101
|
Liu Y, Zhao ZD, Xie G, Chen R, Zhang Y. A molecularly defined NAcSh D1 subtype controls feeding and energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530275. [PMID: 36909586 PMCID: PMC10002697 DOI: 10.1101/2023.02.27.530275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Orchestrating complex behavioral states, such as approach and consumption of food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also plays an important role in controlling appetite and satiety in responses to changing external stimuli. However, the specific neuronal subtypes of NAc involved as well as how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here, we deciphered the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and defined a dopamine receptor D1(Drd1)- and Serpinb2-expressing subtype located in NAcSh encoding food consumption. Chemogenetics- and optogenetics-mediated regulation of Serpinb2 + neurons bidirectionally regulates food seeking and consumption specifically. Circuitry stimulation revealed the NAcSh Serpinb2 →LH LepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2 + neuron ablation reduces food intake and upregulates energy expenditure resulting in body weight loss. Together, our study reveals a neural circuit consisted of molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, which can serve as a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Zheng-dong Zhao
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
102
|
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. Simulated Dopamine Modulation of a Neurorobotic Model of the Basal Ganglia. Biomimetics (Basel) 2024; 9:139. [PMID: 38534824 DOI: 10.3390/biomimetics9030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The vertebrate basal ganglia play an important role in action selection-the resolution of conflicts between alternative motor programs. The effective operation of basal ganglia circuitry is also known to rely on appropriate levels of the neurotransmitter dopamine. We investigated reducing or increasing the tonic level of simulated dopamine in a prior model of the basal ganglia integrated into a robot control architecture engaged in a foraging task inspired by animal behaviour. The main findings were that progressive reductions in the levels of simulated dopamine caused slowed behaviour and, at low levels, an inability to initiate movement. These states were partially relieved by increased salience levels (stronger sensory/motivational input). Conversely, increased simulated dopamine caused distortion of the robot's motor acts through partially expressed motor activity relating to losing actions. This could also lead to an increased frequency of behaviour switching. Levels of simulated dopamine that were either significantly lower or higher than baseline could cause a loss of behavioural integration, sometimes leaving the robot in a 'behavioral trap'. That some analogous traits are observed in animals and humans affected by dopamine dysregulation suggests that robotic models could prove useful in understanding the role of dopamine neurotransmission in basal ganglia function and dysfunction.
Collapse
Affiliation(s)
- Tony J Prescott
- Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Kevin Gurney
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark D Humphries
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
103
|
Abidin İ, Keser H, Şahin E, Öztürk H, Başoğlu H, Alver A, Aydin-Abidin S. Effects of housing conditions on stress, depressive like behavior and sensory-motor performances of C57BL/6 mice. Lab Anim Res 2024; 40:6. [PMID: 38369507 PMCID: PMC10874523 DOI: 10.1186/s42826-024-00193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The effects of housing conditions on animal physiology, behavior or stress are still debated. The aim of this study was to investigate the effects of three different housing systems, individually ventilated cages (IVC), classical small cages with floor surface area of 500 cm2 (CC500) and classical large cages with floor surface area of 800 cm2 (CC800) on body weight, sensory-motor performances, depression-like behavior, plasma corticosterone and brain oxidative stress parameters in C57BL/6 mice. The mice housed in one of the cages from birth to 6 months of age. Hang wire and adhesive removal tests were performed to evaluate somatosensory and motor performances. The extent of depression was determined by the forced swim test. Blood corticosterone levels were measured. In addition, brain malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS) levels were analyzed. RESULTS The depression-like behavior of the groups was similar. Although there were no significant differences in hang wire test among groups, CC500 group required longer durations in adhesive removal test. The body weight and plasma corticosterone levels of CC800 group were significantly higher than other groups. The oxidative stress parameters were highest in CC500 cage. CONCLUSIONS Our study showed that the least stressful housing condition was IVC cage systems. Interestingly, the number of mice in the classical cages had a significant effect on stress levels and sensory-motor performance.
Collapse
Affiliation(s)
- İsmail Abidin
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Keser
- Ataturk Vocational School of Health Services, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Elif Şahin
- Faculty of Medicine, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Hilal Öztürk
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey
| | - Harun Başoğlu
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Faculty of Medicine, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydin-Abidin
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
104
|
Patel C, Patel R, Maturkar V, Jain NS. Central cholinergic transmission affects the compulsive-like behavior of mice in marble-burying test. Brain Res 2024; 1825:148713. [PMID: 38097126 DOI: 10.1016/j.brainres.2023.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Vaibhav Maturkar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
105
|
Warden A, Mayfield RD, Gurol KC, Hutchens S, Liu C, Mukhopadhyay S. Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice. Metallomics 2024; 16:mfae007. [PMID: 38285613 PMCID: PMC10883138 DOI: 10.1093/mtomcs/mfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kerem C Gurol
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Liu
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
106
|
Szalisznyó K, Silverstein DN. Computational insights on asymmetrical D1 and D2 receptor-mediated chunking: implications for OCD and Schizophrenia. Cogn Neurodyn 2024; 18:217-232. [PMID: 38406202 PMCID: PMC10881457 DOI: 10.1007/s11571-022-09865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023] Open
Abstract
Repetitive thoughts and motor programs including perseveration are bridge symptoms characteristic of obsessive compulsive disorder (OCD), schizophrenia and in the co-morbid overlap of these conditions. The above pathologies are sensitive to altered activation and kinetics of dopamine D 1 and D 2 receptors that differently influence sequence learning and recall. Recognizing start and stop elements of motor and cognitive behaviors has crucial importance. During chunking, frequent components of temporal strings are concatenated into single units. We extended a published computational model (Asabuki et al. 2018), where two populations of neurons are connected and simulated in a reservoir computing framework. These neural pools were adopted to represent D1 and D2 striatal neuronal populations. We investigated how specific neural and striatal circuit parameters can influence start/stop signaling and found that asymmetric intra-network connection probabilities, synaptic weights and differential time constants may contribute to signaling of start/stop elements within learned sequences. Asymmetric coupling between the striatal D 1 and D 2 neural populations was also demonstrated to be beneficial. Our modeling results predict that dynamical differences between the two dopaminergic striatal populations and the interaction between them may play complementary roles in chunk boundary signaling. Start and stop dichotomies can arise from the larger circuit dynamics as well, since neural and intra-striatal connections only partially support a clear division of labor.
Collapse
Affiliation(s)
- Krisztina Szalisznyó
- Department of Medical Sciences, Psychiatry, Uppsala University Hospital, Uppsala University, 751 85 Uppsala, Sweden
- Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Centre for Physics, Budapest, Hungary
| | | |
Collapse
|
107
|
Cenci MA, Kumar A. Cells, pathways, and models in dyskinesia research. Curr Opin Neurobiol 2024; 84:102833. [PMID: 38184982 DOI: 10.1016/j.conb.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
L-DOPA-induced dyskinesia (LID) is the most common form of hyperkinetic movement disorder resulting from altered information processing in the cortico-basal ganglia network. We here review recent advances clarifying the altered interplay between striatal output pathways in this movement disorder. We also review studies revealing structural and synaptic changes to the striatal microcircuitry and altered cortico-striatal activity dynamics in LID. We furthermore highlight the recent progress made in understanding the involvement of cerebellar and brain stem nuclei. These recent developments illustrate that dyskinesia research continues to provide key insights into cellular and circuit-level plasticity within the cortico-basal ganglia network and its interconnected brain regions.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Arvind Kumar
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden. https://twitter.com/arvin_neuro
| |
Collapse
|
108
|
Kuai X, Shao D, Wang S, Wu PY, Wu Y, Wang X. Neuromelanin-sensitive MRI of the substantia nigra distinguishes bipolar from unipolar depression. Cereb Cortex 2024; 34:bhad423. [PMID: 37955650 DOI: 10.1093/cercor/bhad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023] Open
Abstract
Depression in bipolar disorder (BD-II) is frequently misdiagnosed as unipolar depression (UD) leading to inappropriate treatment and downstream complications for many bipolar sufferers. In this study, we evaluated whether neuromelanin-MR signal and volume changes in the substantia nigra (SN) can be used as potential biomarkers to differentiate BD-II from UD. The signal intensities and volumes of the SN regions were measured, and contrast-to-noise ratio (CNR) to the decussation of the superior cerebellar peduncles were calculated and compared between healthy controls (HC), BD-II and UD subjects. Results showed that compare to HC, both BD-II and UD subjects had significantly decreased CNR and increased volume on the right and left sides. Moreover, the volume in BD-II group was significantly increased compared to UD group. The area under the receiver operating characteristic curve (AUC) for discriminating BD from HC was the largest for the Volume-L (AUC, 0.85; 95% confidence interval [CI]: 0.77, 0.93). The AUC for discriminating UD from HC was the largest for the Volume-L (AUC, 0.76; 95% CI: 0.65, 0.86). Furthermore, the AUC for discriminating BD from UD was the largest for the Volume-R (AUC, 0.73; 95% CI: 0.62, 0.84). Our findings suggest that neuromelanin-sensitive magnetic resonance imaging techniques can be used to differentiate BD-II from UD.
Collapse
Affiliation(s)
- Xinping Kuai
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-jiang Road, Shanghai 200071, China
| | - Dandan Shao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 999, Xiwang Road, Malu Town, Jiading, Shanghai 201800, China
| | - Shengyu Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 999, Xiwang Road, Malu Town, Jiading, Shanghai 201800, China
| | - Pu-Yeh Wu
- MR Research China, GE Healthcare, Beijing 100176, China
| | - Yan Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xuexue Wang
- Department of Radiology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| |
Collapse
|
109
|
Chen J, Liu Y, Chen F, Guo M, Zhou J, Fu P, Zhang X, Wang X, Wang H, Hua W, Chen J, Hu J, Mao Y, Jin D, Bu W. Non-Faradaic optoelectrodes for safe electrical neuromodulation. Nat Commun 2024; 15:405. [PMID: 38195782 PMCID: PMC10776784 DOI: 10.1038/s41467-023-44635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Nanoscale optoelectrodes hold the potential to stimulate optically individual neurons and intracellular organelles, a challenge that demands both a high-density of photoelectron storage and significant charge injection. Here, we report that zinc porphyrin, commonly used in dye-sensitized solar cells, can be self-assembled into nanorods and then coated by TiO2. The J-aggregated zinc porphyrin array enables long-range exciton diffusion and allows for fast electron transfer into TiO2. The formation of TiO2(e-) attracts positive charges around the neuron membrane, contributing to the induction of action potentials. Far-field cranial irradiation of the motor cortex using a 670 nm laser or an 850 nm femtosecond laser can modulate local neuronal firing and trigger motor responses in the hind limb of mice. The pulsed photoelectrical stimulation of neurons in the subthalamic nucleus alleviates parkinsonian symptoms in mice, improving abnormal stepping and enhancing the activity of dopaminergic neurons. Our results suggest injectable nanoscopic optoelectrodes for optical neuromodulation with high efficiency and negligible side effects.
Collapse
Affiliation(s)
- Jian Chen
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China
| | - Feixiang Chen
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mengnan Guo
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China
| | - Xueli Wang
- Sate Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - He Wang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China
| | - Jinquan Chen
- Sate Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China.
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P.R. China.
| | - Wenbo Bu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200041, China.
| |
Collapse
|
110
|
Dinamarca MC, Colombo L, Brykczynska U, Grimm A, Fruh I, Hossain I, Gabriel D, Eckert A, Müller M, Pecho-Vrieseling E. Transmission-selective muscle pathology induced by the active propagation of mutant huntingtin across the human neuromuscular synapse. Front Mol Neurosci 2024; 16:1287510. [PMID: 38235149 PMCID: PMC10791992 DOI: 10.3389/fnmol.2023.1287510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Neuron-to-neuron transmission of aggregation-prone, misfolded proteins may potentially explain the spatiotemporal accumulation of pathological lesions in the brains of patients with neurodegenerative protein-misfolding diseases (PMDs). However, little is known about protein transmission from the central nervous system to the periphery, or how this propagation contributes to PMD pathology. To deepen our understanding of these processes, we established two functional neuromuscular systems derived from human iPSCs. One was suitable for long-term high-throughput live-cell imaging and the other was adapted to a microfluidic system assuring that connectivity between motor neurons and muscle cells was restricted to the neuromuscular junction. We show that the Huntington's disease (HD)-associated mutant HTT exon 1 protein (mHTTEx1) is transmitted from neurons to muscle cells across the human neuromuscular junction. We found that transmission is an active and dynamic process that starts before aggregate formation and is regulated by synaptic activity. We further found that transmitted mHTTEx1 causes HD-relevant pathology at both molecular and functional levels in human muscle cells, even in the presence of the ubiquitous expression of mHTTEx1. In conclusion, we have uncovered a causal link between mHTTEx1 synaptic transmission and HD pathology, highlighting the therapeutic potential of blocking toxic protein transmission in PMDs.
Collapse
Affiliation(s)
- Margarita C. Dinamarca
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Colombo
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Urszula Brykczynska
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Imtiaz Hossain
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Daniela Gabriel
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Eline Pecho-Vrieseling
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
111
|
Lowet AS, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N. An opponent striatal circuit for distributional reinforcement learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573966. [PMID: 38260354 PMCID: PMC10802299 DOI: 10.1101/2024.01.02.573966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2,3, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions4. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5-15 to reap the computational benefits of distributional RL.
Collapse
Affiliation(s)
- Adam S. Lowet
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Qiao Zheng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Meng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jan Drugowitsch
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
112
|
Morgenstern NA, Esposito MS. The Basal Ganglia and Mesencephalic Locomotor Region Connectivity Matrix. Curr Neuropharmacol 2024; 22:1454-1472. [PMID: 37559244 PMCID: PMC11097982 DOI: 10.2174/1570159x21666230809112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
Although classically considered a relay station for basal ganglia (BG) output, the anatomy, connectivity, and function of the mesencephalic locomotor region (MLR) were redefined during the last two decades. In striking opposition to what was initially thought, MLR and BG are actually reciprocally and intimately interconnected. New viral-based, optogenetic, and mapping technologies revealed that cholinergic, glutamatergic, and GABAergic neurons coexist in this structure, which, in addition to extending descending projections, send long-range ascending fibers to the BG. These MLR projections to the BG convey motor and non-motor information to specific synaptic targets throughout different nuclei. Moreover, MLR efferent fibers originate from precise neuronal subpopulations located in particular MLR subregions, defining independent anatomo-functional subcircuits involved in particular aspects of animal behavior such as fast locomotion, explorative locomotion, posture, forelimb- related movements, speed, reinforcement, among others. In this review, we revised the literature produced during the last decade linking MLR and BG. We conclude that the classic framework considering the MLR as a homogeneous output structure passively receiving input from the BG needs to be revisited. We propose instead that the multiple subcircuits embedded in this region should be taken as independent entities that convey relevant and specific ascending information to the BG and, thus, actively participate in the execution and tuning of behavior.
Collapse
Affiliation(s)
- Nicolás A. Morgenstern
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Instituto De Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Maria S. Esposito
- Department of Medical Physics, Centro Atomico Bariloche, CNEA, CONICET, Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
113
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 PMCID: PMC11892008 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
114
|
Liang E, Chen Y, Yan Y, Wang S, Yuan J, Yu T. Role of the substantia nigra pars reticulata in sleep-wakefulness: A review of research progress. Sleep Med 2024; 113:284-292. [PMID: 38071927 DOI: 10.1016/j.sleep.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Sleep is a complex physiological process that includes two main stages: non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. During mammalian sleep, especially REM sleep, skeletal muscles are suppressed to varying degrees, and corresponding movements are inhibited. The synchronous occurrence of sleep and motor inhibition suggests they may share the same neural circuits. Recently, the substantia nigra pars reticulata (SNr) has attracted attention for its potential dual role in regulating sleep-wake cycles and movement. In this review, the SNr's role is surveyed by examining existing research reports regarding its involvement in sleep-wake regulation and motor control. By focusing on the SNr, the goal is to shed light on its dual role intricacies and stimulate further inquiry into potential interactions between sleep and movement regulation, thus aiming to explore sleep-wake regulatory mechanisms and offer novel directions for subsequent scientific investigation.
Collapse
Affiliation(s)
- Enpeng Liang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Department of Pain Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ya Chen
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Yan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China
| | - Siwei Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, China
| | - Jie Yuan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Department of Pain Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; Department of Anesthesiology, The First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
115
|
Nambu A, Chiken S. External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiol Dis 2024; 190:106362. [PMID: 37992783 DOI: 10.1016/j.nbd.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
116
|
Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:476-487. [PMID: 36999711 PMCID: PMC10909821 DOI: 10.2174/1871527322666230331121028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.
Collapse
Affiliation(s)
- Erwan Bezard
- Université de Bordeaux, CNRS Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Motac Neuroscience, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
117
|
Medeiros DDC, Plewnia C, Mendes RV, Pisanò CA, Boi L, Moraes MFD, Aguiar CL, Fisone G. A mouse model of sleep disorders in Parkinson's disease showing distinct effects of dopamine D2-like receptor activation. Prog Neurobiol 2023; 231:102536. [PMID: 37805096 DOI: 10.1016/j.pneurobio.2023.102536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Excessive daytime sleepiness (EDS) and sleep fragmentation are often observed in Parkinson's disease (PD) patients and are poorly understood despite their considerable impact on quality of life. We examined the ability of a neurotoxin-based mouse model of PD to reproduce these disorders and tested the potential counteracting effects of dopamine replacement therapy. Experiments were conducted in female mice with a unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, leading to the loss of dopamine neurons projecting to the dorsal and ventral striatum. Sham-operated mice were used as control. Electroencephalographic and electromyographic recording was used to identify and quantify awaken, rapid eye movement (REM) and non-REM (NREM) sleep states. PD mice displayed enhanced NREM sleep and reduced wakefulness during the active period of the 24-hour circadian cycle, indicative of EDS. In addition, they also showed fragmentation of NREM sleep and increased slow-wave activity, a marker of sleep pressure. Electroencephalographic analysis of the PD model also revealed decreased density and increased length of burst-like thalamocortical oscillations (spindles). Treatment of PD mice with the dopamine receptor agonist, pramipexole, but not with L-DOPA, counteracted EDS by reducing the number, but not the length, of NREM sleep episodes during the first half of the active period. The present model recapitulates some prominent PD-related anomalies affecting sleep macro- and micro-structure. Based on the pharmacological profile of pramipexole these results also indicate the involvement of impaired dopamine D2/D3 receptor transmission in EDS.
Collapse
Affiliation(s)
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcio Flávio Dutra Moraes
- Núcleo de Neurociências, Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Brazil
| | | | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
118
|
Zhan X, Do LV, Zou L, Zhan RS, Jones M, Nawaz S, Manaye K. Harmaline toxicity on dorsal striatal neurons and its role in tremor. Neurotoxicology 2023; 99:152-161. [PMID: 37838252 DOI: 10.1016/j.neuro.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Harmaline is one of the β-carboline derivative compounds that is widely distributed in the food chain and human tissues. Harmine, a dehydrogenated form of harmaline, appeared to have a higher concentration in the brain, and appeared to be elevated in essential tremor (ET) and Parkinson's disease. Exogenous harmaline exposure in high concentration has myriad consequences, including inducing tremor, and causing neurodegeneration of Purkinje cells in the cerebellum. Harmaline-induced tremor is an established animal model for human ET, but its underlying mechanism is still controversial. One hypothesis posits that the inferior olive-cerebellum pathway is involved, and CaV3.1 T-type Ca2+ channel is a critical target of action. However, accumulating evidence indicates that tremor can be generated without disturbing T-type channels. This implies that additional neural circuits or molecular targets are involved. Using in vitro slice Ca2+-imaging and patch clamping, we demonstrated that harmaline reduced intracellular Ca2+ and suppressed depolarization-induced spiking activity of medium spiny striatal neurons (MSN), and this effect of harmaline can be partially attenuated by sulpiride (5 µM). In addition, the frequencies of spontaneous excitatory post-synaptic currents (sEPSCs) on MSNs were also significantly attenuated. Furthermore, the induced tremor in C57BL/6 J mice by harmaline injections (i.p. 12.5-18 mg/kg) was also shown to be attenuated by sulpiride (20 mg/kg). This series of experiments suggests that the dorsal striatum is a site of harmaline toxic action and might contribute to tremor generation. The findings also provide evidence that D2 signaling might be a part of the mechanism underlying essential tremor.
Collapse
Affiliation(s)
- Xiping Zhan
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ly V Do
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Li Zou
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Ryan Shu Zhan
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Michael Jones
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Saba Nawaz
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Kebreten Manaye
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
119
|
Barcomb K, Ford CP. Alterations in neurotransmitter co-release in Parkinson's disease. Exp Neurol 2023; 370:114562. [PMID: 37802381 PMCID: PMC10842357 DOI: 10.1016/j.expneurol.2023.114562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease is a neurological disorder characterized by degeneration of midbrain dopamine neurons, which results in numerous adaptations in basal ganglia circuits. Research over the past twenty-five years has identified that midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) co-release multiple other transmitters including glutamate and GABA, in addition to their canonical transmitter, dopamine. This review summarizes previous work characterizing neurotransmitter co-release from dopamine neurons, work examining potential changes in co-release dynamics that result in animal models of Parkinson's disease, and future opportunities for determining how dysfunction in co-release may contribute to circuit dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
120
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
121
|
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023; 12:2754. [PMID: 38067182 PMCID: PMC10706484 DOI: 10.3390/cells12232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
A large body of work during the past several decades has been focused on therapeutic strategies to control L-DOPA-induced dyskinesias (LIDs), common motor complications of long-term L-DOPA therapy in Parkinson's disease (PD). Yet, LIDs remain a clinical challenge for the management of patients with advanced disease. Glutamatergic dysregulation of striatal projection neurons (SPNs) appears to be a key contributor to altered motor responses to L-DOPA. Targeting striatal hyperactivity at the glutamatergic neurotransmission level led to significant preclinical and clinical trials of a variety of antiglutamatergic agents. In fact, the only FDA-approved treatment for LIDs is amantadine, a drug with NMDAR antagonistic actions. Still, novel agents with improved pharmacological profiles are needed for LID therapy. Recently other therapeutic targets to reduce dysregulated SPN activity at the signal transduction level have emerged. In particular, mechanisms regulating the levels of cyclic nucleotides play a major role in the transduction of dopamine signals in SPNs. The phosphodiesterases (PDEs), a large family of enzymes that degrade cyclic nucleotides in a specific manner, are of special interest. We will review the research for antiglutamatergic and PDE inhibition strategies in view of the future development of novel LID therapies.
Collapse
Affiliation(s)
- Brik A. Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Cassandra Bure
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Stella M. Papa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
122
|
Pinto SR, Uchida N. Tonic dopamine and biases in value learning linked through a biologically inspired reinforcement learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566580. [PMID: 38014087 PMCID: PMC10680794 DOI: 10.1101/2023.11.10.566580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A hallmark of various psychiatric disorders is biased future predictions. Here we examined the mechanisms for biased value learning using reinforcement learning models incorporating recent findings on synaptic plasticity and opponent circuit mechanisms in the basal ganglia. We show that variations in tonic dopamine can alter the balance between learning from positive and negative reward prediction errors, leading to biased value predictions. This bias arises from the sigmoidal shapes of the dose-occupancy curves and distinct affinities of D1- and D2-type dopamine receptors: changes in tonic dopamine differentially alters the slope of the dose-occupancy curves of these receptors, thus sensitivities, at baseline dopamine concentrations. We show that this mechanism can explain biased value learning in both mice and humans and may also contribute to symptoms observed in psychiatric disorders. Our model provides a foundation for understanding the basal ganglia circuit and underscores the significance of tonic dopamine in modulating learning processes.
Collapse
Affiliation(s)
- Sandra Romero Pinto
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
123
|
Roman KM, Dinasarapu AR, VanSchoiack A, Ross PM, Kroeppler D, Jinnah HA, Hess EJ. Spiny projection neurons exhibit transcriptional signatures within subregions of the dorsal striatum. Cell Rep 2023; 42:113435. [PMID: 37952158 PMCID: PMC10841649 DOI: 10.1016/j.celrep.2023.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023] Open
Abstract
The dorsal striatum is organized into functional territories defined by corticostriatal inputs onto both direct and indirect spiny projection neurons (SPNs), the major cell types within the striatum. In addition to circuit connectivity, striatal domains are likely defined by the spatially determined transcriptomes of SPNs themselves. To identify cell-type-specific spatiomolecular signatures of direct and indirect SPNs within dorsomedial, dorsolateral, and ventrolateral dorsal striatum, we used RNA profiling in situ hybridization with probes to >98% of protein coding genes. We demonstrate that the molecular identity of SPNs is mediated by hundreds of differentially expressed genes across territories of the striatum, revealing extraordinary heterogeneity in the expression of genes that mediate synaptic function in both direct and indirect SPNs. This deep insight into the complex spatiomolecular organization of the striatum provides a foundation for understanding both normal striatal function and for dissecting region-specific dysfunction in disorders of the striatum.
Collapse
Affiliation(s)
- Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | - P Martin Ross
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - David Kroeppler
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
124
|
Niu L, Hao M, Wang Y, Wu K, Yuan C, Zhang Y, Zhang J, Liang X, Zhang Y. Dopamine D2-receptor neurons in nucleus accumbens regulate sevoflurane anesthesia in mice. Front Mol Neurosci 2023; 16:1287160. [PMID: 38089676 PMCID: PMC10713730 DOI: 10.3389/fnmol.2023.1287160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION The mechanism of general anesthesia remains elusive. In recent years, numerous investigations have indicated that its mode of action is closely associated with the sleep-wake pathway. As a result, this study aimed to explore the involvement of dopamine D2 receptor (D2R) expressing neurons located in the nucleus accumbens (NAc), a critical nucleus governing sleep-wake regulation, in sevoflurane anesthesia. METHODS This exploration was carried out using calcium fiber photometry and optogenetics technology, while utilizing cortical electroencephalogram (EEG), loss of righting reflex (LORR), and recovery of righting reflex (RORR) as experimental indicators. RESULTS The findings from calcium fiber photometry revealed a decrease in the activity of NAcD2R neurons during the induction phase of sevoflurane anesthesia, with subsequent recovery observed during the anesthesia's emergence phase. Moreover, the activation of NAcD2R neurons through optogenetics technology led to a reduction in the anesthesia induction process and an extension of the arousal process in mice. Conversely, the inhibition of these neurons resulted in the opposite effect. Furthermore, the activation of NAcD2R neurons projecting into the ventral pallidum (VP) via optogenetics demonstrated a shortened induction time for mice under sevoflurane anesthesia. DISCUSSION In conclusion, our research outcomes suggest that NAcD2R neurons play a promotive role in the sevoflurane general anesthesia process in mice, and their activation can reduce the induction time of anesthesia via the ventral pallidum (VP).
Collapse
Affiliation(s)
- Li Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Mengnan Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Yanhong Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Kai Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
125
|
Malgady JM, Baez A, Hobel ZB, Jimenez K, Goldfried J, Prager EM, Wilking JA, Zhang Q, Feng G, Plotkin JL. Pathway-specific alterations in striatal excitability and cholinergic modulation in a SAPAP3 mouse model of compulsive motor behavior. Cell Rep 2023; 42:113384. [PMID: 37934666 PMCID: PMC10872927 DOI: 10.1016/j.celrep.2023.113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/06/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Deletion of the obsessive-compulsive disorder (OCD)-associated gene SAP90/PSD-95-associated protein 3 (Sapap3), which encodes a postsynaptic anchoring protein at corticostriatal synapses, causes OCD-like motor behaviors in mice. While corticostriatal synaptic dysfunction is central to this phenotype, the striatum efficiently adapts to pathological changes, often in ways that expand upon the original circuit impairment. Here, we show that SAPAP3 deletion causes non-synaptic and pathway-specific alterations in dorsolateral striatum circuit function. While somatic excitability was elevated in striatal projection neurons (SPNs), dendritic excitability was exclusively enhanced in direct pathway SPNs. Layered on top of this, cholinergic modulation was altered in opposing ways: striatal cholinergic interneuron density and evoked acetylcholine release were elevated, while basal muscarinic modulation of SPNs was reduced. These data describe how SAPAP3 deletion alters the striatal landscape upon which impaired corticostriatal inputs will act, offering a basis for how pathological synaptic integration and unbalanced striatal output underlying OCD-like behaviors may be shaped.
Collapse
Affiliation(s)
- Jeffrey M Malgady
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, College of Arts & Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexander Baez
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachary B Hobel
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, College of Arts & Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kimberly Jimenez
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Jack Goldfried
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Eric M Prager
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Jennifer A Wilking
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Qiangge Zhang
- Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guoping Feng
- Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua L Plotkin
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
126
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A Novel Role for Phospholamban in the Thalamic Reticular Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568306. [PMID: 38045420 PMCID: PMC10690257 DOI: 10.1101/2023.11.22.568306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.
Collapse
|
127
|
Chen Y, Hong Z, Wang J, Liu K, Liu J, Lin J, Feng S, Zhang T, Shan L, Liu T, Guo P, Lin Y, Li T, Chen Q, Jiang X, Li A, Li X, Li Y, Wilde JJ, Bao J, Dai J, Lu Z. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson's disease model. Cell 2023; 186:5394-5410.e18. [PMID: 37922901 DOI: 10.1016/j.cell.2023.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.
Collapse
Affiliation(s)
- Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zexuan Hong
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jingyi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Liang Shan
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taian Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pinyue Guo
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaodan Jiang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiang Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | | | - Jin Bao
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
128
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
129
|
Frost Nylén J, Hjorth JJJ, Kozlov A, Carannante I, Hellgren Kotaleski J, Grillner S. The roles of surround inhibition for the intrinsic function of the striatum, analyzed in silico. Proc Natl Acad Sci U S A 2023; 120:e2313058120. [PMID: 37922329 PMCID: PMC10636308 DOI: 10.1073/pnas.2313058120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2023] Open
Abstract
The basal ganglia are important for action initiation, selection, and motor learning. The input level, the striatum, receives input preferentially from the cortex and thalamus and is to 95% composed of striatal projection neurons (SPNs) with sparse GABAergic collaterals targeting distal dendrites of neighboring SPNs, in a distance-dependent manner. The remaining 5% are GABAergic and cholinergic interneurons. Our aim here is to investigate the role of surround inhibition for the intrinsic function of the striatum. Large-scale striatal networks of 20 to 40 thousand neurons were simulated with detailed multicompartmental models of different cell types, corresponding to the size of a module of the dorsolateral striatum, like the forelimb area (mouse). The effect of surround inhibition on dendritic computation and network activity was investigated, while groups of SPNs were activated. The SPN-induced surround inhibition in distal dendrites shunted effectively the corticostriatal EPSPs. The size of dendritic plateau-like potentials within the specific dendritic segment was both reduced and enhanced by inhibition, due to the hyperpolarized membrane potential of SPNs and the reversal-potential of GABA. On a population level, the competition between two subpopulations of SPNs was found to depend on the distance between the two units, the size of each unit, the activity level in each subgroup and the dopaminergic modulation of the dSPNs and iSPNs. The SPNs provided the dominating source of inhibition within the striatum, while the fast-spiking interneuron mainly had an initial effect due to short-term synaptic plasticity as shown in with ablation of the synaptic interaction.
Collapse
Affiliation(s)
| | - J. J. Johannes Hjorth
- Department of Computer Science, Science for Life Laboratory, KTH, Royal Institute of Technology, StockholmSE17177, Sweden
| | - Alexander Kozlov
- Department of Neuroscience, Karolinska Institutet, StockholmSE17177, Sweden
- Department of Computer Science, Science for Life Laboratory, KTH, Royal Institute of Technology, StockholmSE17177, Sweden
| | - Ilaria Carannante
- Department of Computer Science, Science for Life Laboratory, KTH, Royal Institute of Technology, StockholmSE17177, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Karolinska Institutet, StockholmSE17177, Sweden
- Department of Computer Science, Science for Life Laboratory, KTH, Royal Institute of Technology, StockholmSE17177, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, StockholmSE17177, Sweden
| |
Collapse
|
130
|
Rodrigues D, Monteiro P. Chronic stress promotes basal ganglia disinhibition by increasing the excitatory drive of direct-pathway neurons. Neurobiol Stress 2023; 27:100571. [PMID: 37781564 PMCID: PMC10540042 DOI: 10.1016/j.ynstr.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic stress (CS) is a well-recognized triggering factor in obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS), two neuropsychiatric disorders characterized by the presence of stereotypic motor symptoms. Planning and execution of motor actions are controlled by the dorsal striatum, a brain region that promotes or suppresses motor movement by activating striatal neurons from the direct- or indirect-pathway, respectively. Despite the dorsal striatum being affected in motor disorders and by CS exposure, how CS affects the two opposing pathways is not fully understood. Here, we report that CS in mice selectively potentiates the direct-pathway, while sparing the indirect-pathway. Specifically, we show that CS both increases excitation and reduces inhibition over direct-pathway neurons in the dorsomedial striatum (DMS). Furthermore, inhibitory interneurons located in the DMS also display reduced excitatory drive after chronic stress, thus amplifying striatal disinhibition. Altogether, we propose a model where both increased excitatory drive and decreased inhibitory drive in the striatum causes disinhibition of basal ganglia's motor direct pathway - a mechanism that might explain the emergence of motor stereotypies and tic disorders under stress.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
131
|
Ayon-Olivas M, Wolf D, Andreska T, Granado N, Lüningschrör P, Ip CW, Moratalla R, Sendtner M. Dopaminergic Input Regulates the Sensitivity of Indirect Pathway Striatal Spiny Neurons to Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1360. [PMID: 37887070 PMCID: PMC10604681 DOI: 10.3390/biology12101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.
Collapse
Affiliation(s)
- Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
132
|
Labouesse MA, Torres-Herraez A, Chohan MO, Villarin JM, Greenwald J, Sun X, Zahran M, Tang A, Lam S, Veenstra-VanderWeele J, Lacefield CO, Bonaventura J, Michaelides M, Chan CS, Yizhar O, Kellendonk C. A non-canonical striatopallidal Go pathway that supports motor control. Nat Commun 2023; 14:6712. [PMID: 37872145 PMCID: PMC10593790 DOI: 10.1038/s41467-023-42288-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.
Collapse
Affiliation(s)
- Marie A Labouesse
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Health, Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland.
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Muhammad O Chohan
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Julia Greenwald
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Xiaoxiao Sun
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mysarah Zahran
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Barnard College, Columbia University, New York, NY, 10027, USA
| | - Alice Tang
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Columbia College, Columbia University, New York, NY, 10027, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Clay O Lacefield
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
133
|
Xie X, Lu J, Ma T, Cheng Y, Woodson K, Bonifacio J, Bego K, Wang X, Wang J. Linking input- and cell-type-specific synaptic plasticity to the reinforcement of alcohol-seeking behavior. Neuropharmacology 2023; 237:109619. [PMID: 37290535 DOI: 10.1016/j.neuropharm.2023.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The reinforcement of voluntary alcohol-seeking behavior requires dopamine-dependent long-term synaptic plasticity in the striatum. Specifically, the long-term potentiation (LTP) of direct-pathway medium spiny neurons (dMSNs) in the dorsomedial striatum (DMS) promotes alcohol drinking. However, it remains unclear whether alcohol induces input-specific plasticity onto dMSNs and whether this plasticity directly drives instrumental conditioning. In this study, we found that voluntary alcohol intake selectively strengthened glutamatergic transmission from the medial prefrontal cortex (mPFC) to DMS dMSNs in mice. Importantly, mimicking this alcohol-induced potentiation by optogenetically self-stimulating mPFC→dMSN synapse with an LTP protocol was sufficient to drive the reinforcement of lever pressing in operant chambers. Conversely, induction of a post-pre spike timing-dependent LTD at this synapse time-locked to alcohol delivery during operant conditioning persistently decreased alcohol-seeking behavior. Our results establish a causal relationship between input- and cell-type-specific corticostriatal plasticity and the reinforcement of alcohol-seeking behavior. This provides a potential therapeutic strategy to restore normal cortical control of dysregulated basal ganglia circuitries in alcohol use disorder.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Tengfei Ma
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Kayla Woodson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jordan Bonifacio
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Kassidy Bego
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
134
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
135
|
Hirokane K, Nakamura T, Terashita T, Kubota Y, Hu D, Yagi T, Graybiel AM, Kitsukawa T. Rhythm Receptive Fields in Striatum of Mice Executing Complex Continuous Movement Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559115. [PMID: 37790358 PMCID: PMC10542522 DOI: 10.1101/2023.09.23.559115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
By the use of a novel experimental system, the step-wheel, we investigated the neural underpinnings of complex and continuous movements. We recorded neural activities from the dorsolateral striatum and found neurons sensitive to movement rhythm parameters. These neurons responded to specific combinations of interval, phase, and repetition of movement, effectively forming what we term "rhythm receptive fields." Some neurons even responsive to the combination of movement phases of multiple body parts. In parallel, cortical recordings in sensorimotor areas highlighted a paucity of neurons responsive to multiple parameter combinations, relative to those in the striatum. These findings have implications for comprehending motor coordination deficits seen in brain disorders including Parkinson's disease. Movement encoding by rhythm receptive fields should streamline the brain's capacity to encode temporal patterns, help to resolve the degrees of freedom problem. Such rhythm fields hint at the neural mechanisms governing effective motor control and processing of rhythmic information.
Collapse
|
136
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
137
|
Gao Y, Li H, Luo H, Ni Y, Feng Y, He L, Zhou Q, Hu J, Chen S. Purified Serum IgG from a Patient with Anti-IgLON5 Antibody Cause Long-Term Movement Disorders with Impaired Dopaminergic Pathways in Mice. Biomedicines 2023; 11:2483. [PMID: 37760924 PMCID: PMC10526147 DOI: 10.3390/biomedicines11092483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Anti-IgLON5 disease is a rare autoimmune disease of the central nervous system. It typically manifests as a chronic condition, characterized by cognitive impairments, movement disorders, and sleep disorders. The mechanisms underlying movement disorders in this disease remain poorly understood due to a lack of research. Furthermore, this disease exhibits both neuroimmune and neurodegenerative characteristics. The objective of this study is to explore the underlying mechanisms of movement disorders caused by anti-IgLON5 antibodies for the first time. Methods: Antibodies were purified from the serum of a confirmed patient of anti-IgLON5 disease. The passive transfer animal models were employed, where antibodies were continuously injected into the substantia nigra pars compacta (SNc) of the mouse midbrain using stereotactic injection to explore the mechanism of movement disorder. The effects of anti-IgLON5 antibodies on dopaminergic neurons in the SNc and neurodegeneration were examined through immunohistochemistry. Changes in neurotransmitter levels in the basal ganglia were assessed using high-performance liquid chromatography. Additionally, RNA-seq was employed to identify the differentially expressed genes associated with the short-term and long-term effects of anti-IgLON5 antibody on the SNc. Results: Mice injected with anti-IgLON5 antibodies in the SNc exhibited persistent movement impairments for up to 3 months. One week after antibody injection, the number of TH neurons significantly decreased compared to the control group, accompanied by reduced projection fibers in the basal ganglia and decreased dopamine levels. After 3 months of antibody injection, an increase in phosphorylated Tau was observed in the SNc of the midbrain. Additionally, long-term sustained activation of microglia was detected in the SNc. The differentially expressed genes of long-term effects of IgLON5 antibodies were different from their short-term effects on the SNc. Conclusion: Purified serum IgG from a patient with anti-IgLON5 antibodies can cause long-term movement disorder in mice. The movement disorders appear to be linked to the impaired dopaminergic pathway, and the increased p-Tau showed neurodegenerative changes induced by the anti-IgLON5 antibody.
Collapse
Affiliation(s)
- Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China; (Y.G.); (H.L.); (Y.N.); (L.H.); (Q.Z.)
| | - Hongxia Li
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China; (Y.G.); (H.L.); (Y.N.); (L.H.); (Q.Z.)
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.L.); (Y.F.)
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China; (Y.G.); (H.L.); (Y.N.); (L.H.); (Q.Z.)
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.L.); (Y.F.)
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China; (Y.G.); (H.L.); (Y.N.); (L.H.); (Q.Z.)
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China; (Y.G.); (H.L.); (Y.N.); (L.H.); (Q.Z.)
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (H.L.); (Y.F.)
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226007, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China; (Y.G.); (H.L.); (Y.N.); (L.H.); (Q.Z.)
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226007, China
| |
Collapse
|
138
|
Rios A, Nonomura S, Kato S, Yoshida J, Matsushita N, Nambu A, Takada M, Hira R, Kobayashi K, Sakai Y, Kimura M, Isomura Y. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Commun Biol 2023; 6:914. [PMID: 37673949 PMCID: PMC10482957 DOI: 10.1038/s42003-023-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task. Movement-related activity of direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) were enhanced by reward expectation, similarly to the SNc dopaminergic neurons, in both medial and lateral nigrostriatal projections. Given the classical basal ganglia model wherein dopamine stimulates dSPNs and suppresses iSPNs through distinct dopamine receptors, dopamine might not be the primary driver of iSPN activity increasing following higher reward expectation. In contrast, outcome-related activity was affected by reward expectation in line with the classical model and reinforcement learning theory, suggesting purposive effects of reward expectation.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Aichi, 480-1195, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute of Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Aichi, 444-8585, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Minoru Kimura
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan.
| |
Collapse
|
139
|
Bhatia P, Yang L, Luo JXJ, Xu M, Renthal W. Epigenomic profiling of mouse nucleus accumbens at single-cell resolution. Mol Cell Neurosci 2023; 126:103857. [PMID: 37137383 PMCID: PMC10525004 DOI: 10.1016/j.mcn.2023.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
The nucleus accumbens (NAc) is a key brain region involved in reward processing and is linked to multiple neuropsychiatric conditions such as substance use disorder, depression, and chronic pain. Recent studies have begun to investigate NAc gene expression at a single-cell resolution, however, our understanding of the cellular heterogeneity of the NAc epigenomic landscape remains limited. In this study, we utilize single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) to map cell-type-specific differences in chromatin accessibility in the NAc. Our findings not only reveal the transcription factors and putative gene regulatory elements that may contribute to these cell-type-specific epigenomic differences but also provide a valuable resource for future studies investigating epigenomic changes that occur in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Jay X J Luo
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA.
| |
Collapse
|
140
|
Herz DM, Brown P. Moving, fast and slow: behavioural insights into bradykinesia in Parkinson's disease. Brain 2023; 146:3576-3586. [PMID: 36864683 PMCID: PMC10473574 DOI: 10.1093/brain/awad069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The debilitating symptoms of Parkinson's disease, including the hallmark slowness of movement, termed bradykinesia, were described more than 100 years ago. Despite significant advances in elucidating the genetic, molecular and neurobiological changes in Parkinson's disease, it remains conceptually unclear exactly why patients with Parkinson's disease move slowly. To address this, we summarize behavioural observations of movement slowness in Parkinson's disease and discuss these findings in a behavioural framework of optimal control. In this framework, agents optimize the time it takes to gather and harvest rewards by adapting their movement vigour according to the reward that is at stake and the effort that needs to be expended. Thus, slow movements can be favourable when the reward is deemed unappealing or the movement very costly. While reduced reward sensitivity, which makes patients less inclined to work for reward, has been reported in Parkinson's disease, this appears to be related mainly to motivational deficits (apathy) rather than bradykinesia. Increased effort sensitivity has been proposed to underlie movement slowness in Parkinson's disease. However, careful behavioural observations of bradykinesia are inconsistent with abnormal computations of effort costs due to accuracy constraints or movement energetic expenditure. These inconsistencies can be resolved when considering that a general disability to switch between stable and dynamic movement states can contribute to an abnormal composite effort cost related to movement in Parkinson's disease. This can account for paradoxical observations such as the abnormally slow relaxation of isometric contractions or difficulties in halting a movement in Parkinson's disease, both of which increase movement energy expenditure. A sound understanding of the abnormal behavioural computations mediating motor impairment in Parkinson's disease will be vital for linking them to their underlying neural dynamics in distributed brain networks and for grounding future experimental studies in well-defined behavioural frameworks.
Collapse
Affiliation(s)
- Damian M Herz
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Peter Brown
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
141
|
Terauchi A, Yee P, Johnson-Venkatesh EM, Seiglie MP, Kim L, Pitino JC, Kritzer E, Zhang Q, Zhou J, Li Y, Ginty DD, Lee WCA, Umemori H. The projection-specific signals that establish functionally segregated dopaminergic synapses. Cell 2023; 186:3845-3861.e24. [PMID: 37591240 PMCID: PMC10540635 DOI: 10.1016/j.cell.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-β family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-β2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-β and/or Smads.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Yee
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariel P Seiglie
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Kim
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia C Pitino
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eli Kritzer
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - David D Ginty
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Chung A Lee
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
142
|
Stock AK, Werner A, Kuntke P, Petasch MS, Bensmann W, Zink N, Koyun AH, Quednow BB, Beste C. Gamma-Aminobutyric Acid and Glutamate Concentrations in the Striatum and Anterior Cingulate Cortex Not Found to Be Associated with Cognitive Flexibility. Brain Sci 2023; 13:1192. [PMID: 37626548 PMCID: PMC10452168 DOI: 10.3390/brainsci13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Behavioral flexibility and goal-directed behavior heavily depend on fronto-striatal networks. Within these circuits, gamma-aminobutyric acid (GABA) and glutamate play an important role in (motor) response inhibition, but it has remained largely unclear whether they are also relevant for cognitive inhibition. We hence investigated the functional role of these transmitters for cognitive inhibition during cognitive flexibility. Healthy young adults performed two paradigms assessing different aspects of cognitive flexibility. Magnetic resonance spectroscopy (MRS) was used to quantify GABA+ and total glutamate/glutamine (Glx) levels in the striatum and anterior cingulate cortex (ACC) referenced to N-acetylaspartate (NAA). We observed typical task switching and backward inhibition effects, but striatal and ACC concentrations of GABA+/NAA and Glx/NAA were not associated with cognitive flexibility in a functionally relevant manner. The assumption of null effects was underpinned by Bayesian testing. These findings suggest that behavioral and cognitive inhibition are functionally distinct faculties, that depend on (at least partly) different brain structures and neurotransmitter systems. While previous studies consistently demonstrated that motor response inhibition is modulated by ACC and striatal GABA levels, our results suggest that the functionally distinct cognitive inhibition required for successful switching is not, or at least to a much lesser degree, modulated by these factors.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
- Biopsychology, Department of Psychology, School of Science, TU Dresden, D-01062 Dresden, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, D-01309 Dresden, Germany; (A.W.); (P.K.)
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, D-01309 Dresden, Germany; (A.W.); (P.K.)
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Boris B. Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland;
- Neuroscience Center Zurich, Swiss Federal Institute of Technology Zurich, University of Zurich, 8032 Zürich, Switzerland
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| |
Collapse
|
143
|
Rocha GS, Freire MAM, Britto AM, Paiva KM, Oliveira RF, Fonseca IAT, Araújo DP, Oliveira LC, Guzen FP, Morais PLAG, Cavalcanti JRLP. Basal ganglia for beginners: the basic concepts you need to know and their role in movement control. Front Syst Neurosci 2023; 17:1242929. [PMID: 37600831 PMCID: PMC10435282 DOI: 10.3389/fnsys.2023.1242929] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The basal ganglia are a subcortical collection of interacting clusters of cell bodies, and are involved in reward, emotional, and motor circuits. Within all the brain processing necessary to carry out voluntary movement, the basal nuclei are fundamental, as they modulate the activity of the motor regions of the cortex. Despite being much studied, the motor circuit of the basal ganglia is still difficult to understand for many people at all, especially undergraduate and graduate students. This review article seeks to bring the functioning of this circuit with a simple and objective approach, exploring the functional anatomy, neurochemistry, neuronal pathways, related diseases, and interactions with other brain regions to coordinate voluntary movement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - José R. L. P. Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Brazil
| |
Collapse
|
144
|
Blackwell KT, Doya K. Enhancing reinforcement learning models by including direct and indirect pathways improves performance on striatal dependent tasks. PLoS Comput Biol 2023; 19:e1011385. [PMID: 37594982 PMCID: PMC10479916 DOI: 10.1371/journal.pcbi.1011385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
A major advance in understanding learning behavior stems from experiments showing that reward learning requires dopamine inputs to striatal neurons and arises from synaptic plasticity of cortico-striatal synapses. Numerous reinforcement learning models mimic this dopamine-dependent synaptic plasticity by using the reward prediction error, which resembles dopamine neuron firing, to learn the best action in response to a set of cues. Though these models can explain many facets of behavior, reproducing some types of goal-directed behavior, such as renewal and reversal, require additional model components. Here we present a reinforcement learning model, TD2Q, which better corresponds to the basal ganglia with two Q matrices, one representing direct pathway neurons (G) and another representing indirect pathway neurons (N). Unlike previous two-Q architectures, a novel and critical aspect of TD2Q is to update the G and N matrices utilizing the temporal difference reward prediction error. A best action is selected for N and G using a softmax with a reward-dependent adaptive exploration parameter, and then differences are resolved using a second selection step applied to the two action probabilities. The model is tested on a range of multi-step tasks including extinction, renewal, discrimination; switching reward probability learning; and sequence learning. Simulations show that TD2Q produces behaviors similar to rodents in choice and sequence learning tasks, and that use of the temporal difference reward prediction error is required to learn multi-step tasks. Blocking the update rule on the N matrix blocks discrimination learning, as observed experimentally. Performance in the sequence learning task is dramatically improved with two matrices. These results suggest that including additional aspects of basal ganglia physiology can improve the performance of reinforcement learning models, better reproduce animal behaviors, and provide insight as to the role of direct- and indirect-pathway striatal neurons.
Collapse
Affiliation(s)
- Kim T Blackwell
- Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia, United States of America
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
145
|
Liu Y, Jiang S, Li Y, Zhao S, Yun Z, Zhao ZH, Zhang L, Wang G, Chen X, Manubens-Gil L, Hang Y, Garcia-Forn M, Wang W, Rubeis SD, Wu Z, Osten P, Gong H, Hawrylycz M, Mitra P, Dong H, Luo Q, Ascoli GA, Zeng H, Liu L, Peng H. Full-Spectrum Neuronal Diversity and Stereotypy through Whole Brain Morphometry. RESEARCH SQUARE 2023:rs.3.rs-3146034. [PMID: 37546984 PMCID: PMC10402258 DOI: 10.21203/rs.3.rs-3146034/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We conducted a large-scale study of whole-brain morphometry, analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We spatially registered 205 mouse brains and associated data from six Brain Initiative Cell Census Network (BICCN) data sources covering three major imaging modalities from five collaborative projects to the Allen Common Coordinate Framework (CCF) atlas, annotated 3D locations of cell bodies of 227,581 neurons, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1,891 neurons along with their axonal motifs, and detected 2.58 million putative synaptic boutons. Our analysis covers six levels of information related to neuronal populations, dendritic microenvironments, single-cell full morphology, sub-neuronal dendritic and axonal arborization, axonal boutons, and structural motifs, along with a quantitative characterization of the diversity and stereotypy of patterns at each level. We identified 16 modules consisting of highly intercorrelated brain regions in 13 functional brain areas corresponding to 314 anatomical regions in CCF. Our analysis revealed the dendritic microenvironment as a powerful method for delineating brain regions of cell types and potential subtypes. We also found that full neuronal morphologies can be categorized into four distinct classes based on spatially tuned morphological features, with substantial cross-areal diversity in apical dendrites, basal dendrites, and axonal arbors, along with quantified stereotypy within cortical, thalamic and striatal regions. The lamination of somas was found to be more effective in differentiating neuron arbors within the cortex. Further analysis of diverging and converging projections of individual neurons in 25 regions throughout the brain reveals branching preferences in the brain-wide and local distributions of axonal boutons. Overall, our study provides a comprehensive description of key anatomical structures of neurons and their types, covering a wide range of scales and features, and contributes to our understanding of neuronal diversity and its function in the mammalian brain.
Collapse
Affiliation(s)
- Yufeng Liu
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Shengdian Jiang
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yingxin Li
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Sujun Zhao
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Zhixi Yun
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Zuo-Han Zhao
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Lingli Zhang
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Gaoyu Wang
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Xin Chen
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Linus Manubens-Gil
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yuning Hang
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Wang
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhuhao Wu
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hongwei Dong
- Center for Integrative Connectomics, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Giorgio A. Ascoli
- Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lijuan Liu
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Hanchuan Peng
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| |
Collapse
|
146
|
Isett BR, Nguyen KP, Schwenk JC, Yurek JR, Snyder CN, Vounatsos MV, Adegbesan KA, Ziausyte U, Gittis AH. The indirect pathway of the basal ganglia promotes transient punishment but not motor suppression. Neuron 2023; 111:2218-2231.e4. [PMID: 37207651 PMCID: PMC10524991 DOI: 10.1016/j.neuron.2023.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.
Collapse
Affiliation(s)
- Brian R Isett
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katrina P Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jenna C Schwenk
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeff R Yurek
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christen N Snyder
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maxime V Vounatsos
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kendra A Adegbesan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ugne Ziausyte
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
147
|
Ducrot C, de Carvalho G, Delignat-Lavaud B, Delmas CVL, Halder P, Giguère N, Pacelli C, Mukherjee S, Bourque MJ, Parent M, Chen LY, Trudeau LE. Conditional deletion of neurexins dysregulates neurotransmission from dopamine neurons. eLife 2023; 12:e87902. [PMID: 37409563 PMCID: PMC10409506 DOI: 10.7554/elife.87902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA neuron connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns), is unexplored. Here, we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::NrxnsKO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::NrxnsKO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Gregory de Carvalho
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Constantin VL Delmas
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Priyabrata Halder
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggiaItaly
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Martin Parent
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Lulu Y Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| |
Collapse
|
148
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
149
|
Enriquez-Traba J, Yarur-Castillo HE, Flores RJ, Weil T, Roy S, Usdin TB, LaGamma CT, Arenivar M, Wang H, Tsai VS, Moritz AE, Sibley DR, Moratalla R, Freyberg ZZ, Tejeda HA. Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546539. [PMID: 37425766 PMCID: PMC10327105 DOI: 10.1101/2023.06.27.546539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.
Collapse
|
150
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|