101
|
Stoszko M, Ne E, Abner E, Mahmoudi T. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol 2019; 38:37-53. [PMID: 31323521 DOI: 10.1016/j.coviro.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Erik Abner
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
102
|
Wong VC, Bass VL, Bullock ME, Chavali AK, Lee REC, Mothes W, Gaudet S, Miller-Jensen K. NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise. Cell Rep 2019; 22:585-599. [PMID: 29346759 DOI: 10.1016/j.celrep.2017.12.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022] Open
Abstract
Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF.
Collapse
Affiliation(s)
- Victor C Wong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Victor L Bass
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - M Elise Bullock
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Arvind K Chavali
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Robin E C Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Suzanne Gaudet
- Department of Cancer Biology and Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Kathryn Miller-Jensen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
103
|
Krasnopolsky S, Marom L, Victor RA, Kuzmina A, Schwartz JC, Fujinaga K, Taube R. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology 2019; 16:16. [PMID: 31238957 PMCID: PMC6593535 DOI: 10.1186/s12977-019-0478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background The human immunodeficiency virus (HIV) cell reservoir is currently a main obstacle towards complete eradication of the virus. This infected pool is refractory to anti-viral therapy and harbors integrated proviruses that are transcriptionally repressed but replication competent. As transcription silencing is key for establishing the HIV reservoir, significant efforts have been made to understand the mechanism that regulate HIV gene transcription, and the role of the elongation machinery in promoting this step. However, while the role of the super elongation complex (SEC) in enhancing transcription activation of HIV is well established, the function of SEC in modulating viral latency is less defined and its cell partners are yet to be identified. Results In this study we identify fused in sarcoma (FUS) as a partner of AFF4 in cells. FUS inhibits the activation of HIV transcription by AFF4 and ELL2, and silences overall HIV gene transcription. Concordantly, depletion of FUS elevates the occupancy of AFF4 and Cdk9 on the viral promoter and activates HIV gene transcription. Live cell imaging demonstrates that FUS co-localizes with AFF4 within nuclear punctuated condensates, which are disrupted upon treating cells with aliphatic alcohol. In HIV infected cells, knockout of FUS delays the gradual entry of HIV into latency, and similarly promotes viral activation in a T cell latency model that is treated with JQ1. Finally, effects of FUS on HIV gene transcription are also exhibited genome wide, where FUS mainly occupies gene promoters at transcription starting sites, while its knockdown leads to an increase in AFF4 and Cdk9 occupancy on gene promoters of FUS affected genes. Conclusions Towards eliminating the HIV infected reservoir, understanding the mechanisms by which the virus persists in the face of therapy is important. Our observations show that FUS regulates both HIV and global gene transcription and modulates viral latency, thus can potentially serve as a target for future therapy that sets to reactivate HIV from its latent state. Electronic supplementary material The online version of this article (10.1186/s12977-019-0478-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Lital Marom
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel A Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
104
|
Affiliation(s)
- Una O'Doherty
- Division of Transfusion Medicine and Therapeutic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
105
|
Yan J, Shun MC, Zhang Y, Hao C, Skowronski J. HIV-1 Vpr counteracts HLTF-mediated restriction of HIV-1 infection in T cells. Proc Natl Acad Sci U S A 2019; 116:9568-9577. [PMID: 31019079 PMCID: PMC6511057 DOI: 10.1073/pnas.1818401116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses, including HIV-1, possess the ability to enter the nucleus through nuclear pore complexes and can infect interphase cells, including those actively replicating chromosomal DNA. Viral accessory proteins hijack host cell E3 enzymes to antagonize intrinsic defenses, and thereby provide a more permissive environment for virus replication. The HIV-1 Vpr accessory protein reprograms CRL4DCAF1 E3 to antagonize select postreplication DNA repair enzymes and activates the DNA damage checkpoint in the G2 cell cycle phase. However, little is known about the roles played by these Vpr targets in HIV-1 replication. Here, using a sensitive pairwise replication competition assay, we show that Vpr endows HIV-1 with a strong replication advantage in activated primary CD4+ T cells and established T cell lines. This effect is disabled by a Vpr mutation that abolishes binding to CRL4DCAF1 E3, thereby disrupting Vpr antagonism of helicase-like transcription factor (HLTF) DNA helicase and other DNA repair pathway targets, and by another mutation that prevents induction of the G2 DNA damage checkpoint. Consistent with these findings, we also show that HLTF restricts HIV-1 replication, and that this restriction is antagonized by HIV-1 Vpr. Furthermore, our data imply that HIV-1 Vpr uses additional, yet to be identified mechanisms to facilitate HIV-1 replication in T cells. Overall, we demonstrate that multiple aspects of the cellular DNA repair machinery restrict HIV-1 replication in dividing T cells, the primary target of HIV-1 infection, and describe newly developed approaches to dissect key components.
Collapse
Affiliation(s)
- Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Ming-Chieh Shun
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Yi Zhang
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Caili Hao
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| |
Collapse
|
106
|
Pinto DO, Scott TA, DeMarino C, Pleet ML, Vo TT, Saifuddin M, Kovalskyy D, Erickson J, Cowen M, Barclay RA, Zeng C, Weinberg MS, Kashanchi F. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology 2019; 16:13. [PMID: 31036006 PMCID: PMC6489247 DOI: 10.1186/s12977-019-0475-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/20/2019] [Indexed: 01/03/2023] Open
Abstract
Background HIV-1 patients receiving combination antiretroviral therapy (cART) survive infection but require life-long adherence at high expense. In chronic cART-treated patients with undetectable viral titers, cell-associated viral RNA is still detectable, pointing to low-level viral transcriptional leakiness. To date, there are no FDA-approved drugs against HIV-1 transcription. We have previously shown that F07#13, a third generation Tat peptide mimetic with competitive activity against Cdk9/T1-Tat binding sites, inhibits HIV-1 transcription in vitro and in vivo. Results Here, we demonstrate that increasing concentrations of F07#13 (0.01, 0.1, 1 µM) cause a decrease in Tat levels in a dose-dependent manner by inhibiting the Cdk9/T1-Tat complex formation and subsequent ubiquitin-mediated Tat sequestration and degradation. Our data indicate that complexes I and IV contain distinct patterns of ubiquitinated Tat and that transcriptional inhibition induced by F07#13 causes an overall reduction in Tat levels. This reduction may be triggered by F07#13 but ultimately is mediated by TAR-gag viral RNAs that bind suppressive transcription factors (similar to 7SK, NRON, HOTAIR, and Xist lncRNAs) to enhance transcriptional gene silencing and latency. These RNAs complex with PRC2, Sin3A, and Cul4B, resulting in epigenetic modifications. Finally, we observed an F07#13-mediated decrease of viral burden by targeting the R region of the long terminal repeat (HIV-1 promoter region, LTR), promoting both paused polymerases and increased efficiency of CRISPR/Cas9 editing in infected cells. This implies that gene editing may be best performed under a repressed transcriptional state. Conclusions Collectively, our results indicate that F07#13, which can terminate RNA Polymerase II at distinct sites, can generate scaffold RNAs, which may assemble into specific sets of “RNA Machines” that contribute to gene regulation. It remains to be seen whether these effects can also be seen in various clades that have varying promoter strength, mutant LTRs, and in patient samples. Electronic supplementary material The online version of this article (10.1186/s12977-019-0475-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tristan A Scott
- Center for Gene Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thy T Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mohammed Saifuddin
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dmytro Kovalskyy
- Protein Engineering Department, Institute of Molecular Biology and Genetics, UAS, Kiev, Ukraine
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Wits/SA MRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA. .,Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| |
Collapse
|
107
|
Zerbato JM, Purves HV, Lewin SR, Rasmussen TA. Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 2019; 38:1-9. [PMID: 31048093 DOI: 10.1016/j.coviro.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) are a major barrier to cure. One strategy to eliminate latency is by activating viral transcription, commonly called latency reversal. Several small non-randomised clinical trials of latency reversing agents (LRAs) in HIV-infected individuals on ART increased viral production, but disappointingly did not reduce the number of latently infected cells or delay time to viral rebound following cessation of ART. More recent approaches aimed at reversing latency include compounds that both activate virus and also modulate immunity to enhance clearance of infected cells. These immunomodulatory LRAs include toll-like receptor agonists, immune checkpoint inhibitors and some cytokines. Here, we provide a brief review of the rationale for transcription-activating and immunomodulatory LRAs, discuss recent clinical trials and some suggestions for combination approaches and research priorities for the future.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Harrison V Purves
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
108
|
Li C, Mousseau G, Valente ST. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 2019; 12:23. [PMID: 30992052 PMCID: PMC6466689 DOI: 10.1186/s13072-019-0267-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcription from the integrated HIV-1 promoter is directly governed by its chromatin environment, and the nucleosome-1 downstream from the transcription start site directly impedes transcription from the HIV-1 promoter. The HIV-1 Tat protein regulates the passage from viral latency to active transcription by binding to the viral mRNA hairpin (TAR) and recruiting transcriptional factors to promote transcriptional elongation. The Tat inhibitor didehydro-Cortistatin A (dCA) inhibits transcription and overtime, the lack of low-grade transcriptional events, triggers epigenetic changes at the latent loci that "lock" HIV transcription in a latent state. RESULTS Here we investigated those epigenetic changes using multiple cell line models of HIV-1 latency and active transcription. We demonstrated that dCA treatment does not alter the classic nucleosome positioning at the HIV-1 promoter, but promotes tighter nucleosome/DNA association correlating with increased deacetylated H3 occupancy at nucleosome-1. Recruitment of the SWI/SNF chromatin remodeling complex PBAF, necessary for Tat-mediated transactivation, is also inhibited, while recruitment of the repressive BAF complex is enhanced. These results were supported by loss of RNA polymerase II recruitment on the HIV genome, even during strong stimulation with latency-reversing agents. No epigenetic changes were detected in cell line models of latency with Tat-TAR incompetent proviruses confirming the specificity of dCA for Tat. CONCLUSIONS We characterized the dCA-mediated epigenetic signature on the HIV genome, which translates into potent blocking effects on HIV expression, further strengthening the potential of Tat inhibitors in "block-and-lock" functional cure approaches.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
109
|
Abstract
Current primary cell models for HIV latency correlate poorly with the reactivation behavior of patient cells. We have developed a new model, called QUECEL, which generates a large and homogenous population of latently infected CD4+ memory cells. By purifying HIV-infected cells and inducing cell quiescence with a defined cocktail of cytokines, we have eliminated the largest problems with previous primary cell models of HIV latency: variable infection levels, ill-defined polarization states, and inefficient shutdown of cellular transcription. Latency reversal in the QUECEL model by a wide range of agents correlates strongly with RNA induction in patient samples. This scalable and highly reproducible model of HIV latency will permit detailed analysis of cellular mechanisms controlling HIV latency and reactivation. The latent HIV reservoir is generated following HIV infection of activated effector CD4 T cells, which then transition to a memory phenotype. Here, we describe an ex vivo method, called QUECEL (quiescent effector cell latency), that mimics this process efficiently and allows production of large numbers of latently infected CD4+ T cells. Naïve CD4+ T cells were polarized into the four major T cell subsets (Th1, Th2, Th17, and Treg) and subsequently infected with a single-round reporter virus which expressed GFP/CD8a. The infected cells were purified and coerced into quiescence using a defined cocktail of cytokines, including tumor growth factor beta, interleukin-10 (IL-10), and IL-8, producing a homogeneous population of latently infected cells. Flow cytometry and transcriptome sequencing (RNA-Seq) demonstrated that the cells maintained the correct polarization phenotypes and had withdrawn from the cell cycle. Key pathways and gene sets enriched during transition from quiescence to reactivation include E2F targets, G2M checkpoint, estrogen response late gene expression, and c-myc targets. Reactivation of HIV by latency-reversing agents (LRAs) closely mimics RNA induction profiles seen in cells from well-suppressed HIV patient samples using the envelope detection of in vitro transcription sequencing (EDITS) assay. Since homogeneous populations of latently infected cells can be recovered, the QUECEL model has an excellent signal-to-noise ratio and has been extremely consistent and reproducible in numerous experiments performed during the last 4 years. The ease, efficiency, and accuracy of the mimicking of physiological conditions make the QUECEL model a robust and reproducible tool to study the molecular mechanisms underlying HIV latency.
Collapse
|
110
|
Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. Antiviral Res 2019; 166:19-34. [PMID: 30914265 DOI: 10.1016/j.antiviral.2019.03.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/05/2023]
Abstract
The implementation of antiretroviral therapy 23 years ago has rendered HIV infection clinically manageable. However, the disease remains incurable, since it establishes latent proviral reservoirs, which in turn can stochastically begin reproducing viral particles throughout the patient's lifetime. Viral latency itself depends in large part on the silencing environment of the infected host cell, which can be chemically manipulated. "Shock and kill" therapy intends to reverse proviral quiescence by inducing transcription with pharmaceuticals and allowing a combination of antiretroviral therapy, host immune clearance and HIV-cytolysis to remove latently infected cells, leading to a complete cure. Over 160 compounds functioning as latency-reversing agents (LRAs) have been identified to date, but none of the candidates has yet led to a promising functional cure. Furthermore, fundamental bioinformatic and clinical research from the past decade has highlighted the complexity and highly heterogeneous nature of the proviral reservoirs, shedding doubt on the "shock and kill" concept. Alternative therapies such as the HIV transcription-inhibiting "block and lock" strategy are therefore being considered. In this review we describe the variety of existing classes of LRAs, discuss their current drawbacks and highlight the potential for combinatorial "shocktail" therapies for potent proviral reactivation. We also suggest investigating LRAs with lesser-known mechanisms of action, and examine the feasibility of "block and lock" therapy.
Collapse
Affiliation(s)
- Erik Abner
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
111
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
112
|
Giuliani E, Desimio MG, Doria M. Hexamethylene bisacetamide impairs NK cell-mediated clearance of acute T lymphoblastic leukemia cells and HIV-1-infected T cells that exit viral latency. Sci Rep 2019; 9:4373. [PMID: 30867508 PMCID: PMC6416400 DOI: 10.1038/s41598-019-40760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
The hexamethylene bisacetamide (HMBA) anticancer drug was dismissed due to limited efficacy in leukemic patients but it may re-enter into the clinics in HIV-1 eradication strategies because of its recently disclosed capacity to reactivate latent virus. Here, we investigated the impact of HMBA on the cytotoxicity of natural killer (NK) cells against acute T lymphoblastic leukemia (T-ALL) cells or HIV-1-infected T cells that exit from latency. We show that in T-ALL cells HMBA upmodulated MICB and ULBP2 ligands for the NKG2D activating receptor. In a primary CD4+ T cell-based latency model, HMBA did not reactivate HIV-1, yet enhanced ULBP2 expression on cells harboring virus reactivated by prostratin (PRO). However, HMBA reduced the expression of NKG2D and its DAP10 adaptor in NK cells, hence impairing NKG2D-mediated cytotoxicity and DAP10-dependent response to IL-15 stimulation. Alongside, HMBA dampened killing of T-ALL targets by IL-15-activated NK cells and impaired NK cell-mediated clearance of PRO-reactivated HIV-1+ cells. Overall, our results demonstrate a dominant detrimental effect of HMBA on the NKG2D pathway that crucially controls NK cell-mediated killing of tumors and virus-infected cells, providing one possible explanation for poor clinical outcome in HMBA-treated cancer patients and raising concerns for future therapeutic application of this drug.
Collapse
Affiliation(s)
- Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Maria Giovanna Desimio
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
113
|
Alvarez-Carbonell D, Ye F, Ramanath N, Dobrowolski C, Karn J. The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells. J Neuroimmune Pharmacol 2019; 14:94-109. [PMID: 29987742 PMCID: PMC6394485 DOI: 10.1007/s11481-018-9798-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
Abstract
We have developed models of HIV latency using microglia derived from adult human patient brain cortex and transformed with the SV40 T large and hTERT antigens. Latent clones infected by HIV reporter viruses display high levels of spontaneous HIV reactivation in culture. BrainPhys, a medium highly representative of the CNS extracellular environment, containing low glucose and 1% FBS, reduced, but did not prevent, HIV reactivation. We hypothesized that spontaneous HIV reactivation in culture was due to the expression of pro-inflammatory genes, such as TNF-α, taking place in the absence of the natural inhibitory signals from astrocytes and neurons. Indeed, expression and secretion of TNF-α is strongly reduced in HIV-latently infected microglia compared to the subset of cells that have undergone spontaneous HIV reactivation. Whereas inhibitors of NF-κB or of macrophage activation only had a short-term silencing effect, addition of dexamethasone (DEXA), a glucocorticoid receptor (GR) agonist and mediator of anti-inflammation, silenced the HIV provirus in a long-term, and shRNA-mediated knock-down of GR activated HIV. DEXA also decreased secretion of a number of cytokines, including TNF-α. Chromatin immunoprecipitation analysis revealed that DEXA strongly increased GR occupancy at the HIV promoter, and reduced histone 3 acetylated levels. Moreover, TNF-α expression inhibitors in combination with DEXA induced further HIV silencing and increased the histone 3 lysine 27 tri-methylated epigenetic mark of repression at the HIV promoter region. We conclude that GR is a critical repressor of HIV transcription in microglia, and a novel potential pharmacological target to restrict HIV expression in the CNS.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
114
|
Couturier J, Orozco AF, Liu H, Budhiraja S, Siwak EB, Nehete PN, Sastry KJ, Rice AP, Lewis DE. Regulation of cyclin T1 during HIV replication and latency establishment in human memory CD4 T cells. Virol J 2019; 16:22. [PMID: 30786885 PMCID: PMC6381639 DOI: 10.1186/s12985-019-1128-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/12/2019] [Indexed: 01/30/2023] Open
Abstract
Background The regulatory cyclin, Cyclin T1 (CycT1), is a host factor essential for HIV-1 replication in CD4 T cells and macrophages. The importance of CycT1 and the Positive Transcription Elongation Factor b (P-TEFb) complex for HIV replication is well-established, but regulation of CycT1 expression and protein levels during HIV replication and latency establishment in CD4 T cells is less characterized. Methods To better define the regulation of CycT1 levels during HIV replication in CD4 T cells, multiparameter flow cytometry was utilized to study the interaction between HIV replication (intracellular p24) and CycT1 of human peripheral blood memory CD4 T cells infected with HIV in vitro. CycT1 was further examined in CD4 T cells of human lymph nodes. Results In activated (CD3+CD28 costimulation) uninfected blood memory CD4 T cells, CycT1 was most significantly upregulated in maximally activated (CD69+CD25+ and HLA.DR+CD38+) cells. In memory CD4 T cells infected with HIV in vitro, two distinct infected populations of p24+CycT1+ and p24+CycT1- cells were observed during 7 days infection, suggestive of different phases of productive HIV replication and subsequent latency establishment. Intriguingly, p24+CycT1- cells were the predominant infected population in activated CD4 T cells, raising the possibility that productively infected cells may transition into latency subsequent to CycT1 downregulation. Additionally, when comparing infected p24+ cells to bystander uninfected p24- cells (after bulk HIV infections), HIV replication significantly increased T cell activation (CD69, CD25, HLA.DR, CD38, and Ki67) without concomitantly increasing CycT1 protein levels, possibly due to hijacking of P-TEFb by the viral Tat protein. Lastly, CycT1 was constitutively expressed at higher levels in lymph node CD4 T cells compared to blood T cells, potentially enhancing latency generation in lymphoid tissues. Conclusions CycT1 is most highly upregulated in maximally activated memory CD4 T cells as expected, but may become less associated with T cell activation during HIV replication. The progression into latency may further be predicated by substantial generation of p24+CycT1- cells during HIV replication. Electronic supplementary material The online version of this article (10.1186/s12985-019-1128-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Aaron F Orozco
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongbing Liu
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sona Budhiraja
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Edward B Siwak
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pramod N Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - K Jagannadha Sastry
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew P Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
115
|
Salifou K, Kiernan R, Contreras X. Des complexes protéiques impliqués dans la surveillance de l’ARN nucléaire inhibent la transcription du VIH-1. Med Sci (Paris) 2019; 35:113-115. [DOI: 10.1051/medsci/2019018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
116
|
Ma X, Yang T, Luo Y, Wu L, Jiang Y, Song Z, Pan T, Liu B, Liu G, Liu J, Yu F, He Z, Zhang W, Yang J, Liang L, Guan Y, Zhang X, Li L, Cai W, Tang X, Gao S, Deng K, Zhang H. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019; 8:42426. [PMID: 30652970 PMCID: PMC6361614 DOI: 10.7554/elife.42426] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Comprehensively elucidating the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) latency is a priority to achieve a functional cure. As current 'shock' agents failed to efficiently reactivate the latent reservoir, it is important to discover new targets for developing more efficient latency-reversing agents (LRAs). Here, we found that TRIM28 potently suppresses HIV-1 expression by utilizing both SUMO E3 ligase activity and epigenetic adaptor function. Through global site-specific SUMO-MS study and serial SUMOylation assays, we identified that P-TEFb catalytic subunit CDK9 is significantly SUMOylated by TRIM28 with SUMO4. The Lys44, Lys56 and Lys68 residues on CDK9 are SUMOylated by TRIM28, which inhibits CDK9 kinase activity or prevents P-TEFb assembly by directly blocking the interaction between CDK9 and Cyclin T1, subsequently inhibits viral transcription and contributes to HIV-1 latency. The manipulation of TRIM28 and its consequent SUMOylation pathway could be the target for developing LRAs. The human immunodeficiency virus-1, or HIV-1, infects certain human cells, including white blood cells. One reason the infection is incurable is because the virus can integrate its genetic information into its host, and essentially ‘sleep’ within the host cell, a process called latency. This helps to hide HIV-1 from the immune system and stops it getting destroyed. Latency represents a critical challenge in treating and curing HIV-1. One proposed cure for HIV-1 involves ‘shocking’ the viruses out of latency so that they can be eliminated. Applying this so-called shock and kill approach means scientists need to understand more about how latency is maintained. Previous evidence shows that latency requires proteins known as histone deacetylases and histone methyltransferases. Certain gene-silencing proteins called transcription suppressors are also involved. Ma et al. have now examined latent HIV-1 in several kinds of human cells grown in the laboratory. The cells were modified to make certain proteins at much lower levels than normal. The experiments showed that the loss of a protein called TRIM28 ‘wakes up’ latent HIV-1. TRIM28 attaches chemical marks called SUMOylations to gene regulators in the cell. These SUMOylations restrict the activity of HIV-1’s genes, which is important to maintain latency. Specifically, TRIM28 adds SUMOylations to a protein named CDK9 at three key positions. Reducing the levels of TRIM28 made it easier to shock many HIV-1 in infected cells out of latency. With further investigation, targeting TRIM28 may one day be used to treat HIV-1 infection through a shock and kill method.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuewen Luo
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yawen Jiang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jun Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fei Yu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhangping He
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanying Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liting Liang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Laboratory Platform for Medical Science, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
117
|
Abstract
Studies of RNA Polymerase II (Pol II) transcription of the HIV-1 genome are of clinical interest, as the insight gained may lead to strategies to selectively reactivate latent viruses in patients in whom viral replication is suppressed by antiviral drugs. Such a targeted reactivation may contribute to a functional cure of infection. This review discusses five Cyclin-dependent kinases - CDK7, CDK9, CDK11, CDK2, and CDK8 - involved in transcription and processing of HIV-1 RNA. CDK7 is required for Pol II promoter clearance of reactivated viruses; CDK7 also functions as an activating kinase for CDK9 when resting CD4+ T cells harboring latent HIV-1 are activated. CDK9 is targeted by the viral Tat protein and is essential for productive Pol II elongation of the HIV-1 genome. CDK11 is associated with the TREX/THOC complex and it functions in the 3' end processing and polyadenylation of HIV-1 transcripts. CDK2 phosphorylates Tat and CDK9 and this stimulates Tat activation of Pol II transcription. CDK8 may stimulate Pol II transcription of the HIV-1 genome through co-recruitment with NF-κB to the viral promoter. Some notable open questions are discussed concerning the roles of these CDKs in HIV-1 replication and viral latency.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
118
|
Matsuda K, Kobayakawa T, Tsuchiya K, Hattori SI, Nomura W, Gatanaga H, Yoshimura K, Oka S, Endo Y, Tamamura H, Mitsuya H, Maeda K. Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C-induced HIV latency reversal. J Biol Chem 2018; 294:116-129. [PMID: 30413535 PMCID: PMC6322896 DOI: 10.1074/jbc.ra118.005798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Indexed: 01/25/2023] Open
Abstract
Latency-reversing agents (LRAs) are considered a potential strategy for curing cells of HIV-1 infection. Certain protein kinase C (PKC) activators have been previously reported to be LRAs because they can reverse HIV latency. In the present study, we examined the activities of a panel of benzolactam derivatives against cells latently infected with HIV. Using determination of p24 antigen in cell supernatants or altered intracellular GFP expression to measure HIV reactivation from latently infected cells along with a cytotoxicity assay, we found that some of the compounds exhibited latency-reversing activity, which was followed by enhanced release of HIV particles from the cells. One derivative, BL-V8-310, displayed activity in ACH-2 and J-Lat cells latently infected with HIV at a concentration of 10 nm or higher, which was superior to the activity of another highly active PKC activator, prostratin. These results were confirmed with peripheral blood cells from HIV-infected patients. We also found that these drugs up-regulate the expression of caspase 3 and enhance apoptosis specifically in latently HIV-infected cells. Moreover, combining BL-V8-310 with a bromodomain-containing 4 (BRD4) inhibitor, JQ1, not only enhanced HIV latency-reversing activity, but also reduced the effect on cytotoxic cytokine secretion from CD4+ T-cells induced by BL-V8-310 alone. Our results suggest that BL-V8-310 and its related benzolactam derivatives are potential LRA lead compounds that are effective in reversing HIV latency and reducing viral reservoirs in HIV-positive individuals with few adverse effects.
Collapse
Affiliation(s)
- Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Centre, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892-1868
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan.
| |
Collapse
|
119
|
HIV-1 Latency Is Maintained by the Estrogen Receptor. Trends Microbiol 2018; 26:891-892. [PMID: 30292640 DOI: 10.1016/j.tim.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022]
Abstract
Persistence of the latent reservoir remains a challenge to curing HIV infection. Using shRNA screening, new insights into the molecular mechanisms underlying latency regulation indicate that the estrogen receptor is a potent repressor of proviral reactivation and may serve as a promising therapeutic target in combination with other latency-reversing agents.
Collapse
|
120
|
Schilthuis M, Verkaik S, Walhof M, Philipose A, Harlow O, Kamp D, Kim BR, Shen A. Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4+ T cells. Virol J 2018; 15:152. [PMID: 30285810 PMCID: PMC6169068 DOI: 10.1186/s12985-018-1068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background An HIV cure has not yet been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. In vitro, it is difficult to infect resting CD4+ T cells with HIV-1, but infections readily occur in vivo. Endothelial cells (EC) line the lymphatic vessels in the lymphoid tissues and regularly interact with resting CD4+ T cells in vivo. Others and we have shown that EC promoted productive and latent HIV infection of resting CD4+ T cells. However, the EC used in previous studies were from human umbilical cords (HUVEC), which are macrovascular; whereas EC residing in the lymphoid tissues are microvascular. Methods In this study, we investigated the effects of microvascular EC stimulation of resting CD4+ T cells in establishing viral infection and latency. Human resting and activated CD4+ T cells were cultured alone or with endothelial cells and infected with a pseudotyped virus. Infection levels, indicated by green fluorescent protein expression, were measured with flow cytometry and data was analyzed using Flowing Software and Excel. Results We confirmed that EC from lymphatic tissue (LEC) were able to promote HIV infection and latency formation in resting CD4+ T cells while keeping them in resting phenotype, and that IL-6 was involved in LEC stimulation of CD4+ T cells. However, there are some differences between stimulation by LEC and HUVEC. Unlike HUVEC stimulation, we demonstrated that LEC stimulation of resting memory T cells does not depend on major histocompatibility complex class II (MHC II) interactions with T cell receptors (TCR) and that CD2-CD58 interactions were not involved in LEC stimulation of resting T cells. LEC also secreted lower levels of IL-6 than HUVEC. We also found that LEC stimulation increases HIV infection rates in activated CD4+ T cells. Conclusions While differences in T cell stimulation between lymphatic EC and HUVEC were observed, we confirmed that similar to macrovascular EC stimulation, microvascular EC stimulation promotes direct HIV infection and latency formation in resting CD4+ T cells without T cell activation. LEC stimulation also increased infection rates in activated CD4+ T cells. Additionally, the present study established a physiologically more relevant model of EC interactions with resting CD4+ T cells and further highlighted the importance of investigating the roles of EC in HIV infection and latency in both resting and activated CD4+ T cells.
Collapse
Affiliation(s)
- Meghan Schilthuis
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Seth Verkaik
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Mackenzie Walhof
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Andrew Philipose
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Olivia Harlow
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Derrick Kamp
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Bo Ram Kim
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Anding Shen
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
121
|
Chandra PK, Gerlach SL, Wu C, Khurana N, Swientoniewski LT, Abdel-Mageed AB, Li J, Braun SE, Mondal D. Mesenchymal stem cells are attracted to latent HIV-1-infected cells and enable virus reactivation via a non-canonical PI3K-NFκB signaling pathway. Sci Rep 2018; 8:14702. [PMID: 30279437 PMCID: PMC6168583 DOI: 10.1038/s41598-018-32657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Persistence of latent HIV-1 in macrophages (MACs) and T-helper lymphocytes (THLs) remain a major therapeutic challenge. Currently available latency reversing agents (LRAs) are not very effective in vivo. Therefore, understanding of physiologic mechanisms that dictate HIV-1 latency/reactivation in reservoirs is clearly needed. Mesenchymal stromal/stem cells (MSCs) regulate the function of immune cells; however, their role in regulating virus production from latently-infected MACs & THLs is not known. We documented that exposure to MSCs or their conditioned media (MSC-CM) rapidly increased HIV-1 p24 production from the latently-infected U1 (MAC) & ACH2 (THL) cell lines. Exposure to MSCs also increased HIV-1 long terminal repeat (LTR) directed gene expression in the MAC and THL reporter lines, U937-VRX and J-Lat (9.2), respectively. MSCs exposed to CM from U1 cells (U1-CM) showed enhanced migratory ability towards latently-infected cells and retained their latency-reactivation potential. Molecular studies showed that MSC-mediated latency-reactivation was dependent upon both the phosphatidyl inositol-3-kinase (PI3K) and nuclear factor-κB (NFκB) signaling pathways. The pre-clinically tested inhibitors of PI3K (PX-866) and NFκB (CDDO-Me) suppressed MSC-mediated HIV-1 reactivation. Furthermore, coexposure to MSC-CM enhanced the latency-reactivation efficacy of the approved LRAs, vorinostat and panobinostat. Our findings on MSC-mediated latency-reactivation may provide novel strategies against persistent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samantha L Gerlach
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, LA, USA
| | - Namrata Khurana
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jian Li
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
122
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
123
|
Agosto LM, Henderson AJ. CD4 + T Cell Subsets and Pathways to HIV Latency. AIDS Res Hum Retroviruses 2018; 34:780-789. [PMID: 29869531 DOI: 10.1089/aid.2018.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.
Collapse
Affiliation(s)
- Luis M. Agosto
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
124
|
Abstract
Despite the success of antiretroviral therapy (ART), there is currently no HIV cure and treatment is life long. HIV persists during ART due to long-lived and proliferating latently infected CD4+ T cells. One strategy to eliminate latency is to activate virus production using latency reversing agents (LRAs) with the goal of triggering cell death through virus-induced cytolysis or immune-mediated clearance. However, multiple studies have demonstrated that activation of viral transcription alone is insufficient to induce cell death and some LRAs may counteract cell death by promoting cell survival. Here, we review new approaches to induce death of latently infected cells through apoptosis and inhibition of pathways critical for cell survival, which are often hijacked by HIV proteins. Given advances in the commercial development of compounds that induce apoptosis in cancer chemotherapy, these agents could move rapidly into clinical trials, either alone or in combination with LRAs, to eliminate latent HIV infection.
Collapse
|
125
|
Xu M, Moresco JJ, Chang M, Mukim A, Smith D, Diedrich JK, Yates JR, Jones KA. SHMT2 and the BRCC36/BRISC deubiquitinase regulate HIV-1 Tat K63-ubiquitylation and destruction by autophagy. PLoS Pathog 2018; 14:e1007071. [PMID: 29791506 PMCID: PMC5988312 DOI: 10.1371/journal.ppat.1007071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/05/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Tat is a key regulator of viral transcription, however little is known about the mechanisms that control its turnover in T cells. Here we use a novel proteomics technique, called DiffPOP, to identify the molecular target of JIB-04, a small molecule compound that potently and selectively blocks HIV-1 Tat expression, transactivation, and virus replication in T cell lines. Mass-spectrometry analysis of whole-cell extracts from 2D10 Jurkat T cells revealed that JIB-04 targets Serine Hydroxymethyltransferase 2 (SHMT2), a regulator of glycine biosynthesis and an adaptor for the BRCC36 K63Ub-specific deubiquitinase in the BRISC complex. Importantly, knockdown of SHMT1,2 or BRCC36, or exposure of cells to JIB-04, strongly increased Tat K63Ub-dependent destruction via autophagy. Moreover, point mutation of multiple lysines in Tat, or knockdown of BRCC36 or SHMT1,2, was sufficient to prevent destruction of Tat by JIB-04. We conclude that HIV-1 Tat levels are regulated through K63Ub-selective autophagy mediated through SHMT1,2 and the BRCC36 deubiquitinase.
Collapse
Affiliation(s)
- Muyu Xu
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - James J. Moresco
- Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Max Chang
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Amey Mukim
- Division of Infectious Diseases, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Davey Smith
- Division of Infectious Diseases, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Jolene K. Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, United States of America
| | - John R. Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, United States of America
| | - Katherine A. Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
126
|
Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S, Karn J. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J Biol Chem 2018; 293:10009-10025. [PMID: 29743242 DOI: 10.1074/jbc.ra117.001347] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/29/2018] [Indexed: 11/06/2022] Open
Abstract
The HIV trans-activator Tat recruits the host transcription elongation factor P-TEFb to stimulate proviral transcription. Phosphorylation of Thr-186 on the activation loop (T-loop) of cyclin-dependent kinase 9 (CDK9) is essential for its kinase activity and assembly of CDK9 and cyclin T1 (CycT1) to form functional P-TEFb. Phosphorylation of a second highly conserved T-loop site, Ser-175, alters the competitive binding of Tat and the host recruitment factor bromodomain containing 4 (BRD4) to P-TEFb. Here, we investigated the intracellular mechanisms that regulate these key phosphorylation events required for HIV transcription. Molecular dynamics simulations revealed that the CDK9/CycT1 interface is stabilized by intramolecular hydrogen bonding of pThr-186 by an arginine triad and Glu-96 of CycT1. Arginine triad substitutions that disrupted CDK9/CycT1 assembly accumulated Thr-186-dephosphorylated CDK9 associated with the cytoplasmic Hsp90/Cdc37 chaperone. The Hsp90/Cdc37/CDK9 complex was also present in resting T cells, which lack CycT1. Hsp90 inhibition in primary T cells blocked P-TEFb assembly, disrupted Thr-186 phosphorylation, and suppressed proviral reactivation. The selective CDK7 inhibitor THZ1 blocked CDK9 phosphorylation at Ser-175, and in vitro kinase assays confirmed that CDK7 activity is principally responsible for Ser-175 phosphorylation. Mutation of Ser-175 to Lys had no effect on CDK9 kinase activity or P-TEFb assembly but strongly suppressed both HIV expression and BRD4 binding. We conclude that the transfer of CDK9 from the Hsp90/Cdc37 complex induced by Thr-186 phosphorylation is a key step in P-TEFb biogenesis. Furthermore, we demonstrate that CDK7-mediated Ser-175 phosphorylation is a downstream nuclear event essential for facilitating CDK9 T-loop interactions with Tat.
Collapse
Affiliation(s)
- Uri Mbonye
- From the Department of Molecular Biology and Microbiology and
| | - Benlian Wang
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Giridharan Gokulrangan
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Wuxian Shi
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Sichun Yang
- the Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jonathan Karn
- From the Department of Molecular Biology and Microbiology and
| |
Collapse
|
127
|
Li Z, Mbonye U, Feng Z, Wang X, Gao X, Karn J, Zhou Q. The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency. PLoS Pathog 2018; 14:e1007012. [PMID: 29684085 PMCID: PMC5933813 DOI: 10.1371/journal.ppat.1007012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/03/2018] [Accepted: 04/09/2018] [Indexed: 11/23/2022] Open
Abstract
The bromodomain protein Brd4 promotes HIV-1 latency by competitively inhibiting P-TEFb-mediated transcription induced by the virus-encoded Tat protein. Brd4 is recruited to the HIV LTR by interactions with acetyl-histones3 (AcH3) and AcH4. However, the precise modification pattern that it reads and the writer for generating this pattern are unknown. By examining a pool of latently infected proviruses with diverse integration sites, we found that the LTR characteristically has low AcH3 but high AcH4 content. This unusual acetylation profile attracts Brd4 to suppress the interaction of Tat with the host super elongation complex (SEC) that is essential for productive HIV transcription and latency reversal. KAT5 (lysine acetyltransferase 5), but not its paralogs KAT7 and KAT8, is found to promote HIV latency through acetylating H4 on the provirus. Antagonizing KAT5 removes AcH4 and Brd4 from the LTR, enhances the SEC loading, and reverses as well as delays, the establishment of latency. The pro-latency effect of KAT5 is confirmed in a primary CD4+ T cell latency model as well as cells from ART-treated patients. Our data thus indicate the KAT5-AcH4-Brd4 axis as a key regulator of latency and a potential therapeutic target to reactivate latent HIV reservoirs for eradication. A major impediment to the cure of HIV/AIDS is the viral latency. Previous studies have identified the bromodomain protein Brd4 as a promoter of HIV latency by binding to the viral LTR to inhibit Tat-induced transcription. Here, we discover that the LTR of latent HIV has low acetylated histone H3 (AcH3) but high AcH4 content, which recruits Brd4 to inhibit Tat-transactivation. Furthermore, the lysine acetyltransferase KAT5 but not the paralogs KAT7 and KAT8 promotes latency through acetylating H4 on the provirus. Antagonizing KAT5 removes AcH4 and Brd4 from the LTR, enhances loading of the Super Elongation Complex, and interferes with the establishment of latency. Thus, the KAT5-AcH4-Brd4 axis is a key regulator of HIV latency and a potential therapeutic target for eradicating latent HIV reservoirs.
Collapse
Affiliation(s)
- Zichong Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Zeming Feng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
128
|
Humanized mouse models to study pathophysiology and treatment of HIV infection. Curr Opin HIV AIDS 2018; 13:143-151. [DOI: 10.1097/coh.0000000000000440] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
129
|
Tietjen I, Williams DE, Read S, Kuang XT, Mwimanzi P, Wilhelm E, Markle T, Kinloch NN, Naphen CN, Tenney K, Mesplède T, Wainberg MA, Crews P, Bell B, Andersen RJ, Brumme ZL, Brockman MA. Inhibition of NF-κB-dependent HIV-1 replication by the marine natural product bengamide A. Antiviral Res 2018; 152:94-103. [PMID: 29476895 DOI: 10.1016/j.antiviral.2018.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/01/2022]
Abstract
HIV-1 inhibitors that act by mechanisms distinct from existing antiretrovirals can provide novel insights into viral replication and potentially inform development of new therapeutics. Using a multi-cycle HIV-1 replication assay, we screened 252 pure compounds derived from marine invertebrates and microorganisms and identified 6 (actinomycin Z2, bastadin 6, bengamide A, haliclonacyclamine A + B, keramamine C, neopetrosiamide B) that inhibited HIV-1 with 50% effective concentrations (EC50s) of 3.8 μM or less. The most potent inhibitor, bengamide A, blocked HIV-1 in a T cell line with an EC50 of 0.015 μM and in peripheral blood mononuclear cells with an EC50 of 0.032 μM. Bengamide A was previously described to inhibit NF-κB signaling. Consistent with this mechanism, bengamide A suppressed reporter expression from an NF-κB-driven minimal promoter and an HIV-1 long terminal repeat (LTR) with conserved NF-κB response elements, but lacked activity against an LTR construct with mutation of these elements. In single-cycle HIV-1 infection assays, bengamide A also suppressed viral protein expression when viruses encoded an intact LTR but exhibited minimal activity against those with mutated NF-κB elements. Finally, bengamide A did not inhibit viral DNA accumulation, indicating that it likely acts downstream of this step in HIV-1 replication. Our study identifies multiple new antiviral compounds including an unusually potent inhibitor of HIV-1 gene expression.
Collapse
Affiliation(s)
- Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaomei T Kuang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Emmanuelle Wilhelm
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tristan Markle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cassandra N Naphen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Brendan Bell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
130
|
Wang XQ, Palmer S. Single-molecule techniques to quantify and genetically characterise persistent HIV. Retrovirology 2018; 15:3. [PMID: 29316955 PMCID: PMC5761141 DOI: 10.1186/s12977-017-0386-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Antiretroviral therapy effectively suppresses, but does not eradicate HIV-1 infection. Persistent low-level HIV-1 can still be detected in plasma and cellular reservoirs even after years of effective therapy, and cessation of current treatments invariably results in resumption of viral replication. Efforts to eradicate persistent HIV-1 require a comprehensive examination of the quantity and genetic composition of HIV-1 within the plasma and infected cells located in the peripheral blood and tissues throughout the body. Single-molecule techniques, such as the single-copy assay and single-genome/proviral sequencing assays, have been employed to further our understanding of the source and viral dynamics of persistent HIV-1 during long-term effective therapy. The application of the single-copy assay, which quantifies plasma HIV-1 RNA down to a single copy, has revealed that viremia persists in the plasma and CSF after years of effective therapy. This low-level HIV-1 RNA also persists in the plasma following treatment intensification, treatment with latency reversing agents, cancer-related therapy, and bone marrow transplantation. Single-genome/proviral sequencing assays genetically characterise HIV-1 populations after passing through different selective pressures related to cell type, tissue type, compartment, or therapy. The application of these assays has revealed that the intracellular HIV-1 reservoir is stable and mainly located in CD4+ memory T cells. Moreover, this intracellular HIV-1 reservoir is primarily maintained by cellular proliferation due to homeostasis and antigenic stimulation, although cryptic replication may take place in anatomic sites where treatment is sub-optimal. The employment of single-genome/proviral sequencing showed that latency reversing agents broadly activate quiescent proviruses but do not clear the intracellular reservoir. Recently, full-length individual proviral sequencing assays have been developed and the application of these assays has revealed that the majority of intracellular HIV-1 DNA is genetically defective. In addition, the employment of these assays has shown that genetically intact proviruses are unequally distributed in memory T cell subsets during antiretroviral therapy. The application of single-molecule assays has enhanced the understanding of the source and dynamics of persistent HIV-1 in the plasma and cells of HIV-infected individuals. Future studies of the persistent HIV-1 reservoir and new treatment strategies to eradicate persistent virus will benefit from the utilization of these assays.
Collapse
Affiliation(s)
- Xiao Qian Wang
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| |
Collapse
|
131
|
Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM. HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol 2017; 24:192-203. [PMID: 29256041 PMCID: PMC5910454 DOI: 10.1007/s13365-017-0604-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
Most studies of HIV latency focus on the peripheral population of resting memory T cells, but the brain also contains a distinct reservoir of HIV-infected cells in microglia, perivascular macrophages, and astrocytes. Studying HIV in the brain has been challenging, since live cells are difficult to recover from autopsy samples and primate models of SIV infection utilize viruses that are more myeloid-tropic than HIV due to the expression of Vpx. Development of a realistic small animal model would greatly advance studies of this important reservoir and permit definitive studies of HIV latency. When radiation or busulfan-conditioned, immune-deficient NSG mice are transplanted with human hematopoietic stem cells, human cells from the bone marrow enter the brain and differentiate to express microglia-specific markers. After infection with replication competent HIV, virus was detected in these bone marrow-derived human microglia. Studies of HIV latency in this model would be greatly enhanced by the development of compounds that can selectively reverse HIV latency in microglial cells. Our studies have identified members of the CoREST repression complex as key regulators of HIV latency in microglia in both rat and human microglial cell lines. The monoamine oxidase (MAO) and potential CoREST inhibitor, phenelzine, which is brain penetrant, was able to stimulate HIV production in human microglial cell lines and human glial cells recovered from the brains of HIV-infected humanized mice. The humanized mice we have developed therefore show great promise as a model system for the development of strategies aimed at defining and reducing the CNS reservoir.
Collapse
Affiliation(s)
- George N Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|