101
|
Bhaloo A, Nguyen S, Lee BH, Valimukhametova A, Gonzalez-Rodriguez R, Sottile O, Dorsky A, Naumov AV. Doped Graphene Quantum Dots as Biocompatible Radical Scavenging Agents. Antioxidants (Basel) 2023; 12:1536. [PMID: 37627531 PMCID: PMC10451549 DOI: 10.3390/antiox12081536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress is proven to be a leading factor in a multitude of adverse conditions, from Alzheimer's disease to cancer. Thus, developing effective radical scavenging agents to eliminate reactive oxygen species (ROS) driving many oxidative processes has become critical. In addition to conventional antioxidants, nanoscale structures and metal-organic complexes have recently shown promising potential for radical scavenging. To design an optimal nanoscale ROS scavenging agent, we have synthesized ten types of biocompatible graphene quantum dots (GQDs) augmented with various metal dopants. The radical scavenging abilities of these novel metal-doped GQD structures were, for the first time, assessed via the DPPH, KMnO4, and RHB (Rhodamine B protectant) assays. While all metal-doped GQDs consistently demonstrate antioxidant properties higher than the undoped cores, aluminum-doped GQDs exhibit 60-95% radical scavenging ability of ascorbic acid positive control. Tm-doped GQDs match the radical scavenging properties of ascorbic acid in the KMnO4 assay. All doped GQD structures possess fluorescence imaging capabilities that enable their tracking in vitro, ensuring their successful cellular internalization. Given such multifunctionality, biocompatible doped GQD antioxidants can become prospective candidates for multimodal therapeutics, including the reduction of ROS with concomitant imaging and therapeutic delivery to cancer tumors.
Collapse
Affiliation(s)
- Adam Bhaloo
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Alina Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | | | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Anton V. Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| |
Collapse
|
102
|
Buga AM, Padureanu V, Riza AL, Oancea CN, Albu CV, Nica AD. The Gut-Brain Axis as a Therapeutic Target in Multiple Sclerosis. Cells 2023; 12:1872. [PMID: 37508537 PMCID: PMC10378521 DOI: 10.3390/cells12141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The CNS is very susceptible to oxidative stress; the gut microbiota plays an important role as a trigger of oxidative damage that promotes mitochondrial dysfunction, neuroinflammation, and neurodegeneration. In the current review, we discuss recent findings on oxidative-stress-related inflammation mediated by the gut-brain axis in multiple sclerosis (MS). Growing evidence suggests targeting gut microbiota can be a promising strategy for MS management. Intricate interaction between multiple factors leads to increased intra- and inter-individual heterogeneity, frequently painting a different picture in vivo from that obtained under controlled conditions. Following an evidence-based approach, all proposed interventions should be validated in clinical trials with cohorts large enough to reach significance. Our review summarizes existing clinical trials focused on identifying suitable interventions, the suitable combinations, and appropriate timings to target microbiota-related oxidative stress. Most studies assessed relapsing-remitting MS (RRMS); only a few studies with very limited cohorts were carried out in other MS stages (e.g., secondary progressive MS-SPMS). Future trials must consider an extended time frame, perhaps starting with the perinatal period and lasting until the young adult period, aiming to capture as many complex intersystem interactions as possible.
Collapse
Affiliation(s)
- Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Center for Medical Genetics Dolj, Emergency County Hospital Craiova, 200638 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru Dan Nica
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
103
|
Raj A, Dubey A, Malla MA, Kumar A. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117680. [PMID: 37011532 DOI: 10.1016/j.jenvman.2023.117680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Increased anthropogenic activities are confronted as the main cause for rising environmental and health concerns globally, presenting an indisputable threat to both environment and human well-being. Modern-day industrialization has given rise to a cascade of concurrent environmental and health challenges. The global human population is growing at an alarming rate, posing tremendous pressure on future food security, and healthy and environmentally sustainable diets for all. To feed all, the global food production needs to increase by 50% by 2050, but this increase has to occur from the limited arable land, and under the present-day climate variabilities. Pesticides have become an integral component of contemporary agricultural system, safeguarding crops from pests and diseases and their use must be reduce to fulfill the SDG (Sustainable Development Goals) agenda . However, their indiscriminate use, lengthy half-lives, and high persistence in soil and aquatic ecosystems have impacted global sustainability, overshot the planetary boundaries and damaged the pure sources of life with severe and negative impacts on environmental and human health. Here in this review, we have provided an overview of the background of pesticide use and pollution status and action strategies of top pesticide-using nations. Additionally, we have summarized biosensor-based methodologies for the rapid detection of pesticide residue. Finally, omics-based approaches and their role in pesticide mitigation and sustainable development have been discussed qualitatively. The main aim of this review is to provide the scientific facts for pesticide management and application and to provide a clean, green, and sustainable environment for future generations.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India; Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, U.P., India.
| |
Collapse
|
104
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
105
|
Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus 2023; 15:e42583. [PMID: 37641770 PMCID: PMC10460465 DOI: 10.7759/cureus.42583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Male reproductive function is highly susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms. Oxidative stress can significantly impair sperm quality, including count, motility, morphology, and DNA integrity, leading to male infertility. Antioxidants play a crucial role in maintaining reproductive health by neutralizing ROS and protecting sperm cells from oxidative damage. This review article explores the impact of oxidative stress on male reproductive function and investigates the potential benefits of antioxidant supplementation in mitigating its detrimental effects. A comprehensive literature search was conducted to gather relevant studies examining the effects of oxidative stress on male fertility and the outcomes of antioxidant supplementation. The findings reveal that antioxidant supplementation can improve sperm quality, DNA integrity, and fertility outcomes in some individuals. However, conflicting research findings and limitations in study design highlight the need for further investigation. Factors such as individual variations, underlying causes of infertility, dosage, and duration of supplementation should be carefully considered. Lifestyle modifications, including a healthy diet and exercise, are crucial in reducing oxidative stress and optimizing male reproductive health. This review article provides valuable insights into the complex relationship between oxidative stress and male reproductive function, emphasizing the potential role of antioxidant supplementation as a supportive strategy. Further research is warranted to establish optimal protocols, identify specific subgroups that may benefit the most, and explore advancements in antioxidant therapies to improve male fertility outcomes.
Collapse
Affiliation(s)
- Gireeja Walke
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sagar S Gaurkar
- Department of Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Department of Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
106
|
Fu J, Ma Z, Wang L, Zhang Y, Luo Y. Fumigant toxicity and behavioral alterations of six plant essential oils against the red fire ant (Solenopsis invicta Buren). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68677-68690. [PMID: 37126171 DOI: 10.1007/s11356-023-27329-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
The red imported fire ant (RIFA), Solenopsis invicta Buren (Hymenoptera: Formicidae), is an invasive species that is considered to be among the 100 most dangerous species to human health and the environment. RIFA is currently controlled primarily by chemical insecticides. However, human health concerns and environmental problems require environment friendly, green insect pest control technology. In this study, the HS-SPME-GC/MS method was used to determine the volatile components of six essential oils, namely Illicium verum Burm, Blumea balsamifera (L.) DC., Citrus limon Burm, Acorus tatarinowii Schott, Mosla chinensis Maxim, and Cinnamomum cassia Presl, as well as their fumigation activity against RIFA. D-Limonene was identified as a core volatile in all six essential oils. The effects of volatile substances from essential oils on the fumigation activity and behavior of RIFA workers were studied by closed fumigation method. Except for C. limon essential oil, all other five plant essential oils exhibit excellent fumigation activity under the treatment of a concentration at 10 μL/ cm3 within 24 h. All plant essential oils are capable of causing the death of all red fire ants, while C. limon essential oil exhibited the lowest fumigation activity at 63.25%. Significant reductions in RIFA aggregation, aggressiveness, and gripping abilities were observed with all plant essential oils, and antenna sensilla appeared to bend or break. Moreover, after treating red ant fire ants with essential oil for 24 h, three protective enzyme activities were assessed. All six plant essential oils were shown to have enhanced enzyme activities for superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase (CAT). It has been shown that plant essential oils have the capability of reducing the viability of red fire ants via receptor and behavioral factors, ultimately causing them to die off. As a conclusion, plant oils were demonstrated to be negatively affecting RIFA and providing a green and environmentally sustainable control method in this study.
Collapse
Affiliation(s)
- Jiantao Fu
- School of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China
| | - Zewen Ma
- School of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Lanying Wang
- School of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Yunfei Zhang
- School of Plant Protection, Hainan University, Haikou, 570228, Hainan, China
| | - Yanping Luo
- School of Plant Protection, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
107
|
Quds R, Iqbal Z, Arif A, Mahmood R. Mancozeb-induced cytotoxicity in human erythrocytes: enhanced generation of reactive species, hemoglobin oxidation, diminished antioxidant power, membrane damage and morphological changes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105453. [PMID: 37248021 DOI: 10.1016/j.pestbp.2023.105453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 μM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
108
|
Caiati C, Stanca A, Lepera ME. Free Radicals and Obesity-Related Chronic Inflammation Contrasted by Antioxidants: A New Perspective in Coronary Artery Disease. Metabolites 2023; 13:712. [PMID: 37367870 DOI: 10.3390/metabo13060712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
We are surrounded by factors called free radicals (FR), which attach to the molecules our body is made of, first among them the endothelium. Even though FR are to a certain extent a normal factor, nowadays we face an escalating increase in these biologically aggressive molecules. The escalating formation of FR is linked to the increased usage of man-made chemicals for personal care (toothpaste, shampoo, bubble bath, etc.), domestic laundry and dish-washer detergents, and also an ever wider usage of drugs (both prescription and over the counter), especially if they are to be used long-term (years). In addition, tobacco smoking, processed foods, pesticides, various chronic infectious microbes, nutritional deficiencies, lack of sun exposure, and, finally, with a markedly increasing impact, electromagnetic pollution (a terribly destructive factor), can increase the risk of cancer, as well as endothelial dysfunction, owing to the increased production of FR that they cause. All these factors create endothelial damage, but the organism may be able to repair such damage thanks to the intervention of the immune system supported by antioxidants. However, one other factor can perpetuate the state of inflammation, namely obesity and metabolic syndrome with associated hyperinsulinemia. In this review, the role of FR, with a special emphasis on their origin, and of antioxidants, is explored from the perspective of their role in causing atherosclerosis, in particular at the coronary level.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Alessandro Stanca
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Mario Erminio Lepera
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
109
|
Tresnakova N, Impellitteri F, Famulari S, Porretti M, Filice M, Caferro A, Savoca S, D Iglio C, Imbrogno S, Albergamo A, Vazzana I, Stara A, Di Bella G, Velisek J, Faggio C. Fitness assessment of Mytilus galloprovincialis Lamarck, 1819 after exposure to herbicide metabolite propachlor ESA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121878. [PMID: 37236591 DOI: 10.1016/j.envpol.2023.121878] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 μg.L-1 (E1) and its 10x fold multiply 35 μg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Federica Impellitteri
- University of Messina, Department of Veterinary Science, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Miriam Porretti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Claudio D Iglio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ambrogina Albergamo
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129, Palermo, Italy.
| | - Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
110
|
Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD. Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol Biol Rep 2023; 50:5465-5479. [PMID: 37155010 DOI: 10.1007/s11033-023-08424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Organophosphate pesticides (OPs) are widely used in agriculture, healthcare, and other industries due to their ability to kill pests. However, OPs can also have genotoxic effects on humans who are exposed to them. This review summarizes the research on DNA damage caused by OPs, the mechanisms behind this damage, and the resulting cellular effects. Even at low doses, OPs have been shown to damage DNA and cause cellular dysfunction. Common phenomena seen in cells that are exposed to OPs include the formation of DNA adducts and lesions, single-strand and double-strand DNA breaks, and DNA and protein inter and intra-cross-links. The present review will aid in comprehending the extent of genetic damage and the impact on DNA repair pathways caused by acute or chronic exposure to OPs. Additionally, understanding the mechanisms of the effects of OPs will aid in correlating them with various diseases, including cancer, Alzheimer's, and Parkinson's disease. Overall, knowledge of the potential adverse effects of different OPs will help in monitoring the health complications they may cause.
Collapse
Affiliation(s)
- Joyline Prathiksha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
111
|
Das A, Bank S, Chatterjee S, Paul N, Sarkar K, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase activity and reduces mitochondrial DNA copy number through oxidative damage in pool barb (Puntius sophore). CHEMOSPHERE 2023; 332:138848. [PMID: 37156291 DOI: 10.1016/j.chemosphere.2023.138848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bifenthrin (BF), a synthetic pyrethroid is used worldwide for both agricultural and non-agricultural purposes due to its high insecticidal activity and low toxicity in mammals. However, its improper usage implies a possible risk to aquatic life. The Study was aimed to correlate the association of BF toxicity with mitochondrial DNA copy number variation in edible fish Punitus sophore. The 96-h LC 50 of BF in P. sophore was 3.4 μg/L, fish was treated with sub-lethal doses (0.34 μg/L,0.68 μg/L) of BF for 15 days. The activity and expression level of cytochrome c oxidase (Mt-COI) were measured to assess mitochondrial dysfunction caused by BF. Results showed BF reduced the level of Mt-COI mRNA in treated groups, hindered complex IV activity and increased ROS generation leading to oxidative damage. mtDNAcn was decreased in the muscle, brain and liver after BF treatment. Furthermore, BF induced neurotoxicity in brain and muscle cells through the inhibition of AchE activity. The treated groups showed elevated level of malondialdehyde (MDA) and an imbalance of antioxidant enzymes activity. Molecular docking and simulation analysis also predicted that BF binds to the active sites of the enzyme and restricts the fluctuation of active sites' residues. Hence, outcome of the study suggests reduction of mtDNAcn could be a potential biomarker to assess Bifenthrin induced toxicity in aquatic ecosystem.
Collapse
Affiliation(s)
- Anwesha Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sarbashri Bank
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Srilagna Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Nirvika Paul
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Kunal Sarkar
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Arindam Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Santanu Chakraborty
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Chaitali Banerjee
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Anasuya Majumdar
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| |
Collapse
|
112
|
Kim M, An G, Park J, Song G, Lim W. Bensulide-induced oxidative stress causes developmental defects of cardiovascular system and liver in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131577. [PMID: 37156044 DOI: 10.1016/j.jhazmat.2023.131577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bensulide is an organophosphate herbicide commonly used in agricultural crops; however, no studies have reported on its toxic effects in the embryonic development of vertebrates, particularly gene expression level and cellular response. Therefore, to identify developmental toxicity, zebrafish eggs 8 h post-fertilization (hpf) were exposed to bensulide concentrations of up to 3 mg/L. The results indicated that exposure to 3 mg/L bensulide inhibited the hatching of all eggs and decreased the size of the body, eyes, and inner ear. There were demonstrated effects observed in the cardiovascular system and liver caused by bensulide in fli1:eGFP and L-fabp:dsRed transgenic zebrafish models, respectively. Following exposure to 3 mg/L bensulide, normal heart development, including cardiac looping, was disrupted and the heart rate of 96 hpf zebrafish larvae decreased to 16.37%. Development of the liver, the main detoxification organ, was also inhibited by bensulide, and after exposure to 3 mg/L bensulide its size reduced to 41.98%. Additionally, exposure to bensulide resulted in inhibition of antioxidant enzyme expression and an increase in ROS levels by up to 238.29%. Collectively, we identified various biological responses associated with the toxicity of bensulide, which led to various organ malformations and cytotoxic effects in zebrafish.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
113
|
Alarcón R, Giménez B, Hernández AF, López-Villén A, Parrón T, García-González J, Requena M. Occupational exposure to pesticides as a potential risk factor for epilepsy. Neurotoxicology 2023; 96:166-173. [PMID: 37121439 DOI: 10.1016/j.neuro.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Epilepsy is a chronic neurological disorder in which brain activity becomes abnormal, causing seizures. In a previous study we found that environmental exposure to pesticides was associated with a greater risk of epilepsy. The present study examined possible occupational risk factors that may contribute to the occurrence of epilepsy in farmers and pesticide applicators (sprayers). A case-referent study was conducted on 19,704 individuals over a 17-year study period (2000-2016). Epilepsy cases (n = 5091) were collected from Hospital records and referents (non-epilepsy cases, n = 14.613) from the Centre for Prevention of Occupational Risks, both from Almería (South-Eastern Spain). A significant increased risk of having epilepsy was found in farmers working in intensive agriculture (high-yield greenhouse crops) compared to extensive agriculture (open-air crops). The risk was greater for farmers residing in rural areas with high pesticide use (intensive farming crops in plastic greenhouses) and for those not wearing protective gloves. As for sprayers, the greatest risk of epilepsy was observed in those not wearing face mask, and in those living in areas with high pesticide use (greenhouse intensive agriculture). Overall, this study supports previous findings on the association between epilepsy and pesticide exposure in the general population, and extends the risk to farmers occupationally exposed to pesticides, mainly those engaged in intensive agriculture.
Collapse
Affiliation(s)
- Raquel Alarcón
- University of Almería School of Health Sciences, 04120 Almería, Spain
| | - Belén Giménez
- University of Almería School of Health Sciences, 04120 Almería, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain; Institute of Biomedical Research, Granada (Instituto de Investigación Biosanitaria) ibs.GRANADA, Granada, Spain; Center for Biomedical Research in Epidemiology & Public Health Network (CIBER en Epidemiología y Salud Pública), CIBERESP, Spain.
| | | | - Tesifón Parrón
- University of Almería School of Health Sciences, 04120 Almería, Spain; Andalusian Council of Health at Almería Province, 04009 Almería, Spain
| | | | - Mar Requena
- University of Almería School of Health Sciences, 04120 Almería, Spain
| |
Collapse
|
114
|
Mudyanselage AW, Wijamunige BC, Kocon A, Carter WG. Differentiated Neurons Are More Vulnerable to Organophosphate and Carbamate Neurotoxicity than Undifferentiated Neurons Due to the Induction of Redox Stress and Accumulate Oxidatively-Damaged Proteins. Brain Sci 2023; 13:brainsci13050728. [PMID: 37239200 DOI: 10.3390/brainsci13050728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Organophosphate (OP) and carbamate pesticides are toxic to pests through targeted inhibition of acetylcholinesterase (AChE). However, OPs and carbamates may be harmful to non-target species including humans and could induce developmental neurotoxicity if differentiated or differentiating neurons are particularly vulnerable to neurotoxicant exposures. Hence, this study compared the neurotoxicity of OPs, chlorpyrifos-oxon (CPO), and azamethiphos (AZO) and the carbamate pesticide, aldicarb, to undifferentiated versus differentiated SH-SY5Y neuroblastoma cells. OP and carbamate concentration-response curves for cell viability were undertaken using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and cellular bioenergetic capacity assessed via quantitation of cellular ATP levels. Concentration-response curves for inhibition of cellular AChE activity were also generated and the production of reactive oxygen species (ROS) was monitored using a 2',7'-dichlorofluorescein diacetate (DCFDA) assay. The OPs and aldicarb reduced cell viability, cellular ATP levels, and neurite outgrowth in a concentration-dependent fashion, from a threshold concentration of ≥10 µM. Neurotoxic potency was in the order AZO > CPO > aldicarb for undifferentiated cells but CPO > AZO > aldicarb for differentiated cells and this toxic potency of CPO reflected its more extensive induction of reactive oxygen species (ROS) and generation of carbonylated proteins that were characterized by western blotting. Hence, the relative neurotoxicity of the OPs and aldicarb in part reflects non-cholinergic mechanisms that are likely to contribute to developmental neurotoxicity.
Collapse
Affiliation(s)
- Anusha W Mudyanselage
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C Wijamunige
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocon
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
| |
Collapse
|
115
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
116
|
Huang D, Zhang Y, Wang X, Guo R, Leng X, Du Q, Wu Q, Pan B, Zhao Y. Dietary total antioxidant capacity and the risk of developing asthenozoospermia: a hospital-based case-control study in China. Hum Reprod 2023; 38:537-548. [PMID: 36728412 DOI: 10.1093/humrep/dead010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
STUDY QUESTION Is dietary total antioxidant capacity (DTAC) associated with the odds of developing asthenozoospermia in Chinese men? SUMMARY ANSWER There is no statistically significant association between DTAC indices and the odds of developing asthenozoospermia. WHAT IS KNOWN ALREADY Both diet and oxidative stress may be related to sperm quality; however, few studies have investigated the association between DTAC and sperm quality. STUDY DESIGN, SIZE, DURATION This case-control study was conducted from June 2020 to December 2020. Those diagnosed with asthenozoospermia were assigned to the case group, whereas those with normal sperm parameters were assigned to the control group. Data from a total of 553 cases and 586 controls were included in the final analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Men who had been referred to the infertility clinic of Shengjing Hospital of China Medical University were enrolled. Dietary intake was assessed using a validated food frequency questionnaire. DTAC was based on ferric-reducing ability of plasma (FRAP), total oxygen radical absorbance capacity (T-ORAC), hydrophilic oxygen radical absorbance capacity (H-ORAC), lipophilic oxygen radical absorbance capacity (L-ORAC), total phenolics (TP), total radical-trapping antioxidant parameter (TRAP), and Trolox equivalent antioxidant capacity (TEAC). Asthenozoospermia was defined according to the criteria published in the fifth edition of the World Health Organization laboratory manual for the examination and processing of human semen. MAIN RESULTS AND THE ROLE OF CHANCE No significant association was observed between the DTAC indices and the odds of asthenozoospermia after multivariable adjustment (T3 vs T1, odds ratio (OR) = 0.99, 95% CI: 0.73-1.33 for FRAP; OR = 1.05, 95% CI: 0.77-1.42 for T-ORAC; OR = 0.88, 95% CI: 0.65-1.18 for H-ORAC; OR = 0.98, 95% CI: 0.71-1.34 for L-ORAC; OR = 1.03, 95% CI: 0.76-1.39 for TP; OR = 1.18, 95% CI: 0.87-1.59 for TRAP; and OR = 1.15, 95% CI: 0.85-1.55 for TEAC). Both additive and multiplicative interaction analyses suggested that smoking might modify the association of T-ORAC with the odds of developing asthenozoospermia (relative excess risk due to interaction = 0.45, 95% CI: 0.07-0.83, attributable proportion due to interaction = 0.46, 95% CI: 0.07-0.84 for additive interaction; P = 0.033 for multiplicative interaction). LIMITATIONS, REASONS FOR CAUTION Recall bias and protopathic bias were inevitable in this retrospective case-control study. The estimation accuracy of the DTAC indices may have also affected the findings. WIDER IMPLICATIONS OF THE FINDINGS To the best of our knowledge, this is the first study to specifically investigate whether an association exists between DTAC and the odds of developing asthenozoospermia. Although no significant association was found, this study provides novel information pertaining to the fields of nutrition and human reproduction. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the JieBangGuaShuai Project of Liaoning Province (2021JH1/10400050), the Shengjing Hospital Clinical Research Project (M0071), and the Outstanding Scientific Fund of Shengjing Hospital (M1150). All authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Donghui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaobin Wang
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Leng
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Bochen Pan
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning, China
| |
Collapse
|
117
|
Bahar O, Eraslan G. Investigation of the efficacy of diosmin against organ damage caused by bendiocarb in male Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55826-55845. [PMID: 36905537 DOI: 10.1007/s11356-023-26105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bendiocarb is a carbamate insecticide, which is used more in indoor areas, especially against scorpions, spiders, flies, mosquitoes and cockroaches. Diosmin is an antioxidant flavonoid found mostly in citrus fruits. In this study, the efficacy of diosmin against the adverse effects of bendiocarb was investigated in rats. For this purpose, 60, 2-3 month-old male Wistar albino rats, weighing 150-200 g, were used. The animals were assigned to six groups, one of which was maintained for control purposes and five of which were trial groups. The control rats received only corn oil, which was used as a vehicle for diosmin administration in the trial groups. Groups 2, 3, 4, 5 and 6 were administered with 10 mg/kg.bw bendiocarb, 10 mg/kg.bw diosmin, 20 mg/kg.bw diosmin, 2 mg/kg.bw bendiocarb plus 10 mg/kg.bw diosmin, and 2 mg/kg.bw bendiocarb plus 20 mg/kg.bw diosmin, respectively, using an oral catheter, for 28 days. At the end of the study period, blood and organ (liver, kidneys, brain, testes, heart and lungs) samples were collected. Body weight and organ weights were determined. Compared to the control group, in the group given bendiocarb alone, firstly, body weight and liver, lung and testicular weights decreased. Secondly, tissue/plasma malondialdehyde (MDA) and nitric oxide (NO) levels increased, and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) (except for lung tissue), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) activities decreased in all tissues and erythrocytes. Thirdly, catalase (CAT) activity decreased in erythrocytes and the kidney, brain, heart and lung tissues and increased in the liver and testes. Fourthly, while GST activity decreased in the kidneys, testes, lung and erythrocytes, an increase was observed in the liver and heart tissues. Fifthly, while serum triglyceride levels and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and pseudo-cholinesterase (PchE) activities decreased, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and blood urea nitrogen (BUN), creatinine and uric acid levels increased. Lastly, liver caspase 3, caspase 9 and p53 expression levels significantly increased. When compared to the control group, the groups treated with diosmin alone showed no significant difference for the parameters investigated. On the other hand, it was observed that the values of the groups treated with a combination of bendiocarb and diosmin were closer to the values of the control group. In conclusion, while exposure to bendiocarb at a dose of 2 mg/kg.bw for 28 days caused oxidative stress/organ damage, diosmin administration at doses of 10 and 20 mg/kg.bw reduced this damage. This demonstrated that diosmin has pharmaceutical benefits, when used for supportive treatment as well as radical treatment, against the potential adverse effects of bendiocarb.
Collapse
Affiliation(s)
- Orhan Bahar
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
118
|
Ansari M, Ahmed S, Abbasi A, Hamad NA, Ali HM, Khan MT, Haq IU, Zaman QU. Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease. Microorganisms 2023; 11:microorganisms11040886. [PMID: 37110309 PMCID: PMC10145257 DOI: 10.3390/microorganisms11040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers' major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP-treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Madeeha Ansari
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree 47150, Pakistan
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Najwa A Hamad
- Plant Protection Department, Faculty of Agriculture, Omar Al-Mukhtar University, El-Beida P.O. Box 919, Libya
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore 54770, Pakistan
| | - Inzamam Ul Haq
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
119
|
Zhang C, Zhou T, Li Y, Dai W, Du S. Activation of the CncC pathway is involved in the regulation of P450 genes responsible for clothianidin resistance in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2023. [PMID: 36974603 DOI: 10.1002/ps.7482] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases (P450s) play a key role in the detoxification metabolism of insecticides and their overexpression is often associated with insecticide resistance. Our previous research showed that the overexpression of four P450 genes is responsible for clothianidin resistance in B. odoriphaga. In this study, we characterized another P450 gene, CYP6FV21, associated with clothianidin resistance. However, the molecular basis for the overexpression of P450 genes in clothianidin-resistant strain remains obscure in B. odoriphaga. RESULTS In this study, the CYP6FV21 gene was significantly overexpressed in the clothianidin-resistant (CL-R) strain. Clothianidin exposure significantly increased the expression level of CYP6FV21. Knockdown of CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to clothianidin. The transcription factor Cap 'n' Collar isoform-C (CncC) was highly expressed in the midgut of larvae in B. odoriphaga. The expression level of CncC was higher in the CL-R strain compared with the susceptible (SS) strain. Clothianidin exposure caused reactive oxygen species (ROS) accumulation and significantly increased the expression level of CncC. Knockdown of CncC caused a significant decrease in the expression of CYP3828A1 and CYP6FV21, and P450 enzyme activity, and led to a significant increase in mortality after exposure to lethal concentration at 30% (LC30 ) of clothianidin. After treatment with CncC agonist curcumin, the P450 activity and the expression levels of CYP3828A1 and CYP6FV21 significantly increased, and larval sensitivity to clothianidin decreased. The ROS scavenger N-acetylcysteine (NAC) treatment significantly inhibited the expression levels of CncC, CYP3828A1 and CYP6FV21 in response to clothianidin exposure and increased larval sensitivity to clothianidin. CONCLUSION Taken together, these results indicate that activation of the CncC pathway by the ROS burst plays a critical role in clothianidin resistance by regulating the expression of CYP3828A1 and CYP6FV21 genes in B. odoriphaga. This study provides more insight into the mechanisms underlying B. odoriphaga larval resistance to clothianidin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
120
|
Abou Diwan M, Lahimer M, Bach V, Gosselet F, Khorsi-Cauet H, Candela P. Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076147. [PMID: 37047120 PMCID: PMC10094680 DOI: 10.3390/ijms24076147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that chronic exposure to a low level of pesticides found in diet affects the human gut-microbiota–blood–brain barrier (BBB) axis. This axis describes the physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides, microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the similarities/differences between these two physiological barriers and the different pathways that link the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain. We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant women and offspring).
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
- Correspondence:
| |
Collapse
|
121
|
Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals (Basel) 2023; 13:ani13061029. [PMID: 36978570 PMCID: PMC10044699 DOI: 10.3390/ani13061029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Our research sought to determine the molecular and biochemical effects of environmentally relevant exposure to commonly used chloro-s-triazine herbicide terbuthylazine and organophosphate insecticide malathion on zebrafish. To this aim, mature zebrafish were exposed to 2 and 30 µg L−1 terbuthylazine and 5 and 50 µg L−1 malathion alone and in combination for 14 days. Aside from the accumulation of TBARS and protein carbonyls, a decrease in antioxidants and succinate dehydrogenase activity, an increase in oxidized glutathione, and enhanced apoptosis via Caspase-3 and BAX overexpression were observed. Furthermore, terbuthylazine and malathion induced mitochondrial swelling (up to 210% after single exposure and up to 470% after co-exposure) and lactate dehydrogenase leakage (up to 268% after single exposure and up to 570% after co-exposure) in a concentration-dependent manner. Significant upregulation of ubiquitin expression and increased cathepsin D activity were characteristics that appeared only upon terbuthylazine exposure, whereas the induction of IgM was identified as the specific characteristic of malathion toxicity. Meanwhile, no alterations in the zebrafish hypothalamic-pituitary-thyroid axis was observed. Co-exposure increased the adverse effects of individual pesticides on zebrafish. This study should improve the understanding of the mechanisms of pesticide toxicity that lead to fish impairment and biodiversity decline.
Collapse
|
122
|
Gadelhaq SM, Aboelhadid SM, Abdel-Baki AAS, Hassan KM, Arafa WM, Ibrahium SM, Al-Quraishy S, Hassan AO, Abd El-Kareem SG. D-limonene nanoemulsion: lousicidal activity, stability, and effect on the cuticle of Columbicola columbae. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:63-75. [PMID: 36054616 DOI: 10.1111/mve.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The current study was conducted to investigate the efficacy and stability of D-limonene (DL) and its nanoemulsion (DLN) against pigeon feather lice (Columbicola columbae) and their mode of action. DL pure form and DLN were prepared and characterized freshly and after storage for 50 days. In vitro bioassay on live lice was conducted with different concentrations of DL, DLN, and deltamethrin (DM). The results revealed significant mortality rates in the DL-, DLN-, DM-treated groups when compared with the control (p < 0.05). The scanning electron micrographs of lice treated with DL and DLN revealed collapsed bodies with destruction in the cuticle of the mouthparts and damaged antennae. The 50 days stored DLN showed stability in their effectiveness when compared with the freshly prepared formulation. DL and DLN caused significant inhibition (p ≤ 0.05) in acetylcholinesterase activity (AchE). Malondialdehyde level (MDA) was significantly increased while glutathione was significantly decreased in DL- and DLN-treated lice. In conclusion, DL and DLN have significant lousicidal activities. DLN showed better stability than DL after storage for 50 days. In addition, the mode of action of DL may associate with its effect on the cuticle of the lice body, inhibition of AchE, and increasing oxidative stress in the treated lice.
Collapse
Affiliation(s)
- Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Khaled M Hassan
- Department of Parasitology, Animal Health Research Institute, Beni-Suef, Egypt
| | - Waleed M Arafa
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
123
|
Singh KD, Koijam AS, Bharali R, Rajashekar Y. Insecticidal and biochemical effects of Dillenia indica L. leaves against three major stored grain insect pests. FRONTIERS IN PLANT SCIENCE 2023; 14:1135946. [PMID: 36890902 PMCID: PMC9986431 DOI: 10.3389/fpls.2023.1135946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The Last four decades have witnessed the banning of several synthetic insecticides mainly due to the development of resistance to the target pests and due to hazardous effects on humans and the environment. Hence, the development of a potent insecticide with biodegradable and eco-friendly nature is the need of the hour. In the present study, the fumigant property, and biochemical effects of Dillenia indica L. (Dilleniaceae) were studied against three coleopterans stored-products insects. The bioactive enriched fraction (sub-fraction-III) was isolated from ethyl acetate extracts of D. indica leaves and found toxic to rice weevil, Sitophilus oryzae (L.) (Coleoptera); lesser grain borer Rhyzopertha dominica (L.) (Coleoptera) and red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera) with the LC50 values of 101.887, 189.908 and 115.1 µg/L respectively after 24 h exposure. The enriched fraction was found to inhibit the function of acetylcholinesterase (AChE) enzyme when tested against S. oryzae, T. castaneum, and R. dominica with LC50 value of 88.57 µg/ml, 97.07 µg/ml, and 66.31 µg/ml respectively, in in-vitro condition. It was also found that the enriched fraction caused a significant oxidative imbalance in the antioxidative enzyme system such as superoxide dismutase, catalase, DPPH (2,2-diphenyl-1-picrylhydrazyl), and glutathione-S-transferase (GST). GCMS analysis of the enriched fraction indicates three major compounds namely, 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one, 1,2-Benzisothiazol-3(2H)-one, and Benzothiazole, 2-(2-hydroxyethylthio)-. Finally, we concluded that the enriched fraction of D. indica has insecticidal properties and the toxicity may be due to the inhibition of the AChE enzyme in association with oxidative imbalance created on the insect's antioxidant enzyme systems.
Collapse
Affiliation(s)
- Kabrambam D. Singh
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Arunkumar S. Koijam
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Rupjyoti Bharali
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur, India
| |
Collapse
|
124
|
Prostaglandin Metabolome Profiles in Zebrafish ( Danio rerio) Exposed to Acetochlor and Butachlor. Int J Mol Sci 2023; 24:ijms24043488. [PMID: 36834899 PMCID: PMC9963763 DOI: 10.3390/ijms24043488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Prostaglandins (PGs) are critically important signaling molecules that play key roles in normal and pathophysiological processes. Many endocrine-disrupting chemicals have been found to suppress PG synthesis; however, studies about the effects of pesticides on PGs are limited. The effects of two known endocrine disrupting herbicides, acetochlor (AC) and butachlor (BC), on PG metabolites in zebrafish (Danio rerio) females and males were studied using widely targeted metabolomics analysis based on ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In total, 40 PG metabolites were detected in 24 zebrafish samples, including female and male samples, with and without exposure to AC or BC at the sub-lethal concentration of 100 μg/L for 96 h. Among them, 19 PGs significantly responded to AC or BC treatment, including 18 PGs that were upregulated. The enzyme-linked immunosorbent assay (ELISA) test in zebrafish showed BC could cause significant upregulation of an isoprostane metabolite, 5-iPF2a-VI, which is positively related to the elevated level of reactive oxygen species (ROS). The present study guides us to conduct a further study to determine whether PG metabolites, including isoprostanes, could be potential biomarkers for chloracetamide herbicides.
Collapse
|
125
|
Cao X, Wei J, Ge H, Guan D, Zheng Y, Meng X, Qian K, Wang J. Molecular Characterization of Spodoptera frugiperda Heme Oxygenase and Its Involvement in Susceptibility to Chlorantraniliprole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2313-2321. [PMID: 36705998 DOI: 10.1021/acs.jafc.2c08255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The mammalian heme oxygenase (HO) plays an important role in cytoprotection against oxidative-stress-induced cell damage; however, functional characterization of insect HO is still limited. In this study, cDNA encoding a HO, named SfHO, was cloned from Spodoptera frugiperda. Analysis of the transcription level and enzymatic activity showed that exposure of the LC30 concentration of chlorantraniliprole to the third instar larvae significantly upregulated both the mRNA level and enzymatic activity of SfHO at 24 h after treatment. Further injection of the HO activator, hemin, into the third instar larvae led to the upregulation of SfHO as well as decreased susceptibility of S. frugiperda to chlorantraniliprole. Consistently, overexpression of SfHO increased the Sf9 cell viability under chlorantraniliprole treatment. Strikingly, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that, unlike mammalian HO that is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), SfHO was not subject to the regulation by cap 'n' collar isoform C (CncC), the Nrf2 homologue in insects. These data provide insights into the function and regulatory mechanism of insect HOs and had applied implications for the control of S. frugiperda.
Collapse
Affiliation(s)
- Xiaoli Cao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
126
|
Ruíz-Arias MA, Medina-Díaz IM, Bernal-Hernández YY, Agraz-Cibrián JM, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF, Verdín-Betancourt FA, Zambrano-Zaragoza JF, Rojas-García AE. Hematological indices as indicators of inflammation induced by exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19466-19476. [PMID: 36239889 PMCID: PMC9561311 DOI: 10.1007/s11356-022-23509-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Pesticide toxicity, both acute and chronic, is a global public health concern. Pesticides are involved in abnormal inflammatory responses by interfering with the normal physiology and metabolic status of cells. In this regard, inflammatory indices aggregate index of systemic inflammation (AISI), monocyte-to-high-density lipoprotein ratio, monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte platelet ratio (NLPR), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune inflammation index, and systemic inflammation response index (SIRI) have been used as predictive markers of inflammatory status in several diseases and also in acute poisoning events. This study aimed to determine systemic inflammation indices and their relationship with pesticide exposure from urban sprayers in 302 individuals categorized into three groups (reference group and moderate and high exposure groups). The data suggest that the AISI, MLR, NLPR, and SIRI indices were significantly higher in the exposed groups compared with the reference group. In conclusion, this study proposes that inflammation indices warrant further attention in order to assess their value as early biomarkers of acute and chronic pesticide intoxication.
Collapse
Affiliation(s)
- Miguel Alfonso Ruíz-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
- Programa de Doctorado en Ciencias Biológico Agropecuarias. Área de Ciencias Ambientales. Universidad Autónoma de Nayarit, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Francisco Alberto Verdín-Betancourt
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México.
| |
Collapse
|
127
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
128
|
Kumari K, Swamy S. Field validated biomarker (ValidBIO) based assessment of impacts of various pollutants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5347-5370. [PMID: 36414892 DOI: 10.1007/s11356-022-24006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The sensitivity of fish towards pollutants serves as an excellent tool for the analysis of water pollution. The effluents generated from various anthropogenic activities may contain heavy metals, pesticides, microplastics, and persistent organic pollutants (POPs) and ultimately find its way to aquatic environment. The enzymatic activities of fish collected from water bodies near major cities, oil spillage sites, agricultural land, and intensively industrialized areas have been reported to be significantly impacted in various field studies. These significant alterations in enzymatic activities act as a biomarker for monitoring purposes. The use of biomarkers not only helps in the identification of known and unknown pollutants and their detrimental health impacts, but also identifies the interaction between pollutants and organisms. The conventional method majorly used is physicochemical analysis, which is recognized as the backbone of the system for monitoring water quality. In physicochemical monitoring, major problems exist in assessing or predicting biological effects from chemical or physical data. Xenobiotic-induced enzymatic changes in fish may serve as an intuitive and efficient biomarker for determining contaminants in water bodies. Therefore, field validated biomarker (ValidBIO) approach needs to be integrated in water quality monitoring program for environmental health risk assessment of aquatic life impacted due to various point and non-point sources of water pollution.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700107, India.
| | - Senerita Swamy
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
129
|
Ismail T, Lee H, Kim Y, Ryu HY, Cho DH, Ryoo ZY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS. PCNB exposure during early embryogenic development induces developmental delay and teratogenicity by altering the gene expression in Xenopus laevis. ENVIRONMENTAL TOXICOLOGY 2023; 38:216-224. [PMID: 36218123 DOI: 10.1002/tox.23679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide commonly used to treat seeds against seedling infections and controlling snow mold on golf courses. PCNB has been demonstrated to be toxic to living organisms, including fish and several terrestrial organisms. However, only phenotypical deformities have been studied, and the effects of PCNB on early embryogenesis, where primary organogenesis occurs, have not been completely studied. In the current study, the developmental toxicity and teratogenicity of PCNB is evaluated by using frog embryo teratogenesis assay Xenopus (FETAX). Our results confirmed the teratogenic potential of PCNB revealing the teratogenic index of 1.29 during early embryogenesis. Morphological studies revealed tiny head, bent axis, reduced inter ocular distance, hyperpigmentation, and reduced total body lengths. Whole mount in situ hybridization and reverse transcriptase polymerase chain reaction were used to identify PCNB teratogenic effects at the gene level. The gene expression analyses revealed that PCNB was embryotoxic to the liver and heart of developing embryos. Additionally, to determine the most sensitive developmental stages to PCNB, embryos were exposed to the compound at various developmental stages, demonstrating that the most sensitive developmental stage to PCNB is primary organogenesis. Taken together, we infer that PCNB's teratogenic potential affects not just the phenotype of developing embryos but also the associated genes and involving the oxidative stress as a possible mechanism of toxicity, posing a hazard to normal embryonic growth. However, the mechanisms of teratogenesis require additional extensive investigation to be defined completely.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hong-Yeoul Ryu
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Zae Young Ryoo
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
130
|
Acidifiers Attenuate Diquat-Induced Oxidative Stress and Inflammatory Responses by Regulating NF-κB/MAPK/COX-2 Pathways in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11102002. [PMID: 36290726 PMCID: PMC9598074 DOI: 10.3390/antiox11102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we evaluated the protective effects and potential mechanisms of acidifiers on intestinal epithelial cells exposure to oxidative stress (OS). IPEC-J2 cells were first pretreated with 5 × 10−5 acidifiers for 4 h before being exposed to the optimal dose of diquat to induce oxidative stress. The results showed that acidifiers attenuated diquat-induced oxidative stress, which manifests as the improvement of antioxidant capacity and the reduction in reactive oxygen species (ROS) accumulation. The acidifier treatment decreased cell permeability and enhanced intestinal epithelial barrier function through enhancing the expression of claudin-1 and occludin in diquat-induced cells. Moreover, acidifier treatment attenuated diquat-induced inflammatory responses, which was confirmed by the decreased secretion and gene expression of pro-inflammatory (TNF-α, IL-8) and upregulated anti-inflammatory factors (IL-10). In addition, acidifiers significantly reduced the diquat-induced gene and protein expression levels of COX-2, NF-κB, I-κB-β, ERK1/2, and JNK2, while they increased I-κB-α expression in IPEC-J2 cells. Furthermore, we discovered that acidifiers promoted epithelial cell proliferation (increased expression of PCNA and CCND1) and inhibited apoptosis (decreased expression of BAX, increased expression of BCL-2). Taken together, these results suggest that acidifiers are potent antioxidants that attenuate diquat-induced inflammation, apoptosis, and maintain cellular barrier integrity by regulating the NF-κB/MAPK/COX-2 signaling pathways.
Collapse
|
131
|
Guo W, Yang Y, Zhou X, Ming R, Hu D, Lu P. Insight into the toxic effects, bioconcentration and oxidative stress of acetamiprid on Rana nigromaculata tadpoles. CHEMOSPHERE 2022; 305:135380. [PMID: 35724715 DOI: 10.1016/j.chemosphere.2022.135380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Pesticide pollution has been identified as a factor in the amphibian population decrease. Acetamiprid is a common neonicotinoid pesticide that poses a risk to amphibians due to its high water solubility and inability to be digested. However, there is little research on acetamiprid's toxicity in amphibians, particularly on its biochemical toxic effects. In this study, we investigated the acute toxicity, bioenrichment-elimination, biochemical parameters and metabolism of acetamiprid in Rana nigromaculata tadpoles. The results indicated that acetamiprid is harmful to Rana nigromaculata tadpoles, with an LC50 = 18.49 mg L-1 of 96 h for acute toxicity. Acetamiprid showed rapid accumulation and low bioconcentration levels in tadpoles, with bioconcentration factors (BCFs) < 1. In the elimination process, the concentration of acetamiprid decreased rapidly, with the elimination half-life t1/2 values < 1 d. Additionally, oxidative stress was observed in tadpoles, with biochemical parameters such as superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) being significantly altered. Nontargeted metabolomics revealed significant changes in biomolecules such as lipids, organic acids and nucleotides in tadpoles, and these metabolites influence pathways including serine and threonine metabolism, histidine metabolism, linoleic acid metabolism and sphingolipid metabolism. These results indicate that acetamiprid caused toxic effects on Rana nigromaculata tadpoles. Our study provides a better understanding of the fate and risk of acetamiprid in amphibians, as well as guidelines for its rational use.
Collapse
Affiliation(s)
- Wang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ya Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
132
|
Costa C, Teodoro M, Giambò F, Catania S, Vivarelli S, Fenga C. Assessment of Mancozeb Exposure, Absorbed Dose, and Oxidative Damage in Greenhouse Farmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710486. [PMID: 36078202 PMCID: PMC9518406 DOI: 10.3390/ijerph191710486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/28/2023]
Abstract
Mancozeb (MNZ) is a fungicide commonly employed in many countries worldwide. This study assesses MNZ absorption dynamics in 19 greenhouse farmers, specifically following dermal exposure, aiming to verify the efficacy of both preventive actions and protective equipment. For data collection, a multi-assessment approach was used, which included a survey to record study population features. MNZ exposure was assessed through the indirect measurement of ethylene thiourea (ETU), widely employed as an MNZ biomarker. The ETU concentration was measured with the patch method, detecting environmental ETU trapped in filter paper pads, applied both on skin and working clothes, during the 8 h work shift. Urine and serum end-of-shift samples were also collected to measure ETU concentrations and well-known oxidative stress biomarkers, respectively, namely reactive oxygen metabolites (ROMs), advanced oxidation protein products (AOPPs), and biological antioxidant potential (BAP). It was observed that levels of ETU absorbed and ETU excreted were positively correlated. Additionally, working clothes effectively protected workers from MNZ exposure. Moreover, following stratification of the samples based on the specific working duty (i.e., preparation and spreading of MNZ and manipulation of MNZ-treated seedlings), it was found that the spreading group had higher ETU-related risk, despite lower chronic exposure levels. AOPP and ROM serum levels were higher in MNZ-exposed subjects compared with non-exposed controls, whereas BAP levels were significantly lower. Such results support an increase in the oxidative stress upon 8 h MNZ exposure at work. In particular, AOPP levels demonstrated a potential predictive role, as suggested by the contingency analysis results. Overall, this study, although conducted in a small group, confirms that ETU detection in pads, as well as in urine, might enable assessment of the risk associated with MNZ exposure in greenhouse workers. Additionally, the measurement of circulating oxidative stress biomarkers might help to stratify exposed workers based on their sensitivity to MNZ. Pivotally, the combination of both ETU measurement and biological monitoring might represent a novel valuable combined approach for risk assessment in farmhouse workers exposed to pesticides. In the future, these observations will help to implement effective preventive strategies in the workplace for workers at higher risk, including greenhouse farmers who are exposed to pesticides daily, as well as to clarify the occupational exposure levels to ETU.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Stefania Catania
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
133
|
Fu Y, Yin S, Zhao C, Fan L, Hu H. Combined toxicity of food-borne mycotoxins and heavy metals or pesticides. Toxicon 2022; 217:148-154. [PMID: 35995097 DOI: 10.1016/j.toxicon.2022.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Food can be contaminated by multiple classes of toxic substances, mainly including mycotoxins, heavy metals and pesticides, which leads to a possibility of simultaneous exposure to two or more food contaminants for humans. Thus, it is necessary to examine whether the combined exposure could result in enhanced toxicity. Initially, the studies on the combined toxicity of food contaminants mainly focus on the mixtures of same classes of food contaminants due to their co-occurrence feature in foodstuffs, such as mixtures of mycotoxins or mixtures of heavy metals. Given the possibility that consumers are likely exposed to mixtures of different classes of food contaminants, recently, studies on the combined toxicity of different classes of food contaminants have been receiving increasing attentions. In this review article, we summarize the findings of combined toxicity studies related to co-exposure to food-borne mycotoxins and other classes of food contaminants mainly heavy metals or pesticides, and propose issues that need to be addressed in future studies for more accurately performing risk assessment of co-exposure to mycotoxins and other classes of food contaminants.
Collapse
Affiliation(s)
- Yuhan Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
134
|
De Lazzari F, Agostini F, Doni D, Malacrida S, Zordan MA, Costantini P, Bubacco L, Sandrelli F, Bisaglia M. DJ-1 and SOD1 Act Independently in the Protection against Anoxia in Drosophila melanogaster. Antioxidants (Basel) 2022; 11:antiox11081527. [PMID: 36009245 PMCID: PMC9405364 DOI: 10.3390/antiox11081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Redox homeostasis is a vital process the maintenance of which is assured by the presence of numerous antioxidant small molecules and enzymes and the alteration of which is involved in many pathologies, including several neurodegenerative disorders. Among the different enzymes involved in the antioxidant response, SOD1 and DJ-1 have both been associated with the pathogenesis of amyotrophic lateral sclerosis and Parkinson’s disease, suggesting a possible interplay in their mechanism of action. Copper deficiency in the SOD1-active site has been proposed as a central determinant in SOD1-related neurodegeneration. SOD1 maturation mainly relies on the presence of the protein copper chaperone for SOD1 (CCS), but a CCS-independent alternative pathway also exists and functions under anaerobic conditions. To explore the possible involvement of DJ-1 in such a pathway in vivo, we exposed Drosophila melanogaster to anoxia and evaluated the effect of DJ-1 on fly survival and SOD1 levels, in the presence or absence of CCS. Loss of DJ-1 negatively affects the fly response to the anoxic treatment, but our data indicate that the protective activity of DJ-1 is independent of SOD1 in Drosophila, indicating that the two proteins may act in different pathways.
Collapse
Affiliation(s)
- Federica De Lazzari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Medical Research Council, Mitochondria Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Davide Doni
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy
| | - Mauro A. Zordan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Paola Costantini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| | - Federica Sandrelli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (F.S.); (M.B.)
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
- Correspondence: (F.S.); (M.B.)
| |
Collapse
|
135
|
Ding X, Sarkar A, Li L, Li H, Lu Q. Effects of Market Incentives and Livelihood Dependence on Farmers' Multi-Stage Pesticide Application Behavior-A Case Study of Four Provinces in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9431. [PMID: 35954794 PMCID: PMC9368658 DOI: 10.3390/ijerph19159431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Improvement in pesticide application and efficiency structure has long been recognized as having great significance in reducing pollution, ensuring food safety, and promoting green agricultural development. Based on theoretical analysis, using the survey data of 766 farmers in key tea areas in Shaanxi, Sichuan, Zhejiang, and Anhui provinces in China, the study empirically analyzes the influence of market incentives and livelihood dependence on farmers' multi-stage pesticide application behavior. More specifically, the study employed ordered probit analysis to craft its findings. The dependent variable of this study is the multi-stage pesticide application problem of farmers, and the core independent variables are market incentives and livelihood dependence, and the judgment is based on the core variable coefficients of the econometric model of farmers at each stage. The study found the following: (i) Market incentives significantly prompted some farmers to give up synthetic pesticide application and farmers tend to choose green pesticides in the type of pesticide application. (ii) Livelihood dependence meant that the proportion of tea income significantly prompts farmers to apply pesticides, and also creates a tendency for farmers to choose green and low-toxic pesticides in the type of pesticide application. The planting period tends to have a moderate impact on applying green and low-toxic pesticides. (iii) The interaction term of market incentives and the proportion of tea income has no significant impact on farmers' multi-stage pesticide application behavior. The interaction term of market incentives and planting years has impacted negatively on whether farmers apply pesticides, and has no significant impact on farmers' choice of pesticide application types, but makes farmers increase the amount of green and low-toxic pesticides. (iv) The education level of the household head significantly promotes farmers to choose green and low-toxic pesticides. Seemingly, the brand effect of pesticides significantly encourages farmers to choose green and low-toxic pesticides. In external support, technical training significantly encourages farmers to choose green and low-toxic pesticides. Furthermore, better infrastructure and local market conditions significantly encourage farmers to reduce the use of conventional pesticides.
Collapse
Affiliation(s)
- Xiuling Ding
- College of Economics and Management, Northwest A&F University, Xianyang 712100, China; (X.D.); (A.S.); (H.L.)
| | - Apurbo Sarkar
- College of Economics and Management, Northwest A&F University, Xianyang 712100, China; (X.D.); (A.S.); (H.L.)
| | - Lipeng Li
- School of Economics and Management, Ningxia University, Yinchuan 750021, China;
| | - Hua Li
- College of Economics and Management, Northwest A&F University, Xianyang 712100, China; (X.D.); (A.S.); (H.L.)
| | - Qian Lu
- College of Economics and Management, Northwest A&F University, Xianyang 712100, China; (X.D.); (A.S.); (H.L.)
| |
Collapse
|
136
|
Elmorsy E, Al-Ghafari A, Al Doghaither H, Salama M, Carter WG. An Investigation of the Neurotoxic Effects of Malathion, Chlorpyrifos, and Paraquat to Different Brain Regions. Brain Sci 2022; 12:brainsci12080975. [PMID: 35892416 PMCID: PMC9394375 DOI: 10.3390/brainsci12080975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Acute or chronic exposures to pesticides have been linked to neurotoxicity and the potential development of neurodegenerative diseases (NDDs). This study aimed to consider the neurotoxicity of three widely utilized pesticides: malathion, chlorpyrifos, and paraquat within the hippocampus (HC), corpus striatum (CS), cerebellum (CER), and cerebral cortex (CC). Neurotoxicity was evaluated at relatively low, medium, and high pesticide dosages. All pesticides inhibited acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in each of the brain regions, but esterase inhibition was greatest in the HC and CS. Each of the pesticides also induced greater disruption to cellular bioenergetics within the HC and CS, and this was monitored via inhibition of mitochondrial complex enzymes I and II, reduced ATP levels, and increased lactate production. Similarly, the HC and CS were more vulnerable to redox stress, with greater inhibition of the antioxidant enzymes catalase and superoxide dismutase and increased lipid peroxidation. All pesticides induced the production of nuclear Nrf2 in a dose-dependent manner. Collectively, these results show that pesticides disrupt cellular bioenergetics and that the HC and CS are more susceptible to pesticide effects than the CER and CC.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (E.E.); (M.S.)
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
- Scientific Research Center, Dar Al-Hekma University, Jeddah 22246, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
- Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (E.E.); (M.S.)
- Institute of Global Health and Human Ecology, The American University in Cairo (AUC), Cairo 11385, Egypt
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
- Correspondence: ; Tel.: +44-132-724-738
| |
Collapse
|
137
|
Silva AM, Martins-Gomes C, Ferreira SS, Souto EB, Andreani T. Molecular Physicochemical Properties of Selected Pesticides as Predictive Factors for Oxidative Stress and Apoptosis-Dependent Cell Death in Caco-2 and HepG2 Cells. Int J Mol Sci 2022; 23:ijms23158107. [PMID: 35897683 PMCID: PMC9331544 DOI: 10.3390/ijms23158107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, three pesticides of different physicochemical properties: glyphosate (GLY, herbicide), imidacloprid (IMD, insecticide), and imazalil (IMZ, fungicide), were selected to assess their cytotoxicity against Caco-2 and HepG2 cells. Cell viability was assessed by the Alamar Blue assay, after 24 and 48 h exposure to different concentrations, and IC50 values were calculated. The mechanisms underlying toxicity, namely cellular reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation, loss of mitochondrial membrane potential (MMP), and apoptosis/necrosis induction were assessed by flow cytometry. Cytotoxic profiles were further correlated with the molecular physicochemical parameters of pesticides, namely: water solubility, partition coefficient in an n-octanol/water (Log Pow) system, topological polar surface area (TPSA), the number of hydrogen-bonds (donor/acceptor), and rotatable bonds. In vitro outputs resulted in the following toxicity level: IMZ (Caco-2: IC50 = 253.5 ± 3.37 μM, and HepG2: IC50 = 94 ± 12 μM) > IMD (Caco-2: IC50 > 1 mM and HepG2: IC50 = 624 ± 24 μM) > GLY (IC50 >>1 mM, both cell lines), after 24 h treatment, being toxicity time-dependent (lower IC50 values at 48 h). Toxicity is explained by oxidative stress, as IMZ induced a higher intracellular ROS increase and lipid peroxidation, followed by IMD, while GLY did not change these markers. However, the three pesticides induced loss of MMP in HepG2 cells while in Caco-2 cells only IMZ produced significant MMP loss. Increased ROS and loss of MMP promoted apoptosis in Caco-2 cells subjected to IMZ, and in HepG2 cells exposed to IMD and IMZ, as assessed by Annexin-V/PI. The toxicity profile of pesticides is directly correlated with their Log Pow, as affinity for the lipophilic environment favours interaction with cell membranes governs, and is inversely correlated with their TPSA; however, membrane permeation is favoured by lower TPSA. IMZ presents the best molecular properties for membrane interaction and cell permeation, i.e., higher Log Pow, lower TPSA and lower hydrogen-bond (H-bond) donor/acceptor correlating with its higher toxicity. In conclusion, molecular physicochemical factors such as Log Pow, TPSA, and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus they are key factors to potentially predict the toxicity of other compounds.
Collapse
Affiliation(s)
- Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence: ; Tel.: +351-259-350-921
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Sandrine S. Ferreira
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tatiana Andreani
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre and Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
138
|
Teodoro M, Giambò F. Well-Being and Safety in the Workplace. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148712. [PMID: 35886564 PMCID: PMC9322388 DOI: 10.3390/ijerph19148712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
|
139
|
Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. TOXICS 2022; 10:toxics10070388. [PMID: 35878293 PMCID: PMC9325130 DOI: 10.3390/toxics10070388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023]
Abstract
Veterinary antiparasitic pharmaceuticals as well as pesticides have been detected in surface waters, and they may cause several toxic effects in this environmental compartment. In the present study, we evaluated the toxicity after exposure of different concentration of ivermectin (IVM; 50, 100, and 200 μg L−1) and cypermethrin (CYP; 5, 10, and 25 μg L−1) and the combination of these two compounds at non-toxic concentration (IVM 100 + CYP 5 μg L−1) in zebrafish embryos. Combination of IVM at 100 μg L−1 with CYP at 5 μg L−1 exposure induced hatching delay and malformations at 96 hpf in zebrafish larvae as well as significant induction of cell death in zebrafish larvae. At the same time, the two single concentrations of IVM and CYP did not show a toxic effect on zebrafish development. In conclusion, our study suggests that IVM and CYP show a synergistic effect at common, ineffective concentrations, promoting malformation and cell death in fish development.
Collapse
|
140
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
141
|
Mahmood Y, Hussain R, Ghaffar A, Ali F, Nawaz S, Mehmood K, Khan A. Acetochlor Affects Bighead Carp ( Aristichthys Nobilis) by Producing Oxidative Stress, Lowering Tissue Proteins, and Inducing Genotoxicity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9140060. [PMID: 35655481 PMCID: PMC9152400 DOI: 10.1155/2022/9140060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acetochlor is persistently used in the agroproduction sector to control broadleaf weeds. Due to frequent and continuous applications, this herbicide can reach nearby water bodies and may induce deleterious changes in aquatic life. Therefore, investigation of harmful impacts of different environmental pollutants, including herbicides, is vital to knowing the mechanisms of toxicity and devising control strategies. The current experiment included bighead carp (n = 80) to estimate adverse impacts. Fish were randomly placed in 4 different experimental groups (T0-T3) and were treated for 36 days with acetochlor at 0, 300, 400, and 500 μg/L. Fresh blood without any anticoagulant was obtained and processed for nuclear and morphological changes in erythrocytes. At the same time, various visceral organs, including the gills, liver, brain, and kidneys, were removed and processed on days 12, 24, and 36 to determine oxidative stress and various antioxidant biomarkers. Comet assays revealed significantly increased DNA damage in isolated cells of the liver, kidneys, brain, and gills of treated fish. We recorded increased morphological and nuclear changes (P ≤ 0.05) in the erythrocyte of treated fish. The results on oxidative stress showed a higher quantity of oxidative biomarkers and a significantly (P ≤ 0.05) low concentration of cellular proteins in the gills, liver, brain, and kidneys of treated fish compared to unexposed fish. Our research findings concluded that acetochlor renders oxidative stress in bighead carp.
Collapse
Affiliation(s)
- Yasir Mahmood
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Ahrar Khan
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| |
Collapse
|
142
|
Chittrakul J, Sapbamrer R, Sirikul W. Pesticide Exposure and Risk of Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. TOXICS 2022; 10:toxics10050207. [PMID: 35622621 PMCID: PMC9143500 DOI: 10.3390/toxics10050207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is a disease that affects people all over the world and can be caused by a variety of factors. Exposure to pesticides is one of the risk factors for the development of RA. However, the evidence of exposure to pesticides linked with the development of RA is still controversial. This study aimed to investigate the association between exposure to pesticides and RA by a systematic review of relevant literature and a meta-analysis. Full-text articles published in PubMed, Web of Science, Scopus, and Google Scholar between 1956 and 2021 were reviewed and evaluated. A total of eight studies were eligible for inclusion (two cohort studies, four case-control studies, and two cross-sectional studies). The adjusted odds ratio for pesticide exposure on RA was 1.20 for insecticides (95% CI = 1.12–1.28), 0.98 for herbicides (95% CI = 0.89–1.08), 1.04 for fungicides (95% CI = 0.86–1.27), and 1.15 in for non-specific pesticides (95% CI = 1.09–1.21). There is some evidence to suggest that exposure to insecticides (especially fonofos, carbaryl, and guanidines) contributes to an increased risk of RA. However, the evidence is limited because of a small number of studies. Therefore, further epidemiological studies are needed to substantiate this conclusion.
Collapse
|
143
|
Melatonin Rescues Dimethoate Exposure-Induced Meiotic and Developmental Defects of Porcine Oocytes. Animals (Basel) 2022; 12:ani12070832. [PMID: 35405822 PMCID: PMC8997005 DOI: 10.3390/ani12070832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Environmental pollution poses concerns for public health. Dimethoate is a pesticide widely used in agricultural fields and home gardens. Recent studies have shown that dimethoate exposure impaired reproductive functions in male and female animals. However, whether dimethoate exposure affects oocyte maturation and how to reduce the toxicity of dimethoate remain unclear. Here, we showed that dimethoate exposure impaired nuclear and cytoplasmic maturation of porcine oocytes. Melatonin supplementation restored the meiotic maturation of dimethoate-exposed oocytes by suppressing the generation of excessive reactive oxygen species and autophagy and DNA damage accumulation. Therefore, melatonin counteracts the toxic effects of dimethoate exposure on porcine oocyte maturation. These findings imply that melatonin could be a promising agent in improving the quality of dimethoate-exposed oocytes from humans and animals. Abstract Dimethoate (DT) is an environmental pollutant widely used in agricultural fields and home gardens. Studies have shown that exposure to DT causes reproductive defects in both male and female animals. However, the effects of DT exposure on oocyte maturation and the approach to counteract it are not yet known. Here, we investigated the toxicity of DT on porcine oocyte maturation and the protective effects of melatonin (MT) on DT-exposed oocytes. DT exposure with 1.5 mM partially inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion (pb1) during oocyte maturation. Parthenogenetically activated embryos derived from DT-exposed oocytes could not develop to the 2-cell and blastocyst stage. Furthermore, DT exposure led to a significant increase in the rates of misaligned chromosomes, disorganized spindles, and abnormal actin assembly. DT exposure severely disrupted the distribution patterns of mitochondria in oocytes but did not change the subcellular localizations of cortical granules. Importantly, MT supplementation rescued the meiotic and developmental defects of DT-exposed oocytes through repressing the generation of excessive reactive oxygen species (ROS) and autophagy, and DNA damage accumulation. These results demonstrate that melatonin protects against meiotic defects induced by DT during porcine oocyte maturation.
Collapse
|