101
|
Seo Y, Kim HS, Shin Y, Kang I, Choi SW, Yu KR, Seo KW, Kang KS. Excessive microglial activation aggravates olfactory dysfunction by impeding the survival of newborn neurons in the olfactory bulb of Niemann-Pick disease type C1 mice. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2193-203. [PMID: 25132229 DOI: 10.1016/j.bbadis.2014.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/26/2022]
Abstract
Progressive olfactory impairment is one of the earliest markers of neurodegeneration. However, the underlying mechanism for this dysfunction remains unclear. The present study investigated the possible role of microgliosis in olfactory deficits using a mouse model of Niemann-Pick disease type C1 (NPC1), which is an incurable neurodegenerative disorder with disrupted lipid trafficking. At 7weeks of age, NPC1 mutants showed a distinct olfactory impairment in an olfactory test compared with age-matched wild-type controls (WT). The marked loss of olfactory sensory neurons within the NPC1 affected olfactory bulb (NPC1-OB) suggests that NPC1 dysfunction impairs olfactory structure. Furthermore, the pool of neuroblasts in the OB was diminished in NPC1 mice despite the intact proliferative capacity of neural stem/progenitor cells in the subventricular zone. Instead, pro-inflammatory proliferating microglia accumulated extensively in the NPC1-OB as the disease progressed. To evaluate the impact of abnormal microglial activation on olfaction in NPC1 mice, a microglial inhibition study was performed using the anti-inflammatory agent Cyclosporin A (CsA). Importantly, long-term CsA treatment in NPC1 mice reduced reactive microgliosis, restored the survival of newly generated neurons in the OB and improved overall performance on the olfactory test. Therefore, our study highlights the possible role of microglia in the regulation of neuronal turnover in the OB and provides insight into the possible therapeutic applications of microglial inhibition in the attenuation or reversal of olfactory impairment.
Collapse
Affiliation(s)
- Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Institute for Stem Cell and Regenerative Medicine at Kangstem Biotech, Biotechnology Incubating Center, Seoul National University, Seoul 151-742, South Korea
| | - Yooyoung Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Kwang-Won Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Institute for Stem Cell and Regenerative Medicine at Kangstem Biotech, Biotechnology Incubating Center, Seoul National University, Seoul 151-742, South Korea.
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
102
|
Janssen A, Fonseca JO, Colares F, Silva L, Pedrosa ARP, Lima ER, van Wijk M, Pallini A, Oliveira CM, Sabelis MW, Lesna I. Time scales of associating food and odor by predator communities in the field. Behav Ecol 2014. [DOI: 10.1093/beheco/aru094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
103
|
Ma TF, Chen PH, Hu XQ, Zhao XL, Tian T, Lu W. Distinct modifications of convergent excitatory and inhibitory inputs in developing olfactory circuits. Neuroscience 2014; 269:245-55. [DOI: 10.1016/j.neuroscience.2014.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
|
104
|
Ruddigkeit L, Awale M, Reymond JL. Expanding the fragrance chemical space for virtual screening. J Cheminform 2014; 6:27. [PMID: 24876890 PMCID: PMC4037718 DOI: 10.1186/1758-2946-6-27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022] Open
Abstract
The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a “fragrance-like” (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications freely available at http://www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance chemical space.
Collapse
Affiliation(s)
- Lars Ruddigkeit
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
105
|
García LI, García-Bañuelos P, Aranda-Abreu GE, Herrera-Meza G, Coria-Avila GA, Manzo J. Activation of the cerebellum by olfactory stimulation in sexually naive male rats. Neurologia 2014; 30:264-9. [PMID: 24704247 DOI: 10.1016/j.nrl.2014.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The cerebellum has been linked to multiple functions, such as motor control, cognition, memory, and emotional processing. As for its involvement in the sensory systems, the role of the cerebellum in the sense of smell remains unclear. We suggest that sexually naive male rats will present increased neuronal activity in the cerebellar vermis after being stimulated with almond odour or oestrous odour from receptive females. METHODS We compared activity in the cerebellar vermis using Fos immunoreactivity after olfactory stimulation. Stimulation took place during 60 min in a cube-shaped acrylic chamber with a double bottom. Stimuli were clean woodchip bedding, bedding with almond extract, and bedding taken from a cage of receptive females. Male rats were subsequently anaesthetised with intraperitoneal sodium pentobarbital. Cerebellar tissue was fixed with paraformaldehyde for later immunohistochemical analysis. RESULTS The number of Fos immunoreactive cells in all lobes of the cerebellar vermis was similar between groups stimulated with almond extract and with oestrous odour, and higher than in the clean woodchip group. CONCLUSIONS Stimulation of the main olfactory system (almond) and the accessory system (oestrous odour) increases Fos protein production in the granular layer of the cortex of the cerebellar vermis in naive male rats.
Collapse
Affiliation(s)
- L I García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México.
| | - P García-Bañuelos
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | - G E Aranda-Abreu
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | - G Herrera-Meza
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | - G A Coria-Avila
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | - J Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
106
|
Keller A. The evolutionary function of conscious information processing is revealed by its task-dependency in the olfactory system. Front Psychol 2014; 5:62. [PMID: 24550876 PMCID: PMC3913989 DOI: 10.3389/fpsyg.2014.00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/16/2014] [Indexed: 02/01/2023] Open
Abstract
Although many responses to odorous stimuli are mediated without olfactory information being consciously processed, some olfactory behaviors require conscious information processing. I will here contrast situations in which olfactory information is processed consciously to situations in which it is processed non-consciously. This contrastive analysis reveals that conscious information processing is required when an organism is faced with tasks in which there are many behavioral options available. I therefore propose that it is the evolutionary function of conscious information processing to guide behaviors in situations in which the organism has to choose between many possible responses.
Collapse
Affiliation(s)
- Andreas Keller
- Philosophy Program, Graduate Center, The City University of New York New York, NY, USA
| |
Collapse
|
107
|
Xiao Q, Chen S, Le W. Hyposmia: a possible biomarker of Parkinson's disease. Neurosci Bull 2014; 30:134-40. [PMID: 24136244 PMCID: PMC5562575 DOI: 10.1007/s12264-013-1390-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/05/2013] [Indexed: 01/23/2023] Open
Abstract
Hyposmia, identified as reduced sensitivity to odor, is a common non-motor symptom of Parkinson's disease (PD) that antedates the typical motor symptoms by several years. It occurs in ∼90% of early-stage cases of PD. In addition to the high prevalence, the occurrence of hyposmia may also predict a higher risk of PD. Investigations into hyposmia and its relationship with PD may help elucidate the underlying pathogenic mechanisms. This review provides an update of olfactory dysfunction in PD and its potential as a biomarker for this devastating disease.
Collapse
Affiliation(s)
- Qian Xiao
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Sheng Chen
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Weidong Le
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Institutes of Translational Medicine, 1st Affiliated Hospital of Dalian Medical Universtiy, Dalian, 116011 China
| |
Collapse
|
108
|
Twick I, Lee JA, Ramaswami M. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. PROGRESS IN BRAIN RESEARCH 2014; 208:3-38. [PMID: 24767477 DOI: 10.1016/b978-0-444-63350-7.00001-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.
Collapse
Affiliation(s)
- Isabell Twick
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - John Anthony Lee
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; National Centre for Biological Science, Bangalore, India
| |
Collapse
|
109
|
Zhuang L, Hu N, Tian F, Dong Q, Hu L, Li R, Wang P. A high-sensitive detection method for carvone odor by implanted electrodes in rat olfactory bulb. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-0044-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
110
|
Kadohisa M. Effects of odor on emotion, with implications. Front Syst Neurosci 2013; 7:66. [PMID: 24124415 PMCID: PMC3794443 DOI: 10.3389/fnsys.2013.00066] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/23/2013] [Indexed: 11/13/2022] Open
Abstract
The sense of smell is found widely in the animal kingdom. Human and animal studies show that odor perception is modulated by experience and/or physiological state (such as hunger), and that some odors can arouse emotion, and can lead to the recall of emotional memories. Further, odors can influence psychological and physiological states. Individual odorants are mapped via gene-specified receptors to corresponding glomeruli in the olfactory bulb, which directly projects to the piriform cortex and the amygdala without a thalamic relay. The odors to which a glomerulus responds reflect the chemical structure of the odorant. The piriform cortex and the amygdala both project to the orbitofrontal cortex (OFC) which with the amygdala is involved in emotion and associative learning, and to the entorhinal/hippocampal system which is involved in long-term memory including episodic memory. Evidence that some odors can modulate emotion and cognition is described, and the possible implications for the treatment of psychological problems, for example in reducing the effects of stress, are considered.
Collapse
Affiliation(s)
- Mikiko Kadohisa
- MRC Cognition and Brain Sciences Unit, Department of Experimental Psychology, University of Oxford Oxford, UK
| |
Collapse
|
111
|
Balyasnikova IV, Prasol MS, Ferguson SD, Han Y, Ahmed AU, Gutova M, Tobias AL, Mustafi D, Rincón E, Zhang L, Aboody KS, Lesniak MS. Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther 2013; 22:140-8. [PMID: 24002694 DOI: 10.1038/mt.2013.199] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/21/2013] [Indexed: 01/03/2023] Open
Abstract
Treatment options of glioblastoma multiforme are limited due to the blood-brain barrier (BBB). In this study, we investigated the utility of intranasal (IN) delivery as a means of transporting stem cell-based antiglioma therapeutics. We hypothesized that mesenchymal stem cells (MSCs) delivered via nasal application could impart therapeutic efficacy when expressing TNF-related apoptosis-inducing ligand (TRAIL) in a model of human glioma. ¹¹¹In-oxine, histology and magnetic resonance imaging (MRI) were utilized to track MSCs within the brain and associated tumor. We demonstrate that MSCs can penetrate the brain from nasal cavity and infiltrate intracranial glioma xenografts in a mouse model. Furthermore, irradiation of tumor-bearing mice tripled the penetration of (¹¹¹In)-oxine-labeled MSCs in the brain with a fivefold increase in cerebellum. Significant increase in CXCL12 expression was observed in irradiated xenograft tissue, implicating a CXCL12-dependent mechanism of MSCs migration towards irradiated glioma xenografts. Finally, MSCs expressing TRAIL improved the median survival of irradiated mice bearing intracranial U87 glioma xenografts in comparison with nonirradiated and irradiated control mice. Cumulatively, our data suggest that IN delivery of stem cell-based therapeutics is a feasible and highly efficacious treatment modality, allowing for repeated application of modified stem cells to target malignant glioma.
Collapse
Affiliation(s)
- Irina V Balyasnikova
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Melanie S Prasol
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Sherise D Ferguson
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Yu Han
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Atique U Ahmed
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Margarita Gutova
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Alex L Tobias
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Devkumar Mustafi
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Esther Rincón
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Lingjiao Zhang
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Karen S Aboody
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Maciej S Lesniak
- Department of Surgery, The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
112
|
van Woensel M, Wauthoz N, Rosière R, Amighi K, Mathieu V, Lefranc F, van Gool SW, de Vleeschouwer S. Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM? Cancers (Basel) 2013; 5:1020-48. [PMID: 24202332 PMCID: PMC3795377 DOI: 10.3390/cancers5031020] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances in tumor imaging and chemoradiotherapy, the median overall survival of patients diagnosed with glioblastoma multiforme does not exceed 15 months. Infiltration of glioma cells into the brain parenchyma, and the blood-brain barrier are important hurdles to further increase the efficacy of classic therapeutic tools. Local administration methods of therapeutic agents, such as convection enhanced delivery and intracerebral injections, are often associated with adverse events. The intranasal pathway has been proposed as a non-invasive alternative route to deliver therapeutics to the brain. This route will bypass the blood-brain barrier and limit systemic side effects. Upon presentation at the nasal cavity, pharmacological agents reach the brain via the olfactory and trigeminal nerves. Recently, formulations have been developed to further enhance this nose-to-brain transport, mainly with the use of nanoparticles. In this review, the focus will be on formulations of pharmacological agents, which increase the nasal permeation of hydrophilic agents to the brain, improve delivery at a constant and slow release rate, protect therapeutics from degradation along the pathway, increase mucoadhesion, and facilitate overall nasal transport. A mounting body of evidence is accumulating that the underexplored intranasal delivery route might represent a major breakthrough to combat glioblastoma.
Collapse
Affiliation(s)
- Matthias van Woensel
- Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven 3000, Belgium; E-Mail:
- Laboratory of Pediatric Immunology, KU Leuven, Leuven 3000, Belgium; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-016-34-61-65; Fax: +32-016-34-60-35
| | - Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, ULB, Brussels 1050, Belgium; E-Mails: (N.W.); (R.R.); (K.A.)
| | - Rémi Rosière
- Laboratory of Pharmaceutics and Biopharmaceutics, ULB, Brussels 1050, Belgium; E-Mails: (N.W.); (R.R.); (K.A.)
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, ULB, Brussels 1050, Belgium; E-Mails: (N.W.); (R.R.); (K.A.)
| | - Véronique Mathieu
- Laboratory of Toxicology, ULB, Brussels 1050, Belgium; E-Mails: (V.M.); (F.L.)
| | - Florence Lefranc
- Laboratory of Toxicology, ULB, Brussels 1050, Belgium; E-Mails: (V.M.); (F.L.)
- Department of Neurosurgery, Erasmus University Hospitals, Brussels 1050, Belgium
| | - Stefaan W. van Gool
- Laboratory of Pediatric Immunology, KU Leuven, Leuven 3000, Belgium; E-Mail:
| | - Steven de Vleeschouwer
- Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven 3000, Belgium; E-Mail:
- Laboratory of Pediatric Immunology, KU Leuven, Leuven 3000, Belgium; E-Mail:
- Department of Neurosurgery, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
113
|
Vargas-Barroso V, Larriva-Sahd J. A cytological and experimental study of the neuropil and primary olfactory afferences to the piriform cortex. Anat Rec (Hoboken) 2013; 296:1297-316. [PMID: 23904229 DOI: 10.1002/ar.22753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The microscopic organization of the piriform cortex (PC) was studied in normal and experimental material from adult albino rats. In rapid-Golgi specimens a set of collaterals from the lateral olfactory tract (i.e., sublayer Ia) to the neuropil of the Layer II (LII) was identified. Specimens from experimental animals that received electrolytic lesion of the main olfactory bulb three days before sacrificing, were further processed for pre-embedding immunocytochemistry to the enzyme glutamic acid decarboxylase 67 (GAD 67). This novel approach permitted a simultaneous visualization at electron microscopy of both synaptic degeneration and GAD67-immunoreactive (GAD-I) sites. Degenerating and GAD-I synapses were separately found in the neuropil of Layers I and II of the PC. Previously overlooked patches of neuropil were featured in sublayer Ia. These areas consisted of dendritic and axonal processes including four synaptic types. Tridimensional reconstructions from serial thin sections from LI revealed the external appearance of the varicose and tubular dendrites as well as the synaptic terminals therein. The putative source(s) of processes to the neuropil of sublayer Ia is discussed in the context of the internal circuitry of the PC and an alternative model is introduced.
Collapse
Affiliation(s)
- Víctor Vargas-Barroso
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Qro., México
| | | |
Collapse
|
114
|
Contreras CM, Gutiérrez-García AG, Molina-Jiménez T. Anterior olfactory organ removal produces anxiety-like behavior and increases spontaneous neuronal firing rate in basal amygdala. Behav Brain Res 2013; 252:101-9. [PMID: 23721965 DOI: 10.1016/j.bbr.2013.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 12/26/2022]
Abstract
Some chemical cues may produce signs of anxiety and fear mediated by amygdala nuclei, but unknown is the role of two anterior olfactory epithelial organs, the septal and vomeronasal organs (SO-VNOs). The effects of SO-VNO removal were explored in different groups of Wistar rats using two complementary approaches: (i) the assessment of neuronal firing rate in basal and medial amygdala nuclei and (ii) behavioral testing. Fourteen days after SO-VNO removal, spontaneous activity in basal and medial amygdala nuclei in one group was determined using single-unit extracellular recordings. A separate group of rats was tested in the elevated plus maze, social interaction test, and open field test. Compared with sham-operated and intact control rats, SO-VNO removal produced a higher neuronal firing rate in the basal amygdala but not medial amygdala. In the behavioral tests, SO-VNO removal increased signs of anxiety in the elevated plus maze, did not alter locomotion, and increased self-directed behavior, reflecting anxiety-like behavior. Histological analysis showed neuronal destruction in the accessory olfactory bulb but not anterior olfactory nucleus in the SO-VNO group. The present results suggest the participation of SO-VNO/accessory olfactory bulb/basal amygdala relationships in the regulation of anxiety through a process of disinhibition.
Collapse
Affiliation(s)
- Carlos M Contreras
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| | | | | |
Collapse
|
115
|
Mak GK, Antle MC, Dyck RH, Weiss S. Bi-parental care contributes to sexually dimorphic neural cell genesis in the adult mammalian brain. PLoS One 2013; 8:e62701. [PMID: 23650527 PMCID: PMC3641101 DOI: 10.1371/journal.pone.0062701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation.
Collapse
Affiliation(s)
- Gloria K. Mak
- Hotchkiss Brain Institute, Department of Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael C. Antle
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada
| | - Richard H. Dyck
- Hotchkiss Brain Institute, Department of Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Department of Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
116
|
Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices 2013; 14:1055-61. [PMID: 23053447 DOI: 10.1007/s10544-012-9705-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bio-hybrid systems provide an opportunity for integrating a living bio-active unit and a proper biosensing system, to employ the unique properties of the bio-active unit. The biological olfactory system can sense and identify thousands of trace odors. The purpose of this study is to combine olfactory epithelium with microelectrode array (MEA) to establish an olfactory epithelium-MEA hybrid system to record the odor-induced electrophysiological activities of the tissue. In our experiments, extracellular potential of olfactory receptor neurons in intact epithelium were measured in the presence of ethyl ether, acetic acid, butanedione, and acetone, respectively. After the odor-induced response signals were analyzed in the time and frequency domain, the temporal characteristics of response signals were extracted. We found that olfactory epithelium-MEA hybrid system can reflect the in vitro odor information of different signal characteristics and firing modes in vitro. The bio-hybrid sensing system can represent a useful instrument to sense and detect the odorant molecules with well recognizing patterns. With the development of sensor technology, bio-hybrid systems will represent emerging and promising platforms for wide applications, ranging from health care to environmental monitoring.
Collapse
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
117
|
Arruda D, Publio R, Roque AC. The periglomerular cell of the olfactory bulb and its role in controlling mitral cell spiking: a computational model. PLoS One 2013; 8:e56148. [PMID: 23405261 PMCID: PMC3566063 DOI: 10.1371/journal.pone.0056148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/07/2013] [Indexed: 01/14/2023] Open
Abstract
Interneurons in the olfactory bulb are key elements of odor processing but their roles have not yet being fully understood. Two types of inhibitory interneurons, periglomerular and granule cells, act at two different levels within the olfactory bulb and may have different roles in coordinating the spiking of mitral cells, which are the principal output neurons of the olfactory bulb. In this work we introduce a reduced compartmental model of the periglomerular cell and use it to investigate its role on mitral cell spiking in a model of an elementary cell triad composed of these two cell types plus a granule cell. Our simulation results show that the periglomerular cell is more effective in inhibiting the mitral cell than the granule cell. Based on our results we predict that periglomerular and granule cells have different roles in the control of mitral cell spiking. The periglomerular cell would be the only one capable of completely inhibiting the mitral cell, and the activity decrease of the mitral cell through this inhibitory action would occur in a stepwise fashion depending on parameters of the periglomerular and granule cells as well as on the relative times of arrival of external stimuli to the three cells. The major role of the granule cell would be to facilitate the inhibitory action of the periglomerular cell by enlarging the range of parameters of the periglomerular cell which correspond to complete inhibition of the mitral cell. The combined action of the two interneurons would thus provide an efficient way of controling the instantaneous value of the firing rate of the mitral cell.
Collapse
Affiliation(s)
- Denise Arruda
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | | | | |
Collapse
|
118
|
Galliot E, Comte A, Magnin E, Tatu L, Moulin T, Millot JL. Effects of an ambient odor on brain activations during episodic retrieval of objects. Brain Imaging Behav 2013; 7:213-9. [DOI: 10.1007/s11682-012-9218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
119
|
Bepari AK, Watanabe K, Yamaguchi M, Tamamaki N, Takebayashi H. Visualization of odor-induced neuronal activity by immediate early gene expression. BMC Neurosci 2012; 13:140. [PMID: 23126335 PMCID: PMC3538715 DOI: 10.1186/1471-2202-13-140] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/31/2012] [Indexed: 12/15/2022] Open
Abstract
Background Sensitive detection of sensory-evoked neuronal activation is a key to mechanistic understanding of brain functions. Since immediate early genes (IEGs) are readily induced in the brain by environmental changes, tracing IEG expression provides a convenient tool to identify brain activity. In this study we used in situ hybridization to detect odor-evoked induction of ten IEGs in the mouse olfactory system. We then analyzed IEG induction in the cyclic nucleotide-gated channel subunit A2 (Cnga2)-null mice to visualize residual neuronal activity following odorant exposure since CNGA2 is a key component of the olfactory signal transduction pathway in the main olfactory system. Results We observed rapid induction of as many as ten IEGs in the mouse olfactory bulb (OB) after olfactory stimulation by a non-biological odorant amyl acetate. A robust increase in expression of several IEGs like c-fos and Egr1 was evident in the glomerular layer, the mitral/tufted cell layer and the granule cell layer. Additionally, the neuronal IEG Npas4 showed steep induction from a very low basal expression level predominantly in the granule cell layer. In Cnga2-null mice, which are usually anosmic and sexually unresponsive, glomerular activation was insignificant in response to either ambient odorants or female stimuli. However, a subtle induction of c-fos took place in the OB of a few Cnga2-mutants which exhibited sexual arousal. Interestingly, very strong glomerular activation was observed in the OB of Cnga2-null male mice after stimulation with either the neutral odor amyl acetate or the predator odor 2, 3, 5-trimethyl-3-thiazoline (TMT). Conclusions This study shows for the first time that in vivo olfactory stimulation can robustly induce the neuronal IEG Npas4 in the mouse OB and confirms the odor-evoked induction of a number of IEGs. As shown in previous studies, our results indicate that a CNGA2-independent signaling pathway(s) may activate the olfactory circuit in Cnga2-null mice and that neuronal activation which correlates to behavioral difference in individual mice is detectable by in situ hybridization of IEGs. Thus, the in situ hybridization probe set we established for IEG tracing can be very useful to visualize neuronal activity at the cellular level.
Collapse
Affiliation(s)
- Asim K Bepari
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
120
|
Brain processing of biologically relevant odors in the awake rat, as revealed by manganese-enhanced MRI. PLoS One 2012; 7:e48491. [PMID: 23119035 PMCID: PMC3485357 DOI: 10.1371/journal.pone.0048491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Methodology/Principal Findings Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex. Conclusion/Significance By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.
Collapse
|
121
|
Calcium-activated sustained firing responses distinguish accessory from main olfactory bulb mitral cells. J Neurosci 2012; 32:6251-62. [PMID: 22553031 DOI: 10.1523/jneurosci.4397-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many mammals rely on pheromones for mediating social interactions. Recent studies indicate that both the main olfactory system (MOS) and accessory olfactory system (AOS) detect and process pheromonal stimuli, yet the functional difference between these two chemosensory systems remains unclear. We hypothesized that the main functional distinction between the MOS and AOS is the type of sensory information processing performed by each system. Here we compared the electrophysiological responses of mitral cells recorded from the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) in acute mouse brain slices to various stimuli and found them markedly different. The response of MOB mitral cells to brief (0.1 ms, 1-100 V) stimulation of their sensory afferents remained transient regardless of stimulus strength, whereas sufficiently strong stimuli evoked sustained firing in AOB mitral cells lasting up to several minutes. Using EPSC-like current injections (10-100 pA, 10 ms rise time constant, 5 s decay time constant) in the presence of various synaptic blockers (picrotoxin, CGP55845, APV, DNQX, E4CPG, and MSPG), we demonstrated that this difference is attributable to distinct intrinsic properties of the two neuronal populations. The AOB sustained responses were found to be mediated by calcium-activated nonselective cationic current induced by transient intense firing. This current was found to be at least partially mediated by TRPM4 channels activated by calcium influx. We hypothesize that the sustained activity of the AOS induces a new sensory state in the animal, reflecting its social context.
Collapse
|
122
|
Fonollosa J, Gutierrez-Galvez A, Marco S. Quality coding by neural populations in the early olfactory pathway: analysis using information theory and lessons for artificial olfactory systems. PLoS One 2012; 7:e37809. [PMID: 22719851 PMCID: PMC3377695 DOI: 10.1371/journal.pone.0037809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.
Collapse
Affiliation(s)
- Jordi Fonollosa
- Department of Electronics, Universitat de Barcelona, Barcelona, Spain
- Artificial Olfaction Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Agustin Gutierrez-Galvez
- Department of Electronics, Universitat de Barcelona, Barcelona, Spain
- Artificial Olfaction Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Santiago Marco
- Department of Electronics, Universitat de Barcelona, Barcelona, Spain
- Artificial Olfaction Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| |
Collapse
|
123
|
Galliot E, Laurent L, Hacquemand R, Pourié G, Millot JL. Fear-like behavioral responses in mice in different odorant environments: Trigeminal versus olfactory mediation under low doses. Behav Processes 2012; 90:161-6. [DOI: 10.1016/j.beproc.2012.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 11/30/2022]
|
124
|
Early activation of microglia triggers long-lasting impairment of adult neurogenesis in the olfactory bulb. J Neurosci 2012; 32:3652-64. [PMID: 22423088 DOI: 10.1523/jneurosci.6394-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglia, the innate immune cells of the brain, engulf and eliminate cellular debris during brain injury and disease. Recent observations have extended their roles to the healthy brain, but the functional impact of activated microglia on neural plasticity has so far been elusive. To explore this issue, we investigated the role of microglia in the function of the adult olfactory bulb network in which both sensory afferents and local microcircuits are continuously molded by the arrival of adult-born neurons. We show here that the adult olfactory bulb hosts a large population of resident microglial cells. Deafferentation of the olfactory bulb resulted in a transient activation of microglia and a concomitant reduction of adult olfactory bulb neurogenesis. One day after sensory deafferentation, microglial cells proliferate in the olfactory bulb, and their numbers peaked at day 3, and reversed at day 7 after lesion. Similar lesions performed on immunodeficient mice demonstrate that the both innate and adaptive lymphocyte responses are dispensable for the lesion-induced microglial proliferation and activation. In contrast, when mice were treated with an antiinflammatory drug to prevent microglial activation, olfactory deafferentation did not reduce adult neurogenesis, showing that activated microglial cells per se, and not the lack of sensory experience, relates to the survival of adult-born neurons. We conclude that the status of the resident microglia in the olfactory bulb is an important factor directly regulating the survival of immature adult-born neurons.
Collapse
|
125
|
Regulation of spike timing-dependent plasticity of olfactory inputs in mitral cells in the rat olfactory bulb. PLoS One 2012; 7:e35001. [PMID: 22536347 PMCID: PMC3334975 DOI: 10.1371/journal.pone.0035001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
The recent history of activity input onto granule cells (GCs) in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON) inputs to mitral cells (MCs). Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs) with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP) was achieved by the regulation of the inter-spike-interval (ISI) of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb.
Collapse
|
126
|
Patel DA, Booze RM, Mactutus CF. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain. Int J Dev Neurosci 2012; 30:1-9. [PMID: 22119286 PMCID: PMC3825177 DOI: 10.1016/j.ijdevneu.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 01/18/2023] Open
Abstract
Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP(+) (type B cells) and nestin(+)(GFAP(-)) (type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP(+) expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP(+) expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin(+) expression with females showing approximately 8-13% higher nestin(+) expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin(+) expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females.
Collapse
|
127
|
Tranel D, Welsh-Bohmer KA. Pervasive olfactory impairment after bilateral limbic system destruction. J Clin Exp Neuropsychol 2012; 34:117-25. [PMID: 22220560 DOI: 10.1080/13803395.2011.633897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
What pattern of brain damage could completely obliterate the sense of olfaction in humans? We had an opportunity to address this intriguing question in Patient B., who has extensive bilateral damage to most of the limbic system, including the medial and lateral temporal lobes, orbital frontal cortex, insular cortex, anterior cingulate cortex, and basal forebrain, caused by herpes simplex encephalitis. The patient demonstrated profound impairments in odor identification and recognition. Moreover, he could not discriminate between olfactory stimuli, and he had severe impairments in odor detection. Reliable stimulus detection was obtained only for solutions of the organic solvent acetone and highly concentrated solutions of ethanol. In contrast to the more circumscribed olfactory deficits demonstrated in patients with damage confined to either the temporal lobes or orbitofrontal cortex (which tend to involve odor identification but not odor detection), Patient B. demonstrated a strikingly severe and complete anosmia. This contrast in olfactory abilities and deficits as a result of different anatomical pathology affords new insights into the neural substrates of olfactory processing in humans.
Collapse
Affiliation(s)
- Daniel Tranel
- Department of Neurology, Division of Behavioral Neurology and Cognitive Neuroscience, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
128
|
Ma M. Odor and pheromone sensing via chemoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:93-106. [PMID: 22399397 DOI: 10.1007/978-1-4614-1704-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evolutionally, chemosensation is an ancient but yet enigmatic sense. All organisms ranging from the simplest unicellular form to the most advanced multicellular creature possess the capability to detect chemicals in the surroundings. Conversely, all living things emit some forms of smells, either as communicating signals or as by-products of metabolism. Many species (from worms, insects to mammals) rely on the olfactory systems which express a large number of chemoreceptors to locate food and mates and to avoid danger. Most chemoreceptors expressed in olfactory organs are G-protein coupled receptors (GPCRs) and can be classified into two major categories: odorant receptors (ORs) and pheromone receptors, which principally detect general odors and pheromones, respectively. In vertebrates, these two types of receptors are often expressed in two distinct apparatuses: The main olfactory epithelium (MOE) and the vomeronasal organ (VNO), respectively. Each olfactory sensory neuron (OSN) in the MOE typically expresses one type of OR from a large repertoire. General odors activate ORs and their host OSNs (ranging from narrowly- to broadly-tuned) in a combinatorial manner and the information is sent to the brain via the main olfactory system leading to perception of smells. In contrast, pheromones stimulate relatively narrowly-tuned receptors and their host VNO neurons and the information is sent to the brain via the accessory olfactory system leading to behavioral and endocrinological changes. Recent studies indicate that the functional separation between these two systems is blurred in some cases and there are more subsystems serving chemosensory roles. This chapter focuses on the molecular and cellular mechanisms underlying odor and pheromone sensing in rodents, the best characterized vertebrate models.
Collapse
Affiliation(s)
- Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
129
|
Abstract
Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness.
Collapse
Affiliation(s)
- Andreas Keller
- Department of Philosophy, Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
130
|
Sandoz JC. Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front Syst Neurosci 2011; 5:98. [PMID: 22163215 PMCID: PMC3233682 DOI: 10.3389/fnsys.2011.00098] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/16/2011] [Indexed: 11/23/2022] Open
Abstract
The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.
Collapse
Affiliation(s)
- Jean Christophe Sandoz
- Evolution, Genomes and Speciation Lab, Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
| |
Collapse
|
131
|
Koulakov AA, Rinberg D. Sparse incomplete representations: a potential role of olfactory granule cells. Neuron 2011; 72:124-36. [PMID: 21982374 DOI: 10.1016/j.neuron.2011.07.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 11/18/2022]
Abstract
Mitral/tufted cells of the olfactory bulb receive odorant information from receptor neurons and transmit this information to the cortex. Studies in awake behaving animals have found that sustained responses of mitral cells to odorants are rare, suggesting sparse combinatorial representation of the odorants. Careful alignment of mitral cell firing with the phase of the respiration cycle revealed brief transient activity in the larger population of mitral cells, which respond to odorants during a small fraction of the respiration cycle. Responses of these cells are therefore temporally sparse. Here, we propose a mathematical model for the olfactory bulb network that can reproduce both combinatorially and temporally sparse mitral cell codes. We argue that sparse codes emerge as a result of the balance between mitral cells' excitatory inputs and inhibition provided by the granule cells. Our model suggests functional significance for the dendrodendritic synapses mediating interactions between mitral and granule cells.
Collapse
|
132
|
Arruda D, Publio R, Roque AC. Interplay of periglomerular and granule cell inhibitory synapses on mitral cell spiking. BMC Neurosci 2011. [PMCID: PMC3240377 DOI: 10.1186/1471-2202-12-s1-p269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
133
|
Auffarth B. Activity-dependent memory organization in the early mammalian olfactory pathway for decorrelation, noise reduction, and sparseness-enhancement. BMC Neurosci 2011. [PMCID: PMC3240285 DOI: 10.1186/1471-2202-12-s1-p186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
134
|
MONTEIRO LHA, FILHO APELLIZARI, CHAUI-BERLINCK JG, PIQUEIRA JRC. OSCILLATION DEATH IN A TWO-NEURON NETWORK WITH DELAY IN A SELF-CONNECTION. J BIOL SYST 2011. [DOI: 10.1142/s0218339007002052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analytically study the dynamical behavior of a two-neuron network with a time-delayed self-connection. The effect of the time delay on the stability of the trivial solution and on the existence of self-sustained periodic solution are investigated. These results could be applied to understand the temporal activity appearing in the olfactory bulb.
Collapse
Affiliation(s)
- L. H. A. MONTEIRO
- Pós-graduação em Engenharia Elétrica, Escola de Engenharia, Universidade Presbiteriana Mackenzie, Brazil
- Departamento de Engenharia de Telecomunicações e Controle, Escola Politécnica, Universidade de São Paulo, Brazil
| | - A. PELLIZARI FILHO
- Pós-graduação em Engenharia Elétrica, Escola de Engenharia, Universidade Presbiteriana Mackenzie, Brazil
| | - J. G. CHAUI-BERLINCK
- Departmento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - J. R. C. PIQUEIRA
- Departamento de Engenharia de Telecomunicações e Controle, Escola Politécnica, Universidade de São Paulo, Brazil
| |
Collapse
|
135
|
Gómez C, Curto GG, Baltanás FC, Valero J, O'Shea E, Colado MI, Díaz D, Weruaga E, Alonso JR. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience 2011; 201:20-33. [PMID: 22133893 DOI: 10.1016/j.neuroscience.2011.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/24/2022]
Abstract
The serotonergic centrifugal system innervating the main olfactory bulb (MOB) plays a key role in the modulation of olfactory processing. We have previously demonstrated that this system suffers adaptive changes under conditions of a lack of olfactory input. The present work examines the response of this centrifugal system after mitral cell loss in the Purkinje cell degeneration (pcd) mutant mice. The distribution and density of serotonergic centrifugal axons were studied in the MOB of control and pcd mice, both before and after the loss of mitral cells, using serotonin (5-HT) and 5-HT transporter immunohistochemistry. Studies of the amount of 5-HT and its metabolite, 5-hydroxyindole acetic acid (5-HIAA), were performed by means of high-performance liquid chromatography (HPLC), and the relative amounts of brain-derived neurotrophin factor, BDNF, and its major receptor, tropomyosin-related kinase B (TrkB), were measured by Western blot. Our study revealed that the serotonergic system develops adaptive changes after, but not before, mitral cell loss. The lack of the main bulbar projection cells causes a decrease in the serotonergic input received by the MOB, whereas the number of serotonergic cells in the raphe nuclei remains constant. In addition, one of the molecules directly involved in serotonergic sprouting, the neurotrophin BDNF and its main receptor TrkB, underwent alterations in the MOBs of the pcd animals even before the loss of mitral cells. These data indicate that serotonergic function in the MOB is closely related to olfactory activity and that mitral cell loss induces serotonergic plastic responses.
Collapse
Affiliation(s)
- C Gómez
- Lab Plasticidad Neuronal y Neurorreparación, Instituto de Neurociencias de Castilla y León., Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Watanabe H, Rajagopalan UM, Nakamichi Y, Igarashi KM, Madjarova VD, Kadono H, Tanifuji M. In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy. BIOMEDICAL OPTICS EXPRESS 2011; 2:2279-87. [PMID: 21833364 PMCID: PMC3149525 DOI: 10.1364/boe.2.002279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 05/15/2023]
Abstract
Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB's layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields.
Collapse
Affiliation(s)
- Hideyuki Watanabe
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-08570, Japan
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Uma Maheswari Rajagopalan
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Yu Nakamichi
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kei M. Igarashi
- Centre for the Biology of Memory, Medical-Technical Research Centre, Norwegian University of Science and Technology, Olav Ktrres gate 9, 7030 Trondheim, Norway
- Department of Physiology, Graduate of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Violeta Dimitrova Madjarova
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-08570, Japan
| | - Hirofumi Kadono
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-08570, Japan
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| |
Collapse
|
137
|
Complex odor from plants under attack: herbivore's enemies react to the whole, not its parts. PLoS One 2011; 6:e21742. [PMID: 21765908 PMCID: PMC3135591 DOI: 10.1371/journal.pone.0021742] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported.
Collapse
|
138
|
Nikaido Y, Miyata S, Nakashima T. Mixture of cis-3-hexenol and trans-2-hexenal attenuates behavioral and stress responses induced by 2,5-dihydro-2,4,5-trimethylthiazoline and electric footshock stress in rats. Physiol Behav 2011; 103:547-56. [DOI: 10.1016/j.physbeh.2011.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
139
|
Dietz SB, Markopoulos F, Murthy VN. Postnatal development of dendrodendritic inhibition in the Mammalian olfactory bulb. Front Cell Neurosci 2011; 5:10. [PMID: 21738497 PMCID: PMC3125518 DOI: 10.3389/fncel.2011.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/08/2011] [Indexed: 11/13/2022] Open
Abstract
The mitral–granule cell (MC–GC) reciprocal synapse is an important source of auto- and lateral-inhibition in the olfactory bulb (OB), and this local inhibition is critical for odor discrimination. We may gain insight into the role of MC autoinhibition in olfaction by correlating the functional development of the autoinhibition with the postnatal development of olfactory function. We have studied the functional development of the MC–GC reciprocal synapse using whole-cell patch-clamp recordings from MCs and GCs in acute OB slices from 3- to 30-day-old rats. The magnitude of dendrodendritic inhibition (DDI) measured by depolarizing a single MC and recording recurrent inhibition in the same cell increased up to the fifteenth day of life (P15), but dropped between P15 and P30. The initial increase and later decrease in DDI was echoed by a similar increase and decrease in the frequency of miniature inhibitory post-synaptic currents, suggesting an accompanying modulation in the number of synapses available to participate in DDI. The late decrease in DDI could also result, in part, from a decrease in GC excitability as well as an increase in relative contribution of N-methyl d-aspartate (NMDA) receptors to γ-amino butyric acid (GABA) release from GC synapses. Changes in release probability of GABAergic synapses are unlikely to account for the late reduction in DDI, although they might contribute to the early increase during development. Our results demonstrate that the functional MC–GC circuit evolves over development in a complex manner that may include both construction and elimination of synapses.
Collapse
Affiliation(s)
- Shelby B Dietz
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University Cambridge, MA, USA
| | | | | |
Collapse
|
140
|
Weinandy F, Ninkovic J, Götz M. Restrictions in time and space--new insights into generation of specific neuronal subtypes in the adult mammalian brain. Eur J Neurosci 2011; 33:1045-54. [PMID: 21395847 DOI: 10.1111/j.1460-9568.2011.07602.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Key questions in regard to neuronal repair strategies are which cells are best suited to regenerate specific neuronal subtypes and how much of a neuronal circuit needs to persist in order to allow its functional repair. Here we discuss recent findings in the field of adult neurogenesis, which shed new light on these questions. Neural stem cells in the adult brain generate very distinct types of neurons depending on their regional and temporal specification. Moreover, distinct brain regions differ in the mode of neuron addition in adult neurogenesis, suggesting that different brain circuits may be able to cope differently with the incorporation of new neurons. These new insights are then considered in regard to the choice of cells with the appropriate region-specific identity for repair strategies.
Collapse
Affiliation(s)
- Franziska Weinandy
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 München/Neuherberg, Germany
| | | | | |
Collapse
|
141
|
Varela N, Avilla J, Gemeno C, Anton S. Ordinary glomeruli in the antennal lobe of male and female tortricid moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae) process sex pheromone and host-plant volatiles. ACTA ACUST UNITED AC 2011; 214:637-45. [PMID: 21270313 DOI: 10.1242/jeb.047316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both sexes of Grapholita molesta, a key pest of stone fruits, are able to detect host-plant volatiles and the sex pheromone emitted by females, and to modify their behaviour accordingly. How olfactory information is processed in the central nervous system is unknown. Intracellular recordings and stainings were used to characterize antennal lobe (AL) neuron responses to single pheromone components, a behaviourally active blend of five peach volatiles and a pear-fruit ester. AL neurons with different response patterns responded to pheromone components and plant volatiles. In males more neurons responded specifically to the main pheromone component than in females, whereas neurons responding to all three pheromone components were more abundant in females. Neurons responding to all three pheromone components often responded also to the tested plant volatiles in both sexes. Responses to all pheromone components were dose dependent in males and females, but dose-response relationships differed between neurons and tested pheromone components. Among the five AL projection neurons identified neuroanatomically in males, no arborizations were observed in the enlarged cumulus (Cu), although all of them responded to pheromone compounds. In one of two stained projection neurons in females, however, the glomerulus, which is thought to be homologous to the Cu, was targeted. The processing of pheromone information by ordinary glomeruli rather than by the macroglomerular complex is thus a striking feature of this species, indicating that pheromone and plant volatile processing are not entirely separate in this tortricid moth AL. However, the absence of recorded pheromone responses in the Cu needs to be confirmed.
Collapse
Affiliation(s)
- Nélia Varela
- Department of Crop Protection, Centre UdL-IRTA, University of Lleida, Lleida, Spain
| | | | | | | |
Collapse
|
142
|
Both gas chromatography and an electronic nose reflect chemical polymorphism of juniper shrubs browsed or avoided by sheep. J Chem Ecol 2011; 37:705-13. [PMID: 21626295 DOI: 10.1007/s10886-011-9974-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/18/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Chemical polymorphism may contribute to variation in browsing damage by mammalian herbivores. Earlier, we demonstrated that essential oil concentration in juniper, Juniperus communis, was negatively associated with herbivore browsing. The aim of the present study was to characterize the volatile chemical composition of browsed and non-browsed J. communis. By using either gas chromatography with flame ionization detection (GC-FID) or an electronic nose device, we could separate sheep-browsed or non-browsed juniper shrubs by their essential oil pattern and complex odor matrix. The main components of the essential oil from J. communis were monoterpenes. We distinguished three chemotypes, dominated either by α-pinene, sabinene, or δ-3-carene. Shrubs belonging to the α-pinene- or sabinene-dominated groups were browsed, whereas all individuals with the δ-3-carene chemotype were unused by the local herbivores. The electronic nose also separated the browsed and non-browsed shrubs indicating that their odor matrix could guide sheep browsing. Responses of sheep could integrate the post-ingestive effects of plant secondary metabolites with sensory experience that stems from odor-phytotoxin interactions. Chemotype diversity could increase the survival rate in the present population of J. communis as certain shrubs could benefit from relatively better chemical protection against the herbivores.
Collapse
|
143
|
Zibman S, Shpak G, Wagner S. Distinct intrinsic membrane properties determine differential information processing between main and accessory olfactory bulb mitral cells. Neuroscience 2011; 189:51-67. [PMID: 21627980 DOI: 10.1016/j.neuroscience.2011.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 11/19/2022]
Abstract
Most mammals rely on semiochemicals, such as pheromones, to mediate their social interactions. Recent studies found that semiochemicals are perceived by at least two distinct chemosensory systems: the main and accessory olfactory systems, which share many molecular, cellular, and anatomical features. Nevertheless, the division of labor between these systems remained unclear. Previously we suggested that the two olfactory systems differ in the way they process sensory information. In this study we found that mitral cells of the main and accessory olfactory bulbs, the first brain stations of both systems, display markedly different passive and active intrinsic properties which permit distinct types of information processing. Moreover, we found that accessory olfactory bulb mitral cells are divided into three neuronal sub-populations with distinct firing properties. These neuronal sub-populations can be integrated in a simulated neuronal network that neglects episodic stimuli while amplifying reaction to long-lasting signals.
Collapse
Affiliation(s)
- S Zibman
- Institute for Life Sciences and Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
144
|
Extracellular recording of spatiotemporal patterning in response to odors in the olfactory epithelium by microelectrode arrays. Biosens Bioelectron 2011; 27:12-7. [PMID: 21775126 DOI: 10.1016/j.bios.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/27/2011] [Accepted: 03/08/2011] [Indexed: 11/20/2022]
Abstract
In olfactory biosensors, microelectronic sensor chips combined with biological olfactory cells are a promising platform for odor detection. In our investigation, olfactory epithelium stripped from rat was fixed on the surface of microelectrode arrays (MEAs). Electrophysiological activities of olfactory receptor neurons in intact epithelium were measured in the form of extracellular potentials. Based on multi-channel recording performance of MEA and structural and functional integrality of native olfactory epithelium, the spatiotemporal analysis was carried out to study the extracellular activity pattern of neurons in the tissue. The variation of spatiotemporal patterns corresponding to different odors displayed the signals firing image characteristic intuitionally. It is an effective method in the form of patterns for monitoring the state of tissue both in time and space domain, promoting the platform for olfactory sensing mechanism research.
Collapse
|
145
|
Chen Q, Xiao L, Liu Q, Ling S, Yin Y, Dong Q, Wang P. An olfactory bulb slice-based biosensor for multi-site extracellular recording of neural networks. Biosens Bioelectron 2011; 26:3313-9. [PMID: 21295963 DOI: 10.1016/j.bios.2011.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/11/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Multi-site recording is the important component for studies of the neural networks. In order to investigate the electrophysiological properties of the olfactory bulb neural networks, we developed a novel slice-based biosensor for synchronous measurement with multi-sites. In the present study, the horizontal olfactory bulb slices with legible layered structures were prepared as the sensing element to construct a tissue-based biosensor with the microelectrode array. This olfactory bulb slice-based biosensor was used to simultaneously record the extracellular potentials from multi-positions. Spike detection and cross-correlation analysis were applied to evaluate the electrophysiological activities. The spontaneous potentials as well as the induced responses by glutamic acid took on different electrophysiological characteristics and firing patterns at the different sites of the olfactory bulb slice. This slice-based biosensor can realize multi-site synchronous monitoring and is advantageous for searching after the firing patterns and synaptic connections in the olfactory bulb neural networks. It is also helpful for further probing into olfactory information encoding of the olfactory neural networks.
Collapse
Affiliation(s)
- Qingmei Chen
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
146
|
Canavan SV, Mayes LC, Treloar HB. Changes in maternal gene expression in olfactory circuits in the immediate postpartum period. Front Psychiatry 2011; 2:40. [PMID: 21747772 PMCID: PMC3130163 DOI: 10.3389/fpsyt.2011.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/15/2011] [Indexed: 01/16/2023] Open
Abstract
Regulation of maternal behavior in the immediate postpartum period involves neural circuits in reward and homeostasis systems responding to cues from the newborn. Our aim was to assess one specific regulatory mechanism: the role that olfaction plays in the onset and modulation of parenting behavior. We focused on changes in gene expression in olfactory brain regions, examining nine genes found in previous knockout studies to be necessary for maternal behavior. Using a quantitative PCR (qPCR)-based approach, we assessed changes in gene expression in response to exposure to pups in 11 microdissected olfactory brain regions. Over the first postpartum days, all nine genes were detected in all 11 regions (at differing levels) and their expression changed in response to pup exposure. As a general trend, five genes (Dbh, Esr1, FosB, Foxb1, and Oxtr) were found to decrease their expression in most of the olfactory regions examined, while two genes (Mest and Prlr) were found to increase expression. Nos1 and Peg3 levels remained relatively stable except in the accessory olfactory bulb (AOB), where greater than fourfold increases in expression were observed. The largest magnitude expression changes in this study were found in the AOB, which mediates a variety of olfactory cues that elicit stereotypic behaviors such as mating and aggression as well as some non-pheromone odors. Previous analyses of null mice for the nine genes assessed here have rarely examined olfactory function. Our data suggest that there may be olfactory effects in these null mice which contribute to the observed maternal behavioral phenotypes. Collectively, these data support the hypothesis that olfactory processing is an important sensory regulator of maternal behavior.
Collapse
Affiliation(s)
- Sofija V Canavan
- Department of Neurosurgery, Yale University School of Medicine New Haven, CT, USA
| | | | | |
Collapse
|
147
|
Hassenklöver T, Schulz P, Peters A, Schwartz P, Schild D, Manzini I. Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles. Purinergic Signal 2010; 6:429-45. [PMID: 21437013 PMCID: PMC3033506 DOI: 10.1007/s11302-010-9207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/18/2010] [Indexed: 02/07/2023] Open
Abstract
Like in other vertebrates, the anterior part of the telencephalon of amphibians mainly consists of the olfactory bulb (OB), but different from higher vertebrates, the lateral telencephalic ventricles of larval Xenopus laevis expand deep into the anterior telencephalon. The neurogenic periventricular zone (PVZ) of the lateral ventricles generates new OB neurons throughout the animal's lifetime. We investigated the ultrastructural organization of the PVZ and found that within a time period of 24 h, 42.54 ± 6.65% of all PVZ cells were actively proliferating. Functional purinergic receptors are widespread in the central nervous system and their activation has been associated with many critical physiological processes, including the regulation of cell proliferation. In the present study we identified and characterized the purinergic system of the OB and the PVZ. ATP and 2MeSATP induced strong [Ca(2+)](i) increases in cells of both regions, which could be attenuated by purinergic antagonists. However, a more thorough pharmacological investigation revealed clear differences between the two brain regions. Cells of the OB almost exclusively express ionotropic P2X purinergic receptor subtypes, whereas PVZ cells express both ionotropic P2X and metabotropic P1 and P2Y receptor subtypes. The P2X receptors expressed in the OB are evidently not involved in the immediate processing of olfactory information.
Collapse
|
148
|
Abstract
In the Drosophila antennal lobe, excitation can spread between glomerular processing channels. In this study, we investigated the mechanism of lateral excitation. Dual recordings from excitatory local neurons (eLNs) and projection neurons (PNs) showed that eLN-to-PN synapses transmit both hyperpolarization and depolarization, are not diminished by blocking chemical neurotransmission, and are abolished by a gap-junction mutation. This mutation eliminates odor-evoked lateral excitation in PNs and diminishes some PN odor responses. This implies that lateral excitation is mediated by electrical synapses from eLNs onto PNs. In addition, eLNs form synapses onto inhibitory LNs. Eliminating these synapses boosts some PN odor responses and reduces the disinhibitory effect of GABA receptor antagonists on PNs. Thus, eLNs have two opposing effects on PNs, driving both direct excitation and indirect inhibition. We propose that when stimuli are weak, lateral excitation promotes sensitivity, whereas when stimuli are strong, lateral excitation helps recruit inhibitory gain control.
Collapse
Affiliation(s)
- Emre Yaksi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
149
|
Pueta M, Rovasio RA, Abate P, Spear NE, Molina JC. Prenatal and postnatal ethanol experiences modulate consumption of the drug in rat pups, without impairment in the granular cell layer of the main olfactory bulb. Physiol Behav 2010; 102:63-75. [PMID: 20951715 DOI: 10.1016/j.physbeh.2010.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
The effect of moderate exposure to ethanol during late gestation was studied in terms of its interaction with moderate exposure during nursing from an intoxicated dam. A further issue was whether behavioral effects of ethanol, especially the enhanced ethanol intake known to occur after moderate ethanol prenatally or during nursing, depend upon teratological effects that may include death of neurons in the main olfactory bulb (MOB). During gestational days 17-20 rats were given 0, 1 or 2g/kg ethanol doses intragastrically (i.g.). After parturition these dams were given a dose of 2.5g/kg ethanol i.g. each day and allowed to perform regular nursing activities. During postnatal days (PDs) 15 and 16, ethanol intake of pups was assessed along with aspects of their general activity. In a second experiment pups given the same prenatal treatment as above were tested for blood ethanol concentration (BEC) in response to an ethanol challenge on PD6. A third experiment (Experiment 2b) assessed stereologically the number of cells in the granular cell layer of the MOB on PD7, as a function of analogous pre- and postnatal ethanol exposures. Results revealed that ethanol intake during the third postnatal week was increased by prenatal as well as postnatal ethanol exposure, with a few interesting qualifications. For instance, pups given 1g/kg prenatally did not have increased ethanol intake unless they also had experienced ethanol during nursing. There were no effects of ethanol on either BECs or conventional teratology (cell number). This increases the viability of an explanation of the effects of prenatal and early postnatal ethanol on later ethanol intake in terms of learning and memory.
Collapse
Affiliation(s)
- Mariana Pueta
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P 5016, Argentina.
| | | | | | | | | |
Collapse
|
150
|
Cavallin MA, Powell K, Biju KC, Fadool DA. State-dependent sculpting of olfactory sensory neurons is attributed to sensory enrichment, odor deprivation, and aging. Neurosci Lett 2010; 483:90-5. [PMID: 20691762 DOI: 10.1016/j.neulet.2010.07.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Gene-targeted deletion of the predominant Shaker potassium channel, Kv1.3, in the mitral cells of the olfactory bulb, decreases the number of presynaptic, odorant receptor (OR)-identified olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE) and alters the nature of their postsynaptic connections to mitral cell targets. The current study examined whether OSN density was state-dependent by examining the impact of (1) odor enrichment, (2) sensory deprivation, and (3) aging upon the number of P2- or M72-expressing neurons. Histological approaches were used to quantify the number of OSNs across entire epithelia for wildtype (WT) vs. Kv1.3-null (KO) mice bred onto an ORtauLacZ reporter background. Following either odor enrichment or early unilateral naris-occlusion, the number of M72-expressing OSNs was significantly decreased in WT mice, but was unchanged in KO animals. Following naris-occlusion, the number of P2-expressing OSNs was decreased regardless of genotype. Animals that were reared to 2 years of age demonstrated loss of both P2- and M72-expressing OSNs in WT mice and a concomitant loss of only M72-expressing neurons in KO mice. These findings suggest that voltage-gated activity of the mitral cells is important for OSN plasticity, and can prevent neuronal loss via sensory- and OR-dependent mechanisms.
Collapse
|