101
|
Arrhythmia detection and classification using ECG and PPG techniques: a review. Phys Eng Sci Med 2021; 44:1027-1048. [PMID: 34727361 DOI: 10.1007/s13246-021-01072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
Electrocardiogram (ECG) and photoplethysmograph (PPG) are non-invasive techniques that provide electrical and hemodynamic information of the heart, respectively. This information is advantageous in the diagnosis of various cardiac abnormalities. Arrhythmia is the most common cardiovascular disease, manifested as single or multiple irregular heartbeats. However, due to the continuous manual observation, it becomes troublesome for experts sometimes to identify the paroxysmal nature of arrhythmia correctly. Moreover, due to advancements in technology, there is an inclination towards wearable sensors which monitor such patients continuously. Thus, there is a need for automatic detection techniques for the identification of arrhythmia. In the presented work, ECG and PPG-based state-of-the-art methods have been described, including preprocessing, feature extraction, and classification techniques for the detection of various arrhythmias. Additionally, this review exhibits various wearable sensors used in the literature and public databases available for the evaluation of results. The study also highlights the limitations of the current techniques and pragmatic solutions to improvise the ongoing effort.
Collapse
|
102
|
Bruno G, Melle G, Barbaglia A, Iachetta G, Melikov R, Perrone M, Dipalo M, De Angelis F. All-Optical and Label-Free Stimulation of Action Potentials in Neurons and Cardiomyocytes by Plasmonic Porous Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100627. [PMID: 34486241 PMCID: PMC8564419 DOI: 10.1002/advs.202100627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/20/2021] [Indexed: 05/19/2023]
Abstract
Optical stimulation technologies are gaining great consideration in cardiology, neuroscience studies, and drug discovery pathways by providing control over cell activity with high spatio-temporal resolution. However, this high precision requires manipulation of biological processes at genetic level concealing its development from broad scale application. Therefore, translating these technologies into tools for medical or pharmacological applications remains a challenge. Here, an all-optical nongenetic method for the modulation of electrogenic cells is introduced. It is demonstrated that plasmonic metamaterials can be used to elicit action potentials by converting near infrared laser pulses into stimulatory currents. The suggested approach allows for the stimulation of cardiomyocytes and neurons directly on commercial complementary metal-oxide semiconductor microelectrode arrays coupled with ultrafast pulsed laser, providing both stimulation and network-level recordings on the same device.
Collapse
Affiliation(s)
- Giulia Bruno
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Giovanni Melle
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Andrea Barbaglia
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | | | | | - Michela Perrone
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Michele Dipalo
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | | |
Collapse
|
103
|
Nezlobinsky T, Okenov A, Panfilov AV. Multiparametric analysis of geometric features of fibrotic textures leading to cardiac arrhythmias. Sci Rep 2021; 11:21111. [PMID: 34702936 PMCID: PMC8548304 DOI: 10.1038/s41598-021-00606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/28/2021] [Indexed: 01/25/2023] Open
Abstract
One of the important questions in cardiac electrophysiology is to characterise the arrhythmogenic substrate; for example, from the texture of the cardiac fibrosis, which is considered one of the major arrhythmogenic conditions. In this paper, we perform an extensive in silico study of the relationships between various local geometric characteristics of fibrosis on the onset of cardiac arrhythmias. In order to define which texture characteristics have better predictive value, we induce arrhythmias by external stimulation, selecting 4363 textures in which arrhythmia can be induced and also selecting 4363 non-arrhythmogenic textures. For each texture, we determine such characteristics as cluster area, solidity, mean distance, local density and zig-zag propagation path, and compare them in arrhythmogenic and non-arrhythmogenic cases. Our study shows that geometrical characteristics, such as cluster area or solidity, turn out to be the most important for prediction of the arrhythmogenic textures. Overall, we were able to achieve an accuracy of 67% for the arrhythmogenic texture-classification problem. However, the accuracy of predictions depends on the size of the region chosen for the analysis. The optimal size for the local areas of the tissue was of the order of 0.28 of the wavelength of the arrhythmia. We discuss further developments and possible applications of this method for characterising the substrate of arrhythmias in fibrotic textures.
Collapse
Affiliation(s)
- T Nezlobinsky
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium.,Ural Federal University, Ekaterinburg, Russia
| | - A Okenov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - A V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium. .,Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
104
|
Suematsu NJ, Nakata S. Instability of the Homogeneous Distribution of Chemical Waves in the Belousov-Zhabotinsky Reaction. MATERIALS 2021; 14:ma14206177. [PMID: 34683766 PMCID: PMC8537810 DOI: 10.3390/ma14206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Chemical traveling waves play an important role in biological functions, such as the propagation of action potential and signal transduction in the nervous system. Such chemical waves are also observed in inanimate systems and are used to clarify their fundamental properties. In this study, chemical waves were generated with equivalent spacing on an excitable medium of the Belousov–Zhabotinsky reaction. The homogeneous distribution of the waves was unstable and low- and high-density regions were observed. In order to understand the fundamental mechanism of the observations, numerical calculations were performed using a mathematical model, the modified Oregonator model, including photosensitive terms. However, the homogeneous distribution of the traveling waves was stable over time in the numerical results. These results indicate that further modification of the model is required to reproduce our experimental observations and to discover the fundamental mechanism for the destabilization of the homogeneous-distributed chemical traveling waves.
Collapse
Affiliation(s)
- Nobuhiko J. Suematsu
- School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
- Correspondence: ; Tel.: +81-3-5343-8348
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan;
| |
Collapse
|
105
|
Komosa ER, Wolfson DW, Bressan M, Cho HC, Ogle BM. Implementing Biological Pacemakers: Design Criteria for Successful. Circ Arrhythm Electrophysiol 2021; 14:e009957. [PMID: 34592837 PMCID: PMC8530973 DOI: 10.1161/circep.121.009957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Each heartbeat that pumps blood throughout the body is initiated by an electrical impulse generated in the sinoatrial node (SAN). However, a number of disease conditions can hamper the ability of the SAN's pacemaker cells to generate consistent action potentials and maintain an orderly conduction path, leading to arrhythmias. For symptomatic patients, current treatments rely on implantation of an electronic pacing device. However, complications inherent to the indwelling hardware give pause to categorical use of device therapy for a subset of populations, including pediatric patients or those with temporary pacing needs. Cellular-based biological pacemakers, derived in vitro or in situ, could function as a therapeutic alternative to current electronic pacemakers. Understanding how biological pacemakers measure up to the SAN would facilitate defining and demonstrating its advantages over current treatments. In this review, we discuss recent approaches to creating biological pacemakers and delineate design criteria to guide future progress based on insights from basic biology of the SAN. We emphasize the need for long-term efficacy in vivo via maintenance of relevant proteins, source-sink balance, a niche reflective of the native SAN microenvironment, and chronotropic competence. With a focus on such criteria, combined with delivery methods tailored for disease indications, clinical implementation will be attainable.
Collapse
Affiliation(s)
- Elizabeth R Komosa
- Department of Biomedical Engineering (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Stem Cell Institute (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - David W Wolfson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (D.W.W., H.C.C.)
| | - Michael Bressan
- Department of Cell Biology and Physiology (M.B.), University of North Carolina-Chapel Hill
- McAllister Heart Institute (M.B.), University of North Carolina-Chapel Hill
| | - Hee Cheol Cho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (D.W.W., H.C.C.)
- Department of Pediatrics, Emory University, Atlanta, GA (H.C.C.)
| | - Brenda M Ogle
- Department of Biomedical Engineering (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Stem Cell Institute (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Department of Pediatrics (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Lillehei Heart Institute (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Institute for Engineering in Medicine (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Masonic Cancer Center (B.M.O), University of Minnesota-Twin Cities, Minneapolis
| |
Collapse
|
106
|
Ivanovic E, Kucera JP. Localization of Na + channel clusters in narrowed perinexi of gap junctions enhances cardiac impulse transmission via ephaptic coupling: a model study. J Physiol 2021; 599:4779-4811. [PMID: 34533834 PMCID: PMC9293295 DOI: 10.1113/jp282105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Abstract It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre‐junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post‐junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. Key points Ephaptic coupling is a cardiac conduction mechanism involving nanoscale‐level interactions between the sodium (Na+) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.
Collapse
Affiliation(s)
- Ena Ivanovic
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
107
|
Jost N, Christ T, Magyar J. New Strategies for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:ph14090926. [PMID: 34577626 PMCID: PMC8466466 DOI: 10.3390/ph14090926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the clinical practice. It significantly contributes to the morbidity and mortality of the elderly population. Over the past 25-30 years intense effort in basic research has advanced the understanding of the relationship between the pathophysiology of AF and atrial remodelling. Nowadays it is clear that the various forms of atrial remodelling (electrical, contractile and structural) play crucial role in initiating and maintaining the persistent and permanent types of AF. Unlike in ventricular fibrillation, in AF rapid ectopic firing originating from pulmonary veins and re-entry mechanism may induce and maintain (due to atrial remodelling) this complex cardiac arrhythmia. The present review presents and discusses in detail the latest knowledge on the role of remodelling in AF. Special attention is paid to novel concepts and pharmacological targets presumably relevant to the drug treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
- Correspondence:
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Sport Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
108
|
Identification of an endogenous glutamatergic transmitter system controlling excitability and conductivity of atrial cardiomyocytes. Cell Res 2021; 31:951-964. [PMID: 33824424 PMCID: PMC8410866 DOI: 10.1038/s41422-021-00499-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
As an excitatory transmitter system, the glutamatergic transmitter system controls excitability and conductivity of neurons. Since both cardiomyocytes and neurons are excitable cells, we hypothesized that cardiomyocytes may also be regulated by a similar system. Here, we have demonstrated that atrial cardiomyocytes have an intrinsic glutamatergic transmitter system, which regulates the generation and propagation of action potentials. First, there are abundant vesicles containing glutamate beneath the plasma membrane of rat atrial cardiomyocytes. Second, rat atrial cardiomyocytes express key elements of the glutamatergic transmitter system, such as the glutamate metabolic enzyme, ionotropic glutamate receptors (iGluRs), and glutamate transporters. Third, iGluR agonists evoke iGluR-gated currents and decrease the threshold of electrical excitability in rat atrial cardiomyocytes. Fourth, iGluR antagonists strikingly attenuate the conduction velocity of electrical impulses in rat atrial myocardium both in vitro and in vivo. Knockdown of GRIA3 or GRIN1, two highly expressed iGluR subtypes in atria, drastically decreased the excitatory firing rate and slowed down the electrical conduction velocity in cultured human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocyte monolayers. Finally, iGluR antagonists effectively prevent and terminate atrial fibrillation in a rat isolated heart model. In addition, the key elements of the glutamatergic transmitter system are also present and show electrophysiological functions in human atrial cardiomyocytes. In conclusion, our data reveal an intrinsic glutamatergic transmitter system directly modulating excitability and conductivity of atrial cardiomyocytes through controlling iGluR-gated currents. Manipulation of this system may open potential new avenues for therapeutic intervention of cardiac arrhythmias.
Collapse
|
109
|
Dasí A, Hernández-Romero I, Gomez JF, Climent AM, Ferrero JM, Trenor B. Analysis of the response of human iPSC-derived cardiomyocyte tissue to I CaL block. A combined in vitro and in silico approach. Comput Biol Med 2021; 137:104796. [PMID: 34461502 DOI: 10.1016/j.compbiomed.2021.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
The high incidence of cardiac arrythmias underlines the need for the assessment of pharmacological therapies. In this field of drug efficacy, as in the field of drug safety highlighted by the Comprehensive in Vitro Proarrhythmia Assay initiative, new pillars for research have become crucial: firstly, the integration of in-silico experiments, and secondly the evaluation of fully integrated biological systems, such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In this study, we therefore aimed to combine in-vitro experiments and in-silico simulations to evaluate the antiarrhythmic effect of L-type calcium current (ICaL) block in hiPSC-CMs. For this, hiPSC-CM preparations were cultured and an equivalent virtual tissue was modeled. Re-entry patterns of electrical activation were induced and several biomarkers were obtained before and after ICaL block. The virtual hiPSC-CM simulations were also reproduced using a tissue composed of adult ventricular cardiomyocytes (hAdultV-CMs). The analysis of phases, currents and safety factor for propagation showed an increased size of the re-entry core when ICaL was blocked as a result of depressed cellular excitability. The bigger wavefront curvature yielded reductions of 12.2%, 6.9%, and 4.2% in the frequency of the re-entry for hiPSC-CM cultures, virtual hiPSC-CM, and hAdultV-CM tissues, respectively. Furthermore, ICaL block led to a 47.8% shortening of the vulnerable window for re-entry in the virtual hiPSC-CM tissue and to re-entry vanishment in hAdultV-CM tissue. The consistent behavior between in-vitro and in-silico hiPSC-CMs and between in-silico hiPSC-CMs and hAdultV-CMs evidences that virtual hiPSC-CM tissues are suitable for assessing cardiac efficacy, as done in the present study through the analysis of ICaL block.
Collapse
Affiliation(s)
- Albert Dasí
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain
| | - Ismael Hernández-Romero
- Department of Signal Theory and Communications and Telematics Systems and Computing, Rey Juan Carlos University, Fuenlabrada, Spain
| | - Juan F Gomez
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain; Valencian International University, Valencia, Spain
| | - Andreu M Climent
- Instituto ITACA, Universitat Politècnica de València, Valencia, Spain
| | - Jose M Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
110
|
Pashakhanloo F, Panfilov AV. Minimal Functional Clusters Predict the Probability of Reentry in Cardiac Fibrotic Tissue. PHYSICAL REVIEW LETTERS 2021; 127:098101. [PMID: 34506203 DOI: 10.1103/physrevlett.127.098101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis is a well-known arrhythmogenic condition which can lead to sudden cardiac death. Physically, fibrosis can be viewed as a large number of small obstacles in an excitable medium, which may create nonlinear wave turbulence or reentry. The relation between the specific texture of fibrosis and the onset of reentry is of great theoretical and practical importance. Here, we present a conceptual framework which combines functional aspects of propagation manifested as conduction blocks, with reentry wavelength and geometrical clusters of fibrosis. We formulate them into the single concept of minimal functional cluster and through extensive simulations show that it characterizes the path of reexcitation accurately, and importantly its size distribution quantitatively predicts the reentry probability for different fibrosis densities and tissue excitabilities.
Collapse
Affiliation(s)
- Farhad Pashakhanloo
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
- Ural Federal University, 620002 Ekaterinburg, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, 119146 Moscow, Russia
| |
Collapse
|
111
|
Heida A, van der Does WFB, van Staveren LN, Taverne YJHJ, Roos-Serote MC, Bogers AJJC, de Groot NMS. Conduction Heterogeneity: Impact of Underlying Heart Disease and Atrial Fibrillation. JACC Clin Electrophysiol 2021; 6:1844-1854. [PMID: 33357582 DOI: 10.1016/j.jacep.2020.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The goal of this study is to investigate the impact of various underlying heart diseases (UHDs) and prior atrial fibrillation (AF) episodes on conduction heterogeneity. BACKGROUND It is unknown whether intra-atrial conduction during sinus rhythm differs between various UHD or is influenced by AF episodes. METHODS Epicardial sinus rhythm mapping of the right atrium, Bachmann's bundle (BB), left atrium and pulmonary vein area was performed in 447 participants (median age: 67 [interquartile range (IQR): 59 to 73] years) with or without AF undergoing cardiac surgery for ischemic heart disease, (ischemic and) valvular heart disease, or congenital heart disease. Conduction times (CTs) were defined as Δ local activation time between 2 adjacent electrodes and used to assess frequency (CTs ≥ 4 ms) and magnitude of conduction disorders (in increments of 10 ms). RESULTS When comparing the 3 types of UHD, there were no differences in frequencies and magnitude of CTs at all locations (p ≥ 0.017 and p ≥ 0.005, respectively). Prior AF episodes were associated with conduction slowing throughout both atria (14.9% [IQR: 11.8 to 17.0] vs. 12.8% [IQR: 10.9 to 14.6]; p < 0.001). At BB, CTs with magnitudes ≥30 ms were more common in patients with AF (n = 56.2% vs. n = 36.0%; p < 0.004). CONCLUSIONS UHD has no impact on the frequency and severity of conduction disorders. AF episodes are associated with more conduction disorders throughout both atria and with more severe conduction disorders at BB. The next step will be to determine the relevance of these conduction disorders for AF development and maintenance.
Collapse
Affiliation(s)
- Annejet Heida
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
112
|
Limitations and Pitfalls of Substrate Mapping for Ventricular Tachycardia. JACC Clin Electrophysiol 2021; 7:542-560. [PMID: 33888275 DOI: 10.1016/j.jacep.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The fundamental hypothesis of substrate mapping for scar-mediated ventricular tachycardia is that surrogates of the isthmus can be identified and targeted with ablation during sinus rhythm. These surrogates include electrocardiographic indications for electric discontinuity such as fractionation, split, late, and long potentials, also evident as sites displaying activation slowing. However, ablation strategies targeting these surrogates during sinus rhythm have resulted in unacceptably high rates of clinical failures, promoting the idea that a more widespread ablation may be required. High-resolution mapping technologies provide an opportunity to examine the substrate at greater detail; however, their use has not yet translated into improved clinical outcomes. This may be related to ongoing efforts to examine the same surrogates at higher resolution instead of using high-resolution technologies for discovering new and potentially more specific surrogates. This article reviews common limitations and pitfalls of substrate mapping and discusses new opportunities for high-resolution mapping to increase the accuracy of substrate mapping: 1) multielectrode mapping catheters provide an opportunity to rapidly examine the substrate during electrophysiological conditions that more closely simulate ventricular tachycardia by means of activation from different directions and coupling intervals; 2) electrogram annotation methods based on the maximal negative derivative of the extracellular potential or maximal voltage are often inaccurate in nonuniform anisotropic tissue. The use of multielectrode catheters may improve the accuracy of electrogram annotation by using spatiotemporal dispersion of single-beat acquisitions and a localized indifferent reference; and 3) resetting and entrainment remain important methods for studying re-entry for and guiding ablation.
Collapse
|
113
|
van Hunnik A, Zeemering S, Podziemski P, Kuklik P, Kuiper M, Verheule S, Schotten U. Bi-atrial high-density mapping reveals inhibition of wavefront turning and reduction of complex propagation patterns as main antiarrhythmic mechanisms of vernakalant. Europace 2021; 23:1114-1123. [PMID: 33608723 PMCID: PMC8286852 DOI: 10.1093/europace/euab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/22/2021] [Indexed: 11/14/2022] Open
Abstract
Aims Complex propagation patterns are observed in patients and models with stable atrial fibrillation (AF). The degree of this complexity is associated with AF stability. Experimental work suggests reduced wavefront turning as an important mechanism for widening of the excitable gap. The aim of this study was to investigate how sodium channel inhibition by vernakalant affects turning behaviour and propagation patterns during AF. Methods and results Two groups of 8 goats were instrumented with electrodes on the left atrium, and AF was maintained by burst pacing for 3 or 22 weeks. Measurements were performed at baseline and two dosages of vernakalant. Unipolar electrograms were mapped (249 electrodes/array) on the left and right atrium in an open-chest experiment. Local activation times and conduction vectors, flow lines, the number of fibrillation waves, and local re-entries were determined. At baseline, fibrillation patterns contained numerous individual fibrillation waves conducting in random directions. Vernakalant induced conduction slowing and cycle length prolongation and terminated AF in 13/15 goats. Local re-entries were strongly reduced. Local conduction vectors showed increased preferential directions and less beat-to-beat variability. Breakthroughs and waves were significantly reduced in number. Flow line curvature reduced and waves conducted more homogenously in one direction. Overall, complex propagation patterns were strongly reduced. No substantial differences in drug effects between right and left atria or between goats with different AF durations were observed. Conclusions Destabilization of AF by vernakalant is associated with a lowering of fibrillation frequency and inhibition of complex propagation patterns, wave turning, local re-entries, and breakthroughs.
Collapse
Affiliation(s)
- Arne van Hunnik
- Department of Physiology, Faculty of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Stef Zeemering
- Department of Physiology, Faculty of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Piotr Podziemski
- Department of Physiology, Faculty of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Pawel Kuklik
- Department of Cardiology, University Medical Centre Hamburg, Hamburg, Germany
| | - Marion Kuiper
- Department of Physiology, Faculty of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Department of Physiology, Faculty of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Faculty of Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
114
|
Sultan A, Singh J, Howarth FC. Mechanisms underlying electro-mechanical dysfunction in the Zucker diabetic fatty rat heart: a model of obesity and type 2 diabetes. Heart Fail Rev 2021; 25:873-886. [PMID: 31654177 DOI: 10.1007/s10741-019-09872-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is a major and worsening global health problem, currently affecting over 450 million people and reducing their quality of life. Type 2 diabetes mellitus (T2DM) accounts for more than 90% of DM and the global epidemic of obesity, which largely explains the dramatic increase in the incidence and prevalence of T2DM in the past 20 years. Obesity is a major risk factor for DM which is a major cause of morbidity and mortality in diabetic patients. The electro-mechanical function of the heart is frequently compromised in diabetic patients. The aim of this review is to discuss the pathophysiology of electro-mechanical dysfunction in the diabetic heart and in particular, the Zucker diabetic fatty (ZDF) rat heart, a well-studied model of T2DM and obesity.
Collapse
Affiliation(s)
- Ahmed Sultan
- Department of Physiology, College of Medicine & Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE
| | - Jaipaul Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, Lancashire, UK
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE.
| |
Collapse
|
115
|
Sun M, de Groot NMS, Hendriks RC. Cardiac tissue conductivity estimation using confirmatory factor analysis. Comput Biol Med 2021; 135:104604. [PMID: 34217979 DOI: 10.1016/j.compbiomed.2021.104604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
Impaired electrical conduction has been shown to play an important role in the development of heart rhythm disorders. Being able to determine the conductivity is important to localize the arrhythmogenic substrate that causes abnormalities in atrial tissue. In this work, we present an algorithm to estimate the conductivity from epicardial electrograms (EGMs) using a high-resolution electrode array. With these arrays, it is possible to measure the propagation of the extracellular potential of the cardiac tissue at multiple positions simultaneously. Given this data, it is in principle possible to estimate the tissue conductivity. However, this is an ill-posed problem due to the large number of unknown parameters in the electrophysiological data model. In this paper, we make use of an effective method called confirmatory factor analysis (CFA), which we apply to the cross correlation matrix of the data to estimate the tissue conductivity. CFA comes with identifiability conditions that need to be satisfied to solve the problem, which is, in this case, estimation of the tissue conductivity. These identifiability conditions can be used to find the relationship between the desired resolution and the required amount of data. Numerical experiments on the simulated data demonstrate that the proposed method can localize the conduction blocks in the tissue and can also estimate the smoother variation in the conductivities. The conductivity values estimated from the clinical data are in line with the values reported in literature and the EGMs reconstructed based on the estimated parameters match well with the clinical EGMs.
Collapse
Affiliation(s)
- Miao Sun
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, the Netherlands.
| | | | - Richard C Hendriks
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, the Netherlands
| |
Collapse
|
116
|
Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41:226678. [PMID: 33057659 PMCID: PMC8209171 DOI: 10.1042/bsr20200833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.
Collapse
|
117
|
Reduction of Conduction Velocity in Patients with Atrial Fibrillation. J Clin Med 2021; 10:jcm10122614. [PMID: 34198544 PMCID: PMC8231908 DOI: 10.3390/jcm10122614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
It is unknown to what extent atrial fibrillation (AF) episodes affect intra-atrial conduction velocity (CV) and whether regional differences in local CV heterogeneities exist during sinus rhythm. This case-control study aims to compare CV assessed throughout both atria between patients with and without AF. Patients (n = 34) underwent intra-operative epicardial mapping of the right atrium (RA), Bachmann’s bundle (BB), left atrium (LA) and pulmonary vein area (PVA). CV vectors were constructed to calculate median CV in addition to total activation times (TAT) and unipolar voltages. Biatrial median CV did not differ between patients with and without AF (90 ± 8 cm/s vs. 92 ± 6 cm/s, p = 0.56); only BB showed a CV reduction in the AF group (79 ± 12 cm/s vs. 88 ± 11 cm/s, p = 0.02). In patients without AF, there was no predilection site for the lowest CV (P5) (RA: 12%; BB: 29%; LA: 29%; PVA: 29%). In patients with AF, lowest CV was most often measured at BB (53%) and ranged between 15 to 22 cm/s (median: 20 cm/s). Lowest CVs were also measured at the LA (18%) and PVA (29%), but not at the RA. AF was associated with a prolonged TAT (p = 0.03) and decreased voltages (P5) at BB (p = 0.02). BB was a predilection site for slowing of conduction in patients with AF. Prolonged TAT and decreased voltages were also found at this site. The next step will be to determine the relevance of a reduced CV at BB in relation to AF development and maintenance.
Collapse
|
118
|
Ryzhkov NV, Nikolaev KG, Ivanov AS, Skorb EV. Infochemistry and the Future of Chemical Information Processing. Annu Rev Chem Biomol Eng 2021; 12:63-95. [PMID: 33909470 DOI: 10.1146/annurev-chembioeng-122120-023514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.
Collapse
Affiliation(s)
- Nikolay V Ryzhkov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| |
Collapse
|
119
|
Impaired Right Ventricular Calcium Cycling Is an Early Risk Factor in R14del-Phospholamban Arrhythmias. J Pers Med 2021; 11:jpm11060502. [PMID: 34204946 PMCID: PMC8226909 DOI: 10.3390/jpm11060502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/22/2022] Open
Abstract
The inherited mutation (R14del) in the calcium regulatory protein phospholamban (PLN) is linked to malignant ventricular arrhythmia with poor prognosis starting at adolescence. However, the underlying early mechanisms that may serve as prognostic factors remain elusive. This study generated humanized mice in which the endogenous gene was replaced with either human wild type or R14del-PLN and addressed the early molecular and cellular pathogenic mechanisms. R14del-PLN mice exhibited stress-induced impairment of atrioventricular conduction, and prolongation of both ventricular activation and repolarization times in association with ventricular tachyarrhythmia, originating from the right ventricle (RV). Most of these distinct electrocardiographic features were remarkably similar to those in R14del-PLN patients. Studies in isolated cardiomyocytes revealed RV-specific calcium defects, including prolonged action potential duration, depressed calcium kinetics and contractile parameters, and elevated diastolic Ca-levels. Ca-sparks were also higher although SR Ca-load was reduced. Accordingly, stress conditions induced after contractions, and inclusion of the CaMKII inhibitor KN93 reversed this proarrhythmic parameter. Compensatory responses included altered expression of key genes associated with Ca-cycling. These data suggest that R14del-PLN cardiomyopathy originates with RV-specific impairment of Ca-cycling and point to the urgent need to improve risk stratification in asymptomatic carriers to prevent fatal arrhythmias and delay cardiomyopathy onset.
Collapse
|
120
|
Haraguchi R, Ashihara T, Matsuyama T, Yoshimoto J. High accessory pathway conductivity blocks antegrade conduction in Wolff-Parkinson-White syndrome: A simulation study. J Arrhythm 2021; 37:683-689. [PMID: 34141022 PMCID: PMC8207359 DOI: 10.1002/joa3.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Wolff-Parkinson-White (WPW) syndrome is characterized by an anomalous accessory pathway (AP) that connects the atrium and ventricles, which can cause abnormal myocardial excitation and cardiac arrhythmias. The morphological and electrophysiological details of the AP remain unclear. The size and conductivity of the AP may affect conduction and WPW syndrome symptoms. METHODS To clarify this issue, we performed computer simulations of antegrade AP conduction using a simplified wall model. We focused on the bundle size of the AP and myocardial electrical conductivity during antegrade conduction (from the atrium to the ventricle). RESULTS We found that a thick AP and high ventricular conductivity promoted antegrade conduction, whereas a thin AP is unable to deliver the transmembrane current required for electric conduction. High ventricular conductivity amplifies transmembrane current. These findings suggest the involvement of a source-sink mechanism. Furthermore, we found that high AP conductivity blocked antegrade conduction. As AP conductivity increased, sustained outward transmembrane currents were observed. This finding suggests the involvement of an electrotonic effect. CONCLUSIONS The findings of our theoretical simulation suggest that AP size, ventricular conductivity, and AP conductivity affect antegrade conduction through different mechanisms. Our findings provide new insights into the morphological and electrophysiological details of the AP.
Collapse
Affiliation(s)
- Ryo Haraguchi
- Graduate School of Applied InformaticsUniversity of HyogoKobeJapan
| | - Takashi Ashihara
- Center for Information Technology and ManagementShiga University of Medical ScienceOtsuJapan
| | - Taka‐aki Matsuyama
- Department of Legal MedicineSchool of MedicineShowa UniversityTokyoJapan
| | - Jun Yoshimoto
- Department of Pediatric CardiologyShizuoka Children's HospitalShizuokaJapan
| |
Collapse
|
121
|
Thomas K, Henley T, Rossi S, Costello MJ, Polacheck W, Griffith BE, Bressan M. Adherens junction engagement regulates functional patterning of the cardiac pacemaker cell lineage. Dev Cell 2021; 56:1498-1511.e7. [PMID: 33891897 PMCID: PMC8137639 DOI: 10.1016/j.devcel.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiac pacemaker cells (CPCs) rhythmically initiate the electrical impulses that drive heart contraction. CPCs display the highest rate of spontaneous depolarization in the heart despite being subjected to inhibitory electrochemical conditions that should theoretically suppress their activity. While several models have been proposed to explain this apparent paradox, the actual molecular mechanisms that allow CPCs to overcome electrogenic barriers to their function remain poorly understood. Here, we have traced CPC development at single-cell resolution and uncovered a series of cytoarchitectural patterning events that are critical for proper pacemaking. Specifically, our data reveal that CPCs dynamically modulate adherens junction (AJ) engagement to control characteristics including surface area, volume, and gap junctional coupling. This allows CPCs to adopt a structural configuration that supports their overall excitability. Thus, our data have identified a direct role for local cellular mechanics in patterning critical morphological features that are necessary for CPC electrical activity.
Collapse
Affiliation(s)
- Kandace Thomas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Simone Rossi
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Polacheck
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; University of North Carolina at Chapel Hill and North Carolina State University, Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA
| | - Boyce E Griffith
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA; Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
122
|
van Schie MS, Heida A, Taverne YJHJ, Bogers AJJC, de Groot NMS. Identification of local atrial conduction heterogeneities using high-density conduction velocity estimation. Europace 2021; 23:1815-1825. [PMID: 33970234 PMCID: PMC8576284 DOI: 10.1093/europace/euab088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/29/2021] [Indexed: 12/04/2022] Open
Abstract
Aims Accurate determination of intra-atrial conduction velocity (CV) is essential to identify arrhythmogenic areas. The most optimal, commonly used, estimation methodology to measure conduction heterogeneity, including finite differences (FiD), polynomial surface fitting (PSF), and a novel technique using discrete velocity vectors (DVV), has not been determined. We aim (i) to identify the most suitable methodology to unravel local areas of conduction heterogeneities using high-density CV estimation techniques, (ii) to quantify intra-atrial differences in CV, and (iii) to localize areas of CV slowing associated with paroxysmal atrial fibrillation (PAF). Methods and results Intra-operative epicardial mapping (>5000 sites, interelectrode distances 2 mm) of the right and left atrium and Bachmann’s bundle (BB) was performed during sinus rhythm (SR) in 412 patients with or without PAF. The median atrial CV estimated using the DVV, PSF, and FiD techniques was 90.0 (62.4–116.8), 92.0 (70.6–123.2), and 89.4 (62.5–126.5) cm/s, respectively. The largest difference in CV estimates was found between PSF and DVV which was caused by smaller CV magnitudes detected only by the DVV technique. Using DVV, a lower CV at BB was found in PAF patients compared with those without atrial fibrillation (AF) [79.1 (72.2–91.2) vs. 88.3 (79.3–97.2) cm/s; P < 0.001]. Conclusions Areas of local conduction heterogeneities were most accurately identified using the DVV technique, whereas PSF and FiD techniques smoothen wavefront propagation thereby masking local areas of conduction slowing. Comparing patients with and without AF, slower wavefront propagation during SR was found at BB in PAF patients, indicating structural remodelling.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Unit Translational Electrophysiology, Department of Cardiology, Erasmus Medical Centre, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Annejet Heida
- Unit Translational Electrophysiology, Department of Cardiology, Erasmus Medical Centre, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Unit Translational Electrophysiology, Department of Cardiology, Erasmus Medical Centre, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| |
Collapse
|
123
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
124
|
Wu T, Nguyen HX, Bursac N. In vitro discovery of novel prokaryotic ion channel candidates for antiarrhythmic gene therapy. Methods Enzymol 2021; 654:407-434. [PMID: 34120724 DOI: 10.1016/bs.mie.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sudden cardiac death continues to have a devastating impact on public health prompting the continued efforts to develop more effective therapies for cardiac arrhythmias. Among different approaches to normalize function of ion channels and prevent arrhythmogenic remodeling of tissue substrate, cardiac cell and gene therapies are emerging as promising strategies to restore and maintain normal heart rhythm. Specifically, the ability to genetically enhance electrical excitability of diseased hearts through voltage-gated sodium channel (VGSC) gene transfer could improve velocity of action potential conduction and act to stop reentrant circuits underlying sustained arrhythmias. For this purpose, prokaryotic VGSC genes are promising therapeutic candidates due to their small size (<1kb) and potential to be effectively packaged in adeno-associated viral (AAV) vectors and delivered to cardiomyocytes for stable, long-term expression. This article describes a versatile method to discover and characterize novel prokaryotic ion channels for use in gene and cell therapies for heart disease including cardiac arrhythmias. Detailed protocols are provided for: (1) identification of potential ion channel candidates from large genomic databases, (2) candidate screening and characterization using site-directed mutagenesis and engineered human excitable cell system and, (3) candidate validation using electrophysiological techniques and an in vitro model of impaired cardiac impulse conduction.
Collapse
Affiliation(s)
- Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|
125
|
Assembly of the Cardiac Pacemaking Complex: Electrogenic Principles of Sinoatrial Node Morphogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8040040. [PMID: 33917972 PMCID: PMC8068396 DOI: 10.3390/jcdd8040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.
Collapse
|
126
|
Deletion of Trpm4 Alters the Function of the Na v1.5 Channel in Murine Cardiac Myocytes. Int J Mol Sci 2021; 22:ijms22073401. [PMID: 33810249 PMCID: PMC8037196 DOI: 10.3390/ijms22073401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4−/− mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.
Collapse
|
127
|
Good WW, Zenger B, Bergquist JA, Rupp LC, Gillette KK, Gsell MAF, Plank G, MacLeod RS. Quantifying the spatiotemporal influence of acute myocardial ischemia on volumetric conduction velocity. J Electrocardiol 2021; 66:86-94. [PMID: 33836460 DOI: 10.1016/j.jelectrocard.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Acute myocardial ischemia occurs when coronary perfusion to the heart is inadequate, which can perturb the highly organized electrical activation of the heart and can result in adverse cardiac events including sudden cardiac death. Ischemia is known to influence the ST and repolarization phases of the ECG, but it also has a marked effect on propagation (QRS); however, studies investigating propagation during ischemia have been limited. METHODS We estimated conduction velocity (CV) and ischemic stress prior to and throughout 20 episodes of experimentally induced ischemia in order to quantify the progression and correlation of volumetric conduction changes during ischemia. To estimate volumetric CV, we 1) reconstructed the activation wavefront; 2) calculated the elementwise gradient to approximate propagation direction; and 3) estimated conduction speed (CS) with an inverse-gradient technique. RESULTS We found that acute ischemia induces significant conduction slowing, reducing the global median speed by 20 cm/s. We observed a biphasic response in CS (acceleration then deceleration) early in some ischemic episodes. Furthermore, we noted a high temporal correlation between ST-segment changes and CS slowing; however, when comparing these changes over space, we found only moderate correlation (corr. = 0.60). DISCUSSION This study is the first to report volumetric CS changes (acceleration and slowing) during episodes of acute ischemia in the whole heart. We showed that while CS changes progress in a similar time course to ischemic stress (measured by ST-segment shifts), the spatial overlap is complex and variable, showing extreme conduction slowing both in and around regions experiencing severe ischemia.
Collapse
Affiliation(s)
- Wilson W Good
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
| | - Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA; School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jake A Bergquist
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Lindsay C Rupp
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Rob S MacLeod
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Nora Eccles Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
128
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
129
|
Li Y, Wang K, Li Q, Hancox JC, Zhang H. Reciprocal interaction between IK1 and If in biological pacemakers: A simulation study. PLoS Comput Biol 2021; 17:e1008177. [PMID: 33690622 PMCID: PMC7984617 DOI: 10.1371/journal.pcbi.1008177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail: (KW); (HZ)
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Peng Cheng Laboratory, Shenzhen, China
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (KW); (HZ)
| |
Collapse
|
130
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
131
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
132
|
Fenner MF, Gatta G, Sattler S, Kuiper M, Hesselkilde EM, Adler DMT, Smerup M, Schotten U, Sørensen U, Diness JG, Jespersen T, Verheule S, Van Hunnik A, Buhl R. Inhibition of Small-Conductance Calcium-Activated Potassium Current ( I K,Ca) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation. Front Physiol 2021; 12:614483. [PMID: 33633584 PMCID: PMC7900437 DOI: 10.3389/fphys.2021.614483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Small-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current—and thereby the efficacy of small-conductance Ca2+-activated K+ current (IK,Ca) inhibition—might be negatively related to AF duration and the extent of AF-induced remodeling. Experimental Approach and Methods To address the hypothesis of the efficacy of IK,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the IK,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring. Results IK,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved. Conclusions Intra-atrial heterogeneity in response to IK,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, IK,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.
Collapse
Affiliation(s)
- Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Giulia Gatta
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Stefan Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Eva Melis Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte M T Adler
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, The Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | | | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Arne Van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
133
|
Petersen AP, Cho N, Lyra-Leite DM, Santoso JW, Gupta D, Ariyasinghe NR, McCain ML. Regulation of calcium dynamics and propagation velocity by tissue microstructure in engineered strands of cardiac tissue. Integr Biol (Camb) 2021; 12:34-46. [PMID: 32118279 DOI: 10.1093/intbio/zyaa003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
Disruptions to cardiac tissue microstructure are common in diseased or injured myocardium and are known substrates for arrhythmias. However, we have a relatively coarse understanding of the relationships between myocardial tissue microstructure, propagation velocity and calcium cycling, due largely to the limitations of conventional experimental tools. To address this, we used microcontact printing to engineer strands of cardiac tissue with eight different widths, quantified several structural and functional parameters and established correlation coefficients. As strand width increased, actin alignment, nuclei density, sarcomere index and cell aspect ratio decreased with unique trends. The propagation velocity of calcium waves decreased and the rise time of calcium transients increased with increasing strand width. The decay time constant of calcium transients decreased and then slightly increased with increasing strand width. Based on correlation coefficients, actin alignment was the strongest predictor of propagation velocity and calcium transient rise time. Sarcomere index and cell aspect ratio were also strongly correlated with propagation velocity. Actin alignment, sarcomere index and cell aspect ratio were all weak predictors of the calcium transient decay time constant. We also measured the expression of several genes relevant to propagation and calcium cycling and found higher expression of the genes that encode for connexin 43 (Cx43) and a subunit of L-type calcium channels in thin strands compared to isotropic tissues. Together, these results suggest that thinner strands have higher values of propagation velocity and calcium transient rise time due to a combination of favorable tissue microstructure and enhanced expression of genes for Cx43 and L-type calcium channels. These data are important for defining how microstructural features regulate intercellular and intracellular calcium handling, which is needed to understand mechanisms of propagation in physiological situations and arrhythmogenesis in pathological situations.
Collapse
Affiliation(s)
- Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
134
|
Boukens BJ, Potse M, Coronel R. Fibrosis and Conduction Abnormalities as Basis for Overlap of Brugada Syndrome and Early Repolarization Syndrome. Int J Mol Sci 2021; 22:1570. [PMID: 33557237 PMCID: PMC7913989 DOI: 10.3390/ijms22041570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Brugada syndrome and early repolarization syndrome are both classified as J-wave syndromes, with a similar mechanism of arrhythmogenesis and with the same basis for genesis of the characteristic electrocardiographic features. The Brugada syndrome is now considered a conduction disorder based on subtle structural abnormalities in the right ventricular outflow tract. Recent evidence suggests structural substrate in patients with the early repolarization syndrome as well. We propose a unifying mechanism based on these structural abnormalities explaining both arrhythmogenesis and the electrocardiographic changes. In addition, we speculate that, with increasing technical advances in imaging techniques and their spatial resolution, these syndromes will be reclassified as structural heart diseases or cardiomyopathies.
Collapse
Affiliation(s)
- Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France;
- UMR5251, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33400 Talence, France
- Carmen Team, INRIA Bordeaux—Sud-Ouest, 33400 Talence, France
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
135
|
Herndon C, Astley HC, Owerkowicz T, Fenton FH. Defibrillate You Later, Alligator: Q10 Scaling and Refractoriness Keeps Alligators from Fibrillation. Integr Org Biol 2021; 3:obaa047. [PMID: 33977229 PMCID: PMC8101277 DOI: 10.1093/iob/obaa047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Effective cardiac contraction during each heartbeat relies on the coordination of an electrical wave of excitation propagating across the heart. Dynamically induced heterogeneous wave propagation may fracture and initiate reentry-based cardiac arrhythmias, during which fast-rotating electrical waves lead to repeated self-excitation that compromises cardiac function and potentially results in sudden cardiac death. Species which function effectively over a large range of heart temperatures must balance the many interacting, temperature-sensitive biochemical processes to maintain normal wave propagation at all temperatures. To investigate how these species avoid dangerous states across temperatures, we optically mapped the electrical activity across the surfaces of alligator (Alligator mississippiensis) hearts at 23°C and 38°C over a range of physiological heart rates and compare them with that of rabbits (Oryctolagus cuniculus). We find that unlike rabbits, alligators show minimal changes in wave parameters (action potential duration and conduction velocity) which complement each other to retain similar electrophysiological wavelengths across temperatures and pacing frequencies. The cardiac electrophysiology of rabbits accommodates the high heart rates necessary to sustain an active and endothermic metabolism at the cost of increased risk of cardiac arrhythmia and critical vulnerability to temperature changes, whereas that of alligators allows for effective function over a range of heart temperatures without risk of cardiac electrical arrhythmias such as fibrillation, but is restricted to low heart rates. Synopsis La contracción cardíaca efectiva durante cada latido del corazón depende de la coordinación de una onda eléctrica de excitación que se propaga a través del corazón. Heterogéidades inducidas dinámicamente por ondas de propagación pueden resultar en fracturas de las ondas e iniciar arritmias cardíacas basadas en ondas de reingreso, durante las cuales ondas espirales eléctricas de rotación rápida producen una autoexcitación repetida que afecta la función cardíaca y pude resultar en muerte súbita cardíaca. Las especies que funcionan eficazmente en una amplia gama de temperaturas cardíacas deben equilibrar los varios procesos bioquímicos que interactúan, sensibles a la temperatura para mantener la propagación normal de ondas a todas las temperaturas. Para investigar cómo estas especies evitan los estados peligrosos a través de las temperaturas, mapeamos ópticamente la actividad eléctrica a través de las superficies de los corazones de caimanes (Alligator mississippiensis) a 23°C and 38°C sobre un rango de frecuencias fisiológicas del corazón y comparamos con el de los conejos (Oryctolagus cuniculus). Encontramos que a diferencia de los conejos, los caimanes muestran cambios mínimos en los parámetros de onda (duración potencial de acción y velocidad de conducción) que se complementan entre sí para retener longitudes de onda electrofisiológicas similares a través de los rangos de temperaturas y frecuencias de ritmo. La electrofisiología cardíaca de los conejos acomoda las altas frecuencias cardíacas necesarias para mantener un metabolismo activo y endotérmico a costa de un mayor riesgo de arritmia cardíaca y vulnerabilidad crítica a los cambios de temperatura, mientras que la de los caimanes permite un funcionamiento eficaz en una serie de temperaturas cardíacas sin riesgo de arritmias eléctricas cardíacas como la fibrilación, pero está restringida a bajas frecuencias cardíacas.
Collapse
Affiliation(s)
- Conner Herndon
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Henry C Astley
- Department of Biology, Biomimicry Research & Innovation Center, University of Akron, Akron, OH, USA
| | - Tomasz Owerkowicz
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
136
|
FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis 2021; 12:25. [PMID: 33414395 PMCID: PMC7790828 DOI: 10.1038/s41419-020-03290-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023]
Abstract
The human leukocyte antigen F-associated transcript 10 (FAT10) is a member of the small ubiquitin-like protein family that binds to its target proteins and subjects them to degradation by the ubiquitin-proteasome system (UPS). In the heart, FAT10 plays a cardioprotective role and affects predisposition to cardiac arrhythmias after myocardial ischemia (MI). However, whether and how FAT10 influences cardiac arrhythmias is unknown. We investigated the role of FAT10 in regulating the sodium channel Nav1.5, a major regulator of cardiac arrhythmias. Fat10 was conditionally deleted in cardiac myocytes using Myh6-Cre and Fat10F/F mice (cFat10-/-). Compared with their wild-type littermates, cFat10-/- mice showed prolonged RR, PR, and corrected QT (QTc) intervals, were more likely to develop ventricular arrhythmia, and had increased mortality after MI. Patch-clamp studies showed that the peak Na+ current was reduced, and the late Na+ current was significantly augmented, resulting in a decreased action potential amplitude and delayed depolarization. Immunoblot and immunofluorescence analyses showed that the expression of the membrane protein Nav1.5 was decreased. Coimmunoprecipitation experiments demonstrated that FAT10 stabilized Nav1.5 expression by antagonizing Nav1.5 ubiquitination and degradation. Specifically, FAT10 bound to the lysine residues in the C-terminal fragments of Nav1.5 and decreased the binding of Nav1.5 to the Nedd4-2 protein, a ubiquitin E3 ligase, preventing degradation of the Nav1.5 protein. Collectively, our findings showed that deletion of the Fat10 in cardiac myocytes led to increased cardiac arrhythmias and increased mortality after MI. Thus, FAT10 protects against ischemia-induced ventricular arrhythmia by binding to Nav1.5 and preventing its Neddylation and degradation by the UPS after MI.
Collapse
|
137
|
Building Models of Patient-Specific Anatomy and Scar Morphology from Clinical MRI Data. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
138
|
Mehboob R, Kurdi M, Ahmad M, Gilani SA, Khalid S, Nasief H, Mirdad A, Malibary H, Hakamy S, Hassan A, Alaifan M, Bamaga A, Shahzad SA. Comprehensive Analysis of Genes Associated With Sudden Infant Death Syndrome. Front Pediatr 2021; 9:742225. [PMID: 34722422 PMCID: PMC8555024 DOI: 10.3389/fped.2021.742225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is a tragic incident which remains a mystery even after post-mortem investigation and thorough researches. Methods: This comprehensive review is based on the genes reported in the molecular autopsy studies conducted on SIDS so far. A total of 20 original studies and 7 case reports were identified and included in this analysis. The genes identified in children or adults were not included. Most of the genes reported in these studies belonged to cardiac channel and cardiomyopathy. Cardiac channel genes in SIDS were scrutinized for further analysis. Results: After screening and removing the duplicates, 42 unique genes were extracted. When the location of these genes was assessed, it was observed that most of these belonged to Chromosomes 11, 1 and 3 in sequential manner. The pathway analysis shows that these genes are involved in the regulation of heart rate, action potential, cardiac muscle cell contraction and heart contraction. The protein-protein interaction network was also very big and highly interactive. SCN5A, CAV3, ALG10B, AKAP9 and many more were mainly found in these cases and were regulated by many transcription factors such as MYOG C2C1 and CBX3 HCT11. Micro RNA, "hsa-miR-133a-3p" was found to be prevalent in the targeted genes. Conclusions: Molecular and computational approaches are a step forward toward exploration of these sad demises. It is so far a new arena but seems promising to dig out the genetic cause of SIDS in the years to come.
Collapse
Affiliation(s)
- Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mursleen Ahmad
- Department of Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Sidra Khalid
- Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Hisham Nasief
- Department of Obstetric and Gynecology, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Abeer Mirdad
- Pediatric Department, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Center of Excellence in Genomic Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Meshari Alaifan
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bamaga
- Paediatric Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Neurology and Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Adnan Shahzad
- Faculty of Medicine and University Hospital of Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
139
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
140
|
Kleber AG, Wit AL. The Interaction Between Na + and Ca 2+ Inward Currents in Cardiac Propagation. Circ Res 2020; 127:1549-1551. [PMID: 33270548 DOI: 10.1161/circresaha.120.318316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andre G Kleber
- Department of Pathology, Harvard Medical School, Boston, MA (A.G.K.)
| | - Andrew L Wit
- Department of Pathology, Harvard Medical School, Boston, MA (A.G.K.)
| |
Collapse
|
141
|
Kotadia I, Whitaker J, Roney C, Niederer S, O’Neill M, Bishop M, Wright M. Anisotropic Cardiac Conduction. Arrhythm Electrophysiol Rev 2020; 9:202-210. [PMID: 33437488 PMCID: PMC7788398 DOI: 10.15420/aer.2020.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023] Open
Abstract
Anisotropy is the property of directional dependence. In cardiac tissue, conduction velocity is anisotropic and its orientation is determined by myocyte direction. Cell shape and size, excitability, myocardial fibrosis, gap junction distribution and function are all considered to contribute to anisotropic conduction. In disease states, anisotropic conduction may be enhanced, and is implicated, in the genesis of pathological arrhythmias. The principal mechanism responsible for enhanced anisotropy in disease remains uncertain. Possible contributors include changes in cellular excitability, changes in gap junction distribution or function and cellular uncoupling through interstitial fibrosis. It has recently been demonstrated that myocyte orientation may be identified using diffusion tensor magnetic resonance imaging in explanted hearts, and multisite pacing protocols have been proposed to estimate myocyte orientation and anisotropic conduction in vivo. These tools have the potential to contribute to the understanding of the role of myocyte disarray and anisotropic conduction in arrhythmic states.
Collapse
Affiliation(s)
- Irum Kotadia
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Caroline Roney
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Mark O’Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Martin Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Matthew Wright
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
142
|
Lee S, Sahadevan J. Conduction Slowing: Association or Causation in Atrial Fibrillation. JACC Clin Electrophysiol 2020; 6:1855-1857. [PMID: 33357583 PMCID: PMC8045138 DOI: 10.1016/j.jacep.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Seungyup Lee
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jayakumar Sahadevan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Division of Cardiovascular Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
143
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
144
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Sáenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2020; 21:1143-1144. [PMID: 31075787 DOI: 10.1093/europace/euz132] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Mezache L, Struckman HL, Greer-Short A, Baine S, Györke S, Radwański PB, Hund TJ, Veeraraghavan R. Vascular endothelial growth factor promotes atrial arrhythmias by inducing acute intercalated disk remodeling. Sci Rep 2020; 10:20463. [PMID: 33235263 PMCID: PMC7687901 DOI: 10.1038/s41598-020-77562-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and is associated with inflammation. AF patients have elevated levels of inflammatory cytokines known to promote vascular leak, such as vascular endothelial growth factor A (VEGF). However, the contribution of vascular leak and consequent cardiac edema to the genesis of atrial arrhythmias remains unknown. Previous work suggests that interstitial edema in the heart can acutely promote ventricular arrhythmias by disrupting ventricular myocyte intercalated disk (ID) nanodomains rich in cardiac sodium channels (NaV1.5) and slowing cardiac conduction. Interestingly, similar disruption of ID nanodomains has been identified in atrial samples from AF patients. Therefore, we tested the hypothesis that VEGF-induced vascular leak can acutely increase atrial arrhythmia susceptibility by disrupting ID nanodomains and slowing atrial conduction. Treatment of murine hearts with VEGF (30–60 min, at clinically relevant levels) prolonged the electrocardiographic P wave and increased susceptibility to burst pacing-induced atrial arrhythmias. Optical voltage mapping revealed slower atrial conduction following VEGF treatment (10 ± 0.4 cm/s vs. 21 ± 1 cm/s at baseline, p < 0.05). Transmission electron microscopy revealed increased intermembrane spacing at ID sites adjacent to gap junctions (GJs; 64 ± 9 nm versus 17 ± 1 nm in controls, p < 0.05), as well as sites next to mechanical junctions (MJs; 63 ± 4 nm versus 27 ± 2 nm in controls, p < 0.05) in VEGF–treated hearts relative to controls. Importantly, super-resolution microscopy and quantitative image analysis revealed reorganization of NaV1.5 away from dense clusters localized near GJs and MJs to a more diffuse distribution throughout the ID. Taken together, these data suggest that VEGF can acutely predispose otherwise normal hearts to atrial arrhythmias by dynamically disrupting NaV1.5-rich ID nanodomains and slowing atrial conduction. These data highlight inflammation-induced vascular leak as a potential factor in the development and progression of AF.
Collapse
Affiliation(s)
- Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 460 Medical Center Dr., Rm 415A, IBMR, Columbus, OH, 43210, USA
| | - Heather L Struckman
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 460 Medical Center Dr., Rm 415A, IBMR, Columbus, OH, 43210, USA
| | - Amara Greer-Short
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen Baine
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sándor Györke
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Przemysław B Radwański
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 460 Medical Center Dr., Rm 415A, IBMR, Columbus, OH, 43210, USA.,The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 460 Medical Center Dr., Rm 415A, IBMR, Columbus, OH, 43210, USA. .,The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
146
|
Nayyar S, Ha ACT, Timmerman N, Suszko A, Ragot D, Chauhan VS. Focal and pseudo/rotational activations in human atrial fibrillation defined with automated periodicity mapping. J Cardiovasc Electrophysiol 2020; 32:212-223. [PMID: 33179399 DOI: 10.1111/jce.14812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Defining atrial fibrillation (AF) wave propagation is challenging unless local signal features are discrete or periodic. Periodic focal or rotational activity may identify AF drivers. Our objective was to characterize AF propagation at sites with periodic activation to evaluate the prevalence and relationship between focal and rotational activation. METHODS We included 80 patients (61 ± 10 years, persistent AF 49%) from the FaST randomized trial that compared the efficacy of adjunctive focal site ablation versus pulmonary vein isolation. Patients underwent left atrial (LA) activation mapping with a 20-pole circular catheter during spontaneous or induced AF. Five-second bipolar and unipolar electrograms in AF were analyzed. Periodic sites were identified by spectral analysis of the bipolar electrogram. Activation maps of periodic sites were constructed using an automated, validated tracking algorithm, and classified into three patterns: focal sites (FS), rotation (RO), or pseudo-rotation (pRO). RESULTS The most common propagation pattern at periodic sites was FS for 5-s in all patients (4.9 ± 1.9 per patient). RO and pRO were observed in two and seven patients, respectively, but were all transient (3-5 cycles). Activation from a FS evolved into transient RO/pRO in five patients. No patient had autonomous RO/pRO activations. Patients with RO/pRO had greater LA surface area with periodicity (78 ± 7 vs. 63 ± 16%, p = .0002) and shorter LA periodicity CL (166 ± 10 vs. 190±28 ms, p = .0001) than the rest. CONCLUSION Using automated, regional AF periodicity mapping, FS is more prevalent and temporally stable than RO/pRO. Most RO/pRO evolve from neighboring FS. These findings and their implications for AF maintenance require verification with global, panoramic mapping.
Collapse
Affiliation(s)
- Sachin Nayyar
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Andrew C T Ha
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Nicholas Timmerman
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Adrian Suszko
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Don Ragot
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Vijay S Chauhan
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
147
|
Ren L, Zhou X, Nasiri R, Fang J, Jiang X, Wang C, Qu M, Ling H, Chen Y, Xue Y, Hartel MC, Tebon P, Zhang S, Kim HJ, Yuan X, Shamloo A, Dokmeci MR, Li S, Khademhosseini A, Ahadian S, Sun W. Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissue-on-a-Chip for Drug Screening. SMALL METHODS 2020; 4:2000438. [PMID: 34423115 PMCID: PMC8372829 DOI: 10.1002/smtd.202000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 06/13/2023]
Abstract
Animal models and traditional cell cultures are essential tools for drug development. However, these platforms can show striking discrepancies in efficacy and side effects when compared to human trials. These differences can lengthen the drug development process and even lead to drug withdrawal from the market. The establishment of preclinical drug screening platforms that have higher relevancy to physiological conditions is desirable to facilitate drug development. Here, a heart-on-a-chip platform, incorporating microgrooves and electrical pulse stimulations to recapitulate the well-aligned structure and synchronous beating of cardiomyocytes (CMs) for drug screening, is reported. Each chip is made with facile lithographic and laser-cutting processes that can be easily scaled up to high-throughput format. The maturation and phenotypic changes of CMs cultured on the heart-on-a-chip is validated and it can be treated with various drugs to evaluate cardiotoxicity and cardioprotective efficacy. The heart-on-a-chip can provide a high-throughput drug screening platform in preclinical drug development.
Collapse
Affiliation(s)
- Li Ren
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Canran Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Moyuan Qu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haonan Ling
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yihang Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumeng Xue
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Yuan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365, Iran
| | - Mehmet Remzi Dokmeci
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
148
|
Pouranbarani E, Berg LA, Oliveira RS, Dos Santos RW, Nygren A. Improved Accuracy of Cardiac Tissue-Level Simulations by Considering Membrane Resistance as a Cellular-Level Optimization Objective. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2487-2490. [PMID: 33018511 DOI: 10.1109/embc44109.2020.9176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiac cellular models are utilized as the building blocks for tissue simulation. One of the imprecisions of conventional cellular modeling, especially when the models are used in tissue-level modeling, stems from the mere consideration of cellular properties (e.g., action potential shape) in parameter tuning of the model. In our previous work, we put forward an accurate framework in which membrane resistance (Rm) reflecting inter-cellular characteristics, i.e., electrotonic effects, was considered alongside cellular features in cellular model fitting. This paper, for the first time, examines the hypothesis that considering Rm as an additional optimization objective improves the accuracy of tissue-level modeling. To study this hypothesis, after cellular-level optimization of a well-known model, source-sink mismatch configurations in a 2-dimensional model are investigated. The results demonstrate that including Rm in the optimization protocol yields a substantial improvement in the relative error of the critical transition border which is defined as the minimum window size between source and sink that wave propagates. Model developers can utilize the proposed concept during parameter tuning to increase the accuracy of models.
Collapse
|
149
|
Corrado C, Avezzù A, Lee AWC, Mendoca Costa C, Roney CH, Strocchi M, Bishop M, Niederer SA. Using cardiac ionic cell models to interpret clinical data. WIREs Mech Dis 2020; 13:e1508. [PMID: 33027553 DOI: 10.1002/wsbm.1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023]
Abstract
For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi-scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi-scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
|
150
|
León DG, López-Yunta M, Alfonso-Almazán JM, Marina-Breysse M, Quintanilla JG, Sánchez-González J, Galán-Arriola C, Castro-Núñez F, González-Ferrer JJ, Ibáñez B, Pérez-Villacastín J, Pérez-Castellano N, Fuster V, Jalife J, Vázquez M, Aguado-Sierra J, Filgueiras-Rama D. Three-dimensional cardiac fibre disorganization as a novel parameter for ventricular arrhythmia stratification after myocardial infarction. Europace 2020; 21:822-832. [PMID: 30649290 PMCID: PMC6479517 DOI: 10.1093/europace/euy306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/03/2018] [Indexed: 11/23/2022] Open
Abstract
Aims Myocardial infarction (MI) alters cardiac fibre organization with unknown consequences on ventricular arrhythmia. We used diffusion tensor imaging (DTI) of three-dimensional (3D) cardiac fibres and scar reconstructions to identify the main parameters associated with ventricular arrhythmia inducibility and ventricular tachycardia (VT) features after MI. Methods and results Twelve pigs with established MI and three controls underwent invasive electrophysiological characterization of ventricular arrhythmia inducibility and VT features. Animal-specific 3D scar and myocardial fibre distribution were obtained from ex vivo high-resolution contrast-enhanced T1 mapping and DTI sequences. Diffusion tensor imaging-derived parameters significantly different between healthy and scarring myocardium, scar volumes, and left ventricular ejection fraction (LVEF) were included for arrhythmia risk stratification and correlation analyses with VT features. Ventricular fibrillation (VF) was the only inducible arrhythmia in 4 out of 12 infarcted pigs and all controls. Ventricular tachycardia was also inducible in the remaining eight pigs during programmed ventricular stimulation. A DTI-based 3D fibre disorganization index (FDI) showed higher disorganization within dense scar regions of VF-only inducible pigs compared with VT inducible animals (FDI: 0.36; 0.36–0.37 vs. 0.32; 0.26–0.33, respectively, P = 0.0485). Ventricular fibrillation induction required lower programmed stimulation aggressiveness in VF-only inducible pigs than VT inducible and control animals. Neither LVEF nor scar volumes differentiated between VF and VT inducible animals. Re-entrant VT circuits were localized within areas of highly disorganized fibres. Moreover, the FDI within heterogeneous scar regions was associated with the median VT cycle length per animal (R2 = 0.5320). Conclusion The amount of scar-related cardiac fibre disorganization in DTI sequences is a promising approach for ventricular arrhythmia stratification after MI.
Collapse
Affiliation(s)
- Daniel G León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain
| | - Mariña López-Yunta
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - José Manuel Alfonso-Almazán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain
| | - Manuel Marina-Breysse
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,Agencia Española de Protección de la Salud en el Deporte (AEPSAD), Madrid, Spain
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco Castro-Núñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain
| | - Juan José González-Ferrer
- Department of Cardiology, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,IIS-University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Julián Pérez-Villacastín
- Department of Cardiology, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Department of Cardiology, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Department of Internal Medicine, Center for Arrhythmia Research, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Mariano Vázquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jazmín Aguado-Sierra
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro 3, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|