101
|
Abstract
PURPOSE OF REVIEW Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. RECENT FINDINGS Flow (rather than content) is the focus of O2 delivery regulation. O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology that influences O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. SUMMARY By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting.
Collapse
|
102
|
Quantitative analysis of the erythrocyte membrane proteins in polycythemia vera patients treated with hydroxycarbamide. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
103
|
Wiewiora M, Piecuch J, Sedek L, Mazur B, Sosada K. The effects of obesity on CD47 expression in erythrocytes. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 92:485-491. [PMID: 25914268 DOI: 10.1002/cyto.b.21232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/14/2014] [Accepted: 02/03/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND To investigate the effects of obesity on CD47, phosphatidylserine (PS) exposure, and Caspase-8 and Caspase-3 activities in erythrocytes. METHODS The study included 25 morbidly obese patients and 20 healthy people as the control group. We evaluated CD47 expression on the red blood cell (RBC) membrane surface and eryptosis markers such as PS externalization and caspase activity using flow cytometric analyses. RESULTS CD47 expression on the RBC surface was significantly lower in obese patients than in the control group (P = 0.000001). We did not find significant differences in the Caspase-3 and Caspase-8 activities between the obese and nonobese control groups. Additionally, we did not find differences in PS exposure on erythrocyte membranes. The fibrinogen levels were higher in the obese group than they were in the control group (P = 0.00002). Correlations between CD47 expression and body mass index (r = -0.65; P = 0.0004), waist circumference (r = -0.54; P = 0.0052), and fibrinogen (r = 0.57; P = 0.0024) were found. Univariate analyses revealed that body mass index, waist circumference, hip circumference, and fibrinogen levels were potential predictors of CD47 expression. Multivariate analyses found that fibrinogen levels (β = 0.4708; P = 0.045) independently predicted CD47 expression. CONCLUSIONS The study demonstrated that CD47 expression is decreased on the surface of RBCs in obese subjects. These changes in CD47 expression on the RBC surface may be an adaptive response to hyperfibrinogenemia associated with obesity. © 2015 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Maciej Wiewiora
- Department of General and Bariatric Surgery and Emergency Medicine, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of Pediatric Hematology and Oncology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Lukasz Sedek
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bogdan Mazur
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krystyn Sosada
- Department of General and Bariatric Surgery and Emergency Medicine, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
104
|
Crosstalk between red blood cells and the immune system and its impact on atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:616834. [PMID: 25722984 PMCID: PMC4334626 DOI: 10.1155/2015/616834] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a chronic multifactorial disease of the arterial wall characterized by inflammation, oxidative stress, and immune system activation. Evidence exists on a pathogenic role of oxidized red blood cells (RBCs) accumulated in the lesion after intraplaque hemorrhage. This review reports current knowledge on the impact of oxidative stress in RBC modifications with the surface appearance of senescent signals characterized by reduced expression of CD47 and glycophorin A and higher externalization of phosphatidylserine. The review summarizes findings indicating that oxidized, senescent, or stored RBCs, due to surface antigen modification and release of prooxidant and proinflammatory molecules, exert an impaired modulatory activity on innate and adaptive immune cells and how this activity contributes to atherosclerotic disease. In particular RBCs from patients with atherosclerosis, unlike those from healthy subjects, fail to control lipopolysaccharide-induced DC maturation and T lymphocyte apoptosis. Stored RBCs, accompanied by shedding of extracellular vesicles, stimulate peripheral blood mononuclear cells to release proinflammatory cytokines, augment mitogen-driven T cell proliferation, and polarize macrophages toward the proinflammatory M1 activation pathway. Collectively, literature data suggest that the crosstalk between RBCs with immune cells represents a novel mechanism by which oxidative stress can contribute to atherosclerotic disease progression and may be exploited for therapeutic interventions.
Collapse
|
105
|
Hoelzle LE, Zeder M, Felder KM, Hoelzle K. Pathobiology of Mycoplasma suis. Vet J 2014; 202:20-5. [PMID: 25128978 DOI: 10.1016/j.tvjl.2014.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 07/20/2014] [Accepted: 07/26/2014] [Indexed: 01/25/2023]
Abstract
Mycoplasma suis is an uncultivable bacterium lacking a cell wall that attaches to and may invade the red blood cells of pigs. M. suis infections occur worldwide and cause the pig industry serious economic losses due to the disease known as infectious anaemia of pigs or, historically, porcine eperythrozoonosis. Infectious anaemia of pigs is characterised predominantly by acute haemolytic or chronic anaemia, along with non-specific manifestations, such as growth retardation in feeder pigs and poor reproductive performance in sows. The fastidious nature of M. suis, as well as the lack of an in vitro cultivation system, has hampered the understanding of the biology and pathogenicity of this organism. Pathogenetic mechanisms of M. suis include direct destruction of red blood cells by adhesion, invasion, nutrient scavenging, immune-mediated lysis and eryptosis, as well as endothelial targeting. Recently published genome sequences, in combination with proteome analyses, have generated new insights into the pathogenicity of M. suis. The present review combines these data with the knowledge provided by experimental M. suis infections.
Collapse
Affiliation(s)
- Ludwig E Hoelzle
- Institute of Environmental and Animal Hygiene (with Animal Clinic), University of Hohenheim, Stuttgart, Germany.
| | | | | | - Katharina Hoelzle
- Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
106
|
Angelousi A, Larger E. Anaemia, a common but often unrecognized risk in diabetic patients: a review. DIABETES & METABOLISM 2014; 41:18-27. [PMID: 25043174 DOI: 10.1016/j.diabet.2014.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
Abstract
Anaemia in patients with diabetes, both type 1 and type 2, is a frequent clinical finding. The mechanisms of anaemia are multifactorial and often not very well understood. Iatrogenic causes, including oral antidiabetic drugs, ACE inhibitors and ARBs, and renal insufficiency are the major causes of anaemia in patients with type 2 diabetes. In patients with type 1, the cause is often an associated autoimmune disease, and screening for autoimmune gastritis, pernicious anaemia, Hashimoto's thyroiditis, coeliac disease and Addison's disease is recommended. Other rare causes - including G6PD deficiency, microangiopathic haemolytic anaemia and thiamine-responsive megaloblastic anaemia - should be suspected in young patients or when the classical causes are excluded. Early detection and recognition of the cause(s) of anaemia in patients with diabetes could help to prevent other clinical manifestations as well as the complications of diabetes.
Collapse
Affiliation(s)
- A Angelousi
- Service de diabétologie, GH Cochin-Hôtel Dieu, Paris, France; 6, rue Andromachis, 12135 Athens, Greece
| | - E Larger
- Service de diabétologie, GH Cochin-Hôtel Dieu, Paris, France; Université Paris-René-Descartes, Paris, France.
| |
Collapse
|
107
|
de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5:9. [PMID: 24523696 PMCID: PMC3906564 DOI: 10.3389/fphys.2014.00009] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
Collapse
Affiliation(s)
- Djuna Z de Back
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Elena B Kostova
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Marian van Kraaij
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Timo K van den Berg
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Robin van Bruggen
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
108
|
Fibach E, Rachmilewitz EA. Does erythropoietin have a role in the treatment of β-hemoglobinopathies? Hematol Oncol Clin North Am 2014; 28:249-63. [PMID: 24589265 DOI: 10.1016/j.hoc.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents the indications and contraindications (pros and cons) for the potential use of erythropoietin (Epo) as a treatment in β-thalassemia and sickle cell anemia (SCA). Its high cost and route of administration (by injection) are obvious obstacles, especially in underdeveloped countries, where thalassemia is prevalent. We believe that from the data summarized in this review, the time has come to define, by studying in vitro and in vivo models, as well as by controlled clinical trials, the rationale for treating patients with various forms of thalassemia and SCA with Epo alone or in combination with other medications.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, Jerusalem 91120, Israel.
| | | |
Collapse
|
109
|
Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2014; 2:251-8. [PMID: 24494200 PMCID: PMC3909820 DOI: 10.1016/j.redox.2013.12.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/06/2023] Open
Abstract
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as "NO sinks", but exert an erythrocrine function - i.e an endocrine function of RBC - by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
110
|
Krpetić Z, Anguissola S, Garry D, Kelly PM, Dawson KA. Nanomaterials: impact on cells and cell organelles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:135-56. [PMID: 24683031 DOI: 10.1007/978-94-017-8739-0_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colloidal nanoparticles designed for the interactions with cells are very small, nanoscale objects usually consisting of inorganic cores and organic shells that are dispersed in a buffer or biological medium. By tuning the material properties of the nanoparticles a number of different biological applications of nanomaterials are enabled i.e. targeting, labelling, drug delivery, use as diagnostic tools or therapy. For all biological applications of nanoparticles, it is important to understand their interactions with the surrounding biological environment in order to predict their biological impact, in particular when designing the nanoparticles for diagnostic and therapeutic purpose. Due to the high surface-to-volume ratio, the surface of nanomaterials is very reactive. When exposed to biological fluids, the proteins and biomolecules present therein tend to associate with the nanoparticles' surface. This phenomenon is defined as biomolecular corona formation. The biomolecular corona plays a key role in the interaction between nanoparticles and biological systems, impacting on how these particles interact with biological systems on a cellular and molecular level. This book chapter describes the nature of the interactions at the bio-nano interface, shows the design strategy of nanoparticles for nanomedicine, and defines the concepts of biomolecular corona and biological identity of nanoparticles. Moreover, it describes the interaction of functionalised nanomaterials with cell organelles and intracellular fate of nanoparticles and it shows therapeutic application of gold nanoparticles as dose enhancers in radiotherapy.
Collapse
Affiliation(s)
- Zeljka Krpetić
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | | | |
Collapse
|
111
|
Harisa GI. Naringin mitigates erythrocytes aging induced by paclitaxel: an in vitro study. J Biochem Mol Toxicol 2013; 28:129-36. [PMID: 24375949 DOI: 10.1002/jbt.21544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/05/2013] [Accepted: 11/24/2013] [Indexed: 02/02/2023]
Abstract
In this study, the protective role of naringin (NAR) against paclitaxel (PTX)-induced erythrocytes aging has been investigated using human erythrocyte as an in vitro model. Erythrocytes were incubated with PTX in the presence and absence of NAR. Incubation of erythrocytes with PTX resulted in increased protein carbonyl content and malondialdehyde and hemolysis percentage compared with control. Furthermore, a significant increase in the ratios of glutathione peroxidase/glutathione reductase, superoxide dismutase/glutathione peroxidase, and superoxide dismutase/catalase in PTX-treated cells was observed, compared with control cells. In contrast, reduced glutathione/oxidized glutathione ratio and glucose-6-phosphate dehydrogenase activity were decreased upon PTX treatment. The simultaneous incubation of erythrocytes with PTX and NAR restored these variables to values similar to those of control erythrocytes. These results suggest that NAR inhibited PTX-induced aging by lessening the PTX-induced oxidative stress.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry, College of Pharmacy, Al-Azhar University (Boys), Nasr City, Cairo, Egypt.
| |
Collapse
|
112
|
Hyperhaemolysis syndrome responsive to splenectomy in a patient with δβ-thalassaemia: a discussion on underlying mechanisms. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12:127-9. [PMID: 24333072 DOI: 10.2450/2013.0059-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/21/2013] [Indexed: 11/21/2022]
|
113
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
114
|
Silva DGH, Belini Junior E, de Almeida EA, Bonini-Domingos CR. Oxidative stress in sickle cell disease: an overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic Biol Med 2013; 65:1101-1109. [PMID: 24002011 DOI: 10.1016/j.freeradbiomed.2013.08.181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 01/19/2023]
Abstract
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2(-)) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications.
Collapse
Affiliation(s)
- Danilo Grunig Humberto Silva
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil; Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Edis Belini Junior
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Eduardo Alves de Almeida
- Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Claudia Regina Bonini-Domingos
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
115
|
Hernández-García A, Romero D, Gómez-Ramírez P, María-Mojica P, Martínez-López E, García-Fernández AJ. In vitro evaluation of cell death induced by cadmium, lead and their binary mixtures on erythrocytes of Common buzzard (Buteo buteo). Toxicol In Vitro 2013; 28:300-6. [PMID: 24287112 DOI: 10.1016/j.tiv.2013.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 01/18/2023]
Abstract
Cadmium and lead are persistent and ubiquitous metals that can cause several deleterious effects in living beings. Apoptosis and necrosis are two types of cell death that can be found after in vivo and in vitro exposure to these metals. In this study, isolated red blood cells from living captive Common buzzard (Buteo buteo) were exposed in vitro to different concentrations of lead, cadmium, and the mixture lead-cadmium in a proportion of 1:10 (similar to that found in previous field studies). Data obtained from dose-response curves were used to evaluate the interactive effects of metal mixtures on cell viability. In general, except for the exposure to NOEC, additivity was the most frequently observed response. As described in human, after in vitro exposure, lead was highly accumulated in buzzard erythrocytes, while cadmium accumulation was scarce. Finally, the type of cell death (apoptosis or necrosis) induced by the exposure to different concentrations of these heavy metals and their mixtures was evaluated in the red blood cells. Apoptosis was found to be the main type of cell death observed after cadmium and/or lead exposure. However, this exposure caused an increase in lysis or necrosis, especially if red blood cells were exposed to high doses.
Collapse
Affiliation(s)
- A Hernández-García
- Department of Sociosanitary Sciences, Laboratory of Toxicology, University of Murcia, Campus de Espinardo, Spain
| | - D Romero
- Department of Sociosanitary Sciences, Laboratory of Toxicology, University of Murcia, Campus de Espinardo, Spain
| | - P Gómez-Ramírez
- Department of Sociosanitary Sciences, Laboratory of Toxicology, University of Murcia, Campus de Espinardo, Spain
| | - P María-Mojica
- Department of Sociosanitary Sciences, Laboratory of Toxicology, University of Murcia, Campus de Espinardo, Spain; "Santa Faz" Wildlife Recovery Centre (Alicante), Autonomous Community of Valencia, Spain
| | - E Martínez-López
- Department of Sociosanitary Sciences, Laboratory of Toxicology, University of Murcia, Campus de Espinardo, Spain
| | - A J García-Fernández
- Department of Sociosanitary Sciences, Laboratory of Toxicology, University of Murcia, Campus de Espinardo, Spain.
| |
Collapse
|
116
|
Differential erythropoietin action upon cells induced to eryptosis by different agents. Cell Biochem Biophys 2013; 65:145-57. [PMID: 22903352 DOI: 10.1007/s12013-012-9408-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents.
Collapse
|
117
|
Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, Ciccoli L. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 2013; 50:489-95. [PMID: 21437568 DOI: 10.1007/s00592-011-0274-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of "eryptosis" was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.
Collapse
Affiliation(s)
- Emilia Maellaro
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
118
|
Wang J, Wagner-Britz L, Bogdanova A, Ruppenthal S, Wiesen K, Kaiser E, Tian Q, Krause E, Bernhardt I, Lipp P, Philipp SE, Kaestner L. Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation. PLoS One 2013; 8:e67697. [PMID: 23840765 PMCID: PMC3695909 DOI: 10.1371/journal.pone.0067697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca2+ sensor Fluo-4. Additionally, we developed an approach for analysing the Ca2+ responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca2+ influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca2+ response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca2+ revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca2+ influx and the associated pro-thrombotic activity.
Collapse
Affiliation(s)
- Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | | | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Sandra Ruppenthal
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Kathrina Wiesen
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elisabeth Kaiser
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Qinghai Tian
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elmar Krause
- Physiology, Saarland University, Homburg/Saar, Germany
| | - Ingolf Bernhardt
- Biophysics Laboratory, Saarland University, Saarbrücken, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
- * E-mail:
| |
Collapse
|
119
|
Barodka V, Mohanty JG, Mustafa AK, Santhanam L, Nyhan A, Bhunia AK, Sikka G, Nyhan D, Berkowitz DE, Rifkind JM. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion 2013; 54:434-44. [PMID: 23781865 DOI: 10.1111/trf.12291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/21/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. STUDY DESIGN AND METHODS As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. RESULTS SNP treatment of RBCs blocked the Ca(2+) (approx. 10 μmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 μmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. CONCLUSION Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage.
Collapse
Affiliation(s)
- Viachaslau Barodka
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins Hospital; Molecular Dynamics Section, National Institute on Aging, National Institutes of Health; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Skverchinskaya EA, Tavrovskaya TV, Novozhilov AV. Na+/K+-ATPase activity in rat erythrocytes after prolonged starvation. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
121
|
Minetti G, Egée S, Mörsdorf D, Steffen P, Makhro A, Achilli C, Ciana A, Wang J, Bouyer G, Bernhardt I, Wagner C, Thomas S, Bogdanova A, Kaestner L. Red cell investigations: Art and artefacts. Blood Rev 2013; 27:91-101. [DOI: 10.1016/j.blre.2013.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
122
|
Mahmud H, Ruifrok WPT, Westenbrink BD, Cannon MV, Vreeswijk-Baudoin I, van Gilst WH, Silljé HHW, de Boer RA. Suicidal erythrocyte death, eryptosis, as a novel mechanism in heart failure-associated anaemia. Cardiovasc Res 2013; 98:37-46. [PMID: 23341574 DOI: 10.1093/cvr/cvt010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS Suicidal death of erythrocytes (eryptosis) is characterized by cell shrinkage and exposure of phosphatidylserine (PS) residues at the cell surface. Excessive eryptosis may lead to anaemia. We aimed to study the role of eryptosis in heart failure (HF)-associated anaemia. METHODS AND RESULTS We measured eryptosis in rodent models of HF. Typical measures of eryptosis including PS-exposure, increased intracellular Ca(2+) levels, and decreased cell volume were determined by flow cytometry. Transgenic REN2 rats displayed mild anaemia which was associated with a two-fold increase in erythrocyte PS-exposure when compared with Sprague Dawley (SD) control rats (P < 0.01). Upon stimulation with eryptotic triggers such as oxidative stress, hyperosmotic shock and energy depletion, eryptosis was more prominent in REN2 as shown by increased PS-exposure, cytosolic Ca(2+) influx, and cell shrinkage (P < 0.05 vs. SD). Increasing cytosolic Ca(2+) levels resulted in a stronger increase in PS-exposure in REN2 erythrocytes (P < 0.01 vs. SD). Accordingly, inhibition of Ca(2+) entry blunted the increased PS-exposure upon oxidative stress. The REN2 rats had significantly higher reticulocytes (REN2: 10.6 ± 2.3%; SD: 5.4 ± 0.1%; P < 0.05) and erythrocyte turnover was increased, indicated by increased clearance of eryptotic erythrocytes. Eryptosis was also increased in a rat model of hypertensive cardiac remodelling (uninephrectomized rats implanted with deoxycorticosterone acetate pellets), in mice after transverse aortic constriction, as well as in a small proof-of-concept study in human HF patients. CONCLUSION Eryptosis is increased during HF development and could contribute to HF-associated anaemia. Eryptosis may therefore become a novel target for therapy in HF-associated anaemia.
Collapse
Affiliation(s)
- Hasan Mahmud
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Selvaraj S, Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Dose-Dependent Interaction of trans-Resveratrol with Biomembranes: Effects on Antioxidant Property. J Med Chem 2013; 56:970-81. [DOI: 10.1021/jm3014579] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Stalin Selvaraj
- Centre for Nanotechnology and
Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Aarti Mohan
- Centre for Nanotechnology and
Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Shridhar Narayanan
- Orchid Chemicals and Pharmaceuticals Ltd., Sozhiganallur, Chennai 600
119, Tamil Nadu, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and
Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and
Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
124
|
Optimizing bioethanol production by regulating yeast growth energy. SYSTEMS AND SYNTHETIC BIOLOGY 2012; 6:61-8. [PMID: 24294340 DOI: 10.1007/s11693-012-9099-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/31/2022]
Abstract
The goal of this work is to optimize production of bio-ethanol by fermentation through regulating yeast growth energy (YGE), and provide the mechanism of ethanol production from food-waste leachate (FWL) using yeast (S. cerevisiae) as inoculums to be predictable and controllable. The wide range of reduced sugar concentration (RSC) which is commonly administered from low (35 g per liter) to very high (100 g per liter) is responsible for costs increasing besides risks of FWL contamination and death of yeast cells. A mathematical model is presented to describe yeast growth energy (YGE) due to RSC doses along with predicting the amounts of ethanol yield by each dose to identify the optimum one. Simulations of the presented model showed that YGE, energy intake (EI), and their produced ethanol energy (PEE) are always balanced during fermentation process according to the law of conservation of energy. For a better fermentation rate in a continuous process and a large-scale production; YGE should be less than half of EI and more than its quarter (i.e. [Formula: see text]) which keeps the residual energy less than YGE to avoid risks of osmotic stresses or aging of cells allowing the survival of all yeast cells as long as possible to maximize ethanol production and decrease productivity costs.
Collapse
|
125
|
Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012; 120:4229-37. [PMID: 23007404 DOI: 10.1182/blood-2012-07-442277] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.
Collapse
|
126
|
Straat M, van Bruggen R, de Korte D, Juffermans NP. Red blood cell clearance in inflammation. Transfus Med Hemother 2012; 39:353-61. [PMID: 23801928 DOI: 10.1159/000342229] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/04/2012] [Indexed: 12/21/2022] Open
Abstract
SUMMARY Anemia is a frequently encountered problem in the critically ill patient. The inability to compensate for anemia includes several mechanisms, collectively referred to as anemia of inflammation: reduced production of erythropoietin, impaired bone marrow response to erythropoietin, reduced iron availability, and increased red blood cell (RBC) clearance. This review focuses on mechanisms of RBC clearance during inflammation. We state that phosphatidylserine (PS) expression in inflammation is mainly enhanced due to an increase in ceramide, caused by an increase in sphingomyelinase activity due to either platelet activating factor, tumor necrosis factor-α, or direct production by bacteria. Phagocytosis of RBCs during inflammation is mediated via RBC membrane protein band 3. Reduced deformability of RBCs seems an important feature in inflammation, also mediated by band 3 as well as by nitric oxide, reactive oxygen species, and sialic acid residues. Also, adherence of RBCs to the endothelium is increased during inflammation, most likely due to increased expression of endothelial adhesion molecules as well as PS on the RBC membrane, in combination with decreased capillary blood flow. Thereby, clearance of RBCs during inflammation shows similarities to clearance of senescent RBCs, but also has distinct entities, including increased adhesion to the endothelium.
Collapse
Affiliation(s)
- Marleen Straat
- Department of Intensive Care Medicine, Academic Medical Center, Sanquin Research, Sanquin Blood Bank, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
127
|
Kleinegris MC, Koek GH, Mast K, Mestrom EHC, Wolfs JLN, Bevers EM. Ribavirin-induced externalization of phosphatidylserine in erythrocytes is predominantly caused by inhibition of aminophospholipid translocase activity. Eur J Pharmacol 2012; 693:1-6. [PMID: 22959357 DOI: 10.1016/j.ejphar.2012.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/05/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
Ribavirin in combination with interferon-α is the standard treatment for chronic hepatitis C, but often induces severe anemia forcing discontinuation of the therapy. Whereas suppression of bone marrow by interferon may impact on the production of erythrocytes, it has been suggested that accumulation of ribavirin in erythrocytes induces alterations causing an early removal of these cells by the mononuclear phagocytic system. Externalization of phosphatidylserine, which is exclusively present in the cytoplasmic leaflet of the plasma membrane, is a recognition signal for phagocytosis in particular of apoptotic cells. Here, we demonstrate that surface exposure of phosphatidylserine upon prolonged treatment of erythrocytes with ribavirin results mainly from inactivation of the aminophospholipid translocase, an ATP-dependent lipid pump, which specifically transports phosphatidylserine from the outer to the inner leaflet of the plasma membrane. Inactivation is due to severe ATP depletion, although competitive inhibition by ribavirin or its phosphorylated derivatives cannot be excluded. Phospholipid scramblase, responsible for collapse of lipid asymmetry, appears to be of minor importance as erythrocytes of patients with the Scott syndrome, lacking Ca(2+)-induced lipid scrambling, are equally sensitive to ribavirin treatment. Neither the antioxidant N-acetylcysteine nor the pan-caspase inhibitor Q-VD-OPH did affect ribavirin-induced phosphatidylserine exposure, suggesting that oxidative stress or apoptotic-related mechanisms are not involved in this process. In conclusion, we propose that spontaneous loss of lipid asymmetry, not corrected by aminophospholipid translocase activity, is the mechanism for ribavirin-induced phosphatidylserine exposure that may contribute to ribavirin-induced anemia.
Collapse
Affiliation(s)
- Marie-Claire Kleinegris
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
128
|
Dinkla S, Novotný VMJ, Joosten I, Bosman GJCGM. Storage-induced changes in erythrocyte membrane proteins promote recognition by autoantibodies. PLoS One 2012; 7:e42250. [PMID: 22879923 PMCID: PMC3411782 DOI: 10.1371/journal.pone.0042250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/05/2012] [Indexed: 12/19/2022] Open
Abstract
Physiological erythrocyte removal is associated with a selective increase in expression of neoantigens on erythrocytes and their vesicles, and subsequent autologous antibody binding and phagocytosis. Chronic erythrocyte transfusion often leads to immunization and the formation of alloantibodies and autoantibodies. We investigated whether erythrocyte storage leads to the increased expression of non-physiological antigens. Immunoprecipitations were performed with erythrocytes and vesicles from blood bank erythrocyte concentrates of increasing storage periods, using patient plasma containing erythrocyte autoantibodies. Immunoprecipitate composition was identified using proteomics. Patient plasma antibody binding increased with erythrocyte storage time, while the opposite was observed for healthy volunteer plasma, showing that pathology-associated antigenicity changes during erythrocyte storage. Several membrane proteins were identified as candidate antigens. The protein complexes that were precipitated by the patient antibodies in erythrocytes were different from the ones in the vesicles formed during erythrocyte storage, indicating that the storage-associated vesicles have a different immunization potential. Soluble immune mediators including complement factors were present in the patient plasma immunoprecipitates, but not in the allogeneic control immunoprecipitates. The results support the theory that disturbed erythrocyte aging during storage of erythrocyte concentrates contributes to transfusion-induced alloantibody and autoantibody formation.
Collapse
Affiliation(s)
- Sip Dinkla
- Department of Laboratory Medicine - Laboratory of Medical Immunology, Radboud University Medical Centre, Nijmegen Institute for Infection Inflammation and Immunity, Nijmegen, The Netherlands
| | - Věra M. J. Novotný
- Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine - Laboratory of Medical Immunology, Radboud University Medical Centre, Nijmegen Institute for Infection Inflammation and Immunity, Nijmegen, The Netherlands
| | - Giel J. C. G. M. Bosman
- Department of Biochemistry, Radboud University Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
129
|
Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis. PLoS One 2012; 7:e42199. [PMID: 22860081 PMCID: PMC3408460 DOI: 10.1371/journal.pone.0042199] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022] Open
Abstract
Background Senescent red blood cells (RBC) are recognized, phagocytosed and cleared by tissue macrophages. During this erythrophagocytosis (EP), RBC are engulfed and processed in special compartments called erythrophagosomes. We previously described that following EP, heme is rapidly degraded through the catabolic activity of heme oxygenase (HO). Extracted heme iron is then either exported or stored by macrophages. However, the cellular localization of the early steps of heme processing and iron extraction during EP remains to be clearly defined. Methodology/Principal Findings We took advantage of our previously described cellular model of EP, using bone marrow-derived macrophages (BMDM). The subcellular localization of both inducible and constitutive isoforms of HO (HO-1 and HO-2), of the divalent metal transporters (Nramp1, Nramp2/DMT1, Fpn), and of the recently identified heme transporter HRG-1, was followed by fluorescence and electron microscopy during the earliest steps of EP. We also looked at some ER [calnexin, glucose-6-phosphatase (G6Pase) activity] and lysosomes (Lamp1) markers during EP. In both quiescent and LPS-activated BMDM, Nramp1 and Lamp1 were shown to be strong markers of the erythrophagolysosomal membrane. HRG-1 was also recruited to the erythrophagosome. Furthermore, we observed calnexin labeling and G6Pase activity at the erythrophagosomal membrane, indicating the contribution of ER in this phagocytosis model. In contrast, Nramp2/DMT1, Fpn, HO-1 and HO-2 were not detected at the membrane of erythrophagosomes. Conclusions/Significance Our study highlights the subcellular localization of various heme- and iron-related proteins during early steps of EP, thereby suggesting a model for heme catabolism occurring outside the phagosome, with heme likely being transported into the cytosol through HRG1. The precise function of Nramp1 at the phagosomal membrane in this model remains to be determined.
Collapse
|
130
|
Decreased redox-sensitive erythrocyte cation channel activity in aquaporin 9-deficient mice. J Membr Biol 2012; 245:797-805. [PMID: 22836670 DOI: 10.1007/s00232-012-9482-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/30/2012] [Indexed: 02/02/2023]
Abstract
Survival of the malaria pathogen Plasmodium falciparum in host erythrocytes requires the opening of new permeability pathways (NPPs) in the host cell membrane, accomplishing entry of nutrients, exit of metabolic waste products such as lactate and movement of inorganic ions such as Cl⁻, Na⁺ and Ca²⁺. The molecular identity of NPPs has remained largely elusive but presumably involves several channels, which partially can be activated by oxidative stress in uninfected erythrocytes. One NPP candidate is aquaporin 9 (AQP9), a glycerol-permeable water channel expressed in erythrocytes. Gene-targeted mice lacking functional AQP9 (aqp⁻/⁻) survive infection with the malaria pathogen Plasmodium berghei better than their wild-type littermates (aqp9⁺/⁺). In the present study whole-cell patch-clamp recordings were performed to explore whether ion channel activity is different in erythrocytes from aqp⁻/⁻ and aqp9⁺/⁺ mice. As a result, the cation conductance (K⁺ > Na⁺ > Ca²⁺ ≫ NMDG⁺) was significantly lower in erythrocytes from aqp⁻/⁻ than in erythrocytes from aqp9⁺/⁺ mice. Oxidative stress by exposure for 15-30 min to 1 mM H₂O₂ or 1 mM tert-butyl-hydroperoxide enhanced the cation conductance and increased cytosolic Ca²⁺ concentration, effects significantly less pronounced in erythrocytes from aqp⁻/⁻ than in erythrocytes from aqp9⁺/⁺ mice. In conclusion, lack of AQP9 decreases the cation conductance of erythrocytes, an effect that possibly participates in the altered susceptibility of AQP9-deficient mice to infection with P. berghei.
Collapse
|
131
|
Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood 2012; 120:528-37. [PMID: 22563085 DOI: 10.1182/blood-2011-11-327361] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Red blood cell transfusions have reduced morbidity and mortality for patients with sickle cell disease. Transfusions can lead to erythrocyte alloimmunization, however, with serious complications for the patient including life-threatening delayed hemolytic transfusion reactions and difficulty in finding compatible units, which can cause transfusion delays. In this review, we discuss the risk factors associated with alloimmunization with emphasis on possible mechanisms that can trigger delayed hemolytic transfusion reactions in sickle cell disease, and we describe the challenges in transfusion management of these patients, including opportunities and emerging approaches for minimizing this life-threatening complication.
Collapse
|
132
|
Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:316384. [PMID: 22611373 PMCID: PMC3350965 DOI: 10.1155/2012/316384] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/26/2012] [Indexed: 11/23/2022]
Abstract
Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.
Collapse
|
133
|
Fujita H, Sakuma R, Fujimoto S, Hazama Y, Ohtake C, Moriyama A, Kuhara K, Nishimura S. Nafamostat mesilate, a noncalcium compound, as an anticoagulant, induces calcium-dependent haemolysis when infused with packed erythrocytes. Transfus Med 2012; 22:186-91. [DOI: 10.1111/j.1365-3148.2012.01154.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
134
|
Lauf PK. Eryptotic red blood cell adhesion to vascular endothelium: CXCL16/SR-PSOX, a pathological amplifier. Focus on “Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX”. Am J Physiol Cell Physiol 2012; 302:C642-3. [DOI: 10.1152/ajpcell.00453.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peter K. Lauf
- Cell Biophysics Group, Department of Pathology, and Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
135
|
Lewis JM, Klein G, Walsh PJ, Currie S. Rainbow trout (Oncorhynchus mykiss) shift the age composition of circulating red blood cells towards a younger cohort when exposed to thermal stress. J Comp Physiol B 2012; 182:663-71. [DOI: 10.1007/s00360-012-0650-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/29/2022]
|
136
|
Tan E, Bienzle D, Shewen P, Kruth S, Wood D. Potentially antigenic RBC membrane proteins in dogs with primary immune-mediated hemolytic anemia. Vet Clin Pathol 2012; 41:45-55. [PMID: 22315967 DOI: 10.1111/j.1939-165x.2011.00391.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Primary immune-mediated hemolytic anemia (IMHA) is an important cause of morbidity and mortality in dogs. The mechanisms underlying autoimmune reactivity remain poorly understood. OBJECTIVE The aim of this study was to identify membrane proteins of RBCs that could be antigenic in dogs with primary IMHA. METHODS Antibodies were eluted with xylene from RBCs of 12 dogs with IMHA, 4 dogs with anemia due to causes other than IMHA, and 2 healthy dogs. Pooled RBC membrane proteins were prepared from blood of 17 healthy dogs. The eluted antibodies were then analyzed by immunoblotting for interactions with the pooled membrane proteins and autologous plasma. Bands present in the 12 dogs with IMHA but not in the 6 other dogs were considered potential autoantigens and were identified by liquid chromatography followed by tandem mass spectrometry. RESULTS RBC eluates from all 18 dogs had reactivity against band 3 protein. Antibodies to 6 additional proteins were uniquely identified in dogs with IMHA. Reactivity to calpain, complement component 3, and peroxiredoxin 2 was identified in 8, 8, and 4 of the 12 samples, respectively, from dogs with IMHA, but in none of the samples from the 6 dogs without IMHA. CONCLUSIONS Detection of universal immune reactivity against band 3 protein probably indicates recognition of senescent RBC. Proteins uniquely recognized by antibodies in dogs with IMHA are involved in oxidative stress and apoptosis (calpain), inflammation (complement), and scavenging of reactive oxygen species (peroxiredoxin 2). It remains to be determined if these proteins are important in initiating autoimmunity or if immunoglobulins targeting these proteins develop during IMHA.
Collapse
Affiliation(s)
- Emmeline Tan
- Departments of Pathobiology, Veterinary College, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | |
Collapse
|
137
|
Abstract
BACKGROUND For the past 30 years, red blood cell (RBC) storage systems have been licensed in the United States based on the demonstration that 24-hour in vivo recovery was greater than 75% and hemolysis was less than 1%. Now additional requirements for storage system licensure have being added. The meaning and value of these new requirements have been questioned. STUDY DESIGN AND METHODS The literature regarding the performance of present and suggested new tests for RBC licensure was reviewed. RESULTS (51) Cr 24-hr in vivo recovery has an intrinsic 4% error of measurement whereas the error in measures of hemolysis is less than 0.1%. Both measures have large donor-dependent end-of-storage variability; nevertheless, they have successfully guided RBC storage system development for six decades. Adenosine 5'-triphosphate and 2,3-diphosphoglycerate are difficult to measure accurately and international shared-sample studies suggest 6 and 11% coefficients of variation across laboratories. There is no readily available way to measure the oxygen equilibrium curve accurately. The new failure criteria provide no useful information and randomly fail good products. CONCLUSIONS Attempts to expand the useful regulatory requirements for RBC storage system licensure are limited by poor understanding of the storage lesion and its effect of RBC performance. Measures of (51) Cr 24-hour in vivo recovery remain critical and resources for this measure are limiting. The interaction between limited testing resources and large donor variability remains a major limit on RBC storage system development. It is important that new required tests contribute meaningful information and not make development and licensure of better products more difficult.
Collapse
Affiliation(s)
- John R Hess
- University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | |
Collapse
|
138
|
Pandey KB, Rizvi SI. Biomarkers of oxidative stress in red blood cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:131-6. [PMID: 21804621 DOI: 10.5507/bp.2011.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Exposure to high concentrations of oxygen radicals, the lack of nucleus and mitochrondria, inability to synthesise new protein and degradation of detoxifying enzymes makes red blood cells (RBCs) uniquely vulnerable to oxidative stress. This review summarizes the changes in biochemical parameters that primarily contribute to alterations in red blood cells during oxidative stress. METHODS PubMed, Science Direct and Springer online databases and updates from the Indian Council of Medical Research (ICMR). RESULTS AND CONCLUSION As one of the first cells to be affected by changes in the redox status of the body, alterations in red blood cells are widely used in first step-diagnoses of a number of pathological conditions. The information presented in this review provides an update on biomarkers of redox balance in red blood cells. These biomarkers may be used for assessment of oxidative stress during human health and disease.
Collapse
|
139
|
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107-20. [PMID: 21760595 PMCID: PMC3252826 DOI: 10.1038/cdd.2011.96] [Citation(s) in RCA: 1838] [Impact Index Per Article: 153.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023] Open
Abstract
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - I Vitale
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - T M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - V L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - W S El-Deiry
- Cancer Institute Penn State, Hershey Medical Center, Philadelphia, PA 17033, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt 60528, Germany
| | - E Gottlieb
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - D R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - O Kepp
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - R A Knight
- Institute of Child Health, University College London, London WC1N 3JH, UK
| | - S Kumar
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S A Lipton
- Sanford-Burnham Medical Research Institute, San Diego, CA 92037, USA
- Salk Institute for Biological Studies, , La Jolla, CA 92037, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Univerisity of California, San Diego, La Jolla, CA 92093, USA
| | - X Lu
- Ludwig Institute for Cancer Research, Oxford OX3 7DQ, UK
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - W Malorni
- Department of Therapeutic Research and Medicines Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto San Raffaele Sulmona, 67039 Sulmona, Italy
| | - P Mehlen
- Apoptosis, Cancer and Development, CRCL, 69008 Lyon, France
- INSERM, U1052, 69008 Lyon, France
- CNRS, UMR5286, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
| | - G Nuñez
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M E Peter
- Northwestern University Feinberg School of Medicine, Chicago, IL 60637, USA
| | - M Piacentini
- Laboratory of Cell Biology, National Institute for Infectious Diseases IRCCS ‘L Spallanzani', 00149 Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata', 00133 Rome, Italy
| | - D C Rubinsztein
- Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Y Shi
- Shanghai Institutes for Biological Sciences, 200031 Shanghai, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - P Vandenabeele
- Department for Molecular Biology, Gent University, 9052 Gent, Belgium
- Department for Molecular Biomedical Research, VIB, 9052 Gent, Belgium
| | - E White
- The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - B Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - G Melino
- Biochemical Laboratory IDI-IRCCS, Department of Experimental Medicine, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - G Kroemer
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75908 Paris, France
- Université Paris Descartes, Paris 5, 75270 Paris, France
| |
Collapse
|
140
|
Lutz HU. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:76-90. [PMID: 22903667 DOI: 10.1007/978-1-4614-3461-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Germline-encoded naturally occurring autoantibodies (NAbs) developed about 400 to 450 million years ago to provide specificity for clearance ofbody waste in animals with 3 germ layers. Such NAbs became a necessity to selectively clear aged red blood cells (RBC) surviving 60 to 120 d in higher vertebrates. IgG NAbs to senescent RBC are directed to the most abundant integral membrane protein, the anion-transport protein or band 3 protein, but only bind firmly upon its oligomerization, which facilitates bivalent binding. The main constituent of RBC, the oxygen-carrying hemoglobin, is susceptible to oxidative damage. Oxidized hemoglobin forms hemichromes (a form of aggregates) that bind to the cytoplasmic portion of band 3 protein, induces their clustering on the cytoplasmic, as well as the exoplasmic side and thereby provides the prerequisites for the low affinity IgG anti-band 3 NAbs to bind bivalently. Bound anti-band 3 NAbs overcome their low numbers per RBC by stimulating complement amplification. An affinity for C3 outside the antigen binding region is responsible for a preferential formation of C3b(2)-IgG complexes from anti-band 3 NAbs. These complexes first bind oligomeric properdin, which enhances their affinity for factor B in assembling an alternative C3 convertase.
Collapse
Affiliation(s)
- Hans U Lutz
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Zurich, Switzerland.
| |
Collapse
|
141
|
Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, Bernhardt I. Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem 2011; 28:847-56. [PMID: 22178937 DOI: 10.1159/000335798] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2011] [Indexed: 02/04/2023] Open
Abstract
The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for eryptosis, a mechanism for the RBC clearance from blood circulation. The process of PS exposure was investigated as function of the intracellular Ca(2+) content and the activation of PKCα in human and sheep RBCs. Cells were treated with lysophosphatidic acid (LPA), 4-bromo-A23187, or phorbol-12 myristate-13 acetate (PMA) and analysed by flow cytometry, single cell fluorescence video imaging, or confocal microscopy. For human RBCs, no clear correlation existed between the number of cells with an elevated Ca(2+) content and PS exposure. Results are explained by three different mechanisms responsible for the PS exposure in human RBCs: (i) Ca(2+)-stimulated scramblase activation (and flippase inhibition) by LPA, 4-bromo-A23187, and PMA; (ii) PKC activation by LPA and PMA; and (iii) enhanced lipid flop caused by LPA. In sheep RBCs, only the latter mechanism occurs suggesting absence of scramblase activity.
Collapse
Affiliation(s)
- Duc Bach Nguyen
- Faculty of Natural and Technical Sciences III, Saarland University, Saarbruecken, Germany
| | | | | | | | | | | | | |
Collapse
|
142
|
Mendoza R, Moore M, Passwater M, Fadeyi EA. Delayed Hemolytic Transfusion Reaction Without Detectable Autoantibodies or Alloantibodies: A Possible Role of Phosphatidylserine Exposure on Donor RBCs. Lab Med 2011. [DOI: 10.1309/lmqbhduhcnvk8p53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
143
|
Jain A, Munn LL. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. LAB ON A CHIP 2011; 11:2941-7. [PMID: 21773633 PMCID: PMC3743538 DOI: 10.1039/c1lc20401g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)--which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells--marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20-400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s(-1). The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry (A. Y. Fu et al., Anal. Chem., 2002, 74, 2451-2457; A. Y. Fu et al., Nat. Biotechnol., 1999, 17, 1109-1111), genetic analyses (M. M. Wang et al., Nat. Biotechnol., 2005, 23, 83-87; L. C. Waters et al., Anal. Chem., 1998, 70, 5172-5176) and circulating tumor cell extraction (S. Nagrath et al., Nature, 2007, 450, 1235-1241; S. L. Stott et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 18392-18397; H. K. Lin et al., Clin. Cancer Res., 2010, 16, 5011-5018).
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, 02119, USA. . harvard.edu; Tel: +1 617 726-4089
- Steele Lab for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129. ; Fax: +1 617 726 1962; Tel: +1 617 726-4085
| | - Lance L. Munn
- Steele Lab for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129. ; Fax: +1 617 726 1962; Tel: +1 617 726-4085
| |
Collapse
|
144
|
Clark RL, Brannen KC, Sanders JE, Hoberman AM. Artesunate and artelinic acid: association of embryotoxicity, reticulocytopenia, and delayed stimulation of hematopoiesis in pregnant rats. ACTA ACUST UNITED AC 2011; 92:52-68. [PMID: 21312322 DOI: 10.1002/bdrb.20282] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The artemisinin antimalarials cause embryo death and malformations in animals by killing embryonic erythroblasts. Groups of pregnant rats (N = 4) were administered 35 and 48 µmol/kg artesunate and 17.2, 28.7, 48, 96, and 191 µmol/kg artelinic acid as a single oral dose on gestational day (GD) 12. Litters were examined on GD21. The ED(50) for embryo death with artelinic acid (23.4 µmol/kg) was just slightly lower than that for decreased reticulocyte count at 24 hr postdose (33.5 µmol/kg) and both had similarly steep dose responses (maximal effects of total litter loss and ∼60% decreases in reticulocyte count at 48 µmol/kg). Results with artesunate were similar. The correlation coefficient between embryo death and decreased reticulocyte count was 0.82 (p<0.01). The close relationship between embryotoxicity and reticulocytopenia is suggestive of a common mechanism-artemisinin-induced mitochondrial damage leading to cell death. At 9 days postdose, treatment with artesunate and artelinic acid also caused increases in counts of reticulocytes, lymphocytes, basophils, and monocytes (up to 3.7 ×, 1.7 ×, 4.7 ×, and 1.7 × control, respectively). This stimulation of hematopoiesis may have been mediated by the direct oxidative conversion of artesunate or artelinic acid to the artemisininyl hydroperoxide within the bone marrow cells or by an indirect increase in reactive oxygen species. The high correlation between embryotoxicity and reticulocytopenia further supports the assertion that therapeutic dosage regimens of artemisinins that cause decreases in reticulocyte count in pregnant women during the putative critical period (approximately postconception wk 3 to 9) are at risk of also causing adverse effects on the embryo.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Lansdale, PA 19446, USA.
| | | | | | | |
Collapse
|
145
|
Krpetić Ž, Nativo P, Prior IA, Brust M. Acrylate-facilitated cellular uptake of gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1982-1986. [PMID: 21648075 DOI: 10.1002/smll.201100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/20/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Željka Krpetić
- Centre for Nanoscale Science, Department of Chemistry, Crown Street,University of Liverpool, Liverpool, L69 7ZD, UK
| | | | | | | |
Collapse
|
146
|
Jeong JM, Kim JW, Park HJ, Song JH, Kim DH, Park CI. Molecular cloning and characterisation of the rock bream, Oplegnathus fasciatus, Fas (CD95/APO-1), and its expression analysis in response to bacterial or viral infection. RESULTS IN IMMUNOLOGY 2011; 1:11-7. [PMID: 24371547 DOI: 10.1016/j.rinim.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
Abstract
Fas belongs to the tumour necrosis factor (TNF) receptor superfamily and can transmit a death signal leading to apoptosis. In the present study, we isolated the full-length cDNA for rock bream (Oplegnathus fasciatus) Fas (RbFas). The full-length RbFas cDNA was 1770 bp long and contained an open reading frame of 957 bp that encoded 319 amino acid residues with a predicted molecular mass of 35.1 kDa. The 319 amino-acid predicted RbFas sequence is homologous to other Fas sequences, contains three cysteine-rich domains and a death domain (DD) and two potential N-glycosylation sites. Expression of RbFas mRNA was detected in nine different tissues from healthy rock bream and was the highest in red blood cells. In analyses of mitogen-stimulated RbFas expression in peripheral blood leucocytes, expression of RbFas mRNA was observed between 1 and 36 h after stimulation with LPS, and 1 and 3 h stimulation with poly I:C. In the case of bacterial injection, the RbFas transcript peaked 6 h after injection in both the kidney and the spleen. Otherwise, the RbFas transcript peaked after 1 h in spleen and 6 h in kidney following injection with RSIV.
Collapse
Affiliation(s)
- Ji-Min Jeong
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Ju-Won Kim
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Hyoung-Jun Park
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Jeong-Hun Song
- The College of Fisheries Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Do-Hyung Kim
- Fish Health Center and Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| |
Collapse
|
147
|
Muregi FW, Ohta I, Masato U, Kino H, Ishih A. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness. PLoS One 2011; 6:e21251. [PMID: 21698180 PMCID: PMC3116895 DOI: 10.1371/journal.pone.0021251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/25/2011] [Indexed: 01/09/2023] Open
Abstract
Background The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. Methodology/Principal Findings To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. Conclusions/Significance The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance.
Collapse
Affiliation(s)
- Francis W Muregi
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | |
Collapse
|
148
|
Felder KM, Hoelzle K, Ritzmann M, Kilchling T, Schiele D, Heinritzi K, Groebel K, Hoelzle LE. Hemotrophic mycoplasmas induce programmed cell death in red blood cells. Cell Physiol Biochem 2011; 27:557-64. [PMID: 21691073 DOI: 10.1159/000329957] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/06/2023] Open
Abstract
Hemotrophic mycoplasmas (HM) are uncultivable bacteria found on and in the red blood cells (RBCs). The main clinical sign of HM infections is the hemolytic anemia. However, anemia-inducing pathogenesis has not been totally clarified. In this work we used the splenectomized pig as animal model and Mycoplasma suis as a representative for hemotrophic mycoplasmas to study anemia pathogenesis. Eryptosis, i.e. programmed cell death of RBCs, is characterized by cell shrinkage, microvesiculation and phosphatidylserine (PS) exposure on the outer membrane. The eryptosis occurrence and its influence on anemia pathogenesis was observed over the time-course of M. suis infections in pigs using 3 M. suis isolates of differing virulence. All 3 isolates induced eryptosis, but with different characteristics. The occurrence of eryptosis could as well be confirmed in vitro: serum and plasma of an acutely ill pig induced PS exposure on erythrocytes drawn from healthy pigs. Since M. suis is able to induce eryptotic processes it is concluded that eryptosis is one anemia-inducing factor during M. suis infections and, therefore, plays a significant role in the pathogenesis of infectious anemia due to HM infection.
Collapse
Affiliation(s)
- Kathrin M Felder
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem 2011; 357:171-9. [PMID: 21625956 DOI: 10.1007/s11010-011-0887-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/17/2011] [Indexed: 12/26/2022]
Abstract
It has been suggested that oxidative stress may participate in the progression of diabetes and its complications. Long-term complications of type 2 diabetes mellitus (T2DM) include retinopathy, atherosclerosis, shortened life span of erythrocytes, nephropathy, and chronic kidney disease (CKD). Oxidative damage has been associated with erythrocyte apoptosis induction in other pathological conditions. Our aim was to study the presence of eryptosis and its possible relationship with oxidative damage in patients with T2DM without CKD (T2DM/CKD(-)) and in patients with T2DM and CKD (T2DM/CKD(+)).Oxidative damage of lipids erythrocytes were increased in diabetic patients. The highest lipoperoxidation was found in T2DM/CKD(+). Likewise, the lower plasma total antioxidant capacity, GSH/GSSG ratio, and GSH in erythrocytes were found in T2DM/CKD(+) patients. A negative correlation was found between plasma total antioxidant capacity and oxidative damage. Phosphatidylserine (PS) externalization was measured in erythrocytes to evaluate eryptosis. Annexin binding in erythrocytes of T2DM/CKD(+) patients was higher than in healthy subjects and T2DM/CKD(-) patients. A positive correlation between lipoperoxidation and PS externalization in erythrocytes was found. This work showed that the erythrocytes of diabetic patients have increased oxidative damage, a reduction of antioxidant systems and more erythrocyte PS externalization. The duration of diabetes and the presence of CKD increase both oxidative damage and eryptosis. It is possible that a longer time of evolution induces an increase in erythrocyte oxidative damage and the consumption of blood antioxidant systems, adding to the osmotic stress in CKD and so contributes to an increase in PS externalization in diabetic patients.
Collapse
|
150
|
Gilson CR, Kraus TS, Hod EA, Hendrickson JE, Spitalnik SL, Hillyer CD, Shaz BH, Zimring JC. A novel mouse model of red blood cell storage and posttransfusion in vivo survival. Transfusion 2011; 49:1546-53. [PMID: 19573176 DOI: 10.1111/j.1537-2995.2009.02173.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Storage of red blood cells (RBCs) is necessary for an adequate blood supply. However, reports have identified potential negative sequelae of transfusing stored RBCs. An animal model would be useful to investigate the pathophysiology of transfusing stored RBCs. However, it has been reported that storage of rat RBCs in CPDA-1 resulted in an unexpected sudden decline in posttransfusion survival. A mouse model of RBC storage and transfusion was developed to assess survival kinetics of mouse RBCs. STUDY DESIGN AND METHODS RBCs expressing green fluorescent protein were collected in CPDA-1, filter leukoreduced, adjusted to a 75% hematocrit, and stored at 4°C. At weekly intervals, stored RBCs were transfused into C57BL/6 recipients. RBC survival was measured by flow cytometry and chromium-51 labeling. Phosphatidylserine externalization and CD47 expression was also evaluated. RESULTS Mean 24-hour survivals of transfused RBCs were 99, 91, 64, 54, 30, and 18% after 0, 7, 14, 21, 28, and 35 days of storage, respectively. Stored RBCs showed an initial rapid clearance with subsequent extended survival. Increased surface phosphatidylserine and decreased CD47 expression were also observed. CONCLUSIONS Mouse RBCs showed a progressive decline in survival, as a function of storage time, unlike the precipitous loss of viability reported for rat RBCs. Moreover, changes in the measured surface markers were analogous to trends reported for human RBCs. Together, these findings provide an initial characterization of a novel mouse model of RBC storage with the potential to serve as an experimental platform for studying the pathophysiologic consequences of transfusing stored RBCs.
Collapse
Affiliation(s)
- Christopher R Gilson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine,Woodruff Memorial Building Suite 7107A, 101Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|