88, and Toll/IL-1 receptor-domain-containing adaptor inducing IFN-beta. Mitogen-activated protein kinases and NF-κB signaling pathways were involved in Rv2882c-induced macrophage activation. Further, Rv2882c-treated macrophages induced expansion of the effector/memory T cell population and Th1 immune responses. In addition, boosting Bacillus Calmette-Guerin vaccination with Rv2882c improved protective efficacy against M. tuberculosis in our model system. These results suggest that Rv2882c is an antigen that could be used for tuberculosis vaccine development.
Collapse
Affiliation(s)
- Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Seunga Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Hyun Shik Bae
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
- * E-mail:
| |
Collapse
|
141
|
Superior isolation of antigen-specific brain infiltrating T cells using manual homogenization technique. J Immunol Methods 2016; 439:23-28. [PMID: 27623324 DOI: 10.1016/j.jim.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Effective recovery of activated brain infiltrating lymphocytes is critical for investigations involving murine neurological disease models. To optimize lymphocyte recovery, we compared two isolation methods using brains harvested from seven-day Theiler's murine encephalomyelitis virus (TMEV) and TMEV-OVA infected mice. Brains were processed using either a manual dounce based approach or enzymatic digestion using type IV collagenase. The resulting cell suspensions from these two techniques were transferred to a percoll gradient, centrifuged, and lymphocytes were recovered. Flow cytometric analysis of CD45hi cells showed greater percentage of CD44hiCD62lo activated lymphocytes and CD19+ B cells using the dounce method. In addition, we achieved a 3-fold greater recovery of activated virus-specific CD8 T cells specific for the immunodominant Db:VP2121-130 and engineered Kb:OVA257-264 epitopes through manual dounce homogenization approach as compared to collagenase digest. A greater percentage of viable cells was also achieved through dounce homogenization. Therefore, we conclude that manual homogenization is a superior approach to isolate activated T cells from the mouse brain.
Collapse
|
142
|
Chen K, Campfield BT, Wenzel SE, McAleer JP, Kreindler JL, Kurland G, Gopal R, Wang T, Chen W, Eddens T, Quinn KM, Myerburg MM, Horne WT, Lora JM, Albrecht BK, Pilewski JM, Kolls JK. Antiinflammatory effects of bromodomain and extraterminal domain inhibition in cystic fibrosis lung inflammation. JCI Insight 2016; 1. [PMID: 27517095 DOI: 10.1172/jci.insight.87168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Significant morbidity in cystic fibrosis (CF) results from chronic lung inflammation, most commonly due to Pseudomonas aeruginosa infection. Recent data suggest that IL-17 contributes to pathological inflammation in the setting of abnormal mucosal immunity, and type 17 immunity-driven inflammatory responses may represent a target to block aberrant inflammation in CF. Indeed, transcriptomic analysis of the airway epithelium from CF patients undergoing clinical bronchoscopy revealed upregulation of IL-17 downstream signature genes, implicating a substantial contribution of IL-17-mediated immunity in CF lungs. Bromodomain and extraterminal domain (BET) chromatin modulators can regulate T cell responses, specifically Th17-mediated inflammation, by mechanisms that include bromodomain-dependent inhibition of acetylated histones at the IL17 locus. Here, we show that, in vitro, BET inhibition potently suppressed Th17 cell responses in explanted CF tissue and inhibited IL-17-driven chemokine production in human bronchial epithelial cells. In an acute P. aeruginosa lung infection murine model, BET inhibition decreased inflammation, without exacerbating infection, suggesting that BET inhibition may be a potential therapeutic target in patients with CF.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Brian T Campfield
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Division of Pediatric Infectious Diseases, Department of Pediatrics, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeremy P McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - James L Kreindler
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Radha Gopal
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Ting Wang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Kathleen M Quinn
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Mike M Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - William T Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Jose M Lora
- Constellation Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Brian K Albrecht
- Constellation Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
143
|
McAleer JP, Nguyen NLH, Chen K, Kumar P, Ricks DM, Binnie M, Armentrout RA, Pociask DA, Hein A, Yu A, Vikram A, Bibby K, Umesaki Y, Rivera A, Sheppard D, Ouyang W, Hooper LV, Kolls JK. Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:97-107. [PMID: 27217583 PMCID: PMC4912941 DOI: 10.4049/jimmunol.1502566] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022]
Abstract
Commensal microbiota are critical for the development of local immune responses. In this article, we show that gut microbiota can regulate CD4 T cell polarization during pulmonary fungal infections. Vancomycin drinking water significantly decreased lung Th17 cell numbers during acute infection, demonstrating that Gram-positive commensals contribute to systemic inflammation. We next tested a role for RegIIIγ, an IL-22-inducible antimicrobial protein with specificity for Gram-positive bacteria. Following infection, increased accumulation of Th17 cells in the lungs of RegIIIγ(-/-) and Il22(-/-) mice was associated with intestinal segmented filamentous bacteria (SFB) colonization. Although gastrointestinal delivery of rRegIIIγ decreased lung inflammatory gene expression and protected Il22(-/-) mice from weight loss during infection, it had no direct effect on SFB colonization, fungal clearance, or lung Th17 immunity. We further show that vancomycin only decreased lung IL-17 production in mice colonized with SFB. To determine the link between gut microbiota and lung immunity, serum-transfer experiments revealed that IL-1R ligands increase the accumulation of lung Th17 cells. These data suggest that intestinal microbiota, including SFB, can regulate pulmonary adaptive immune responses.
Collapse
Affiliation(s)
- Jeremy P McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Nikki L H Nguyen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - David M Ricks
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Matthew Binnie
- Division of Respirology, Department of Medicine, University of Toronto, Ontario M5B 1W8, Canada
| | - Rachel A Armentrout
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Derek A Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Aaron Hein
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| | - Amy Yu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Yoshinori Umesaki
- Yakult Central Institute for Microbiological Research, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Amariliz Rivera
- Department of Pediatrics, Center for Immunity and Inflammation, New Jersey Medical School, Newark, NJ 07101
| | - Dean Sheppard
- Lung Biology Center, University of California, San Francisco, San Francisco, CA 94143
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080; and
| | - Lora V Hooper
- Department of Immunology, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224;
| |
Collapse
|
144
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the main causes of human mortalities globally after heart disease and stroke. There is increasing evidence of an aetiological association between COPD and pneumonia, the leading infectious cause of death globally in children under 5 years. In this review, we discuss the known risk factors of COPD that are also shared with pneumonia including smoking, air pollution, age and immune suppression. We review how lung pathology linked to a previous history of pneumonia may heighten susceptibility to the development of COPD in later life. Furthermore, we examine how specific aspects of COPD immunology could contribute to the manifestation of pneumonia. Based on the available evidence, a convergent relationship is becoming apparent with respect to the pathogenesis of COPD and pneumonia. This has implications for the management of both diseases, and the development of new interventions.
Collapse
Affiliation(s)
- Sanjay S Gautam
- a Breathe Well Centre, School of Medicine, University of Tasmania , Hobart , Australia
| | - Ronan F O'Toole
- a Breathe Well Centre, School of Medicine, University of Tasmania , Hobart , Australia
| |
Collapse
|
145
|
Shaikh SR, Fessler MB, Gowdy KM. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. J Leukoc Biol 2016; 100:985-997. [PMID: 27286794 PMCID: PMC5069085 DOI: 10.1189/jlb.4vmr0316-103r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
Review on how complex mixtures of bioactive lipids and cholesterol may influence the pulmonary immune response during infection. Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n‐3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University (ECU), Greenville, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA;
| |
Collapse
|
146
|
Kim WS, Kim JS, Cha SB, Kim SJ, Kim H, Kwon KW, Han SJ, Choi SY, Shin SJ. Mycobacterium tuberculosis PE27 activates dendritic cells and contributes to Th1-polarized memory immune responses during in vivo infection. Immunobiology 2015; 221:440-53. [PMID: 26655143 DOI: 10.1016/j.imbio.2015.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
A gradual understanding of the proline-glutamate (PE) and proline-proline-glutamate (PPE) families, which compromise 10% of the coding regions in the Mycobacterium tuberculosis (Mtb) genome, has uncovered unique roles in host-pathogen interactions. However, the immunological function of PE27 (Rv2769c), the largest PE member, remains unclear. Here, we explored the functional roles and related signaling mechanisms of PE27 in the interaction with dendritic cells (DCs) to shape the T cell response. PE27 phenotypically and functionally induces DC maturation by up-regulating CD80, CD86, MHC class I and MHC class II expression on the DC surface to promote the production of TNF-α, IL-1β, IL-6, and IL-12p70 but not IL-10. Additionally, we found that PE27-mediated DC activation requires the participation of mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways. Interestingly, PE27-treated DCs directed naïve CD4(+) T cells to secrete IFN-γ and activate T-bet but not GATA-3. PE27 also induced IFN-γ-producing memory T cell responses in Mtb-infected mice, indicating that PE27 contributes to Th1-polarization. Taken together, these findings suggest that PE27 possesses Th1-polarizing potential through DC maturation and could be useful in the design of TB vaccines.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Soo Young Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
147
|
Jeyanathan M, Thanthrige-Don N, Afkhami S, Lai R, Damjanovic D, Zganiacz A, Feng X, Yao XD, Rosenthal KL, Medina MF, Gauldie J, Ertl HC, Xing Z. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol 2015; 8:1373-87. [PMID: 25872483 DOI: 10.1038/mi.2015.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Collapse
Affiliation(s)
- M Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - N Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Afkhami
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - R Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - D Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - A Zganiacz
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X Feng
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X-D Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - K L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - M Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - H C Ertl
- Department of Immunology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Z Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
148
|
Salie M, Daya M, Möller M, Hoal EG. Activating KIRs alter susceptibility to pulmonary tuberculosis in a South African population. Tuberculosis (Edinb) 2015; 95:817-821. [PMID: 26542219 DOI: 10.1016/j.tube.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
We investigate the role of killer immunoglobulin-like receptor (KIR) genes and human leukocyte antigen class-I (HLA) variants in susceptibility to tuberculosis in a South African population. In a sample set comprising 408 TB cases and 351 healthy controls, we show that the KIR3DS1 gene and KIR genotypes with five or more activating KIRs, and the presence of 3DS1, protect against developing active TB in the South African Coloured population. Several HLA class-I alleles were identified as susceptibility factors for TB disease. However, none of the KIR-HLA compound genotypes were found to be associated with TB. Our data suggests that the KIR genes may play an important role in TB disease.
Collapse
Affiliation(s)
- Muneeb Salie
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Michelle Daya
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
149
|
Gao Y, Zhang S, Ou Q, Shen L, Wang S, Wu J, Weng X, Chen ZW, Zhang W, Shao L. Characterization of CD4/CD8+ αβ and Vγ2Vδ2+ T cells in HIV-negative individuals with different Mycobacterium tuberculosis infection statuses. Hum Immunol 2015; 76:801-7. [PMID: 26429305 DOI: 10.1016/j.humimm.2015.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The immune responses of T cell subsets among patients with different Mycobacterium tuberculosis (M.tb) infection statuses [i.e., active tuberculosis (ATB), latent tuberculosis infection (LTBI) and non-infection (healthy control, HC)] have not been fully elucidated in HIV-negative individuals. Specifically, data are limiting in high tuberculosis epidemic regions in China. To investigate the distributions and functions of T cell subsets (i.e., CD3+, CD4+, CD8+ αβ and Vγ2Vδ2+ T cells) in HIV-negative subjects with different M.tb infection statuses, we conducted a case-control study that enrolled 125 participants, including ATB patients (n = 46), LTBI subjects (n = 34), and HC (n = 45). RESULTS An IFN-γ release assay (IGRA) was employed to screen LTBI subjects. Whole blood cell surface staining and flow cytometry were used to detect phenotypic distributions of T cells in the peripheral blood mononuclear cells (PBMCs) and tuberculous pleural fluid mononuclear cells (PFMCs). PPD and the phosphorylated antigen HMBPP were employed as stimulators for the detection of M.tb antigen-specific T cell functions via intracellular cytokine staining (ICS). The absolute numbers of T cell subsets, including CD3+ CD4+, CD3+ CD8+ αβ and Vγ2Vδ2+ T cells, were significantly reduced in active tuberculosis compared with latent tuberculosis or the healthy controls. Importantly, PPD-specific CD3+ CD4+ and CD3+ CD8+ αβ T cells and HMBPP-specific Vγ2Vδ2+ T cells in ATB patients were also significantly reduced compared to the LTBI/HC subjects (P<0.05). In contrast, the proportion of CD4+ T cells in PFMCs was higher compared to PBMCs, while CD8+ and Vγ2Vδ2+ T cells in PFMCs were lower compared to PBMCs (all P < 0.05). PPD-specific CD4+ T cells predominated among CD3+ T cells in PFMCs. CONCLUSIONS Cellular immune responses are impaired in ATB patients. Antigen-specific CD4+ T cell may migrate from the periphery to the lesion site, where they exert anti-tuberculosis functions.
Collapse
Affiliation(s)
- Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Shu Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi No. 5 People's Hospital, Wuxi 214005, China.
| | - Lei Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, 835 S. Wolcott Avenue, MC790 Chicago, IL 60612, United States.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
150
|
Vaccination with an Attenuated Ferritin Mutant Protects Mice against Virulent Mycobacterium tuberculosis. J Immunol Res 2015; 2015:385402. [PMID: 26339659 PMCID: PMC4539171 DOI: 10.1155/2015/385402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis the causative agent of tuberculosis affects millions of people worldwide. New tools for treatment and prevention of tuberculosis are urgently needed. We previously showed that a ferritin (bfrB) mutant of M. tuberculosis has altered iron homeostasis and increased sensitivity to antibiotics and to microbicidal effectors produced by activated macrophages. Most importantly, M. tuberculosis lacking BfrB is strongly attenuated in mice, especially, during the chronic phase of infection. In this study, we examined whether immunization with a bfrB mutant could confer protection against subsequent infection with virulent M. tuberculosis in a mouse model. The results show that the protection elicited by immunization with the bfrB mutant is comparable to BCG vaccination with respect to reduction of bacterial burden. However, significant distinctions in the disease pathology and host genome-wide lung transcriptome suggest improved containment of Mtb infection in animals vaccinated with the bfrB mutant, compared to BCG. We found that downmodulation of inflammatory response and enhanced fibrosis, compared to BCG vaccination, is associated with the protective response elicited by the bfrB mutant.
Collapse
|