101
|
Li B, Huang Y, Bao J, Xu Z, Yan X, Zou Q. Supramolecular Nanoarchitectonics Based on Antagonist Peptide Self-Assembly for Treatment of Liver Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304675. [PMID: 37433983 DOI: 10.1002/smll.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic peptides have attracted increasing attention as anti-fibrotic drug candidates. However, the rapid degradation and insufficient liver accumulation of therapeutic peptides have seriously hampered their clinical translation. Here, the use of supramolecular nanoarchitectonics is reported to fabricate nanodrugs from therapeutic peptides for treating liver fibrosis. Self-assembling antagonist peptides are rationally designed and manipulated into uniform peptide nanoparticles with well-defined nanostructures and uniform sizes. Significantly, the peptide nanoparticles show enhanced accumulation in liver sites and limited distribution in other tissues. In vivo results show that the peptide nanoparticles exhibit greatly enhanced anti-fibrotic activity compared to the pristine antagonist along with good biocompatibility. These results indicate that self-assembly is a promising nanoarchitectonics approach to enhance the anti-fibrotic activity of therapeutic peptides for treating liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zixuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, P. R. China
| |
Collapse
|
102
|
Sun Y, Chen X, Chen L, Bao B, Li C, Zhou Y. MFAP2 promotes HSCs activation through FBN1/TGF-β/Smad3 pathway. J Cell Mol Med 2023; 27:3235-3246. [PMID: 37635348 PMCID: PMC10623529 DOI: 10.1111/jcmm.17884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yonghong Sun
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
- Department of PediatricsGansu Province People's HospitalLanzhouPeople's Republic of China
| | - Xingxing Chen
- Department of PediatricsGansu Province People's HospitalLanzhouPeople's Republic of China
| | - Lili Chen
- The First School of Clinical MedicineGansu University of Chinese MedicineLanzhouPeople's Republic of China
| | - Baixin Bao
- The First School of Clinical MedicineGansu University of Chinese MedicineLanzhouPeople's Republic of China
| | - Chunming Li
- Department of ObstetricsGansu Province People's HospitalLanzhouPeople's Republic of China
| | - Yongning Zhou
- Department of GastroenterologyThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
103
|
Zhu Y, Guo Y, Xue Y, Zhou A, Chen Y, Chen Y, Miao X, Lv F. Targeting the chromatin remodeling protein BRG1 in liver fibrosis: Mechanism and translational potential. Life Sci 2023; 336:122221. [PMID: 39491218 DOI: 10.1016/j.lfs.2023.122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
AIMS Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins in the interstitia. Hepatic stellate cells (HSCs) are considered the major source for ECM-producing myofibroblasts contributing to liver fibrosis. The molecular mechanism whereby HSC-myofibroblast transition is regulated remains incompletely understood. We investigated the involvement of BRG1, a chromatin remodeling protein, in this process. METHODS Rosa26-Smarca4 mice were crossed to Lrat-Cre mice to generate HSC-specific BRG1 transgenic mice. Liver fibrosis was induced by bile duct ligation (BDL) or injection with carbon tetrachloride (CCl4). RESULTS We report here that over-expression of BRG1 promoted HSC-myofibroblast transition in vitro. More importantly, the BRG1 transgenic mice displayed amplification of liver fibrogenesis, induced by BDL or CCl4 injection, compared to the wild type littermates. On the contrary, BRG1 inhibition by a small-molecule compound (PFI-3) attenuated HSC-myofibroblast transition in vitro and ameliorated liver fibrosis in a dose-dependent manner in mice. RNA-seq analysis showed that PFI-3 treatment preferentially influenced the expression of ECM genes in activated HSCs. CONCLUSION Our data provide strong evidence that BRG1 plays an important role in HSC-myofibroblast transition and suggest that targeting BRG1 could be considered as a reasonable strategy for the intervention of liver fibrosis.
Collapse
Affiliation(s)
- Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Anqi Zhou
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Ying Chen
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yifei Chen
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
104
|
Rafiei H, Yeung M, Kowalski S, Krystal G, Elisia I. Development of a novel human triculture model of non-alcoholic fatty liver disease and identification of berberine as ameliorating steatosis, oxidative stress and fibrosis. Front Pharmacol 2023; 14:1234300. [PMID: 37927606 PMCID: PMC10620695 DOI: 10.3389/fphar.2023.1234300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH) and hepatocarcinoma is a serious and growing problem. However, the development of new therapies is severely hindered by a lack of high-throughput assays for drug testing. Methods: We have developed a simple transwell assay comprised of HepG2 hepatocytes, hepatic LX-2 stellate cells, and differentiated THP-1 cells. The cells were incubated with an activating mixture containing the NASH-associated risk factors, glucose, insulin, free fatty acids (FFAs), and lipopolysaccharide (LPS) for 72 h. We compared different combinations of culture conditions to obtain a model system that recapitulates the main features of NAFLD/NASH, i.e., increased steatosis, reactive oxygen species (ROS), secretion of pro-inflammatory cytokines/chemokines, and presence of fibrosis. To confirm the usefulness of the optimized model system, we screened for compounds that inhibit steatosis in the hepatocytes and evaluated the most effective compound in the triculture model system. Results: The activating mixture stimulated HepG2 cells in this triculture to accumulate more fat and produce higher levels of reactive oxygen species (ROS) than HepG2 cells in monocultures. As well, higher levels of inflammatory cytokines and chemokines (IL-8, IL-6, MIP-1α, etc.) were produced in this triculture compared to monocultures. In addition, in all LX-2 monocultures and cocultures, exposure to the activating mixture increased markers of fibrosis. A major strength of our triculture system is that it makes possible the simultaneous monitoring of 4 main features of NASH, i.e., steatosis, oxidative stress, inflammation and fibrosis. Screening potential modulators that may reduce steatosis in HepG2 cells revealed the protective effects of the isoalkaloid, berberine. Tested using this novel triculture assay, treatment with 5 µM berberine decreased steatosis and ROS in HepG2 hepatocytes, reduced inflammatory cytokine production and inhibited collagen production from LX-2 cells. Conclusion: This simple triculture model recapitulates the main features of NAFLD/NASH and should be useful for high-throughput preclinical drug discovery. In this model, berberine showed promising results in decreasing steatosis and ROS and protection against fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Elisia
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
105
|
Kandhi R, Yeganeh M, Yoshimura A, Menendez A, Ramanathan S, Ilangumaran S. Hepatic stellate cell-intrinsic role of SOCS1 in controlling hepatic fibrogenic response and the pro-inflammatory macrophage compartment during liver fibrosis. Front Immunol 2023; 14:1259246. [PMID: 37860002 PMCID: PMC10582746 DOI: 10.3389/fimmu.2023.1259246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Hepatic stellate cells (HSC) become activated, differentiate to myofibroblasts and produce extracellular fibrillar matrix during liver fibrosis. The hepatic fibrogenic response is orchestrated by reciprocal interactions between HSCs and macrophages and their secreted products. SOCS1 can regulate several cytokines and growth factors implicated in liver fibrosis. Here we investigated the role of SOCS1 in regulating HSC activation. Methods Mice lacking SOCS1 in HSCs (Socs1ΔHSC) were generated by crossing Socs1fl/fl and LratCre mice. Liver fibrosis was induced by carbon tetrachloride and evaluated by Sirius red staining, hydroxyproline content and immunostaining of myofibroblasts. Gene expression of pro-fibrogenic factors, cytokines, growth factors and chemokines were quantified by RT-qPCR. The phenotype and the numbers of intrahepatic leukocyte subsets were studied by flow cytometry. The impact of fibrosis on the development of diethyl nitrosamine-induced hepatocellular carcinoma was evaluated. Results Socs1ΔHSC mice developed more severe liver fibrosis than control Socs1fl/fl mice that was characterized by increased collagen deposition and myofibroblast differentiation. Socs1ΔHSC mice showed a significant increase in the expression of smooth muscle actin, collagens, matrix metalloproteases, cytokines, growth factors and chemokines in the liver following fibrosis induction. The fibrotic livers of Socs1ΔHSC mice displayed heightened inflammatory cell infiltration with increased proportion and numbers of Ly6ChiCCR2+ pro-inflammatory macrophages. This macrophage population contained elevated numbers of CCR2+CX3CR1+ cells, suggesting impaired transition towards restorative macrophages. Fibrosis induction following exposure to diethyl nitrosamine resulted in more numerous and larger liver tumor nodules in Socs1ΔHSC mice than in Socs1fl/fl mice. Discussion Our findings indicate that (i) SOCS1 expression in HSCs is a critical to control liver fibrosis and development of hepatocaellular carcinoma, and (ii) attenuation of HSC activation by SOCS1 regulates pro-inflammatory macrophage recruitment and differentiation during liver fibrosis.
Collapse
Affiliation(s)
- Rajani Kandhi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mehdi Yeganeh
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
106
|
Liu W, Wu J, Cao H, Ma C, Wu Z, Tian Y, Ma C, Qiu H, Pan G. Human-Induced Hepatocytes-Derived Extracellular Vesicles Ameliorated Liver Fibrosis in Mice Via Suppression of TGF-β1/Smad Signaling and Activation of Nrf2/HO-1 Signaling. Stem Cells Dev 2023; 32:638-651. [PMID: 37345718 DOI: 10.1089/scd.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Liver fibrosis is a wound-healing response caused by persistent liver injury and often occurs in chronic liver diseases. Effective treatments for liver fibrosis are still pending. Recent studies have revealed that extracellular vesicles (EVs) derived from primary hepatocytes (Hep-EVs) have therapeutic potential for multiple liver diseases. However, Hep-EVs are difficult to manufacture in bulk because of the limited sources of primary hepatocytes. Human-induced hepatocytes (hiHep) are hepatocyte-like cells that can expand in vitro, and their cell culture supernatant is thus an almost unlimited resource for EVs. This study aimed to investigate the potential therapeutic effects of EVs derived from hiHeps. hiHep-EVs inhibited the expression of inflammatory genes and the secretion of inflammation-related cytokines, and suppressed the activation of hepatic stellate cells by inhibiting the transforming growth factor (TGF)-β1/Smad signaling pathway. The anti-inflammatory and antifibrotic effects of hiHep-EVs were similar to those of mesenchymal stem cell-EVs. Furthermore, the administration of hiHep-EVs ameliorated oxidative stress, inflammation, and fibrosis in a CCl4-induced liver fibrosis mouse model. The expression of α smooth muscle actin, collagen I, and collagen III was reduced, which may be attributed to the regulation of matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 by hiHep-EVs, and the protein expression of Nrf2, HO-1, and NQO1 was increased. Taken together, our results suggested that hiHep-EVs alleviated liver fibrosis by activating the Nrf2/HO-1 signaling pathway and inhibiting the TGF-β1/Smad signaling pathway. This study revealed the hepatoprotective effect of hiHep-EVs, and provided a new approach to treating liver fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhitao Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youxi Tian
- School of Pharmacy, Guang Dong Medical University, Dongguan, China
| | - Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Hong Qiu
- University of Chinese Academy of Sciences, Beijing, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guoyu Pan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
107
|
Wang Z, Yao L, Hu X, Yuan M, Chen P, Liu P, Zhang Q, Xiong Z, Dai K, Jiang Y. Advancements in mesenchymal stem cell therapy for liver cirrhosis: Unveiling origins, treatment mechanisms, and current research frontiers. Tissue Cell 2023; 84:102198. [PMID: 37604091 DOI: 10.1016/j.tice.2023.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Chronic liver disease inevitably progresses to liver cirrhosis, significantly compromising patients' overall survival and quality of life. However, a glimmer of hope emerges with the emergence of mesenchymal stem cells, possessing remarkable abilities for self-renewal, differentiation, and immunomodulation. Leveraging their potential, MSCs have become a focal point in both basic and clinical trials, offering a promising therapeutic avenue to impede fibrosis progression and enhance the life expectancy of individuals battling hepatic cirrhosis. This comprehensive review serves to shed light on the origin of MSCs, the intricate mechanisms underlying cirrhosis treatment, and the cutting-edge advancements in basic and clinical research surrounding MSC-based therapies for liver cirrhosis patients.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| |
Collapse
|
108
|
Shan S, Liu Z, Wang S, Liu Z, Chao S, Zhang C, Li M, Song F. Mitochondrial oxidative stress regulates LonP1-TDP-43 pathway and rises mitochondrial damage in carbon tetrachloride-induced liver fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115409. [PMID: 37647804 DOI: 10.1016/j.ecoenv.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Carbon tetrachloride (CCl4)-mediated liver damage has been well recognized, but the sources and mechanisms of mitochondrial damage during this progress still remain poorly understood. Accumulating evidence has revealed that LonP1-TDP-43 pathway affect proper mitochondrial integrity and function in neurodegenerative diseases. The current study aims to investigate whether mitochondrial oxidative stress regulate LonP1-TDP-43 pathway and the possible roles of this pathway in CCl4-driven liver fibrosis. We found that TDP-43 interacted with LonP1 in chronic CCl4 exposure-induced hepatic fibrogenesis. Moreover, CCl4 led to deficiency of LonP1 and excessive accumulation of TDP-43 on mitochondria. Particularly, the gene correlation analysis for liver fibrosis patients RNA sequencing (RNA-seq) results (GSE159676) showed an obvious negative correlation between LonP1 and TDP-43. By contrast, MitoQ enhanced the occurrence of mitochondrial unfolded protein response (mtUPR), especially the activation of LonP1 after CCl4 treatment. Importantly, mitochondrial antioxidant also promoted the degradation of TDP-43 and alleviated mitochondrial damage. In addition, our results showed that CCl4 induced the release of mitochondrial DNA (mtDNA) and effectively elevated cGAS-STING-mediated immune response, which can be inhibited by MitoQ. Finally, MitoQ prevented CCl4-induced liver fibrosis. Together, our study revealed that LonP1-TDP-43 pathway mediated by mitochondrial oxidative stress participated in the progress of CCl4-drived liver fibrosis. Therefore, mitigating or reversing mitochondrial damage through targeting LonP1-TDP-43 pathway may serve as a promising therapeutic strategy for CCl4 exposure-induced liver diseases.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Shihua Chao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
109
|
Peng X, Yang H, Tao L, Xiao J, Zeng Y, Shen Y, Yu X, Zhu F, Qin J. Fluorofenidone alleviates liver fibrosis by inhibiting hepatic stellate cell autophagy via the TGF-β1/Smad pathway: implications for liver cancer. PeerJ 2023; 11:e16060. [PMID: 37790613 PMCID: PMC10542821 DOI: 10.7717/peerj.16060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Objectives Liver fibrosis is a key stage in the progression of various chronic liver diseases to cirrhosis and liver cancer, but at present, there is no effective treatment. This study investigated the therapeutic effect of the new antifibrotic drug fluorofenidone (AKF-PD) on liver fibrosis and its related mechanism, providing implications for liver cancer. Materials and Methods The effects of AKF-PD on hepatic stellate cell (HSC) autophagy and extracellular matrix (ECM) expression were assessed in a carbon tetrachloride (CCl4)-induced rat liver fibrosis model. In vitro, HSC-T6 cells were transfected with Smad2 and Smad3 overexpression plasmids and treated with AKF-PD. The viability and number of autophagosomes in HSC-T6 cells were examined. The protein expression levels of Beclin-1, LC3 and P62 were examined by Western blotting. The Cancer Genome Atlas (TCGA) database was used for comprehensively analyzing the prognostic values of SMAD2 and SMAD3 in liver cancer. The correlation between SMAD2, SMAD3, and autophagy-related scores in liver cancer was explored. The drug prediction of autophagy-related scores in liver cancer was explored. Results AKF-PD attenuated liver injury and ECM deposition in the CCl4-induced liver fibrosis model. In vitro, the viability and number of autophagosomes in HSCs were reduced significantly by AKF-PD treatment. Meanwhile, the protein expression of FN, α-SMA, collagen III, Beclin-1 and LC3 was increased, and P62 was reduced by the overexpression of Smad2 and Smad3; however, AKF-PD reversed these effects. SMAD2 and SMAD3 were hazardous factors in liver cancer. SMAD2 and SMAD3 correlated with autophagy-related scores in liver cancer. Autophagy-related scores could predict drug response in liver cancer. Conclusions AKF-PD alleviates liver fibrosis by inhibiting HSC autophagy via the transforming growth factor (TGF)-β1/Smadpathway. Our study provided some implications about how liver fibrosis was connected with liver cancer by SMAD2/SMAD3 and autophagy.
Collapse
Affiliation(s)
- Xiongqun Peng
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha, China
| | - Jingni Xiao
- Department of Nephrology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ya Zeng
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yueming Shen
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xueke Yu
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Fei Zhu
- Department of General Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jiao Qin
- Department of Nephrology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
110
|
Liao YJ, Lee CY, Twu YC, Suk FM, Lai TC, Chang YC, Lai YC, Yuan JW, Jhuang HM, Jian HR, Huang LC, Chen KP, Hsu MH. Isolation and Biological Evaluation of Alfa-Mangostin as Potential Therapeutic Agents against Liver Fibrosis. Bioengineering (Basel) 2023; 10:1075. [PMID: 37760177 PMCID: PMC10526009 DOI: 10.3390/bioengineering10091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The increased proliferation and activation of hepatic stellate cells (HSCs) are associated with liver fibrosis development. To date, there are no FDA-approved drugs for the treatment of liver cirrhosis. Augmentation of HSCs apoptosis is one of the resolutions for liver fibrosis. In this study, we extracted α-mangostin (1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one) from the fruit waste components of mangosteen pericarp. The isolated α-mangostin structure was determined and characterized with nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) and compared with those known compounds. The intracellular signaling pathway activities of α-mangostin on Transforming growth factors-beta 1 (TGF-β1) or Platelet-derived growth factor subunit B (PDGF-BB) induced HSCs activation and were analyzed via Western blot and Real-time Quantitative Polymerase Chain Reaction (Q-PCR). α-Mangostin-induced mitochondrial dysfunction and apoptosis in HSCs were measured by seahorse assay and caspase-dependent cleavage. The in vivo anti-fibrotic effect of α-mangostin was assessed by carbon tetrachloride (CCl4) treatment mouse model. The data showed that α-mangostin treatment inhibited TGF-β1-induced Smad2/3 phosphorylation and alpha-smooth muscle actin (α-SMA) expression in HSCs in a dose-dependent manner. Regarding the PDGF-BB-induced HSCs proliferation signaling pathways, α-mangostin pretreatment suppressed the phosphorylation of extracellular-signal-regulated kinase (ERK) and p38. The activation of caspase-dependent apoptosis and dysfunction of mitochondrial respiration (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were observed in α-mangostin-treated HSCs. The CCl4-induced liver fibrosis mouse model showed that the administration of α-mangostin significantly decreased the expression of the fibrosis markers (α-SMA, collagen-a2 (col1a2), desmin and matrix metalloproteinase-2 (MMP-2)) as well as attenuated hepatic collagen deposition and liver damage. In conclusion, this study demonstrates that α-mangostin attenuates the progression of liver fibrosis through inhibiting the proliferation of HSCs and triggering apoptosis signals. Thus, α-mangostin may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Chieh Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Ya-Ching Chang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Yi-Cheng Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Jing-Wei Yuan
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hong-Ming Jhuang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Huei-Ruei Jian
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Li-Chia Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Kuang-Po Chen
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
111
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
112
|
Wang L, Li D, Zhu Z, Liao Y, Wu J, Liu Y, Yang R, Dai H, Wu Z, Sun X. Knockout of Sema4D alleviates liver fibrosis by suppressing AOX1 expression. Pharmacol Res 2023; 195:106886. [PMID: 37591326 DOI: 10.1016/j.phrs.2023.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Liver fibrosis can occur in many chronic liver diseases, and no effective treatments are available due to the poorly characterized molecular pathogenesis. Semaphorin 4D (Sema4D) has immune functions and serves important roles in T cell priming. Here, we found that Sema4D was highly expressed in fibrotic liver, and the expression of Sema4D increased with hepatic stellate cells (HSCs) activation. Knockout of Sema4D alleviated liver fibrosis. Mechanistically, knockout of Sema4D alleviated liver fibrosis by suppressing the expression of AOX1 in retinol metabolism. Further investigation demonstrated that retinoic acid receptor α (RARA), an important nuclear receptor of retinoic acid, was reduced by Sema4D knockout during liver fibrogenesis. Sema4D knockout-mediated suppression of liver fibrosis was partly mediated by regulating the balance of Th1, Th2, Th17, and T-bet+Treg cells via inhibiting AOX1/RARA. Thus, targeting Sema4D may hold promise as a potential therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Yao Liao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Wu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuheng Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruibing Yang
- Guangzhou KingMed Diagnostic Laboratory Group Co Ltd, Guangzhou 510310, China
| | - Hanqiao Dai
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| |
Collapse
|
113
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
114
|
Liu F, Li S, Chen P, Gu Y, Wang S, Wang L, Chen C, Wang R, Yuan Y. Salvianolic acid B inhibits hepatic stellate cell activation and liver fibrosis by targeting PDGFRβ. Int Immunopharmacol 2023; 122:110550. [PMID: 37451016 DOI: 10.1016/j.intimp.2023.110550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Liver fibrosis is a reversible pathological process and a wound healing response to liver injury. As an early stage of various liver diseases, liver fibrosis can develop into cirrhosis, liver failure, and even liver cancer if not controlled in time. Salvia miltiorrhiza is a medicinal plant with hepatoprotective effects. Salvianolic acid B (Sal B) is the representative component of S. miltiorrhiza. Many studies have reported the anti-liver fibrosis effects and mechanisms of Sal B. However, the direct anti-fibrotic targets of Sal B have not yet been reported. Platelet-derived growth factor receptor β (PDGFRβ) is one of the most classical targets in liver fibrosis, which is closely related to hepatic stellate cells (HSCs) activated. Previously, we established and applied a PDGFRβ affinity chromatography model, and found that Sal B binds well to PDGFRβ. Therefore, this study aimed to investigate the direct targets of Sal B against liver fibrosis. We confirmed the binding ability of Sal B to PDGFRβ by molecular docking and a surface plasmon resonance biosensor. Our findings indicated that Sal B targeted PDGFRβ to inhibit the activation, migration and proliferation of HSCs and suppressed the PDGF-BB-induced PDGFRβ signaling pathway. Annexin V-FITC/PI assay showed that Sal B reversed the PDGF-BB-induced decrease in HSC apoptosis rate. In the mouse liver fibrosis model, Sal B inhibited the PDGFRβ signaling pathway, HSC activation and reduced inflammatory response, ultimately improved CCl4-induced liver fibrosis. In summary, the direct anti-fibrotic targets of Sal B may be PDGFRβ, and this study clarified the anti-liver fibrosis effects and mechanism of Sal B.
Collapse
Affiliation(s)
- Fangbin Liu
- School of Medicine, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Lei Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Chun Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China.
| |
Collapse
|
115
|
Ding X, Zhu XL, Xu DH, Li S, Yang Q, Feng X, Wei YG, Li H, Yang L, Zhang YJ, Deng XL, Liu KC, Shi SL. NPM promotes hepatotoxin-induced fibrosis by inhibiting ROS-induced apoptosis of hepatic stellate cells and upregulating lncMIAT-induced TGF-β2. Cell Death Dis 2023; 14:575. [PMID: 37648688 PMCID: PMC10469196 DOI: 10.1038/s41419-023-06043-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Liver fibrosis is caused by a variety of chronic liver injuries and has caused significant morbidity and mortality in the world with increasing tendency. Elucidation of the molecular mechanism of liver fibrosis is the basis for intervention of this pathological process and drug development. Nucleophosmin (NPM) is a widely expressed nucleolar phosphorylated protein, which is particularly important for cell proliferation, differentiation and survival. The biological role of NPM in liver fibrosis remains unknown. Here we show that NPM promotes liver fibrosis through multiple pathways. Our study found that NPM was up-regulated in cirrhosis tissues and activated in hepatic stellate cells (HSCs). NPM inhibition reduced liver fibrosis markers expression in HSCs and inhibited the HSCs proliferation and migration. In mice model, NPM knockdown in HSCs or application of specific NPM inhibitor can remarkably attenuate hepatic fibrosis. Mechanistic analysis showed that NPM promotes hepatic fibrosis by inhibiting HSCs apoptosis through Akt/ROS pathway and by upregulating TGF-β2 through Akt-induced lncMIAT. LncMIAT up-regulated TGF-β2 mRNA by competitively sponging miR-16-5p. In response to liver injury, hepatocytes, Kupffer cells and HSCs up-regulated NPM to increase TGF-β2 secretion to activate HSCs in a paracrine or autocrine manner, leading to increased liver fibrosis. Our study demonstrated that NPM regulated hepatotoxin-induced fibrosis through Akt/ROS-induced apoptosis of HSCs and via the Akt/lncMIAT-up-regulated TGF-β2. Inhibition of NPM or application of NPM inhibitor CIGB300 remarkably attenuated liver fibrosis. NPM serves a potential new drug target for liver fibrosis.
Collapse
Affiliation(s)
- Xue Ding
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xin-Le Zhu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Dong-Hui Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatic Biliary Pancreatic Vascular Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Qiong Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Feng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Gui Wei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Ling Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yu-Jun Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Ling Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Kuan-Can Liu
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
116
|
Hong YJ, Kim GH, Park Y, Jo HJ, Nam MW, Kim DG, Cho H, Shim HJ, Jin JS, Rho H, Han CY. Suaeda glauca Attenuates Liver Fibrosis in Mice by Inhibiting TGFβ1-Smad2/3 Signaling in Hepatic Stellate Cells. Nutrients 2023; 15:3740. [PMID: 37686772 PMCID: PMC10490352 DOI: 10.3390/nu15173740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic liver injury due to various hepatotoxic stimuli commonly leads to fibrosis, which is a crucial factor contributing to liver disease-related mortality. Despite the potential benefits of Suaeda glauca (S. glauca) as a natural product, its biological and therapeutic effects are barely known. This study investigated the effects of S. glauca extract (SGE), obtained from a smart farming system utilizing LED lamps, on the activation of hepatic stellate cells (HSCs) and the development of liver fibrosis. C57BL/6 mice received oral administration of either vehicle or SGE (30 or 100 mg/kg) during CCl4 treatment for 6 weeks. The supplementation of SGE significantly reduced liver fibrosis induced by CCl4 in mice as evidenced by histological changes and a decrease in collagen accumulation. SGE treatment also led to a reduction in markers of HSC activation and inflammation as well as an improvement in blood biochemical parameters. Furthermore, SGE administration diminished fibrotic responses following acute liver injury. Mechanistically, SGE treatment prevented HSC activation and inhibited the phosphorylation and nuclear translocation of Smad2/3, which are induced by transforming growth factor (TGF)-β1 in HSCs. Our findings indicate that SGE exhibits anti-fibrotic effects by inhibiting TGFβ1-Smad2/3 signaling in HSCs.
Collapse
Affiliation(s)
- You-Jung Hong
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Gil-Hwan Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Yongdo Park
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Hye-Jin Jo
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Min-Woo Nam
- LED Agri-Bio Fusion Technology Research Center, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
| | - Dong-Gu Kim
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
| | - Hwangeui Cho
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Hyun-Joo Shim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Jong-Sik Jin
- LED Agri-Bio Fusion Technology Research Center, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
| | - Hyunsoo Rho
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Chang-Yeob Han
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
117
|
García-Bañuelos J, Oceguera-Contreras E, Sandoval-Rodríguez A, Bastidas-Ramírez BE, Lucano-Landeros S, Gordillo-Bastidas D, Gómez-Meda BC, Santos A, Cerda-Reyes E, Armendariz-Borunda J. AdhMMP8 Vector Administration in Muscle: An Alternate Strategy to Regress Hepatic Fibrosis. Cells 2023; 12:2127. [PMID: 37681859 PMCID: PMC10486800 DOI: 10.3390/cells12172127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The development of several vaccines against the SARS-CoV2 virus and their application in millions of people have shown efficacy and safety in the transfer of genes to muscle turning this tissue into a protein-producing factory. Established advanced liver fibrosis, is characterized by replacement of hepatic parenchyma by tissue scar, mostly collagen type I, with increased profibrogenic and proinflammatory molecules gene expression. Matrix metalloproteinase 8 (MMP-8) is an interstitial collagen-degrading proenzyme acting preferentially on collagen type I when activated. This study was carried out to elucidate the effect of an intramuscularly delivered adenoviral vector containing proMMP-8 gene cDNA (AdhMMP8) in male Wistar rats with experimental advanced liver fibrosis induced by thioacetamide. Therapeutic effects were monitored after 1, 2, or 3 weeks of a single dose (3 × 1011 vp/kg) of AdhMMP8. Circulating and liver concentration of MMP-8 protein remained constant; hepatic fibrosis decreased up to 48%; proinflammatory and profibrogenic genes expression diminished: TNF-α 2.28-fold, IL-1 1.95-fold, Col 1A1 4-fold, TGF-β1 3-fold and CTGF 2-fold; and antifibrogenic genes expression raised, MMP-9 2.8-fold and MMP-1 10-fold. Our data proposes that the administration of AdhMMP8 in muscle is safe and effective in achieving liver fibrosis regression at a comparable extent as when the adenoviral vector is delivered systemically to reach the liver, using a minimally invasive procedure.
Collapse
Affiliation(s)
- Jesús García-Bañuelos
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Edén Oceguera-Contreras
- Laboratorio de Sistemas Biológicos, Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca km. 45.5, Ameca 46600, Jalisco, Mexico
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Daniela Gordillo-Bastidas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | - Belinda C. Gómez-Meda
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Health Sciences University Center, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Juan Armendariz-Borunda
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
118
|
Deng J, Qin L, Zhou Z. Network Pharmacology and Molecular Docking Reveal the Mechanism of Isodon ternifolius (D. Don) Kudo Against Liver Fibrosis. Drug Des Devel Ther 2023; 17:2335-2351. [PMID: 37576085 PMCID: PMC10416792 DOI: 10.2147/dddt.s412818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Aim Many studies have demonstrated the hepatoprotective or anti-fibrotic effects of Isodon ternifolius, but its pharmacological basis and mechanism remain unclear. In this study, we used in vitro models to validate the predicted results and revealed the potential mechanism of action and active ingredients through network pharmacology methods and molecular docking. Methods The chemical components of Isodon ternifolius were identified by literatures. Potential targets of Isodon ternifolius were predicted by Swiss Target Prediction. The disease targets were collected through the databases of Gene Card. Common targets of Isodon ternifolius and liver fibrosis were obtained by online tool Venny 2.1. PPI protein interaction network was obtained using String database, and target protein interaction network was drawn using Cytoscape software. Signaling pathway enrichment analysis was performed on drug-disease targets with of DAVID database. Results Twenty-one potential active ingredients and 298 potential targets were predicted by Swiss Target Prediction platform. Ninety pathways related to liver fibrosis were obtained by KEGG enrichment. The TLR4, MAPK and PI3K-Akt signaling pathways are mostly associated with liver fibrosis. Molecular docking techniques were used to validate the core target proteins TNF, Akt1, MAPK1, EGFR and TLR4 binding to the ingredients of Isodon ternifolius, which showed that a multitude of ingredients of Isodon ternifolius were able to bind to the above target proteins, especially 2α-hydroxy oleanolic acid and (-)-Lambertic acid. Our experimental validation results showed that Isodon ternifolius inhibited the activation of PI3K-Akt and ERK1/2 signaling pathways. Conclusion Through a network pharmacology approach and in vitro cell assay, we predicted and validated the active compounds of Isodon ternifolius and its potential targets for LF treatment. The results suggest that the mechanism of Isodon ternifolius treating LF by inhibiting angiogenesis may be related to the ERK1/2 and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, People’s Republic of China
| |
Collapse
|
119
|
Liu Y, Lyu Y, Zhu L, Wang H. Role of TRP Channels in Liver-Related Diseases. Int J Mol Sci 2023; 24:12509. [PMID: 37569884 PMCID: PMC10420300 DOI: 10.3390/ijms241512509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The liver plays a crucial role in preserving the homeostasis of an entire organism by metabolizing both endogenous and exogenous substances, a process that relies on the harmonious interactions of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs), and vascular endothelial cells (ECs). The disruption of the liver's normal structure and function by diverse pathogenic factors imposes a significant healthcare burden. At present, most of the treatments for liver disease are palliative in nature, rather than curative or restorative. Transient receptor potential (TRP) channels, which are extensively expressed in the liver, play a crucial role in regulating intracellular cation concentration and serve as the origin or intermediary stage of certain signaling pathways that contribute to liver diseases. This review provides an overview of recent developments in liver disease research, as well as an examination of the expression and function of TRP channels in various liver cell types. Furthermore, we elucidate the molecular mechanism by which TRP channels mediate liver injury, liver fibrosis, and hepatocellular carcinoma (HCC). Ultimately, the present discourse delves into the current state of research and extant issues pertaining to the targeting of TRP channels in the treatment of liver diseases and other ailments. Despite the numerous obstacles encountered, TRP channels persist as an extremely important target for forthcoming clinical interventions aimed at treating liver diseases.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Lijuan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| |
Collapse
|
120
|
Lønsmann I, Grove JI, Haider A, Kaye P, Karsdal MA, Leeming DJ, Aithal GP. Biomarkers of Type IV Collagen Turnover Reflect Disease Activity in Patients with Early-Stage Non-Alcoholic Fatty Liver (NAFL). BIOLOGY 2023; 12:1087. [PMID: 37626973 PMCID: PMC10451710 DOI: 10.3390/biology12081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Identification of progressive liver disease necessitates the finding of novel non-invasive methods to identify and monitor patients in need of early intervention. Investigating patients with early-liver injury may help identify unique biomarkers. Early-liver injury is characterized by remodeling of the hepatocyte basement membrane (BM) of the extracellular matrix. Thus, we quantified biomarkers targeting two distinct neo-epitopes of the major BM collagen, type IV collagen (PRO-C4 and C4M), in patients spanning the non-alcoholic fatty liver disease (NAFLD) spectrum. METHODS We evaluated PRO-C4 and C4M in a cross-sectional study with 97 patients with NAFLD confirmed on histology. Serological levels of PRO-C4 and C4M were quantified using validated competitive enzyme-linked immunosorbent assays (ELISA). Using the fatty liver inhibition of progression (FLIP) algorithm, we stratified patients into two groups: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Biomarker levels were investigated in the two groups in patients stratified by the NAFLD activity score (NAS). In both groups, biomarker measurements were analyzed in relation to histological scorings of steatosis, inflammation, ballooning, and fibrosis. RESULTS Patients had a body mass index (BMI) of 30.9 ± 5.6 kg/m2, age of 53 ± 13 years and a NAS range of 1-8. Upon stratification by FLIP, the NASH patients had higher platelets, ALT, and AST levels than the NAFL group. Both PRO-C4 (p = 0.0125) and C4M (p = 0.003) increased with increasing NAS solely within the NAFL group; however, a large variability was present in the NASH group. Furthermore, both markers were significantly associated with lobular inflammation (p = 0.020 and p = 0.048) and steatosis (p = 0.004 and p = 0.015) in patients with NAFL. CONCLUSIONS This study found that type IV collagen turnover increased with the increase in NAS in patients with NAFL; however, this was not the case in patients with NASH. These findings support the assessments of the BM turnover using biomarkers in patients with early-disease development. These biomarkers may be used to track specific processes involved in the early pathobiology of NAFL.
Collapse
Affiliation(s)
- Ida Lønsmann
- Nordic Bioscience Biomarkers and Research A/S, 2730 Herlev, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
| | - Jane I. Grove
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham NG7 2UH, UK
- MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Asma Haider
- Department of Pathology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Philip Kaye
- Department of Pathology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | | | - Diana J. Leeming
- Nordic Bioscience Biomarkers and Research A/S, 2730 Herlev, Denmark
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham NG7 2UH, UK
- MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
121
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y, Shuai X. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 2023; 299:122134. [PMID: 37167895 DOI: 10.1016/j.biomaterials.2023.122134] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Activated hepatic stellate cell (aHSC) is mainly responsible for deposition of extracellular collagen matrix that causes liver fibrosis. Although several siRNAs adequately inhibited HSC activation in vitro, they were demonstrated poor RNAi efficiency in vivo. Developing HSC-targeting and cytoplasmic delivery nanocarrier is highly essential to acquire a desirable siRNA therapeutic index for anti-liver fibrosis. Here, we developed a unique crosslinking nanopolyplex (called T-C-siRNA) modified by vitamin A (VA) with the well-designed natures, including the negative charge, retinol-binding protein (RBP) hijacking, and cytoplasmic siRNA release in response to ROS and cis diol molecules. The nanopolyplex was given a yolk-shell-like shape, camouflage ability in blood, and HSC-targeting capability by hijacking the endogenous ligand RBP via surface VA. PDGFR-β siRNA (siPDGFR-β) supplied via T-C-siPDGFR-β nanopolyplex dramatically reduced HSC activation and its production of pro-fibrogenic proteins in vitro and in vivo. Furthermore, T-C-siPDGFR-β nanopolyplex effectively alleviated CCl4-induced liver injury, decreased hepatic collagen sediment, and recovered liver function in mice. This study provides a sophisticated method for HSC-targeting cytoplasmic RNA delivery using endogenous ligand hijacking and dual sensitivity of ROS and cis diol compounds.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Xu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minzhao Lin
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
122
|
Luu RJ, Hoefler BC, Gard AL, Ritenour CR, Rogers MT, Kim ES, Coppeta JR, Cain BP, Isenberg BC, Azizgolshani H, Fajardo-Ramirez OR, García-Cardeña G, Lech MP, Tomlinson L, Charest JL, Williams C. Fibroblast activation in response to TGFβ1 is modulated by co-culture with endothelial cells in a vascular organ-on-chip platform. Front Mol Biosci 2023; 10:1160851. [PMID: 37577751 PMCID: PMC10421749 DOI: 10.3389/fmolb.2023.1160851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFβ1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFβ1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFβ1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.
Collapse
Affiliation(s)
- Rebeccah J. Luu
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - B. Christopher Hoefler
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ashley L. Gard
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | | | - Miles T. Rogers
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ernest S. Kim
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Jonathan R. Coppeta
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brian P. Cain
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Hesham Azizgolshani
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Oscar R. Fajardo-Ramirez
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Guillermo García-Cardeña
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | - Joseph L. Charest
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Corin Williams
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| |
Collapse
|
123
|
Li X, Huai Q, Zhu C, Zhang X, Xu W, Dai H, Wang H. GDF15 Ameliorates Liver Fibrosis by Metabolic Reprogramming of Macrophages to Acquire Anti-Inflammatory Properties. Cell Mol Gastroenterol Hepatol 2023; 16:711-734. [PMID: 37499753 PMCID: PMC10520366 DOI: 10.1016/j.jcmgh.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis/cirrhosis is significant health burden worldwide, resulting in liver failure or cancer and accounting for many deaths each year. The pathogenesis of liver fibrosis is very complex, which makes treatment challenging. Growth differentiation factor 15 (GDF15), a cysteine knot protein belonging to the transforming growth factor β (TGF-β) superfamily, has been shown to play a protective role after tissue injury and to promote a negative energy balance during obesity and diabetes. However, paucity of literature is available about GDF15 function in liver fibrosis. This study aimed to investigate the immunomodulatory role and therapeutic potential of GDF15 in progression of hepatic fibrosis. METHODS GDF15 expression was studied in patients with fibrosis/cirrhosis and in 2 murine models of liver fibrosis, including mice treated with CCl4 or DDC diet. GDF15 involvement in the pathogenesis of liver fibrosis was assessed in Gdf15 knockout mouse using both CCl4 and DDC diet experimental models. We used the CCl4 and/or DDC diet-induced liver fibrosis model to examine the antifibrotic and anti-inflammatory effects of AAV8-mediated GDF15 overexpression in hepatocytes or recombinant mouse GDF15. RESULTS GDF15 expression is decreased in the liver of animal models and patients with liver fibrosis/cirrhosis compared with those without liver disease. In vivo studies showed that GDF15 deficiency aggravated CCl4 and DDC diet-induced liver fibrosis, while GDF15 overexpression mediated by AAV8 or its recombinant protein alleviated CCl4 and/or DDC diet-induced liver fibrosis. In Gdf15 knockout mice, the intrahepatic microenvironment that developed during fibrosis showed relatively more inflammation, as demonstrated by enhanced infiltration of monocytes and neutrophils and increased expression of proinflammatory factors, which could be diminished by AAV8-mediated GDF15 overexpression in hepatocytes. Intriguingly, GDF15 exerts its effects by reprogramming the metabolic pathways of macrophages to acquire an oxidative phosphorylation-dependent anti-inflammatory functional fate. Furthermore, adoptive transfer of GDF15-preprogrammed macrophages to mouse models of liver fibrosis induced by CCl4 attenuated inflammation and alleviated the progression of liver fibrosis. CONCLUSION GDF15 ameliorates liver fibrosis via modulation of liver macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest that GDF15 is a potentially attractive therapeutic target for the treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
124
|
Khalifa O, Ouararhni K, Errafii K, Alajez NM, Arredouani A. Targeted MicroRNA Profiling Reveals That Exendin-4 Modulates the Expression of Several MicroRNAs to Reduce Steatosis in HepG2 Cells. Int J Mol Sci 2023; 24:11606. [PMID: 37511368 PMCID: PMC10380891 DOI: 10.3390/ijms241411606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/β-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Khaoula Errafii
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco
| | - Nehad M Alajez
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
125
|
Di Fazio P, Mielke S, Böhm IT, Buchholz M, Matrood S, Schuppan D, Wissniowski T. Toll-like receptor 5 tunes hepatic and pancreatic stellate cells activation. BMJ Open Gastroenterol 2023; 10:e001148. [PMID: 37433685 DOI: 10.1136/bmjgast-2023-001148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
OBJECTIVE Stellate cells are responsible for liver and pancreas fibrosis and strictly correlate with tumourigenesis. Although their activation is reversible, an exacerbated signalling triggers chronic fibrosis. Toll-like receptors (TLRs) modulate stellate cells transition. TLR5 transduces the signal deriving by the binding to bacterial flagellin from invading mobile bacteria. DESIGN Human hepatic and pancreatic stellate cells were activated by the administration of transforming growth factor-beta (TGF-β). TLR5 was transiently knocked down by short-interference RNA transfection. Reverse Transcription-quantitativePCR and western blot were performed to analyse the transcript and protein level of TLR5 and the transition players. Fluorescence microscopy was performed to identify these targets in spheroids and in the sections of murine fibrotic liver. RESULTS TGF-β-activated human hepatic and pancreatic stellate cells showed an increase of TLR5 expression. TLR5 knockdown blocked the activation of those stellate cells. Furthermore, TLR5 busted during murine liver fibrosis and co-localised with the inducible Collagen I. Flagellin suppressed TLR5, COL1A1 and ACTA2 expression after the administration of TGF-β. Instead, the antagonist of TLR5 did not block the effect of TGF-β. Wortmannin, a specific AKT inhibitor, induced TLR5 but not COL1A1 and ACTA2 transcript and protein level. CONCLUSION TGF-β-mediated activation of hepatic and pancreatic stellate cells requires the over-expression of TLR5. Instead, its autonomous signalling inhibits the activation of the stellate cells, thus prompting a signalling through different regulatory pathways.
Collapse
Affiliation(s)
- Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps-Universität Marburg, Marburg, Germany
| | - Sophia Mielke
- Department of Visceral Thoracic and Vascular Surgery, Philipps-Universität Marburg, Marburg, Germany
| | - Isabell T Böhm
- Department of Visceral Thoracic and Vascular Surgery, Philipps-Universität Marburg, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Philipps-Universität Marburg, Marburg, Germany
| | - Sami Matrood
- Department of Visceral Thoracic and Vascular Surgery, Philipps-Universität Marburg, Marburg, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
126
|
Ma X, Zhou W, Nie Y, Jing X, Li S, Jin C, Zhu A, Su J, Liao W, Ding K. A novel branched galacturonan from Gardenia jasminoides alleviates liver fibrosis linked to TLR4/NF-κB signaling. Int J Biol Macromol 2023:125540. [PMID: 37355063 DOI: 10.1016/j.ijbiomac.2023.125540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Gardenia jasminoides (GJ) is a classic edible medicine in China of which the fruit has been proved to alleviate liver damage. We hypothesized whether polysaccharide in the fruit could have comparable bioactivity. To address this, a novel polysaccharide GJE0.2-2, is purified from the fruit of Gardenia jasminoides. Indeed, GJE0.2-2 may attenuate CCl4-induced liver fibrosis in mice and impede the expression of critical fibrogenesis associated molecules such as α-SMA, FN1, and Collagen I induced by TGF-β in human hepatic stellate LX-2 cells. Mechanism studies suggest that this bioactivity may be implicated in TLR4/NF-κB signaling pathway via directly binding to TLR4. The structure characterization shows that the backbone of this polysaccharide is mainly composed of galacturonic acid with minor rhamnose, branched with galactose and arabinose, galacturonic acid, and esterified hexenuronic acid (HexpA). These findings provide evidence for a novel pectin-linked polysaccharide-based new drug candidate development for liver fibrosis therapy.
Collapse
Affiliation(s)
- Xiaonan Ma
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wanqi Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingmin Nie
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaoqi Jing
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Saijuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Can Jin
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Juan Su
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenfeng Liao
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China.
| |
Collapse
|
127
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
128
|
Li J, Wu B, Zeng L, Lin Y, Chen Q, Wang H, An L, Zhang J, Chen S, Huang J, Zhan R, Zhang G. Aqueous extract of Amydrium sinense (Engl.) H. Li alleviates hepatic fibrosis by suppressing hepatic stellate cell activation through inhibiting Stat3 signaling. Front Pharmacol 2023; 14:1101703. [PMID: 37383718 PMCID: PMC10293641 DOI: 10.3389/fphar.2023.1101703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background: The present study aimed to investigate the protective effect of the water extract of Amydrium sinense (Engl.) H. Li (ASWE) against hepatic fibrosis (HF) and clarify the underlying mechanism. Methods: The chemical components of ASWE were analysed by a Q-Orbitrap high-resolution mass spectrometer. In our study, an in vivo hepatic fibrosis mouse model was established via an intraperitoneal injection of olive oil containing 20% CCl4. In vitro experiments were conducted using a hepatic stellate cell line (HSC-T6) and RAW 264.7 cell line. A CCK-8 assay was performed to assess the cell viability of HSC-T6 and RAW264.7 cells treated with ASWE. Immunofluorescence staining was used to examine the intracellular localization of signal transducer and activator of transcription 3 (Stat3). Stat3 was overexpressed to analyse the role of Stat3 in the effect of ASWE on HF. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that candidate targets of ASWE, associated with protective effects against hepatic fibrosis, were related to inflammation response. ASWE ameliorated CCl4-induced liver pathological damage and reduced the liver index and alanine transaminase (ALT) and aspartate transaminase (AST) levels. ASWE also decreased the serum levels of collagen Ⅰ (Col Ⅰ) and hydroxyproline (Hyp) in CCl4-treated mice. In addition, the expression of fibrosis markers, including α-SMA protein and Acta2, Col1a1, and Col3a1 mRNA, was downregulated by ASWE treatment in vivo. The expression of these fibrosis markers was also decreased by treatment with ASWE in HSC-T6 cells. Moreover, ASWE decreased the expression of inflammatory markers, including the Tnf-α, Il6 and Il1β, in RAW264.7 cells. ASWE decreased the phosphorylation of Stat3 and total Stat3 expression and reduced the mRNA expression of the Stat3 gene in vivo and in vitro. ASWE also inhibited the nuclear shuttling of Stat3. Overexpression of Stat3 weakened the therapeutic effect of ASWE and accelerated the progression of HF. Conclusion: The results show that ASWE protects against CCl4-induced liver injury by suppressing fibrosis, inflammation, HSC activation and the Stat3 signaling pathway, which might lead to a new approach for preventing HF.
Collapse
Affiliation(s)
- Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bingmin Wu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lishan Zeng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Lin
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuhe Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haixia Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin An
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiajun Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Siyan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junying Huang
- College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Ruoting Zhan
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifang Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
129
|
Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, Huang Y, Li Y, Hu Z, Hu X, Zhu X, Huang S. GepLiver: an integrative liver expression atlas spanning developmental stages and liver disease phases. Sci Data 2023; 10:376. [PMID: 37301898 PMCID: PMC10257690 DOI: 10.1038/s41597-023-02257-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic liver diseases usually developed through stepwise pathological transitions under the persistent risk factors. The molecular changes during liver transitions are pivotal to improve liver diagnostics and therapeutics yet still remain elusive. Cumulative large-scale liver transcriptomic studies have been revealing molecular landscape of various liver conditions at bulk and single-cell resolution, however, neither single experiment nor databases enabled thorough investigations of transcriptomic dynamics along the progression of liver diseases. Here we establish GepLiver, a longitudinal and multidimensional liver expression atlas integrating expression profiles of 2469 human bulk tissues, 492 mouse samples, 409,775 single cells from 347 human samples and 27 liver cell lines spanning 16 liver phenotypes with uniformed processing and annotating methods. Using GepLiver, we have demonstrated dynamic changes of gene expression, cell abundance and crosstalk harboring meaningful biological associations. GepLiver can be applied to explore the evolving expression patterns and transcriptomic features for genes and cell types respectively among liver phenotypes, assisting the investigation of liver transcriptomic dynamics and informing biomarkers and targets for liver diseases.
Collapse
Affiliation(s)
- Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
130
|
Chen X, Shi W, Zhu L, Zhou X, Wang Y. Mammalian cleavage factor 25 targets KLF14 to inhibit hepatic stellate cell activation and liver fibrosis. Cell Signal 2023:110752. [PMID: 37295703 DOI: 10.1016/j.cellsig.2023.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Liver fibrosis is primarily caused by the activation of hepatic stellate cells (HSCs), which results from chronic liver damage. Understanding the pathogenesis of HSC activation could identify new therapeutic targets to treat liver fibrosis. In this study, we examined the protective role of the mammalian cleavage factor I 25 kD subunit (CFIm25, NUDT21) in inhibiting hepatic stellate cell activation. CFIm25 expression was measured in liver cirrhosis patients and a CCl4-induced mouse model. Adeno-associated viruses and adenoviruses were used to alter hepatic CFIm25 expression in vivo and in vitro to investigate how CFIm25 functions in liver fibrosis. The underlying mechanisms were explored using RNA-seq and co-IP assays. Here, we found that CFIm25 expression was drastically decreased in activated murine HSCs and fibrotic liver tissues. CFIm25 overexpression downregulated the expression of genes involved in liver fibrosis, inhibiting the progression of HSC activation, migration and proliferation. These effects resulted from direct activation of the KLF14/PPARγ signaling axis. KLF14 inhibition abrogated the CFIm25 overexpression-mediated reduction in antifibrotic effects. These data reveal that hepatic CFIm25 regulates HSC activation through the KLF14/PPARγ pathway as liver fibrosis progresses. CFIm25 may be a novel therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China; The State Key Laboratory of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
131
|
Darwish OI, Gharib AM, Jeljeli S, Metwalli NS, Feeley J, Rotman Y, Brown RJ, Ouwerkerk R, Kleiner DE, Stäb D, Speier P, Sinkus R, Neji R. Single Breath-Hold 3-Dimensional Magnetic Resonance Elastography Depicts Liver Fibrosis and Inflammation in Obese Patients. Invest Radiol 2023; 58:413-419. [PMID: 36719974 PMCID: PMC10735168 DOI: 10.1097/rli.0000000000000952] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Three-dimensional (3D) magnetic resonance elastography (MRE) measures liver fibrosis and inflammation but requires several breath-holds that hamper clinical acceptance. The aim of this study was to evaluate the technical and clinical feasibility of a single breath-hold 3D MRE sequence as a means of measuring liver fibrosis and inflammation in obese patients. METHODS From November 2020 to December 2021, subjects were prospectively enrolled and divided into 2 groups. Group 1 included healthy volunteers (n = 10) who served as controls to compare the single breath-hold 3D MRE sequence with a multiple-breath-hold 3D MRE sequence. Group 2 included liver patients (n = 10) who served as participants to evaluate the clinical feasibility of the single breath-hold 3D MRE sequence in measuring liver fibrosis and inflammation. Controls and participants were scanned at 60 Hz mechanical excitation with the single breath-hold 3D MRE sequence to retrieve the magnitude of the complex-valued shear modulus (|G*| [kPa]), the shear wave speed (Cs [m/s]), and the loss modulus (G" [kPa]). The controls were also scanned with a multiple-breath-hold 3D MRE sequence for comparison, and the participants had histopathology (Ishak scores) for correlation with Cs and G". RESULTS For the 10 controls, 5 were female, and the mean age and body mass index were 33.1 ± 9.5 years and 23.0 ± 2.1 kg/m 2 , respectively. For the 10 participants, 8 were female, and the mean age and body mass index were 45.1 ± 16.5 years and 33.1 ± 4.0 kg/m 2 (obese range), respectively. All participants were suspected of having nonalcoholic fatty liver disease. Bland-Altman analysis of the comparison in controls shows there are nonsignificant differences in |G*|, Cs, and G" below 6.5%, suggesting good consensus between the 2 sequences. For the participants, Cs and G" correlated significantly with Ishak fibrosis and inflammation grades, respectively ( ρ = 0.95, P < 0.001, and ρ = 0.84, P = 0.002). CONCLUSION The single breath-hold 3D MRE sequence may be effective in measuring liver fibrosis and inflammation in obese patients.
Collapse
Affiliation(s)
- Omar Isam Darwish
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- INSERM U1148, LVTS, University Paris Diderot, Paris, France
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Ahmed M. Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Sami Jeljeli
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nader S. Metwalli
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jenna Feeley
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Yaron Rotman
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Rebecca J. Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Ronald Ouwerkerk
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | | | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, Australia
| | - Peter Speier
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- INSERM U1148, LVTS, University Paris Diderot, Paris, France
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| |
Collapse
|
132
|
Liu Z, Nian L, Cai X, Hu Y, Lei J, Xiao J. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem Commun (Camb) 2023; 59:6068-6071. [PMID: 37114522 DOI: 10.1039/d3cc01096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We herein report the construction of a robust MRI peptide contrast agent Gd-ICTP with superior selectivity for type I collagen, enabling the accurate and non-invasive detection of hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
133
|
Zhang T, Zhang N, Xing J, Zhang S, Chen Y, Xu D, Gu J. UDP-glucuronate metabolism controls RIPK1-driven liver damage in nonalcoholic steatohepatitis. Nat Commun 2023; 14:2715. [PMID: 37169760 PMCID: PMC10175487 DOI: 10.1038/s41467-023-38371-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Hepatocyte apoptosis plays an essential role in the progression of nonalcoholic steatohepatitis (NASH). However, the molecular mechanisms underlying hepatocyte apoptosis remain unclear. Here, we identify UDP-glucose 6-dehydrogenase (UGDH) as a suppressor of NASH-associated liver damage by inhibiting RIPK1 kinase-dependent hepatocyte apoptosis. UGDH is progressively reduced in proportion to NASH severity. UGDH absence from hepatocytes hastens the development of liver damage in male mice with NASH, which is suppressed by RIPK1 kinase-dead knockin mutation. Mechanistically, UGDH suppresses RIPK1 by converting UDP-glucose to UDP-glucuronate, the latter directly binds to the kinase domain of RIPK1 and inhibits its activation. Recovering UDP-glucuronate levels, even after the onset of NASH, improved liver damage. Our findings reveal a role for UGDH and UDP-glucuronate in NASH pathogenesis and uncover a mechanism by which UDP-glucuronate controls hepatocyte apoptosis by targeting RIPK1 kinase, and suggest UDP-glucuronate metabolism as a feasible target for more specific treatment of NASH-associated liver damage.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430022, China
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Xing
- Lingang Laboratory, Shanghai, 200031, China
| | - Shuhua Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430022, China
| | - Yulu Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, 2012010, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430022, China.
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
134
|
Bai Y, Wu H, Zheng L, Xie Y, Liu F, Wan Y, Li Q, Guo P. Mechanisms of Yajieshaba in the treatment of liver fibrosis through the Keap1-Nrf2 signaling pathway. Front Pharmacol 2023; 14:1124015. [PMID: 37229248 PMCID: PMC10203482 DOI: 10.3389/fphar.2023.1124015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Yajieshaba (YJSB), a traditional Dai medicine formula containing botanical drugs, is commonly employed in Yunnan due to its significant therapeutic effects on liver protection. Consequently, to determine the efficacy of YJSB and the mechanism of action of Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway against liver fibrosis. We wanted to see if YJSB could treat CCl4-induced liver fibrosis by regulating the Keap1-Nrf2 signaling pathway. YJSB significantly improved liver function biochemical indices, liver fibrosis quadruple, hydroxyproline (Hyp), and transforming growth factor-β1 (TGF-β1) levels. The staining results demonstrated that the degree of liver fibrosis was significantly reduced. YJSB reduced the content of malondialdehyde (MDA) and elevated the content of superoxide dismutase (SOD) in the liver, exhibiting antioxidant effects; meanwhile, it regulated the expression of Keap1-Nrf2 pathway protein, increased the expression of NAD(P)H: Quinone oxidoreductase (NQO1), Heme Oxygenase 1 (HO-1), Glutamate cysteine ligase modifier subunit (GCLM), and Glutamate cysteine ligase catalytic subunit (GCLC) expression in the liver decreased while Nrf2 expression increased. Fluorescence immunoassay studies demonstrated that YJSB promoted the trans-nuclearization of Nrf2. YJSB possesses anti-liver fibrosis pharmacological effects that improve liver function and effectively counteract CCl4-induced liver fibrosis damage. The mechanism of action might be related to the regulation of protein expression of the Keap1-Nrf2 pathway, increasing the ability of the body to resist oxidative stress and reduce oxidative stress injury.
Collapse
Affiliation(s)
- Yuanmei Bai
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haimei Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijie Zheng
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhuan Xie
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Feifan Liu
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yan Wan
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qiongchao Li
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
135
|
Yoon I, Song JA, Suh JH, Kim S, Son J, Kim JH, Jang SY, Hwang KY, Kim MH, Kim S. EPRS1 Controls the TGF- β Signaling Pathway via Interaction with TβRI in Hepatic Stellate Cell. Mol Cell Biol 2023; 43:223-240. [PMID: 37154023 PMCID: PMC10184599 DOI: 10.1080/10985549.2023.2205344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is known to associated with fibrosis through its catalytic activity to produce prolyl-tRNA. Although its catalytic inhibitor halofuginone (HF) has been known to inhibit the TGF-β pathway as well as to reduce prolyl-tRNA production for the control of fibrosis, the underlying mechanism how EPRS1 regulates the TGF-β pathway was not fully understood. Here, we show a noncatalytic function of EPRS1 in controlling the TGF-β pathway and hepatic stellate cell activation via its interaction with TGF-β receptor I (TβRI). Upon stimulation with TGF-β, EPRS1 is phosphorylated by TGF-β-activated kinase 1 (TAK1), leading to its dissociation from the multi-tRNA synthetase complex and subsequent binding with TβRI. This interaction increases the association of TβRI with SMAD2/3 while decreases that of TβRI with SMAD7. Accordingly, EPRS1 stabilizes TβRI by preventing the ubiquitin-mediated degradation of TβRI. HF disrupts the interaction between EPRS1 and TβRI, and reduces TβRI protein levels, leading to inhibition of the TGF-β pathway. In conclusion, this work suggests the novel function of EPRS1 involved in the development of fibrosis by regulating the TGF-β pathway and the antifibrotic effects of HF by controlling both of EPRS1 functions.
Collapse
Affiliation(s)
- Ina Yoon
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Ji Ae Song
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
| | - Ji Hun Suh
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sulhee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jonghyeon Son
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jong Hyun Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea Research Republic of Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea Research Republic of Korea
| | - Sunghoon Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
136
|
Liu R, Feng L, Tang S, Liu Y, Yang Q. The impact and mechanism of TET3 overexpression on the progression of hepatic fibrosis. Epigenomics 2023; 15:577-591. [PMID: 37464780 DOI: 10.2217/epi-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Aims: To investigate whether TET3 regulates hepatic stellate cell apoptosis and understand the role of demethylation in hepatic fibrosis (HF). Methods: LX-2T cells were infected with TET3 lentivirus. After TET3 adenovirus infection, the degree of HF in each group was analyzed. Chromatin immunoprecipitation was used to verify the targeting relationship between TET3 and CBP, and finally the expression of various proteins was detected. Results: TET3 overexpression activated the CBP/FOXO1-BIM pathway, increased the expression of apoptotic proteins and accelerated the apoptosis of activated LX-2 cells. The degree of HF was improved in the TET3 upregulation group. Conclusion: TET3 can activate the CBP/FOXO1-BIM pathway to accelerate the apoptosis of activated hepatic stellate cells and ultimately alleviate HF.
Collapse
Affiliation(s)
- Ranyang Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Linlin Feng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
- Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Tang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Yin Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Qin Yang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| |
Collapse
|
137
|
Ding S, Jiang J, Zhang G, Yu M, Zheng Y. Ambient particulate matter exposure plus chronic ethanol ingestion exacerbates hepatic fibrosis by triggering the mitochondrial ROS-ferroptosis signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114897. [PMID: 37043943 DOI: 10.1016/j.ecoenv.2023.114897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Chronic ethanol ingestion causes persistent oxidative stresses in the liver, leading to hepatic injury and fibrosis, but the underlying mechanisms remain unclear. Recently, ambient particulate matter (PM) has been confirmed to aggravate high-fat diet-induced liver fibrosis by enhancing oxidative stress. Thus, we hypothesized that oxidative stress induced by ambient PM exposure increases the severity of liver fibrosis caused by ethanol ingestion. METHODS AND RESULTS C57BL/6 mice were subjected to ambient PM inhalation, ethanol ingestion or ambient PM-plus-ethanol ingestion for 12 weeks. Oxidative stress, mitochondrial reactive oxygen species (MtROS), liver fibrosis and ferroptosis indicators in the liver were evaluated. In vitro, oxidative stress, MtROS, ferroptosis indicators, profibrotic molecules and fibrosis markers in hepatic stellate (LX-2) cells were also determined. We found that ethanol ingestion markedly elevated hepatic oxidative stress and MtROS levels, triggered hepatic ferroptosis, and induced liver fibrosis, along with upregulation of the profibrotic molecule TGF-β1 and fibrosis marker collagen-I, in mice. Moreover, the combination of ambient PM and ethanol accelerated these adverse effects. Importantly, the combination of PM exposure and ethanol ingestion had a synergistic effect on these changes. In vitro, LX-2 cells activated with PM2.5 alone or combined with ethanol showed upregulation of TGF-β1 and collagen-I. In addition, the levels of MtROS, the oxidative stress marker 4-hydroxynonenal (4-HNE) and ferroptosis-related proteins and the GSH/GSSG ratio were significantly increased in PM2.5 plus ethanol-treated LX-2 cells. After pretreatment with a MtROS scavenger (Mito-TEMPO), we found that Mito-TEMPO treatment inhibited ferroptosis and oxidative stress in PM2.5 plus ethanol-treated LX-2 cells. Furthermore, a specific ferroptosis inhibitor (Fer-1) decreased the levels of ferroptosis-related proteins and profibrotic molecules in activated LX-2 cells co-exposed to PM2.5 and ethanol. CONCLUSION In this study, we revealed that ambient PM exposure induced profibrotic effects and that combined exposure to ambient PM and chronic ethanol ingestion exacerbated hepatic fibrosis, which may trigger ferroptosis by increasing MtROS, thereby activating hepatic stellate cells.
Collapse
Affiliation(s)
- Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China.
| | - Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| | - Guofu Zhang
- Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Min Yu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| | - Yang Zheng
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| |
Collapse
|
138
|
Wang S, Chen L, Shi X, Wang Y, Xu S. Polystyrene microplastics-induced macrophage extracellular traps contributes to liver fibrotic injury by activating ROS/TGF-β/Smad2/3 signaling axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121388. [PMID: 36871749 DOI: 10.1016/j.envpol.2023.121388] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are a type of emerging pollutant, posing a great threat to human and animal health. While recent studies have revealed the link between MPs exposure and liver injury of organisms, the effect of particle size on the level of MPs-induced hepatotoxicity and the intrinsic mechanism remain to be explored. Here, we established a mouse model exposed to two-diameter polystyrene MPs (PS-MPs, 1-10 μm or 50-100 μm) for 30 days. The in vivo results revealed that PS-MPs caused liver fibrotic injury in mice, accompanied with macrophages recruitment and macrophage extracellular traps (METs) formation, which were negatively correlated with particle size. The data in vitro showed that PS-MPs treatment could induce macrophages to release METs in a reactive oxygen species (ROS)-independent manner, and the METs formation level caused by large-size particles was higher than small-size particles. Further mechanistic analysis of a cell co-culture system revealed that PS-MPs-induced METs release led to a hepatocellular inflammatory response and epithelial-mesenchymal transition (EMT) via activating the ROS/TGF-β/Smad2/3 signaling axis, and this biological crosstalk could be relieved by DNase I. Overall, this findings demonstrates the key role of the action mechanism of METs in aggravating MPs-caused liver injury.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, 843300, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
139
|
Sbierski-Kind J, Cautivo KM, Wagner JC, Dahlgren MW, Nilsson J, Krasilnikov M, Mroz NM, Lizama CO, Gan AL, Matatia PR, Taruselli MT, Chang AA, Caryotakis S, O'Leary CE, Kotas M, Mattis AN, Peng T, Locksley RM, Molofsky AB. Group 2 innate lymphoid cells constrain type 3/17 lymphocytes in shared stromal niches to restrict liver fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.537913. [PMID: 37163060 PMCID: PMC10168323 DOI: 10.1101/2023.04.26.537913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.
Collapse
|
140
|
Zhao YQ, Deng XW, Xu GQ, Lin J, Lu HZ, Chen J. Mechanical homeostasis imbalance in hepatic stellate cells activation and hepatic fibrosis. Front Mol Biosci 2023; 10:1183808. [PMID: 37152902 PMCID: PMC10157180 DOI: 10.3389/fmolb.2023.1183808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic liver disease or repeated damage to hepatocytes can give rise to hepatic fibrosis. Hepatic fibrosis (HF) is a pathological process of excessive sedimentation of extracellular matrix (ECM) proteins such as collagens, glycoproteins, and proteoglycans (PGs) in the hepatic parenchyma. Changes in the composition of the ECM lead to the stiffness of the matrix that destroys its inherent mechanical homeostasis, and a mechanical homeostasis imbalance activates hepatic stellate cells (HSCs) into myofibroblasts, which can overproliferate and secrete large amounts of ECM proteins. Excessive ECM proteins are gradually deposited in the Disse gap, and matrix regeneration fails, which further leads to changes in ECM components and an increase in stiffness, forming a vicious cycle. These processes promote the occurrence and development of hepatic fibrosis. In this review, the dynamic process of ECM remodeling of HF and the activation of HSCs into mechanotransduction signaling pathways for myofibroblasts to participate in HF are discussed. These mechanotransduction signaling pathways may have potential therapeutic targets for repairing or reversing fibrosis.
Collapse
Affiliation(s)
- Yuan-Quan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi-Wen Deng
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Guo-Qi Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
141
|
Aoyama S, Kido Y, Kanamoto M, Naito M, Nakanishi M, Kanna M, Yamamotoya T, Asano T, Nakatsu Y. Prolyl isomerase Pin1 promotes extracellular matrix production in hepatic stellate cells through regulating formation of the Smad3-TAZ complex. Exp Cell Res 2023; 425:113544. [PMID: 36906101 DOI: 10.1016/j.yexcr.2023.113544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor β (TGFβ). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFβ-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.
Collapse
Affiliation(s)
- Shunya Aoyama
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Yuri Kido
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mayu Kanamoto
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Miki Naito
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mikako Nakanishi
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Machi Kanna
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| | - Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| |
Collapse
|
142
|
Zhang N, Guo F, Song Y. HOXC8/TGF-β1 positive feedback loop promotes liver fibrosis and hepatic stellate cell activation via activating Smad2/Smad3 signaling. Biochem Biophys Res Commun 2023; 662:39-46. [PMID: 37099809 DOI: 10.1016/j.bbrc.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Liver fibrosis occurs in any chronic liver disease, where extraordinary increase of extracellular matrix components is caused by the hepatic stellate cell (HSC) activation. HOXC8 has been disclosed to participate inregulating cell proliferation and fibrosis in tumors. However, the role of HOXC8 in liver fibrosis and the underlying molecular mechanisms has not yet been investigated. In this study, we founded that HOXC8 mRNA and protein was elevated in a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model and transforming growth factor-β (TGF-β)-treated human (LX-2) HSC cells. Importantly, we observed that downregulating HOXC8 alleviates liver fibrosis and suppressed the fibrogenic gene induction induced by CCl4 in vivo. In addition, inhibition of HOXC8 suppressed the HSC activation and the expression of fibrosis-associated genes (α-SMA and COL1a1) induced by TGF-β1 in LX-2 cells in vitro, while HOXC8 overexpression had the opposite effects. Mechanistically, we demonstrated HOXC8 activates TGFβ1 transcription and enhanced the phosphorylated Smad2/Smad3 levels, suggesting a positive feedback loop between HOXC8 and TGF-β1 that facilitates TGF-β signaling and subsequent HSCs activation. Collectively, our data strongly indicated that a HOXC8/TGF-β1 positive feedback loop plays as a critical role in controlling the HSC activation and in the liver fibrosis process, suggesting that inhibition of HOXC8 may serve as a promoting therapeutic strategy for diseases characterized by liver fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China.
| | - Fang Guo
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Yuanyuan Song
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China
| |
Collapse
|
143
|
Meng Q, Luo L, Lei M, Chen Z, Sun Y, Chen X, Zhai Z, Zhang Y, Cao J, Su Z, Li F, Li J, Hong A, Chen X. Inhibition of FGFR2 Signaling by Cynaroside Attenuates Liver Fibrosis. Pharmaceuticals (Basel) 2023; 16:ph16040548. [PMID: 37111305 PMCID: PMC10145669 DOI: 10.3390/ph16040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis represents a significant health hazard with a high morbidity rate and an increased risk of liver cancer. Targeting overactivated Fibroblast growth factor receptor 2 (FGFR2) is a promising strategy to counteract collagen accumulation during liver fibrosis. However, there is a shortage of drugs to specifically block the activation of FGFR2 in liver fibrosis patients. Data mining, cell validation, and animal studies showed a positive correlation between FGFR2 overexpression and liver fibrosis development. Novel FGFR2 inhibitors were screened using a microarray-based high-throughput binding analysis. The effectiveness of each candidate was validated through simulated docking, binding affinity verification, single-point mutation validation, and in vitro kinase inhibition measurements to demonstrate the ability of each inhibitor to block the catalytic pocket and reverse FGFR2 overactivation. A specific FGFR2 inhibitor, cynaroside (CYN, also known as luteoloside), was screened based on the finding that FGFR2 promotes hepatic stellate cell (HSC) activation and collagen secretion in hepatocytes. The results from cellular assays showed that CYN can inhibit FGFR2 hyperactivation resulting from its overexpression and excessive basic fibroblast growth factor (bFGF), reducing HSC activation and collagen secretion in hepatocytes. Animal experiments on a carbon tetrachloride (CCl4) mouse model and a nonalcoholic steatohepatitis mouse model indicate that CYN treatment reduces liver fibrosis during fibrosis formation. These findings suggest that CYN prevents liver fibrosis formation at the cell level and in mouse models.
Collapse
Affiliation(s)
- Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Lin Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Minghua Lei
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Zhiqi Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Yuanmeng Sun
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Xue Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Zhaodong Zhai
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Fu Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Jingsheng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
| |
Collapse
|
144
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
145
|
Oh HR, Ko MK, Son D, Ki YW, Kim SI, Lee SY, Kang KW, Cheon GJ, Hwang DW, Youn H. Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model. Biomedicines 2023; 11:biomedicines11041090. [PMID: 37189708 DOI: 10.3390/biomedicines11041090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Activated hepatic stellate cells (HSCs) play a detrimental role in liver fibrosis progression. Natural killer (NK) cells are known to selectively recognize abnormal or transformed cells via their receptor activation and induce target cell apoptosis and, therefore, can be used as a potential therapeutic strategy for liver cirrhosis. In this study, we examined the therapeutic effects of NK cells in the carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model. NK cells were isolated from the mouse spleen and expanded in the cytokine-stimulated culture medium. Natural killer group 2, member D (NKG2D)-positive NK cells were significantly increased after a week of expansion in culture. The intravenous injection of NK cells significantly alleviated liver cirrhosis by reducing collagen deposition, HSC marker activation, and macrophage infiltration. For in vivo imaging, NK cells were isolated from codon-optimized luciferase-expressing transgenic mice. Luciferase-expressing NK cells were expanded, activated and administrated to the mouse model to track them. Bioluminescence images showed increased accumulation of the intravenously inoculated NK cells in the cirrhotic liver of the recipient mouse. In addition, we conducted QuantSeq 3' mRNA sequencing-based transcriptomic analysis. From the transcriptomic analysis, 33 downregulated genes in the extracellular matrix (ECM) and 41 downregulated genes involved in the inflammatory response were observed in the NK cell-treated cirrhotic liver tissues from the 1532 differentially expressed genes (DEGs). This result indicated that the repetitive administration of NK cells alleviated the pathology of liver fibrosis in the CCl4-induced liver cirrhosis mouse model via anti-fibrotic and anti-inflammatory mechanisms. Taken together, our research demonstrated that NK cells could have therapeutic effects in a CCl4-induced liver cirrhosis mouse model. In particular, it was elucidated that extracellular matrix genes and inflammatory response genes, which were mainly affected after NK cell treatment, could be potential targets.
Collapse
Affiliation(s)
- Ho Rim Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Kyung Ko
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Daehee Son
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Young Wook Ki
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Shin-Il Kim
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Do Won Hwang
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
146
|
Guo M, Wang Z, Dai J, Fan H, Yuan N, Gao L, Peng H, Cheng X. Glycyrrhizic acid alleviates liver fibrosis in vitro and in vivo via activating CUGBP1-mediated IFN-γ/STAT1/Smad7 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154587. [PMID: 36805480 DOI: 10.1016/j.phymed.2022.154587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatic fibrosis, a common pathological feature of chronic liver injuries, is a serious public health problem and lacks effective therapy. Glycyrrhizic acid (GA) is a bioactive ingredient in the root of traditional Chinese medicine licorice, and exhibits remarkable anti-viral, anti-inflammatory and hepatoprotective actions. PURPOSE Here we aimed to investigated whether GA provided a therapeutic efficacy in hepatic fibrosis and uncover its molecular mechanisms. STUDY DESIGN AND METHODS We investigated the anti-fibrosis effects of GA using CCl4-induced mouse mode of liver fibrosis as well as TGF-β1-activated human LX-2 cells and primary hepatic stellate cells (HSCs). CUGBP1-mediated IFN-γ/STAT1/Smad7 signaling was examined with immunofluorescence staining and western blot analysis. We designed and studied the binding of GA to CUGBP1 using in silico docking, and validated by microscale thermophoresis (MST) assay. RESULTS GA obviously attenuated CCl4-induced liver histological damage, and reduced serum ALT and AST levels. Meanwhile, GA decreased liver fibrogenesis markers such as α-SMA, collagen α1, HA, COL-III, and LN in the hepatic tissues. Mechanistically, GA remarkably elevated the levels of IFN-γ, p-STAT1, Smad7, and decreased CUGBP1 in vivo and in vitro. Over-expression of CUGBP1 completely abolished the anti-fibrotic effect of GA and regulation on IFN-γ/STAT1/Smad7 pathway in LX-2 cells and primary HSCs, confirming CUGBP1 played a pivotal role in the protection by GA from liver fibrosis. Further molecular docking and MST assay indicated that GA had a good binding affinity with the CUGBP1 protein. The dissociation constant (Kd) of GA and CUGBP1 was 0.293 μM. CONCLUSION Our study demonstrated for the first time that GA attenuated liver fibrosis and hepatic stellate cell activation by promoting CUGBP1-mediated IFN-γ/STAT1/Smad7 signalling pathways. GA may be a potential candidate compound for preventing or reliving liver fibrosis.
Collapse
Affiliation(s)
- Manman Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Kunshan Hospital affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Zhongda Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jinya Dai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Haizhen Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ningning Yuan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Liming Gao
- Department of Gastroenterology, Kunshan Hospital affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Huiping Peng
- Department of Gastroenterology, Kunshan Hospital affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Xiaolan Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
147
|
Guo Y, Tian G, Chen X, Hou Y, Zhang X, Xue X, Zhao L, Wu Y. GL-V9 ameliorates liver fibrosis by inhibiting TGF-β/smad pathway. Exp Cell Res 2023; 425:113521. [PMID: 36841325 DOI: 10.1016/j.yexcr.2023.113521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023]
Abstract
Liver fibrosis is a wound-healing response that arises from various aetiologies. Flavonoid compounds have been proved of their anti-liver fibrosis effects. This study aimed to elucidate the protective effect and mechanism of flavonoid compound GL-V9 on CCl4-induced and DDC-induced liver fibrosis. Treatment with GL-V9 alleviated hepatic injury and exhibited a dramatic protection effect of liver fibrosis. Further experiments found that GL-V9 treatment inhibited extracellular matrix (ECM) expression. Activation of hepatic stellate cells (HSCs) is a central driver of fibrosis. GL-V9 could inhibit the activation of HSCs through directly binding to TGFβRI, subsequently inhibit TGF-β/Smad pathway. In conclusion, this study proved that GL-V9 executed a protective effect on liver fibrosis by inhibiting TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Yabing Guo
- Pharmaceutical Animal Experimental Center of China Pharmaceutical University, Nanjing, 211198, China
| | - Geng Tian
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Chen
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Center of Cellular and Molecular Biology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinyu Zhang
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Xue
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Zhao
- Pathology and Patient Derived Xenograft Efficacy Evaluation Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yun Wu
- Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, China.
| |
Collapse
|
148
|
Qiu J, Wu S, Wang P, Zhou Y, Wang Z, Sun Y, Jiang C. miR-488-5p mitigates hepatic stellate cell activation and hepatic fibrosis via suppressing TET3 expression. Hepatol Int 2023; 17:463-475. [PMID: 36001230 PMCID: PMC10119239 DOI: 10.1007/s12072-022-10404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Numerous studies have demonstrated that hepatic fibrosis, a progressive condition as an endpoint of multiple chronic hepatic diseases, is largely characterized with the extensive activation of hepatic stellate cells (HSCs). The precise effect of miR-488-5p in HSCs during hepatic fibrosis has not been elucidated. METHODS In our study, qRT-PCR was applied to assess the level of miR-488-5p in activated HSCs stimulated by TGF-β1. We built murine liver fibrosis models with carbon tetrachloride (CCl4), high-fat diet (HFD) and bile duct ligation (BDL). In vitro, the effects of miR-488-5p in HSCs were examined through cell proliferation assay and apoptosis. Luciferase reporter assay was applied to identify the underlying target of miR-488-5p. In vivo, the effects of miR-488-5p were explored through mouse liver fibrosis models. RESULTS The reduction of miR-488-5p in the activated HSCs induced by TGF-β1 and three mouse hepatic fibrosis models were identified. The in vitro functional experimentations verified that miR-488-5p restrained expression of fibrosis-related markers and proliferative capacity in HSCs. Mechanically, we identified that miR-488-5p inhibited tet methylcytosine dioxygenase 3 (TET3) expression via straightly binding onto the 3' UTR of its mRNA, which sequentially restrained the TGF-β/Smad2/3 pathway. TET3 inhibition induced by the overexpression of miR-488-5p reduced extracellular matrix deposition, which contributed to mitigating mouse liver fibrosis. CONCLUSION We highlight that miR-488-5p restrains the activation of HSCs and hepatic fibrosis via targeting TET3 which is involved in the TGF-β/Smad2/3 signaling pathway. Collectively, miR-488-5p is identified as a potential therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Jiannan Qiu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, Jiangsu, People's Republic of China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shasha Wu
- Department of Clinical Medicine and Rehabilitation, Jiangsu College of Nursing, Huai'an, 223005, People's Republic of China
| | - Peng Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yan Zhou
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, Jiangsu, People's Republic of China.
| | - Yong Sun
- Department of Hepatobiliary Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China.
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
149
|
Zhang Z, Sun Y, Wang H, Yang Y, Dong R, Xu Y, Zhang M, Lv Q, Chen X, Liu Y. Melatonin pretreatment can improve the therapeutic effect of adipose-derived stem cells on CCl 4-induced liver fibrosis. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2191263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
150
|
Numerical prediction of portal hypertension by a hydrodynamic blood flow model combing with the fractal theory. J Biomech 2023; 150:111504. [PMID: 36871430 DOI: 10.1016/j.jbiomech.2023.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023]
Abstract
Portal hypertension (PH) can cause a series of complications, therefore, early prediction of PH is important. Traditional diagnostic methods are harmful to the human body, while other non-invasive methods are inaccurate and lack physical meaning. Combining various fractal theories and flow laws, we establish a complete portal system blood flow model from the Computed Tomography (CT) and angiography images. The portal vein pressure (PP) is obtained by the flow rate data from the Doppler ultrasound and the pressure-velocity relationship is established by the model. Three normal participants and 12 patients with portal hypertension were divided into three groups. For the three normal participants (Group A), their mean PP calculated by the model is 1752 Pa, falling into the normal range of PP. The mean PP of three patients with portal vein thrombosis (Group B) is 2357 Pa; and for the 9 patients with cirrhosis (Group C), their mean PP is 2915 Pa. These results validate the classification performance of the model. Moreover, the blood flow model can give early warning parameters of the corresponding portal vein trunk and portal vein microtubules for thrombosis and liver cirrhosis. This model presents the complete process of blood flow from sinusoids to the portal vein, adapts to the diagnosis of portal hypertension of thrombosis and liver cirrhosis, and provides a new method for noninvasive portal vein pressure detection from the perspective of biomechanics.
Collapse
|