101
|
Fernández A, Pupo A, Mena-Ulecia K, Gonzalez C. Pharmacological Modulation of Proton Channel Hv1 in Cancer Therapy: Future Perspectives. Mol Pharmacol 2016; 90:385-402. [PMID: 27260771 DOI: 10.1124/mol.116.103804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
The pharmacological modulation of the immunosuppressive tumor microenvironment has emerged as a relevant component for cancer therapy. Several approaches aiming to deplete innate and adaptive suppressive populations, to circumvent the impairment in antigen presentation, and to ultimately increase the frequency of activated tumor-specific T cells are currently being explored. In this review, we address the potentiality of targeting the voltage-gated proton channel, Hv1, as a novel strategy to modulate the tumor microenvironment. The function of Hv1 in immune cells such as macrophages, neutrophils, dendritic cells, and T cells has been associated with the maintenance of NADPH oxidase activity and the generation of reactive oxygen species, which are required for the host defense against pathogens. We discuss evidence suggesting that the Hv1 proton channel could also be important for the function of these cells within the tumor microenvironment. Furthermore, as summarized here, tumor cells express Hv1 as a primary mechanism to extrude the increased amount of protons generated metabolically, thus maintaining physiologic values for the intracellular pH. Therefore, because this channel might be relevant for both tumor cells and immune cells supporting tumor growth, the pharmacological inhibition of Hv1 could be an innovative approach for cancer therapy. With that focus, we analyzed the available compounds that inhibit Hv1, highlighted the need to develop better drugs suitable for patients, and commented on the future perspectives of targeting Hv1 in the context of cancer therapy.
Collapse
Affiliation(s)
- Audry Fernández
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Karel Mena-Ulecia
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Carlos Gonzalez
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| |
Collapse
|
102
|
Krishna S, Overholtzer M. Mechanisms and consequences of entosis. Cell Mol Life Sci 2016; 73:2379-86. [PMID: 27048820 PMCID: PMC4889469 DOI: 10.1007/s00018-016-2207-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Multiple mechanisms have emerged where the engulfment of whole live cells, leading to the formation of what are called 'cell-in-cell' structures, induces cell death. Entosis is one such mechanism that drives cell-in-cell formation during carcinogenesis and development. Curiously, entotic cells participate actively in their own engulfment, by invading into their hosts, and are then killed non-cell-autonomously. Here we review the mechanisms of entosis and entotic cell death and the consequences of entosis on cell populations.
Collapse
Affiliation(s)
- Shefali Krishna
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
103
|
Sarode GS, Sarode SC, Gawande S, Patil S, Anand R, Patil SG, Patil P. Cellular cannibalism in giant cells of central giant cell granuloma of jaw bones and giant cell tumors of long bones. ACTA ACUST UNITED AC 2016; 8. [DOI: 10.1111/jicd.12214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/05/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Gargi S. Sarode
- Department of Oral Pathology and Microbiology; Dr D. Y. Patil Dental College and Hospital; Dr D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology; Dr D. Y. Patil Dental College and Hospital; Dr D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Shailesh Gawande
- Department of Oral Pathology and Microbiology; Dr D. Y. Patil Dental College and Hospital; Dr D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Snehal Patil
- Department of Oral Pathology and Microbiology; Dr D. Y. Patil Dental College and Hospital; Dr D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Rahul Anand
- Department of Oral Pathology and Microbiology; Dr D. Y. Patil Dental College and Hospital; Dr D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Shankar Gouda Patil
- Department of Oral Pathology and Microbiology; Faculty of Dental Sciences; MS Ramaiah University of Applied Sciences; Bengaluru Karnataka India
| | - Prakash Patil
- Department of Dentistry; Maharashtra Institute of Medical Education and Research; Pune Maharashtra India
| |
Collapse
|
104
|
Abstract
The discovery of antibiotics as specific and effective drugs against infectious agents has generated the belief that the famous Paul Erlich theory on magic bullet should be applied to cancer as well. However, after around 60 years of failures in finding a magic bullet against cancer, a question appears mandatory: does the magic bullet against cancer really exist? In trying to understand more on the issue, we propose three discoveries are coming from a nonmainstream approach against cancer. Tumor is acidic, and tumor acidity impairs drugs entering within tumor cells and isolates tumors from the rest of the body. Proton pumps are key in allowing tumor cells to live in the acidic microenvironment. A class of antiacidic drugs, proton pump inhibitors (PPIs), were shown to have a potent anti-tumor effect, through inhibition of proton pumps in tumor cells. PPIs are indeed prodrugs needing acidity to be activated into the active molecule. So they use protonation by H+ as an activating mechanism, while the vast majority of drugs are totally neutralized by protonation. An anti-tumor therapy based on PPI showed to be effective both in vitro and in vivo. Differently from normal cells, cancer cells meet their energy needs in great part by fermentation, and it appears conceivable that hypoxia and low nutrient transform tumor cells into fermenting anaerobes. This suggests that cancer cells are more similar to unicellular organisms, aimed at surviving in a continuous fighting, rather than cooperating, with other cells, as it occurs in the normal homeostasis of our body. We have shown that cancer cells take their fuel by "cannibalizing" other cells, either dead or alive, especially when starved and in acidic condition. This finding led to the discovery of a new oncogene TM9SF4 that human malignant cell shares with amoebas. The evidence is accumulating that almost all the cells release extracellular vehicles (EVs), from micro- to nanosize, which shuttle a variety of molecules. Tumor cells, particularly when stressed in their hostile microenvironment, release high levels of EVs, able to interact with target cells in various ways, within an organ or at a distance. They may represent both valuable tumor biomarker and shuttles for drugs with anti-tumor properties. This article wants to burst a real change in future anti-cancer strategies, based on the idea that tumors are much more common features than specific molecular targets.
Collapse
Affiliation(s)
- Stefano Fais
- a Anti-tumor Drug Section, Department of Therapeutic Research, Medicines Evaluation Istituto Superiore di Sanità (National Institute of Health) , Rome , Italy
| |
Collapse
|
105
|
Fonteneau JF, Brilot F, Münz C, Gannagé M. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. THE JOURNAL OF IMMUNOLOGY 2015; 196:64-71. [PMID: 26608910 DOI: 10.4049/jimmunol.1402664] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.
Collapse
Affiliation(s)
| | - Fabienne Brilot
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, St. Westmead, New South Wales 2145, Australia
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich 8006, Switzerland
| | - Monique Gannagé
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich 8006, Switzerland; Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva 1211, Switzerland; and Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva 1205, Switzerland
| |
Collapse
|
106
|
Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:359392. [PMID: 26504802 PMCID: PMC4609350 DOI: 10.1155/2015/359392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/17/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND In this study, we investigated the prognostic role of homotypic tumor cell cannibalism in different cancer types. METHODS The phenomenon of one cell being internalized into another, which we refer to as "cell-in-cell event," was assessed in 416 cases from five head and neck cancer cohorts, as well as one anal and one rectal cancer cohort. The samples were processed into tissue microarrays and immunohistochemically stained for E-cadherin and cleaved caspase-3 to visualize cell membranes and apoptotic cell death. RESULTS Cell-in-cell events were found in all of the cohorts. The frequency ranged from 0.7 to 17.3 cell-in-cell events per mm(2). Hardly any apoptotic cells were found within the cell-in-cell structures, although apoptotic cell rates were about 1.6 to two times as high as cell-in-cell rates of the same tissue sample. High numbers of cell-in-cell events showed adverse effects on patients' survival in the head and neck and in the rectal cancer cohorts. In multivariate analysis, high frequency was an adverse prognostic factor for overall survival in patients with head and neck cancer (p = 0.008). CONCLUSION Cell-in-cell events were found to predict patient outcomes in various types of cancer better than apoptosis and proliferation and might therefore be used to guide treatment strategies.
Collapse
|
107
|
Schwegler M, Wirsing AM, Dollinger AJ, Abendroth B, Putz F, Fietkau R, Distel LV. Clearance of primary necrotic cells by non-professional phagocytes. Biol Cell 2015; 107:372-87. [PMID: 26032600 DOI: 10.1111/boc.201400090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND INFORMATION Homotypic internalisation of tumour cells has frequently been observed in tumour tissue sections. Events of non-professional phagocytosis, however, may also occur in normal tissue if the number of dying cells exceeds the phagocytic capacity of professional phagocytes such as macrophages and dendritic cells. The aim of this study was to investigate the molecular background of non-professional phagocytosis of primary necrotic cells by neighbouring tumour cells and normal skin fibroblasts. RESULTS We demonstrate that homotypic and heterotypic uptake of necrotic cells is a feature common to various cell types. Investigating critical stimuli of necrotic cell clearance we found that non-professional phagocytes require cytoskeleton rearrangement, recognition of phosphatidylserine and GTPase activity of dynamin II, which is normally engaged in endocytosis. Additionally, we have observed an accumulation of adhesion molecule E-cadherin, phosphorylated actin-linker protein ezrin, lysosomal-associated membrane protein 1 and microtubule-associated protein 1 light chain 3 at the site of engulfment. Loss of membrane integrity and an increase in the intracellular level of heat-shock protein 70 in the necrotic cells have also been observed. CONCLUSIONS Our results shed light on the mechanism of necrotic cell removal by tumour cells and normal skin fibroblasts in vitro. It is reasonable to assume that this process has a physiological relevance in inflammation and autoimmune disease in normal tissue as well as in tumours regarding immune cell infiltration. We conclude that necrotic cell clearance by non-professional phagocytes contributes to the phagocytic activity by macrophages and that this process may prevent release of proinflammatory damage-associated molecular pattern molecules.
Collapse
Affiliation(s)
- Manuela Schwegler
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Anna M Wirsing
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Alena J Dollinger
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Benjamin Abendroth
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Florian Putz
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, 91054, Germany
| |
Collapse
|
108
|
Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat 2015; 23:69-78. [PMID: 26341193 DOI: 10.1016/j.drup.2015.08.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide substantial new evidence that altering the acidic tumor microenvironment is an effective, well tolerated and low cost strategy for the overcoming of anticancer drug resistance.
Collapse
Affiliation(s)
- Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK
| | | | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
109
|
Huang H, Chen A, Wang T, Wang M, Ning X, He M, Hu Y, Yuan L, Li S, Wang Q, Liu H, Chen Z, Ren J, Sun Q. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining. Oncotarget 2015; 6:20278-87. [PMID: 26109430 PMCID: PMC4653004 DOI: 10.18632/oncotarget.4275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022] Open
Abstract
Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as "EML method" based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches.
Collapse
Affiliation(s)
- Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, P. R. China
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Ting Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China, Xi'an, Shaanxi Province, P. R. China
| | - Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Meifang He
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Yazhuo Hu
- Beijing Key Laboratory for Aging and Geriatrics, Institute of Geriatrics, General Hospital of Chinese PLA, Beijing, P.R.China
| | - Long Yuan
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Shichong Li
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Qiwei Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Hong Liu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| | - Jun Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, P. R. China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, P. R. China
| |
Collapse
|
110
|
Belostotskaya G, Nevorotin A, Galagudza M. Identification of cardiac stem cells within mature cardiac myocytes. Cell Cycle 2015; 14:3155-62. [PMID: 26280107 DOI: 10.1080/15384101.2015.1078037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cardiac stem cells are described in a number of mammalian species including humans. Cardiac stem cell clusters consisting of both lineage-negative and partially committed cells are generally identified between contracting cardiac myocytes. In the present study, c-kit(+), Sca(+), and Isl1(+) stem cells were revealed to be located inside the sarcoplasm of cardiac myocytes in myocardial cell cultures derived from newborn, 20-, and 40-day-old rats. Intracellularly localized cardiac stem cells had a coating or capsule with a few pores that opened into the host cell sarcoplasm. The similar structures were also identified in the suspension of freshly isolated myocardial cells (ex vivo) of 20- and 40-day-old rats. The results from this study provide direct evidence for the replicative division of encapsulated stem cells, followed by their partial cardiomyogenic differentiation. The latter is substantiated by the release of multiple transient amplifying cells following the capsule rupture. In conclusion, functional cardiac stem cells can reside not only exterior to but also within cardiomyocytes.
Collapse
Affiliation(s)
- Galina Belostotskaya
- a Centre of Cytoanalysis; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences ; St. Petersburg , Russia.,b Institute of Experimental Medicine; North-West Federal Medical Research Centre ; St. Petersburg , Russia
| | - Alexey Nevorotin
- c First Pavlov State Medical University of St. Petersburg ; St. Petersburg , Russia
| | - Michael Galagudza
- b Institute of Experimental Medicine; North-West Federal Medical Research Centre ; St. Petersburg , Russia.,d ITMO University ; St. Petersburg , Russia
| |
Collapse
|
111
|
Wang M, Ning X, Chen A, Huang H, Ni C, Zhou C, Yu K, Lan S, Wang Q, Li S, Liu H, Wang X, Chen Z, Ma L, Sun Q. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci Rep 2015; 5:12223. [PMID: 26192076 PMCID: PMC4648412 DOI: 10.1038/srep12223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
Although cell-in-cell structures (CICs) could be detected in a wide range of human tumors, homotypic CICs formed between tumor cells occur at low rate for most of them. We recently reported that tumor cells lacking expression of E- and P-cadherin were incapable of forming homotypic CICs by entosis, and re-expression of E- or P-cadherin was sufficient to induce CICs formation in these tumor cells. In this work, we found that homotypic CICs formation was impaired in some tumor cells expressing high level of E-cadherin due to loss expression of alpha-catenin (α-catenin), a molecular linker between cadherin-mediated adherens junctions and F-actin. Expression of α-catenin in these tumor cells restored cell-cell adhesion and promoted CICs formation in a ROCK kinase-dependent way. Thus, our work identified α-catenin as another molecule in addition to E- and P-cadherin that were targeted to inactivate homotypic CICs formation in human tumor cells.
Collapse
Affiliation(s)
- Manna Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiangkai Ning
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Hongyan Huang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, P. R. China
| | - Chao Ni
- The Institute of Life Sciences, the State Key Laboratory of Kidney; the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Changxi Zhou
- The Institute of Life Sciences, the State Key Laboratory of Kidney; the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Kaitao Yu
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Sanchun Lan
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Qiwei Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Shichong Li
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Hong Liu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiaoning Wang
- The Institute of Life Sciences, the State Key Laboratory of Kidney; the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|
112
|
Barresi V, Branca G, Ieni A, Rigoli L, Tuccari G, Caruso RA. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas. World J Gastroenterol 2015; 21:5548-5554. [PMID: 25987778 PMCID: PMC4427677 DOI: 10.3748/wjg.v21.i18.5548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/30/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify those with a micropapillary pattern, ascertain relative frequency and document clinicopathological characteristics by reviewing gastric carcinomas.
METHODS: One hundred and fifty-one patients diagnosed with gastric cancer who underwent gastrectomy were retrospectively studied and the presence of a regional invasive micropapillary component was evaluated by light microscopy. All available hematoxylin-eosin (HE)-stained slides were histologically reviewed and 5 tumors were selected as putative micropapillary carcinoma when cancer cell clusters without a vascular core within empty lymphatic-like space comprised at least 5% of the tumor. Tumor tissues from these 5 invasive gastric carcinomas were immunostained using an anti-mucin 1 (MUC1) antibody (clone MA695) to detect the characteristic inside-out pattern and with D2-40 antibody to determine the presence of intratumoral lymph vessels. Detection of intraepithelial neutrophil apoptosis was evaluated in consecutive histological tissue sections by three independent methods, namely light microscopy with HE staining, the conventional terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemistry for activated caspase-3 (clone C92-605).
RESULTS: Among 151 gastric cancers resected for cure, 5 (3.3%) were adenocarcinomas with a micropapillary component. Four of the patients died of disease from 6 to 23 mo and one patient was alive with metastases at 9 mo. All patients had advanced-stage cancer (≥ pT2) and lymph node metastasis. Positive MUC1 immunostaining on the stroma-facing surface (inside-out pattern) of the carcinomatous cluster cells, together with negative immunostaining for D2-40 in the cells limiting lymphatic-like spaces, confirmed the true micropapillary pattern in these gastric neoplasms. In all five cases, several micropapillae were infiltrated by neutrophils. HE staining, TUNEL assay and immunostaining for caspase-3 demonstrated apoptotic neutrophils within cytoplasmic vacuoles of tumor cells. These data suggest phagocytosis (cannibalism) of apoptotic neutrophils by micropapillary tumor cells. Tumor cell cannibalism is usually found in aggressive tumors with anaplastic morphology. Our data extend these observations to gastric micropapillary carcinoma: a tumor histotype analogously characterized by aggressive behavior and poor prognosis. The results are of interest because they raise the intriguing possibility that neutrophil cannibalism by tumor cells may be one of the mechanisms favoring tumor growth in gastric micropapillary carcinomas.
CONCLUSION: This is the first study showing phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.
Collapse
|
113
|
Paolillo R, Spinello I, Quaranta MT, Pasquini L, Pelosi E, Lo Coco F, Testa U, Labbaye C. Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells. PLoS One 2015; 10:e0126968. [PMID: 25961573 PMCID: PMC4427288 DOI: 10.1371/journal.pone.0126968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022] Open
Abstract
Background The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs) and myelodysplastic syndromes, consistent with an oncogenic function of this gene. Purpose and Results In this study, we first analyzed the expression and regulation of TM9SF4 in normal and leukemic cells and identified TM9SF4 as a gene highly expressed in human quiescent CD34+ hematopoietic progenitor cells (HPCs), regulated during monocytic and granulocytic differentiation of HPCs, both lineages giving rise to mature myeloid cells involved in adhesion, phagocytosis and immunity. Then, we found that TM9SF4 is markedly overexpressed in leukemic cells and in AMLs, particularly in M2, M3 and M4 AMLs (i.e., in AMLs characterized by the presence of a more or less differentiated granulocytic progeny), as compared to normal CD34+ HPCs. Proliferation and differentiation of HPCs occurs in hypoxia, a physiological condition in bone marrow, but also a crucial component of cancer microenvironment. Here, we investigated the impact of hypoxia on TM9SF4 expression in leukemic cells and identified TM9SF4 as a direct target of HIF-1α, downregulated in these cells by hypoxia. Then, we found that the hypoxia-mediated downregulation of TM9SF4 expression is associated with a decrease of cell adhesion of leukemic cells to fibronectin, thus demonstrating that human TM9SF4 is a new molecule involved in leukemic cell adhesion. Conclusions Altogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs displaying granulocytic differentiation.
Collapse
MESH Headings
- Apoptosis/drug effects
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Adhesion/drug effects
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Cell Hypoxia
- Cell Proliferation/drug effects
- Cloning, Molecular
- Fibronectins/metabolism
- Gene Expression Regulation, Leukemic
- Granulocytes/drug effects
- Granulocytes/metabolism
- Granulocytes/pathology
- HEK293 Cells
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxygen/pharmacology
- Primary Cell Culture
- Promoter Regions, Genetic
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rosa Paolillo
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Isabella Spinello
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Maria Teresa Quaranta
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Luca Pasquini
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Francesco Lo Coco
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fondazione Santa Lucia, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Catherine Labbaye
- Department of Hematology, Oncology and Molecular Medicine of Istituto Superiore di Sanità, 00161, Rome, Italy
- * E-mail:
| |
Collapse
|
114
|
He M, Huang H, Wang M, Chen A, Ning X, Yu K, Li Q, Li W, Ma L, Chen Z, Wang X, Sun Q. Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in-Cell Structures. Sci Rep 2015; 5:9588. [PMID: 25913618 PMCID: PMC5386181 DOI: 10.1038/srep09588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Cell-in-cell structures (CICs), characterized by the presence of one or more viable cells inside another one, were recently found important player in development, immune homeostasis and tumorigenesis etc. Incompatible with ever-increasing interests on this unique phenomenon, reliable methods available for high throughput quantification and systemic investigation are lacking. Here, we report a flow cytometry-based method for rapid analysis and sorting of heterotypic CICs formed between lymphocytes and tumor cells. In this method, cells were labeled with fluorescent dyes for fluorescence-activated cell sorting (FACS) by flow cytometry, conditions for reducing cell doublets were optimized such that high purity (>95%) of CICs could be achieved. By taking advantage of this method, we analyzed CICs formation between different cell pairs, and found that factors from both internalized effector cells and engulfing target cells affect heterotypic CICs formation. Thus, flow cytometry-based FACS analysis would serve as a high throughput method to promote systemic researches on CICs.
Collapse
Affiliation(s)
- Meifang He
- 1] Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China [2] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [3] The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Hongyan Huang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, P. R. China
| | - Manna Wang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiangkai Ning
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Kaitao Yu
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Qihong Li
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiaoning Wang
- The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|
115
|
Meléndez-Lazo A, Cazzini P, Camus M, Doria-Torra G, Marco Valle AJ, Solano-Gallego L, Pastor J. Cell cannibalism by malignant neoplastic cells: three cases in dogs and a literature review. Vet Clin Pathol 2015; 44:287-94. [DOI: 10.1111/vcp.12242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Antonio Meléndez-Lazo
- Departament de Medicina i Cirurgia Animals; Universitat Autònoma de Barcelona; Barcelona Spain
- Hospital Clínic Veterinari; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Paola Cazzini
- Veterinary Diagnostic Services; Jarrett Building; College of Medical, Veterinary & Life Sciences; University of Glasgow; Glasgow UK
| | - Melinda Camus
- College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Georgina Doria-Torra
- Departament de Sanitat i Anatomia Animals; Universitat Autònoma de Barcelona; Barcelona Spain
| | | | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Josep Pastor
- Departament de Medicina i Cirurgia Animals; Universitat Autònoma de Barcelona; Barcelona Spain
- Hospital Clínic Veterinari; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
116
|
Tarabichi M, Antoniou A, Saiselet M, Pita JM, Andry G, Dumont JE, Detours V, Maenhaut C. Systems biology of cancer: entropy, disorder, and selection-driven evolution to independence, invasion and "swarm intelligence". Cancer Metastasis Rev 2014; 32:403-21. [PMID: 23615877 PMCID: PMC3843370 DOI: 10.1007/s10555-013-9431-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our knowledge of the biology of solid cancer has greatly progressed during the last few years, and many excellent reviews dealing with the various aspects of this biology have appeared. In the present review, we attempt to bring together these subjects in a general systems biology narrative. It starts from the roles of what we term entropy of signaling and noise in the initial oncogenic events, to the first major transition of tumorigenesis: the independence of the tumor cell and the switch in its physiology, i.e., from subservience to the organism to its own independent Darwinian evolution. The development after independence involves a constant dynamic reprogramming of the cells and the emergence of a sort of collective intelligence leading to invasion and metastasis and seldom to the ultimate acquisition of immortality through inter-individual infection. At each step, the probability of success is minimal to infinitesimal, but the number of cells possibly involved and the time scale account for the relatively high occurrence of tumorigenesis and metastasis in multicellular organisms.
Collapse
Affiliation(s)
| | | | | | - J. M. Pita
- IRIBHM, Brussels, Belgium
- UIPM, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOFG) and CEDOC, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - G. Andry
- J. Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | - C. Maenhaut
- IRIBHM, Brussels, Belgium
- WELBIO, Wallonia, Belgium
| |
Collapse
|
117
|
MFG-E8 expression for progression of oral squamous cell carcinoma and for self-clearance of apoptotic cells. J Transl Med 2014; 94:1260-72. [PMID: 25264705 DOI: 10.1038/labinvest.2014.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022] Open
Abstract
Milk fat globule--epidermal growth factor (EGF)--factor VIII (MFG-E8) is a secreted glycoprotein that promotes clearance of apoptotic cells by bridging phosphatidylserine on apoptotic cells and integrin αvβ3/5 on phagocytes. High expression of MFG-E8 has been reported in various types of cancer in humans. Apoptotic figures are frequently found in the surgical samples of oral squamous cell carcinoma (SCC) and carcinoma in situ, and we have often observed apoptotic carcinoma cells engulfed by macrophages or even by neighboring carcinoma cells. Thus we hypothesized that MFG-E8 might promote engulfment of apoptotic carcinoma cells by living carcinoma cells and that MFG-E8 expressed by carcinoma cells could contribute to tumor progression. The aim of this study was to elucidate the biological role of MFG-E8 in oral SCC. Fifty-three surgical specimens of oral SCC were used for immunohistochemistry for MFG-E8, and the expression profiles were correlated with clinicopathological properties. Also, we examined the MFG-E8 expression patterns and functions using three human oral SCC cell lines. Most of the cases had MFG-E8-positive SCC cells, and the expression of MFG-E8 was correlated with such clinicopathological features as tumor size, pathological stage, locoregional recurrence, scattering invasion pattern, and SCC cell figures engulfing apoptotic SCC cells. The MFG-E8 staining was enhanced in apoptotic SCC cells, some of which were apparently engulfed by the neighboring SCC cells. ZK-1 cells showed high MFG-E8 expression, and its localization was found in the cytoplasm and the cell surface. Transient MFG-E8 knockdown by siRNA in ZK-1 decreased cell proliferation and invasiveness and increased cell death. Thus we have demonstrated that MFG-E8 promotes tumor progression in oral SCC and that it might be involved in the clearance of apoptotic SCC cells by living SCC cells.
Collapse
|
118
|
Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res 2014; 24:1288-98. [PMID: 25342558 DOI: 10.1038/cr.2014.137] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/07/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Cell engulfment typically targets dead or dying cells for clearance from metazoan tissues. However, recent evidence demonstrates that live cells can also be targeted and that engulfment can cause cell death. Entosis is one mechanism proposed to mediate the engulfment and killing of live tumor cells by their neighbors, an activity often referred to as cell cannibalism. Here we report that the expression of exogenous epithelial cadherin proteins (E- or P-cadherin) in human breast tumor cells lacking endogenous expression of epithelial cadherins induces entosis and inhibits transformed growth. Entosis induced by cadherin expression is associated with the polarized distribution of Rho and Rho-kinase (ROCK) activity within entotic cells, which is dependent on p190A RhoGAP activity. ROCK inhibition or downregulation of p190A RhoGAP expression reduces entosis and increases the transformed growth of epithelial cadherin-expressing tumor cells. These data define new cell systems for the study of entosis, and identify entosis as a mechanism of cell cannibalism that is induced by the establishment of epithelial adhesion and inhibits transformed growth.
Collapse
Affiliation(s)
- Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China [2] Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Edmund S Cibas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, China
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Michael Overholtzer
- 1] Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA [2] BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
119
|
Jose D, Mane DR, Datar U, Muttagi S, Hallikerimath S, Kale AD. Evaluation of cannibalistic cells: a novel entity in prediction of aggressive nature of oral squamous cell carcinoma. Acta Odontol Scand 2014; 72:418-23. [PMID: 25005623 DOI: 10.3109/00016357.2013.798872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Cellular cannibalism is a distinctive morphologic feature exclusively seen in aggressive malignancies and is defined as a large cell enclosing a slightly smaller one within its cytoplasm. This phenomenon has been illustrated in several malignancies and is correlated well with the degree of anaplasia, invasive and metastatic potential of tumor cells. However, this marker has not been extensively studied and is often unnoticed during the routine histopathological assessment of Oral squamous cell carcinoma (OSCC). Thus, the aim of this research was to evaluate the presence of cannibalistic cells (CC) and to find if there exists any association with the aggressive nature of OSCC. MATERIALS AND METHODS In total, 20 neck dissection cases of OSCC with follow-up data were included in the study. The cannibalistic cells were evaluated in the lesion tissues. Cellularity of cannibalism is graded asGrade I: < 5 cells, Grade II: 6-15 cells and Grade III:> 16 cells. The data was analyzed using Fischer Exact test. RESULTS Out of 20 cases, all the cases showed presence of CC, Grade I in five cases, Grade II in eight cases and Grade III in seven cases. A statistically significant relation between advanced grade of cellular cannibalism and lymph node positive status (p≤ 0.001) was obtained. CONCLUSION Interestingly the cases with positive lymph node metastasis demonstrated Grade 3 CC.Hence, during routine histopathological examination, the search of CC can be considered as one of the important parameters to note the aggressive nature of OSCC.
Collapse
Affiliation(s)
- Deepa Jose
- Department of Oral Pathology and Microbiology, KLE VK Institute of Dental Sciences Belgaum , Karnataka , India
| | | | | | | | | | | |
Collapse
|
120
|
Zhang S, Wang Y, Li SJ. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion. Biochem Biophys Res Commun 2014; 448:424-9. [PMID: 24802401 DOI: 10.1016/j.bbrc.2014.04.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 11/29/2022]
Abstract
The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-l-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.
Collapse
Affiliation(s)
- Shangrong Zhang
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Yifan Wang
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
121
|
Sarode SC, Sarode GS. Neutrophil-tumor cell cannibalism in oral squamous cell carcinoma. J Oral Pathol Med 2014; 43:454-8. [DOI: 10.1111/jop.12157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Sachin C. Sarode
- Department of Oral Pathology and Microbiology; Dr. D.Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pune Maharashtra India
- Fulbright Doctoral and Research Fellow; The Ohio State University; College of Dentistry, Oral Pathology; Columbus OH USA
| | - Gargi S. Sarode
- Department of Oral Pathology and Microbiology; Dr. D.Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pune Maharashtra India
| |
Collapse
|
122
|
Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:181-201. [PMID: 24924175 DOI: 10.1007/978-3-319-04843-7_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cause of death for the vast majority of cancer patients is the development of metastases at sites distant from that of the primary tumor. For most pediatric sarcoma patients such as those with osteosarcoma (OS), despite successful management of the primary tumor through multimodality approaches, the development of metastases, commonly to the lungs, is the cause of death. Significant improvements in long-term outcome for these patients have not been seen in more than 30 years. Furthermore, the long-term outcome for patients who present with metastatic disease is grave [1-5]. New treatment options are needed.Opportunities to improve outcomes for patients who present with metastases and those at-risk for progression and metastasis require an improved understanding of cancer progression and metastasis. With this goal in mind we and others have identified ezrin as a metastasis-associated protein that associated with OS and other cancers. Ezrin is the prototypical ERM (Ezrin/Radixin/Moesin) protein family member. ERMs function as linker proteins connecting the actin cytoskeleton and the plasma membrane. Since our initial identification of ezrin in pediatric sarcoma, an increasing understanding the role of ezrin in metastasis has emerged. Briefly, ezrin appears to allow metastatic cells to overcome a number of stresses experienced during the metastatic cascade, most notably the stress experienced as cells interact with the microenvironment of the secondary site. Cells must rapidly adapt to this environment in order to survive. Evidence now suggests a connection between ezrin expression and a variety of mechanisms linked to this important cellular adaptation including the ability of metastatic cells to initiate the translation of new proteins and to allow the efficient generation of ATP through a variety of sources. This understanding of the role of ezrin in the biology of metastasis is now sufficient to consider ezrin as an important therapeutic target in osteosarcoma patients. This chapter reviews our understanding of ezrin and the related ERM proteins in normal tissues and physiology, summarizes the expression of ezrin in human cancers and associations with clinical parameters of disease progression, reviews reports that detail a biological understanding of ezrin's role in metastatic progression, and concludes with a rationale that may be considered to target ezrin and ezrin biology in osteosarcoma.
Collapse
Affiliation(s)
- Ling Ren
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Rm 2144, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
123
|
Does entosis curb the detached cancer cells better? Oral Oncol 2013; 50:e9-11. [PMID: 24361116 DOI: 10.1016/j.oraloncology.2013.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022]
|
124
|
Wang S, He MF, Chen YH, Wang MY, Yu XM, Bai J, Zhu HY, Wang YY, Zhao H, Mei Q, Nie J, Ma J, Wang JF, Wen Q, Ma L, Wang Y, Wang XN. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell Death Dis 2013; 4:e856. [PMID: 24113190 PMCID: PMC3824662 DOI: 10.1038/cddis.2013.352] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/07/2013] [Accepted: 08/05/2013] [Indexed: 01/17/2023]
Abstract
A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance.
Collapse
Affiliation(s)
- S Wang
- 1] The Institute of Life Sciences, Chinese PLA General Hospital and South China University of Technology, The State Key Laboratory of Kidney Disease, Beijing 100853, China, The Provincial Key Laboratory of Biotechnology, Guangzhou 510006, China [2] The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abaza M, Luqmani YA. The influence of pH and hypoxia on tumor metastasis. Expert Rev Anticancer Ther 2013; 13:1229-42. [PMID: 24099530 DOI: 10.1586/14737140.2013.843455] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rapid malignant proliferation, prior to effective tumor neoangiogenesis, creates a microenvironment around solid cancers, which is predominantly hypoxic and characterized by a high interstitial fluid pressure. Presumably as an adaptive response, tumor cells favor metabolic activity with apparently inefficient energy output, and production of intermediates that promote cellular replication, preferentially through anaerobic glycolysis, a phenomenon that persists even in re-established normoxic conditions (anomalously referred to as 'aerobic glycolysis'). Extrusion of the consequently excessive accumulation of lactate and protons decreases extracellular pH, leading to a microenvironment considered conducive to promotion of tumor motility, invasion and metastasis, and one that will invariably influence response to drug treatment. This review will critically assess the evidence forming the basis of current understanding of the precise pH conditions in the extracellular tumor matrix, its regulation by cancer cells and relationship with hypoxia, its relevance to malignant progression and its exploitation for therapeutic advantage.
Collapse
Affiliation(s)
- Mariam Abaza
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | | |
Collapse
|
126
|
Krajcovic M, Krishna S, Akkari L, Joyce JA, Overholtzer M. mTOR regulates phagosome and entotic vacuole fission. Mol Biol Cell 2013; 24:3736-45. [PMID: 24088573 PMCID: PMC3842999 DOI: 10.1091/mbc.e13-07-0408] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phagosomes and entotic vacuoles harboring engulfed cells undergo an mTOR-regulated process of vacuolar fission that distributes engulfed contents throughout lysosome networks. Amino acid recovery from engulfed cells activates mTORC1 and rescues engulfing cells from the effects of amino acid starvation. Macroendocytic vacuoles formed by phagocytosis, or the live-cell engulfment program entosis, undergo sequential steps of maturation, leading to the fusion of lysosomes that digest internalized cargo. After cargo digestion, nutrients must be exported to the cytosol, and vacuole membranes must be processed by mechanisms that remain poorly defined. Here we find that phagosomes and entotic vacuoles undergo a late maturation step characterized by fission, which redistributes vacuolar contents into lysosomal networks. Vacuole fission is regulated by the serine/threonine protein kinase mammalian target of rapamycin complex 1 (mTORC1), which localizes to vacuole membranes surrounding engulfed cells. Degrading engulfed cells supply engulfing cells with amino acids that are used in translation, and rescue cell survival and mTORC1 activity in starved macrophages and tumor cells. These data identify a late stage of phagocytosis and entosis that involves processing of large vacuoles by mTOR-regulated membrane fission.
Collapse
Affiliation(s)
- Matej Krajcovic
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065
| | | | | | | | | |
Collapse
|
127
|
Kahyo T, Sugimura H. Establishment and characterization of a mutagenized cell line exhibiting the 'cell-in-cell' phenotype at a high frequency. Genes Cells 2013; 18:1042-52. [PMID: 24165024 DOI: 10.1111/gtc.12092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Cell-in-cell structures represent live cell events in which one cell internalizes another. Because formation of cell-in-cell structures is a rare event in most cell types and the event is associated with cell death, there has been limited clarification of this phenomenon, and its physiological role and molecular mechanism are yet to be precisely elucidated. In this study, we established a mutagenized cell line that exhibited cell-in-cell structures at a more than 10-fold higher frequency as compared to the parent cells. Interestingly, both engulfment and invasion were increased in the mutagenized cell line as compared with that in the parent cell line in the suspension culture condition. This finding indicates that this mutagenized cell line showed an interchangeable status in terms of its ability to form cell-in-cell structures, and the system described here could be useful for elucidation of the mechanisms regulating the formation of cell-in-cell structures, including engulfment and invasion, in a given cellular environment. Further studies using this cell line are warranted to understand the mechanism of formation and biological significance of the cell-in-cell formation.
Collapse
Affiliation(s)
- Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | | |
Collapse
|
128
|
Sarode SC, Sarode GS. Cellular cannibalism in central and peripheral giant cell granuloma of the oral cavity can predict biological behavior of the lesion. J Oral Pathol Med 2013; 43:459-63. [DOI: 10.1111/jop.12119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Sachin C. Sarode
- Department of Oral Pathology and Microbiology; Dr. D. Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pimpri Pune India
| | - Gargi S. Sarode
- Department of Oral Pathology and Microbiology; Dr. D. Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pimpri Pune India
| |
Collapse
|
129
|
Bellone M, Calcinotto A. Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front Oncol 2013; 3:231. [PMID: 24062984 PMCID: PMC3769630 DOI: 10.3389/fonc.2013.00231] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 12/26/2022] Open
Abstract
The tumor is a hostile microenvironment for T lymphocytes. Indeed, irregular blood flow, and endothelial cell (EC) anergy that characterize most solid tumors hamper leukocyte adhesion, extravasation, and infiltration. In addition, hypoxia and reprograming of energy metabolism within cancer cells transform the tumor mass in a harsh environment that limits survival and effector functions of T cells, regardless of being induced in vivo by vaccination or adoptively transferred. In this review, we will summarize on recent advances in our understanding of the characteristics of tumor-associated neo-angiogenic vessels as well as of the tumor metabolism that may impact on T cell trafficking and fitness of tumor infiltrating lymphocytes. In particular, we will focus on how advances in knowledge of the characteristics of tumor ECs have enabled identifying strategies to normalize the tumor-vasculature and/or overcome EC anergy, thus increasing leukocyte-vessel wall interactions and lymphocyte infiltration in tumors. We will also focus on drugs acting on cells and their released molecules to transiently render the tumor microenvironment more suitable for tumor infiltrating T lymphocytes, thus increasing the therapeutic effectiveness of both active and adoptive immunotherapies.
Collapse
Affiliation(s)
- Matteo Bellone
- Cellular Immunology Unit, Department of Immunology, Infectious Diseases and Transplantation, San Raffaele Scientific Institute , Milan , Italy
| | | |
Collapse
|
130
|
Rappa G, Mercapide J, Anzanello F, Pope RM, Lorico A. Biochemical and biological characterization of exosomes containing prominin-1/CD133. Mol Cancer 2013; 12:62. [PMID: 23767874 PMCID: PMC3698112 DOI: 10.1186/1476-4598-12-62] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022] Open
Abstract
Exosomes can be viewed as complex “messages” packaged to survive trips to other cells in the local microenvironment and, through body fluids, to distant sites. A large body of evidence indicates a pro-metastatic role for certain types of cancer exosomes. We previously reported that prominin-1 had a pro-metastatic role in melanoma cells and that microvesicles released from metastatic melanoma cells expressed high levels of prominin-1. With the goal to explore the mechanisms that govern proteo-lipidic-microRNA sorting in cancer exosomes and their potential contribution(s) to the metastatic phenotype, we here employed prominin-1-based immunomagnetic separation in combination with filtration and ultracentrifugation to purify prominin-1-expressing exosomes (prom1-exo) from melanoma and colon carcinoma cells. Prom1-exo contained 154 proteins, including all of the 14 proteins most frequently expressed in exosomes, and multiple pro-metastatic proteins, including CD44, MAPK4K, GTP-binding proteins, ADAM10 and Annexin A2. Their lipid composition resembled that of raft microdomains, with a great enrichment in lyso-phosphatidylcholine, lyso-phosphatidyl-ethanolamine and sphingomyelin. The abundance of tetraspanins and of tetraspanin-associated proteins, together with the high levels of sphingomyelin, suggests that proteolipidic assemblies, probably tetraspanin webs, might be the essential structural determinant in the release process of prominin-1 of stem and cancer stem cells. Micro-RNA profiling revealed 49 species of micro-RNA present at higher concentrations in prom1-exo than in parental cells, including 20 with cancer-related function. Extensive accumulation of prom1-exo was observed 3 h after their addition to cultures of melanoma and bone marrow-derived stromal cells (MSC). Short-term co-culture of melanoma cells and MSC resulted in heterologous prominin-1 transfer. Exposure of MSC to prom1-exo increased their invasiveness. Our study supports the concept that specific populations of cancer exosomes contain multiple determinants of the metastatic potential of the cells from which they are derived.
Collapse
Affiliation(s)
- Germana Rappa
- Cancer Research Center, Roseman University of Health Sciences, Las Vegas, NV 89135, USA
| | | | | | | | | |
Collapse
|
131
|
Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 2013; 3:1282. [PMID: 23250412 DOI: 10.1038/ncomms2282] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Cellular microparticles are vesicular plasma membrane fragments with a diameter of 100-1,000 nanometres that are shed by cells in response to various physiological and artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with chemotherapeutic drugs package these drugs into microparticles, which can be collected and used to effectively kill tumour cells in murine tumour models without typical side effects. We describe several mechanisms involved in this process, including uptake of drug-containing microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells. This study highlights a novel drug delivery strategy with potential clinical application.
Collapse
|
132
|
Abstract
Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintaining homeostasis, aberrant cell-in-cell process contributes to the etiopathology in humans. Indeed, cell-in-cell is observed in many pathological processes of human diseases. In this review, we intend to discuss the biological models of cell-in-cell structures under physiological and pathological status.
Collapse
|
133
|
Caruso RA, Rigoli L, Parisi A, Fedele F, Bonanno A, Paparo D, Querci A, Crisafulli C, Branca G, Venuti A. Neutrophil-rich Gastric Carcinomas: Light and Electron Microscopic Study of 9 Cases with Particular Reference to Neutrophil Apoptosis. Ultrastruct Pathol 2013; 37:164-70. [DOI: 10.3109/01913123.2013.768746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
134
|
Abstract
Metastasis involves the spread of cancer cells from the primary tumor to surrounding tissues and to distant organs and is the primary cause of cancer morbidity and mortality. In order to complete the metastatic cascade, cancer cells must detach from the primary tumor, intravasate into the circulatory and lymphatic systems, evade immune attack, extravasate at distant capillary beds, and invade and proliferate in distant organs. Currently, several hypotheses have been advanced to explain the origin of cancer metastasis. These involve an epithelial mesenchymal transition, an accumulation of mutations in stem cells, a macrophage facilitation process, and a macrophage origin involving either transformation or fusion hybridization with neoplastic cells. Many of the properties of metastatic cancer cells are also seen in normal macrophages. A macrophage origin of metastasis can also explain the long-standing "seed and soil" hypothesis and the absence of metastasis in plant cancers. The view of metastasis as a macrophage metabolic disease can provide novel insight for therapeutic management.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | | |
Collapse
|
135
|
Deady L, Cox JL. Uptake of Cystatin by Melanoma Cells in Culture. Cell 2013. [DOI: 10.4236/cellbio.2013.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
136
|
Jin H, Zhao H, Liu L, Jiang J, Wang X, Ma S, Cai J. Apoptosis induction of K562 cells by lymphocytes: an AFM study. SCANNING 2013; 35:7-11. [PMID: 23417662 DOI: 10.1002/sca.21028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 06/01/2023]
Abstract
Antitumor immunotherapies, as a prospective approach for local cancer treatment, are attracting increasing interests. To detect the reacting course of immune and tumor cells, we have observed the process of K562 cells (a human erythroleukemic cell line) coculturing with peripheral lymphocytes, and the morphological and ultrastructural alterations of K562 cells and lymphocytes were investigated as well using atomic force microscopy (AFM). AFM morphological imaging revealed that after coculture the apoptosis-like structures such as blebbing, pores, and apoptotic bodies were observed on the K562 cells. Also, the cell-surface roughness decreased significantly, which implied the changes in chemical composition of cell membranes. Moreover, the lymphocytes were damaged to some extent induced by the coculture. The data demonstrated that K562 cells could be attacked and induced apoptosis by lymphocytes, and they would make damages to lymphocytes to escape the surveillance of immune system.
Collapse
Affiliation(s)
- Hua Jin
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
137
|
Del Principe D, Lista P, Malorni W, Giammarioli AM. Fibroblast autophagy in fibrotic disorders. J Pathol 2012; 229:208-20. [PMID: 23018629 DOI: 10.1002/path.4115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
Fibrotic disorders are multistage progressive processes that often arise from different causes and are commonly associated with chronic inflammation. Excessive deposition of extracellular matrix is the hallmark of many fibrotic diseases. This may be due to an excess of fibroblast recruitment and activation, as well as to their differentiation in myofibroblasts. These events may be triggered by cytokines, chemokines and growth factors released by lymphocytes or macrophages. The excessive production of extracellular matrix is apparently due to alterations of metabolic pathways in activated fibroblasts. It has been suggested that a defective autophagy, an important subcellular pathway with multiple homeostatic roles, also recognized as a key component of both innate and acquired immunity, could play a role. In this review we illustrate recent insights in the field, suggesting the possible implication of the immune system in orchestrating the fibrotic response via the modulation of autophagic pathways.
Collapse
|
138
|
Abreu-Velez AM, Howard MS, Pereyo NY, Delman KA, Mihm MC, Rizzo M. CD45/CD8 Myeloid Histioid Antigen and Plasma Cell Antibody Immune Response in a Case of Malignant Melanoma. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:507-9. [PMID: 23112977 PMCID: PMC3482787 DOI: 10.4103/1947-2714.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immune response in metastatic melanoma is not well established and therefore is of particular interest to test for recruitment of immune cells to the tumor. A 46-year-old Caucasian female was evaluated for an asymptomatic right forearm mass. The lesion had been present for at least 4 years and had become painful 4 months ago. Biopsies for hematoxylin and eosin (H and E) staining, as well as immunohistochemical analysis were performed on the primary tumor and on sentinel lymph nodes. The H and E staining was consistent with metastatic melanoma. Positive staining was noted on the tumor cells with S-100, Mart-1/Melan A/CD63, PNL2, HMB45, and tyrosinase. Peritumoral and intratumoral inflammatory cells stained positive for CD8, CD45, PCNA, myeloid histoid antigen, antihuman plasma cell antibody, and focal BRCA1. The staining patterns of CD8/CD45, myeloid histoid antigen and plasma cell antibody on inflammatory cells around the melanoma cells suggest an unusual type of immune response.
Collapse
|
139
|
Bonazzi M, Kühbacher A, Toledo-Arana A, Mallet A, Vasudevan L, Pizarro-Cerdá J, Brodsky FM, Cossart P. A common clathrin-mediated machinery co-ordinates cell-cell adhesion and bacterial internalization. Traffic 2012; 13:1653-66. [PMID: 22984946 DOI: 10.1111/tra.12009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction (AJ) machinery and invade non-phagocytic cells by a clathrin-dependent mechanism. Here, we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of AJ formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of AJs. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form AJs with cells expressing E-cadherin. We demonstrate that non-adherent cells expressing the InlA chimera, as bacteria, can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015, France.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Gerhart J, Hayes C, Scheinfeld V, Chernick M, Gilmour S, George-Weinstein M. Myo/Nog cells in normal, wounded and tumor-bearing skin. Exp Dermatol 2012; 21:466-8. [PMID: 22621191 DOI: 10.1111/j.1600-0625.2012.01503.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Murine and human skin were examined for the presence of Myo/Nog cells that were originally discovered in the chick embryo by their expression of MyoD mRNA, noggin and the G8 antigen. Myo/Nog cells are the primary source of noggin in telogen hair follicles. They are scarce within the interfollicular dermis and absent in the epidermis. Within 24 h following epidermal abrasion, Myo/Nog cells increase in number in the follicles and appear in the wound. Myo/Nog cells are also recruited to the stroma of tumors formed from v-Ras-transformed keratinocytes (Ker/Ras). Human squamous cell carcinomas and malignant melanomas contain significantly more Myo/Nog cells than basal cell carcinomas. Myo/Nog cells are distinct from macrophages, granulocytes and cells expressing alpha smooth muscle actin in the tumor stroma. Myo/Nog cells may be modulators of skin homoeostasis and wound healing, and potential diagnostic and therapeutic targets in skin cancer.
Collapse
|
141
|
Cano CE, Sandí MJ, Hamidi T, Calvo EL, Turrini O, Bartholin L, Loncle C, Secq V, Garcia S, Lomberk G, Kroemer G, Urrutia R, Iovanna JL. Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Mol Med 2012; 4:964-79. [PMID: 22821859 PMCID: PMC3491828 DOI: 10.1002/emmm.201201255] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 01/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an extremely deadly disease for which all treatments available have failed to improve life expectancy significantly. This may be explained by the high metastatic potential of PDAC cells, which results from their dedifferentiation towards a mesenchymal phenotype. Some PDAC present cell-in-cell structures whose origin and significance are currently unknown. We show here that cell-in-cells form after homotypic cell cannibalism (HoCC). We found PDAC patients whose tumours display HoCC develop less metastasis than those without. In vitro, HoCC was promoted by inactivation of the nuclear protein 1 (Nupr1), and was enhanced by treatment with transforming growth factor β. HoCC ends with death of PDAC cells, consistent with a metastasis suppressor role for this phenomenon. Hence, our data indicates a protective role for HoCC in PDAC and identifies Nupr1 as a molecular regulator of this process.
Collapse
|
142
|
Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, Hägg M, Linder S, Fais S, Codogno P, De Milito A. Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem 2012; 287:30664-76. [PMID: 22761435 DOI: 10.1074/jbc.m112.339127] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclic hypoxia and alterations in oncogenic signaling contribute to switch cancer cell metabolism from oxidative phosphorylation to aerobic glycolysis. A major consequence of up-regulated glycolysis is the increased production of metabolic acids responsible for the presence of acidic areas within solid tumors. Tumor acidosis is an important determinant of tumor progression and tumor pH regulation is being investigated as a therapeutic target. Autophagy is a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, currently considered an important survival mechanism in cancer cells under metabolic stress or subjected to chemotherapy. We investigated the response of human melanoma cells cultured in acidic conditions in terms of survival and autophagy regulation. Melanoma cells exposed to acidic culture conditions (7.0 < pH < 6.2) promptly accumulated LC3+ autophagic vesicles. Immunoblot analysis showed a consistent increase of LC3-II in acidic culture conditions as compared with cells at normal pH. Inhibition of lysosomal acidification by bafilomycin A1 further increased LC3-II accumulation, suggesting an active autophagic flux in cells under acidic stress. Acute exposure to acidic stress induced rapid inhibition of the mammalian target of rapamycin signaling pathway detected by decreased phosphorylation of p70S6K and increased phosphorylation of AMP-activated protein kinase, associated with decreased ATP content and reduced glucose and leucine uptake. Inhibition of autophagy by knockdown of the autophagic gene ATG5 consistently reduced melanoma cell survival in low pH conditions. These observations indicate that induction of autophagy may represent an adaptation mechanism for cancer cells exposed to an acidic environment. Our data strengthen the validity of therapeutic strategies targeting tumor pH regulation and autophagy in progressive malignancies.
Collapse
Affiliation(s)
- Maria Lucia Marino
- Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Rome 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Brown GC, Neher JJ. Eaten alive! Cell death by primary phagocytosis: 'phagoptosis'. Trends Biochem Sci 2012; 37:325-32. [PMID: 22682109 DOI: 10.1016/j.tibs.2012.05.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/06/2012] [Accepted: 05/10/2012] [Indexed: 12/21/2022]
Abstract
Phagoptosis, also called primary phagocytosis, is a recently recognised form of cell death caused by phagocytosis of viable cells, resulting in their destruction. It is provoked by exposure of 'eat-me' signals and/or loss of 'don't-eat-me' signals by viable cells, causing their phagocytosis by phagocytes. Phagoptosis mediates turnover of erythrocytes, neutrophils and other cells, and thus is quantitatively one of the main forms of cell death in the body. It defends against pathogens and regulates inflammation and immunity. However, recent results indicate that inflamed microglia eat viable brain neurons in models of neurodegeneration, and cancer cells can evade phagocytosis by expressing a 'don't-eat-me' signal, suggesting that too much or too little phagoptosis can contribute to pathology. This review provides an overview of the molecular signals that regulate phagoptosis and the physiological and pathological circumstances in which it has been observed.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
144
|
Li Q, Gao H, Xu H, Wang X, Pan Y, Hao F, Qiu X, Stoecker M, Wang E, Wang E. Expression of ezrin correlates with malignant phenotype of lung cancer, and in vitro knockdown of ezrin reverses the aggressive biological behavior of lung cancer cells. Tumour Biol 2012; 33:1493-504. [PMID: 22528947 DOI: 10.1007/s13277-012-0400-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/03/2012] [Indexed: 02/02/2023] Open
Abstract
Ezrin, one of the ezrin-radixin-moesin proteins, is involved in the formation of cell membrane processes such as lamellipodia and filopodia and acts as a membrane-cytoskeleton linker. Its aberrant expression correlates with development and progression of several human cancers. However, the expression of ezrin and its role in lung cancer are currently unknown. In this study, we performed ezrin small interfering RNA transfection in two lung cancer cell lines and examined the effects on malignant phenotypes in cancer cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and chamber transwell assays. Ezrin knockdown significantly reduced the proliferation, migration, and invasion of lung cancer cells in vitro. To address the possible mechanisms, we evaluated the expression of adhesion molecules E-cadherin and β-catenin by Western blot and reverse transcriptase-polymerase chain reaction analyses. The results demonstrated that downregulation of ezrin reduced β-catenin and increased E-cadherin at the protein level but had no effects on their mRNA levels, suggesting posttranscriptional regulation of these two adhesion molecules. Immunofluorescence assays revealed that ezrin knockdown restored membranous expression of E-cadherin and decreased cytoplasmic β-catenin in lung cancer cells. In addition, ezrin expression was immunohistochemically evaluated on 135 normal and 183 lung cancer tissues. The expression of ezrin was significantly higher in cancer samples than paired autologous normal lung tissues. In normal bronchial epithelium, ezrin was mainly localized on the apical membrane, while in lung cancers and metastatic foci, ezrin was primarily distributed in cytoplasm. Among lung cancer tissues, expression of ezrin was higher in the invasive front of primary lesions and the highest in lymphatic metastasis. Statistical analysis demonstrated that ezrin expression correlated significantly with lymphatic metastasis and advanced TNM stage. Our data suggest that ezrin may play a crucial role in governing the biological behavior of lung cancer.
Collapse
Affiliation(s)
- Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Poels J, Spasić MR, Gistelinck M, Mutert J, Schellens A, Callaerts P, Norga KK. Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress. Cell Death Differ 2012; 19:1590-601. [PMID: 22498699 DOI: 10.1038/cdd.2012.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding mechanisms controlling neuronal cell death and survival under conditions of altered energy supply (e.g., during stroke) is fundamentally important for the development of therapeutic strategies. The function of autophagy herein is unclear, as both its beneficial and detrimental roles have been described. We previously demonstrated that loss of AMP-activated protein kinase (AMPK), an evolutionarily conserved enzyme that maintains cellular energy balance, leads to activity-dependent degeneration in neuronal tissue. Here, we show that energy depletion in Drosophila AMPK mutants results in increased autophagy that convincingly promotes, rather than rescues, neurodegeneration. The generated excessive autophagic response is accompanied by increased TOR and S6K activity in the absence of an AMPK-mediated negative regulatory feedback loop. Moreover, energy-depleted neurons use a phagocytic-like process as a means to cellular survival at the expense of surrounding cells. Consequently, phagocytosis stimulation by expression of the scavenger receptor Croquemort significantly delays neurodegeneration. This study thus reveals a potentially novel strategy for cellular survival during conditions of extreme energy depletion, resembling xeno-cannibalistic events seen in metastatic tumors. We provide new insights into the roles of autophagy and phagocytosis in the neuronal metabolic stress response and open new avenues into understanding of human disease and development of therapeutic strategies.
Collapse
Affiliation(s)
- J Poels
- Laboratory of Behavioral and Developmental Genetics, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
146
|
Belleudi F, Marra E, Mazzetta F, Fattore L, Giovagnoli MR, Mancini R, Aurisicchio L, Torrisi MR, Ciliberto G. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells. Cell Cycle 2012; 11:1455-67. [PMID: 22421160 DOI: 10.4161/cc.19861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.
Collapse
Affiliation(s)
- Francesca Belleudi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Universita' di Roma, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Krajcovic M, Overholtzer M. Mechanisms of ploidy increase in human cancers: a new role for cell cannibalism. Cancer Res 2012; 72:1596-601. [PMID: 22447569 DOI: 10.1158/0008-5472.can-11-3127] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aneuploidy is a hallmark of human cancers originating from abnormal mitoses. Many aneuploid cancer cells also have greater-than-diploid DNA content, suggesting that polyploidy is a common precursor to aneuploidy during tumor progression. Polyploid cells can originate from cell fusion, endoreplication, and cytokinesis failure. Recently we found that cell cannibalism by entosis, a form of cell engulfment involving live cells, also leads to polyploidy, as internalized cells disrupt cytokinesis of their engulfing cell hosts. By this mechanism, cannibalistic cell behavior could promote tumor progression by leading to aneuploidy. Here, we discuss cell cannibalism in cancer and other mechanisms that result in the formation of polyploid cancer cells.
Collapse
Affiliation(s)
- Matej Krajcovic
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York 10065, USA
| | | |
Collapse
|
148
|
Pellegatta S, Cuppini L, Finocchiaro G. Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Rev Anticancer Ther 2012; 11:1759-74. [PMID: 22050025 DOI: 10.1586/era.11.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of studies in murine models have suggested that the immune system may edit different tumors by forcing their expression profiles so that they escape immune reactions and proliferate. Glioblastoma (GB), the most frequent and aggressive primary brain tumor, provides a good example of this, thanks to the production of numerous immunosuppressive molecules (with TGF-β being of paramount importance), downregulation of the MHC complex and deregulation of the potential for antigen presentation by the surrounding microglia. Given that surgery, radiotherapy and chemotherapy with available protocols have limited effects on the survival of GB patients, different immunotherapy strategies have been developed, based on the use of dendritic cells, antibodies and peptide vaccination. Presently, bevacizumab, a humanized anti-VEGF antibody, provides the most successful example for immune-based treatment of GB, however, its action is limited in time, as the often tumor relapses due to still undefined immunoediting mechanisms. Altered function of EGF receptor-driven pathways is common in GB and is most frequently due to the presence of a deleted form named EGFRvIII, providing a unique cancer epitope that has been targeted by immunotherapy. A recent trial of GB immunotherapy based on vaccination with the EGFRvIII peptide has shown clinical benefit: interestingly most GBs at relapse were negative for EGFRvIII expression, a relevant, direct example of cancer immunoediting. Investigations on the mechanisms of GB immunoediting will lead to an increased understanding of the biology of this malignancy and hopefully provide novel therapeutic targets.
Collapse
Affiliation(s)
- Serena Pellegatta
- Fondazione I.R.C.C.S Istituto Neurologico C. Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
149
|
Yang YQ, Li JC. Progress of research in cell-in-cell phenomena. Anat Rec (Hoboken) 2012; 295:372-7. [PMID: 22271432 DOI: 10.1002/ar.21537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/13/2011] [Indexed: 01/20/2023]
Abstract
The discovery of a nonphagocytotic process of cell-in-cell phenomena can be traced to over a century ago. However, its biological significance remains poorly understood. Three types of cell-in-cell phenomena have been described so far, termed "cannibalism," "emperipolesis," and "entosis." These three kinds of cell-in-cell phenomena, apart from a common feature of one cell internal to another, are distinct both cytologically and biologically. In this review, we discussed them in their morphology, cell recognition, penetration mechanisms, and physiological roles, respectively.
Collapse
Affiliation(s)
- Yue-Qin Yang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
150
|
Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The Bacterial Ghost platform system: production and applications. Bioeng Bugs 2012; 1:326-36. [PMID: 21326832 DOI: 10.4161/bbug.1.5.12540] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 12/23/2022] Open
Abstract
The Bacterial Ghost (BG) platform technology is an innovative system for vaccine, drug or active substance delivery and for technical applications in white biotechnology. BGs are cell envelopes derived from Gram-negative bacteria. BGs are devoid of all cytoplasmic content but have a preserved cellular morphology including all cell surface structures. Using BGs as delivery vehicles for subunit or DNA-vaccines the particle structure and surface properties of BGs are targeting the carrier itself to primary antigen-presenting cells. Furthermore, BGs exhibit intrinsic adjuvant properties and trigger an enhanced humoral and cellular immune response to the target antigen. Multiple antigens of the native BG envelope and recombinant protein or DNA antigens can be combined in a single type of BG. Antigens can be presented on the inner or outer membrane of the BG as well as in the periplasm that is sealed during BG formation. Drugs or supplements can also be loaded to the internal lumen or periplasmic space of the carrier. BGs are produced by batch fermentation with subsequent product recovery and purification via tangential flow filtration. For safety reasons all residual bacterial DNA is inactivated during the BG production process by the use of staphylococcal nuclease A and/or the treatment with β-propiolactone. After purification BGs can be stored long-term at ambient room temperature as lyophilized product. The production cycle from the inoculation of the pre-culture to the purified BG concentrate ready for lyophilization does not take longer than a day and thus meets modern criteria of rapid vaccine production rather than keeping large stocks of vaccines. The broad spectrum of possible applications in combination with the comparably low production costs make the BG platform technology a safe and sophisticated product for the targeted delivery of vaccines and active agents as well as carrier of immobilized enzymes for applications in white biotechnology.
Collapse
|