101
|
Purkayastha S, Stokes M, Bell KR. Autonomic nervous system dysfunction in mild traumatic brain injury: a review of related pathophysiology and symptoms. Brain Inj 2019; 33:1129-1136. [DOI: 10.1080/02699052.2019.1631488] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sushmita Purkayastha
- Department of Applied Physiology and Wellness, Simmons School of Education and Human Development, Southern Methodist University, Dallas, TX, USA
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mathew Stokes
- Department of Pediatrics/Division of Pediatric Neurology & Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathleen R Bell
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
102
|
Hasen M, Almojuela A, Zeiler FA. Autonomic Dysfunction and Associations with Functional and Neurophysiological Outcome in Moderate/Severe Traumatic Brain Injury: A Scoping Review. J Neurotrauma 2019; 36:1491-1504. [PMID: 30343625 DOI: 10.1089/neu.2018.6073] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The quantification and objective documentation of autonomic dysfunction in traumatic brain injury (TBI) is neither well studied nor extensively validated. Most of the descriptions of autonomic dysfunction in the literature are in the form of vague non-specific clinical manifestations. Few studies propose the use of objective measures of assessing the extent of autonomic dysfunction to link them to the outcome of TBI. Our goal was to perform a scoping systematic review of the literature on the objective documentation of autonomic dysfunction in terms of functional and physiological variables to be linked to outcome of TBI. PubMed/MEDLINE®, BIOSIS, Scopus, Embase, Cochrane Libraries, and Global Health databases were searched. Two reviewers independently screened the results. Full texts for citations passing this initial screen were obtained. Inclusion and exclusion criteria were applied to each article to obtain final articles for review. The initial search yielded 2619 citations. Of 69 articles selected for final review, 14 were chosen based on the inclusion and exclusion criteria and are included in the results of this article. 9 of these articles assessed autonomic dysfunction using functional variables and 7 assessed autonomic dysfunction using physiological variables. Some studies included both functional and physiological variables. Of the nine studies linking autonomic dysfunction to functional variables, nine included heart rate variability (HRV), three included baroreflex sensitivity (BRS), and two included blood pressure variability (BPV). A total of 2714 adult patients were studied. Although the nature of association between autonomic dysfunction and outcome is unclear, the objective quantification of autonomic dysfunction seems to be associated with global patient outcome and other neurophysiological measures. Further studies are needed to validate its use and explore the underlying molecular mechanisms of the described associations.
Collapse
Affiliation(s)
- Mohammed Hasen
- 1 Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- 2 Department of Neurosurgery, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alysa Almojuela
- 1 Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- 1 Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- 3 Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- 4 Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
103
|
Whittaker JR, Driver ID, Venzi M, Bright MG, Murphy K. Cerebral Autoregulation Evidenced by Synchronized Low Frequency Oscillations in Blood Pressure and Resting-State fMRI. Front Neurosci 2019; 13:433. [PMID: 31133780 PMCID: PMC6514145 DOI: 10.3389/fnins.2019.00433] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/15/2019] [Indexed: 01/23/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is a widely used technique for mapping the brain’s functional architecture, so delineating the main sources of variance comprising the signal is crucial. Low frequency oscillations (LFO) that are not of neural origin, but which are driven by mechanisms related to cerebral autoregulation (CA), are present in the blood-oxygenation-level-dependent (BOLD) signal within the rs-fMRI frequency band. In this study we use a MR compatible device (Caretaker, Biopac) to obtain a non-invasive estimate of beat-to-beat mean arterial pressure (MAP) fluctuations concurrently with rs-fMRI at 3T. Healthy adult subjects (n = 9; 5 male) completed two 20-min rs-fMRI scans. MAP fluctuations were decomposed into different frequency scales using a discrete wavelet transform, and oscillations at approximately 0.1 Hz show a high degree of spatially structured correlations with matched frequency fMRI fluctuations. On average across subjects, MAP fluctuations at this scale of the wavelet decomposition explain ∼2.2% of matched frequency fMRI signal variance. Additionally, a simultaneous multi-slice multi-echo acquisition was used to collect 10-min rs-fMRI at three echo times at 7T in a separate group of healthy adults (n = 5; 5 male). Multiple echo times were used to estimate the R2∗ decay at every time point, and MAP was shown to strongly correlate with this signal, which suggests a purely BOLD (i.e., blood flow related) origin. This study demonstrates that there is a significant component of the BOLD signal that has a systemic physiological origin, and highlights the fact that not all localized BOLD signal changes necessarily reflect blood flow supporting local neural activity. Instead, these data show that a proportion of BOLD signal fluctuations in rs-fMRI are due to localized control of blood flow that is independent of local neural activity, most likely reflecting more general systemic autoregulatory processes. Thus, fMRI is a promising tool for studying flow changes associated with cerebral autoregulation with high spatial resolution.
Collapse
Affiliation(s)
- Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Ian D Driver
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Marcello Venzi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
104
|
|
105
|
Mol A, Woltering JHH, Colier WNJM, Maier AB, Meskers CGM, van Wezel RJA. Sensitivity and reliability of cerebral oxygenation responses to postural changes measured with near-infrared spectroscopy. Eur J Appl Physiol 2019; 119:1117-1125. [PMID: 30771059 PMCID: PMC6469633 DOI: 10.1007/s00421-019-04101-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
Purpose Cerebral oxygenation as measured by near-infrared spectroscopy (NIRS) might be useful to discriminate between physiological and pathological responses after standing up in individuals with orthostatic hypotension. This study addressed the physiological sensitivity of the cerebral oxygenation responses as measured by NIRS to different types and speeds of postural changes in healthy adults and assessed the reliability of these responses. Methods Cerebral oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb) and tissue saturation index (TSI) were measured bilaterally on the forehead of 15 healthy individuals (12 male, age range 18–27) using NIRS. Participants performed three repeats of sit to stand, and slow and rapid supine to stand movements. Responses were defined as the difference between mean, minimum and maximum O2Hb, HHb and TSI values after standing up and baseline. Test–retest, interobserver and intersensor reliabilities were addressed using intraclass correlation coefficients (ICCs). Results The minimum O2Hb response was most sensitive to postural changes and showed significant differences (− 4.09 µmol/L, p < 0.001) between standing up from sitting and supine position, but not between standing up at different speeds (− 0.31 µmol/L, p = 0.70). The minimum O2Hb response was the most reliable parameter (ICC > 0.6). Conclusions In healthy individuals, NIRS-based cerebral oxygenation parameters are sensitive to postural change and discriminate between standing up from supine and sitting position with minimum O2Hb response as the most sensitive and reliable parameter. The results underpin the potential value for future clinical use of NIRS in individuals with orthostatic hypotension. Electronic supplementary material The online version of this article (10.1007/s00421-019-04101-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT, Amsterdam, The Netherlands.
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Jeffrey H H Woltering
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | | | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT, Amsterdam, The Netherlands
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, City Campus, Level 6 North, 300 Grattan Street, Parkville, VIC, 3050, Australia
| | - Carel G M Meskers
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Zuidhorst Building, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
106
|
Stok WJ, Karemaker JM, Berecki‐Gisolf J, Immink RV, van Lieshout JJ. Slow sinusoidal tilt movements demonstrate the contribution to orthostatic tolerance of cerebrospinal fluid movement to and from the spinal dural space. Physiol Rep 2019; 7:e14001. [PMID: 30810293 PMCID: PMC6391715 DOI: 10.14814/phy2.14001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/24/2022] Open
Abstract
Standing up elicits a host of cardiovascular changes which all affect the cerebral circulation. Lowered mean arterial blood pressure (ABP) at brain level, change in the cerebral venous outflow path, lowered end-tidal PCO2 (PET CO2 ), and intracranial pressure (ICP) modify cerebral blood flow (CBF). The question we undertook to answer is whether gravity-induced blood pressure (BP) changes are compensated in CBF with the same dynamics as are spontaneous or induced ABP changes in a stable position. Twenty-two healthy subjects (18/4 m/f, 40 ± 8 years) were subjected to 30° and 70° head-up tilt (HUT) and sinusoidal tilts (SinTilt, 0°↨60° around 30° at 2.5-10 tilts/min). Additionally, at those three tilt levels, they performed paced breathing at 6-15 breaths/min to induce larger than spontaneous cardiovascular oscillations. We measured continuous finger BP and cerebral blood flow velocity (CBFv) in the middle cerebral artery by transcranial Doppler to compute transfer functions (TFs) from ABP- to CBFv oscillations. SinTilt induces the largest ABP oscillations at brain level with CBFv gains strikingly lower than for paced breathing or spontaneous variations. This would imply better autoregulation for dynamic gravitational changes. We demonstrate in a mathematical model that this difference is explained by ICP changes due to movement of cerebrospinal fluid (CSF) into and out of the spinal dural sack. Dynamic cerebrovascular autoregulation seems insensitive to how BP oscillations originate if the effect of ICP is factored in. CSF-movement in-and-out of the spinal dural space contributes importantly to orthostatic tolerance by its effect on cerebral perfusion pressure.
Collapse
Affiliation(s)
- Wim J. Stok
- Department of Medical BiologySection Systems PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyLaboratory for Clinical Cardiovascular PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - John M. Karemaker
- Department of Medical BiologySection Systems PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janneke Berecki‐Gisolf
- Department of Medical BiologySection Systems PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Present address:
Monash University Accident Research Centre (Vic Injury Surveillance Unit)Monash University Clayton CampusClaytonVictoriaAustralia
| | - Rogier V. Immink
- Department of AnesthesiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johannes J. van Lieshout
- Department of Medical BiologyLaboratory for Clinical Cardiovascular PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Internal MedicineAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
107
|
TSUKAMOTO HAYATO, HASHIMOTO TAKESHI, OLESEN NIELSD, PETERSEN LONNIEG, SØRENSEN HENRIK, NIELSEN HENNINGB, SECHER NIELSH, OGOH SHIGEHIKO. Dynamic Cerebral Autoregulation Is Maintained during High-Intensity Interval Exercise. Med Sci Sports Exerc 2019; 51:372-378. [DOI: 10.1249/mss.0000000000001792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
108
|
Morrison HW, Filosa JA. Stroke and the neurovascular unit: glial cells, sex differences, and hypertension. Am J Physiol Cell Physiol 2019; 316:C325-C339. [PMID: 30601672 DOI: 10.1152/ajpcell.00333.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A functional neurovascular unit (NVU) is central to meeting the brain's dynamic metabolic needs. Poststroke damage to the NVU within the ipsilateral hemisphere ranges from cell dysfunction to complete cell loss. Thus, understanding poststroke cell-cell communication within the NVU is of critical importance. Loss of coordinated NVU function exacerbates ischemic injury. However, particular cells of the NVU (e.g., astrocytes) and those with ancillary roles (e.g., microglia) also contribute to repair mechanisms. Epidemiological studies support the notion that infarct size and recovery outcomes are heterogeneous and greatly influenced by modifiable and nonmodifiable factors such as sex and the co-morbid condition common to stroke: hypertension. The mechanisms whereby sex and hypertension modulate NVU function are explored, to some extent, in preclinical laboratory studies. We present a review of the NVU in the context of ischemic stroke with a focus on glial contributions to NVU function and dysfunction. We explore the impact of sex and hypertension as modifiable and nonmodifiable risk factors and the underlying cellular mechanisms that may underlie heterogeneous stroke outcomes. Most of the preclinical investigative studies of poststroke NVU dysfunction are carried out primarily in male stroke models lacking underlying co-morbid conditions, which is very different from the human condition. As such, the evolution of translational medicine to target the NVU for improved stroke outcomes remains elusive; however, it is attainable with further research.
Collapse
|
109
|
Cao J, Wang X, Liu H, Alexandrakis G. Directional changes in information flow between human brain cortical regions after application of anodal transcranial direct current stimulation (tDCS) over Broca's area. BIOMEDICAL OPTICS EXPRESS 2018; 9:5296-5317. [PMID: 30460129 PMCID: PMC6238934 DOI: 10.1364/boe.9.005296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 05/05/2023]
Abstract
Little work has been done on the information flow in functional brain imaging and none so far in fNIRS. In this work, alterations in the directionality of net information flow induced by a short-duration, low-current (2 min 40 s; 0.5 mA) and a longer-duration, high-current (8 min; 1 mA) anodal tDCS applied over the Broca's area of the dominant language hemisphere were studied by fNIRS. The tDCS-induced patterns of information flow, quantified by a novel directed phase transfer entropy (dPTE) analysis, were distinct for different hemodynamic frequency bands and were qualitatively similar between low and high-current tDCS. In the endothelial band (0.003-0.02 Hz), the stimulated Broca's area became the strongest hub of outgoing information flow, whereas in the neurogenic band (0.02-0.04 Hz) the contralateral homologous area became the strongest information outflow source. In the myogenic band (0.04-0.15 Hz), only global patterns were seen, independent of tDCS stimulation that were interpreted as Mayer waves. These findings showcase dPTE analysis in fNIRS as a novel, complementary tool for studying cortical activity reorganization after an intervention.
Collapse
|
110
|
Ogoh S, Yoo JK, Badrov MB, Parker RS, Anderson EH, Wiblin JL, North CS, Suris A, Fu Q. Cerebral blood flow regulation and cognitive function in women with posttraumatic stress disorder. J Appl Physiol (1985) 2018; 125:1627-1635. [DOI: 10.1152/japplphysiol.00502.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with structural and functional alterations in a number of interacting brain regions, but the physiological mechanism for the high risk of cerebrovascular disease or impairment in brain function remains unknown. Women are more likely to develop PTSD after a trauma than men. We hypothesized that cerebral blood flow (CBF) regulation is impaired in women with PTSD, and it is associated with impairment in cognitive function. To test our hypothesis, we examined dynamic cerebral autoregulation (CA) and cognitive function by using a transfer function analysis between arterial pressure and middle cerebral artery blood velocity and the Stroop Color and Word test (SCWT), respectively. We did not observe any different responses in these hemodynamic variables between women with PTSD ( n = 15) and healthy counterparts (all women; n = 8). Cognitive function was impaired in women with PTSD; specifically, reaction time for the neutral task of SCWT was longer in women with PTSD compared with healthy counterparts ( P = 0.011), but this cognitive dysfunction was not affected by orthostatic stress. On the other hand, transfer function phase, gain, and coherence were not different between groups in either the supine or head-up tilt (60°) position, or even during the cognitive challenge, indicating that dynamic CA was well maintained in women with PTSD. In addition, there was no relationship between cognitive function and dynamic CA. These findings suggest that PTSD-related cognitive dysfunction may not be due to compromised CBF regulation. NEW & NOTEWORTHY Cognitive function was impaired; however, dynamic cerebral autoregulation (CA) as an index of cerebral blood flow regulation was not impaired during supine and 60° head-up tilt in women with PTSD compared with healthy females. In addition, there was no relationship between cognitive function and dynamic CA. These findings suggest that the mechanism of PTSD-related cognitive dysfunction may not be due to CBF regulation.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark B. Badrov
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rosemary S. Parker
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
| | - Elizabeth H. Anderson
- University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Jessica L. Wiblin
- University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Carol S. North
- Metrocare Services and the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alina Suris
- University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
111
|
Andersen AV, Simonsen SA, Schytz HW, Iversen HK. Assessing low-frequency oscillations in cerebrovascular diseases and related conditions with near-infrared spectroscopy: a plausible method for evaluating cerebral autoregulation? NEUROPHOTONICS 2018; 5:030901. [PMID: 30689678 PMCID: PMC6156398 DOI: 10.1117/1.nph.5.3.030901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/02/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cerebral autoregulation (CA) is the brain's ability to always maintain an adequate and relatively constant blood supply, which is often impaired in cerebrovascular diseases. Near-infrared spectroscopy (NIRS) examines oxygenated hemoglobin (OxyHb) in the cerebral cortex. Low- and very low-frequency oscillations ( LFOs ≈ 0.1 Hz and VLFOs ≈ 0.05 to 0.01 Hz) in OxyHb have been proposed to reflect CA. AIM To systematically review published results on OxyHb LFOs and VLFOs in cerebrovascular diseases and related conditions measured with NIRS. APPROACH A systematic search was performed in the MEDLINE database, which generated 36 studies relevant for inclusion. RESULTS Healthy people have relatively stable LFOs. LFO amplitude seems to reflect myogenic CA being decreased by vasomotor paralysis in stroke, by smooth muscle damage or as compensatory action in other conditions but can also be influenced by the sympathetic tone. VLFO amplitude is believed to reflect neurogenic and metabolic CA and is lower in stroke, atherosclerosis, and with aging. Both LFO and VLFO synchronizations appear disturbed in stroke, while the former is also altered in internal carotid stenosis and hypertension. CONCLUSION We conclude that amplitudes of LFOs and VLFOs are relatively robust measures for evaluating mechanisms of CA and synchronization analyses can show temporal disruption of CA. Further research and more coherent methodologies are needed.
Collapse
Affiliation(s)
- Adam Vittrup Andersen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
- Address all correspondence to: Adam Vittrup Andersen, E-mail:
| | - Sofie Amalie Simonsen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Henrik Winther Schytz
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| |
Collapse
|
112
|
Bu L, Huo C, Xu G, Liu Y, Li Z, Fan Y, Li J. Alteration in Brain Functional and Effective Connectivity in Subjects With Hypertension. Front Physiol 2018; 9:669. [PMID: 29904355 PMCID: PMC5990593 DOI: 10.3389/fphys.2018.00669] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
To reveal the physiological mechanism of the cognitive decline in subjects with hypertension, the functional connectivity (FC) was assessed by using the wavelet phase coherence (WPCO), and effective connectivity (EC) was assessed by using the coupling strength (CS) of near-infrared spectroscopy (NIRS) signals. NIRS signals were continuously recorded from the prefrontal cortex, sensorimotor cortex, and occipital lobes of 13 hypertensive patients (hypertension group, 70 ± 6.5 years old) and 16 elderly healthy subjects (control group, 71 ± 5.5 years old) in resting and standing periods. WPCO and CS were calculated in four frequency intervals: I, 0.6–2; II, 0.145–0.6; III, 0.052–0.145; and IV, 0.021–0.052 Hz. CS quantifies coupling amplitude. In comparison with the control group, the hypertension group showed significantly decreased (p < 0.05) WPCO and CS in intervals III and IV and in the resting and standing states. WPCO and CS were significantly decreased in the resting state compared with those in the standing state in the hypertension group (p < 0.05). Decreased WPCO and CS indicated a reduced network interaction, suggesting disturbed neurovascular coupling in subjects with hypertension. Compared with the control group, the hypertension group showed significantly lower Mini-Mental State Examination (MMSE) (p = 0.028) and Montreal Cognitive Assessment (MoCA) scores (p = 0.011). In the hypertension group, correlation analysis showed that WPCO and CS were significantly positively correlated with MMSE and MoCA scores, respectively. These findings may provide evidence of impaired cognitive function in hypertension and can enhance the understanding on neurovascular coupling.
Collapse
Affiliation(s)
- Lingguo Bu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Congcong Huo
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Gongcheng Xu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ying Liu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| |
Collapse
|
113
|
Associated with Ischemic Stroke Risk Reduction after Endoscopic Thoracic Sympathectomy for Palmar Sweating. J Stroke Cerebrovasc Dis 2018; 27:2235-2242. [PMID: 29784606 DOI: 10.1016/j.jstrokecerebrovasdis.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/18/2018] [Accepted: 04/07/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Endoscopic thoracic sympathectomy (ETS) was performed to cure palmar hyperhidrosis (PH). After ETS, blood pressure decreased, and cerebral flow velocity increased within 1 month. However, no studies distinguish between subsequent ischemic and hemorrhagic stroke following ETS for PH. The association between stroke type and PH after ETS must be evaluated. METHODS We surveyed newly diagnosed patients with PH using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic code 780.8 from the Taiwan Longitudinal National Health Insurance Database. We matched patients with PH who underwent ETS (procedure code 05.29) and without surgery in the database between 2000 and 2010. We defined events as ischemic stroke (ICD-9-CM codes from 433 to 437) or hemorrhagic stroke (ICD-9-CM codes from 430 to 432). Patients were followed up until the first event or December 31, 2010. Risk factors for ischemic stroke and hemorrhagic stroke were analyzed using multivariable Cox proportional hazard regression. RESULTS The incidence of ischemic stroke was significantly lower in patients who underwent ETS (.22%) than in patients without surgery (.65%). The patients with PH who received ETS exhibited a reduced risk of ischemic stroke (adjusted hazard ratio [HR] .3; 95% confidence interval [CI] .12-.77). ETS treatment was not associated with a reduction in hemorrhagic stroke (adjusted HR .81; 95% CI .22-3; P = .755). CONCLUSIONS ETS in patients with PH was associated with reduced subsequent ischemic stroke risk. This additional ischemic stroke preventive effect should encourage health-care supporters to perform ETS in patients with severe PH.
Collapse
|
114
|
Montoro CI, Duschek S, Reyes del Paso GA. Variability in cerebral blood flow velocity at rest and during mental stress in healthy individuals: Associations with cardiovascular parameters and cognitive performance. Biol Psychol 2018; 135:149-158. [DOI: 10.1016/j.biopsycho.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
|
115
|
Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects. PLoS One 2018; 13:e0195936. [PMID: 29668713 PMCID: PMC5905974 DOI: 10.1371/journal.pone.0195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/03/2018] [Indexed: 11/19/2022] Open
Abstract
Cerebral autoregulation (CA) is the complex homeostatic regulatory relationship between blood pressure (BP) and cerebral blood flow (CBF). This study aimed to analyze the frequency-specific coupling function between cerebral oxyhemoglobin concentrations (delta [HbO2]) and mean arterial pressure (MAP) signals based on a model of coupled phase oscillators and dynamical Bayesian inference. Delta [HbO2] was measured by 24-channel near-infrared spectroscopy (NIRS) and arterial BP signals were obtained by simultaneous resting-state measurements in patients with stroke, that is, 9 with left hemiparesis (L–H group), 8 with right hemiparesis (R–H group), and 17 age-matched healthy individuals as control (healthy group). The coupling functions from MAP to delta [HbO2] oscillators were identified and analyzed in four frequency intervals (I, 0.6–2 Hz; II, 0.145–0.6 Hz; III, 0.052–0.145 Hz; and IV, 0.021–0.052 Hz). In L–H group, the CS from MAP to delta [HbO2] in interval III in channel 8 was significantly higher than that in healthy group (p = 0.003). Compared with the healthy controls, the coupling in MAP→delta [HbO2] showed higher amplitude in interval I and IV in patients with stroke. The increased CS and coupling amplitude may be an evidence of impairment in CA, thereby confirming the presence of impaired CA in patients with stroke. In interval III, the CS in L–H group from MAP to delta [HbO2] in channel 16 (p = 0.001) was significantly lower than that in healthy controls, which might indicate the compensatory mechanism in CA of the unaffected side in patients with stroke. No significant difference in region-wise CS between affected and unaffected sides was observed in stroke groups, indicating an evidence of globally impaired CA. These findings provide a method for the assessment of CA and will contribute to the development of therapeutic interventions in stroke patients.
Collapse
|
116
|
Skytioti M, Søvik S, Elstad M. Dynamic cerebral autoregulation is preserved during isometric handgrip and head-down tilt in healthy volunteers. Physiol Rep 2018; 6:e13656. [PMID: 29595918 PMCID: PMC5875546 DOI: 10.14814/phy2.13656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
In healthy humans, cerebral blood flow (CBF) is autoregulated against changes in arterial blood pressure. Spontaneous fluctuations in mean arterial pressure (MAP) and CBF can be used to assess cerebral autoregulation. We hypothesized that dynamic cerebral autoregulation is affected by changes in autonomic activity, MAP, and cardiac output (CO) induced by handgrip (HG), head‐down tilt (HDT), and their combination. In thirteen healthy volunteers, we recorded blood velocity by ultrasound in the internal carotid artery (ICA), HR, MAP and CO‐estimates from continuous finger blood pressure, and end‐tidal CO2. Instantaneous ICA beat volume (ICABV, mL) and ICA blood flow (ICABF, mL/min) were calculated. Wavelet synchronization index γ (0–1) was calculated for the pairs: MAP–ICABF, CO–ICABF and HR–ICABV in the low (0.05–0.15 Hz; LF) and high (0.15–0.4 Hz; HF) frequency bands. ICABF did not change between experimental states. MAP and CO were increased during HG (+16% and +15%, respectively, P < 0.001) and during HDT + HG (+12% and +23%, respectively, P < 0.001). In the LF interval, median γ for the MAP–ICABF pair (baseline: 0.23 [0.12–0.28]) and the CO–ICABF pair (baseline: 0.22 [0.15–0.28]) did not change with HG, HDT, or their combination. High γ was observed for the HR–ICABV pair at the respiratory frequency, the oscillations in these variables being in inverse phase. The unaltered ICABF and the low synchronization between MAP and ICABF in the LF interval suggest intact dynamic cerebral autoregulation during HG, HDT, and their combination.
Collapse
Affiliation(s)
- Maria Skytioti
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Signe Søvik
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Anaesthesia and Intensive Care, Akershus University Hospital, Lørenskog, Norway
| | - Maja Elstad
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
117
|
Huo C, Zhang M, Bu L, Xu G, Liu Y, Li Z, Sun L. Effective Connectivity in Response to Posture Changes in Elderly Subjects as Assessed Using Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2018; 12:98. [PMID: 29615883 PMCID: PMC5865452 DOI: 10.3389/fnhum.2018.00098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Abstract
This study aims to assess the posture-related changes in frequency-specific effective connectivity (EC) in elderly subjects by coupling function measured using functional near-infrared spectroscopy (fNIRS). The fNIRS signals were continuously recorded from the bilateral prefrontal cortex (PFC), motor cortex (MC), and occipital lobe (OL) in 17 healthy elderly and 19 healthy young subjects during sitting and standing states. EC was calculated based on Dynamic Bayesian inference in one low frequency interval I: 0.052–0.145 Hz and one very low frequency interval II: 0.021–0.052 Hz. Results show that in response to posture change, the coupling strength significantly increased in interval I of the young group from right PFC to MC (p < 0.05). Meanwhile, the coupling strength of the elderly group was significantly increased in interval II from the left PFC to right PFC (p = 0.008) and to left MC (p = 0.031) in the standing state as compared with that in the sitting state. Compared with that of the young group, the coupling strength of the elderly group was significantly decreased (p < 0.05) between the right PFC and left PFC in interval I and from PFC and OL to MC in interval II during the sitting state. The decreased EC in interval I was also positively correlated with cognitive scores in the elderly group. In addition, the coupling strength from MC to PFC in interval II during standing state was significantly increased in elderly subjects as compared with that in the young group. These results revealed the age-related changes in reorganization of interregional interactions for different postures. These findings may provide evidence of impaired cognitive function in the elderly and can deepen the understanding on age-related changes in neurovascular coupling.
Collapse
Affiliation(s)
- Congcong Huo
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Lingguo Bu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Gongcheng Xu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ying Liu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Lingling Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, China
| |
Collapse
|
118
|
Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem 2018; 144:595-608. [PMID: 28986925 PMCID: PMC5874160 DOI: 10.1111/jnc.14234] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Senescence is a leading cause of mortality, disability, and non-communicable chronic diseases in older adults. Mounting evidence indicates that the presence of cardiovascular disease and risk factors elevates the incidence of both vascular cognitive impairment and Alzheimer's disease (AD). Age-related declines in cardiovascular function may impair cerebral blood flow (CBF) regulation, leading to the disruption of neuronal micro-environmental homeostasis. The brain is the most metabolically active organ with limited intracellular energy storage and critically depends on CBF to sustain neuronal metabolism. In patients with AD, cerebral hypoperfusion, increased CBF pulsatility, and impaired blood pressure control during orthostatic stress have been reported, indicating exaggerated, age-related decline in both cerebro- and cardiovascular function. Currently, AD lacks effective treatments; therefore, the development of preventive strategy is urgently needed. Regular aerobic exercise improves cardiovascular function, which in turn may lead to a better CBF regulation, thus reducing the dementia risk. In this review, we discuss the effects of aging on cardiovascular regulation of CBF and provide new insights into the vascular mechanisms of cognitive impairment and potential effects of aerobic exercise training on CBF regulation. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (8200 Walnut Hill Ln, Dallas, TX, USA 75231)
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center (5323 Harry Hines Blvd, TX, USA 75390)
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (8200 Walnut Hill Ln, Dallas, TX, USA 75231)
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center (5323 Harry Hines Blvd, TX, USA 75390)
- Department of Internal Medicine, University of Texas Southwestern Medical Center (5323 Harry Hines Blvd, TX, USA 75390)
| |
Collapse
|
119
|
The influence of the carotid baroreflex on dynamic regulation of cerebral blood flow and cerebral tissue oxygenation in humans at rest and during exercise. Eur J Appl Physiol 2018; 118:959-969. [PMID: 29497836 DOI: 10.1007/s00421-018-3831-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/09/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE This preliminary study tested the hypothesis that the carotid baroreflex (CBR) mediated sympathoexcitation regulates cerebral blood flow (CBF) at rest and during dynamic exercise. METHODS In seven healthy subjects (26 ± 1 years), oscillatory neck pressure (NP) stimuli of + 40 mmHg were applied to the carotid baroreceptors at a pre-determined frequency of 0.1 Hz at rest, low (10 ± 1W), and heavy (30 ± 3W) exercise workloads (WLs) without (control) and with α - 1 adrenoreceptor blockade (prazosin). Spectral power analysis of the mean arterial blood pressure (MAP), mean middle cerebral artery blood velocity (MCAV), and cerebral tissue oxygenation index (ScO2) in the low-frequency range (0.07-0.20 Hz) was estimated to examine NP stimuli responses. RESULTS From rest to heavy exercise, WLs resulted in a greater than three-fold increase in MCAV power (42 ± 23.8-145.2 ± 78, p < 0.01) and an almost three-fold increase in ScO2 power (0.51 ± 0.3-1.53 ± 0.8, p = 0.01), even though there were no changes in MAP power (from 24.5 ± 21 to 22.9 ± 11.9) with NP stimuli. With prazosin, the overall MAP (p = 0.0017), MCAV (p = 0.019), and ScO2 (p = 0.049) power was blunted regardless of the exercise conditions. Prazosin blockade resulted in increases in the Tf gain index between MAP and MCAV compared to the control (p = 0.03). CONCLUSION CBR-mediated changes in sympathetic activity contribute to dynamic regulation of the cerebral vasculature and CBF at rest and during dynamic exercise in humans.
Collapse
|
120
|
Bu L, Wang D, Huo C, Xu G, Li Z, Li J. Effects of poor sleep quality on brain functional connectivity revealed by wavelet-based coherence analysis using NIRS methods in elderly subjects. Neurosci Lett 2018; 668:108-114. [DOI: 10.1016/j.neulet.2018.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
|
121
|
Mustari A, Nakamura N, Kawauchi S, Sato S, Sato M, Nishidate I. RGB camera-based imaging of cerebral tissue oxygen saturation, hemoglobin concentration, and hemodynamic spontaneous low-frequency oscillations in rat brain following induction of cortical spreading depression. BIOMEDICAL OPTICS EXPRESS 2018; 9:933-951. [PMID: 29541495 PMCID: PMC5846540 DOI: 10.1364/boe.9.000933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 05/24/2023]
Abstract
To evaluate cerebral hemodynamics and spontaneous low-frequency oscillations (SLFOs) of cerebral blood flow in rat brain, we investigated an imaging method using a digital RGB camera. In this method, the RGB values were converted into tristimulus values in the CIE (Commission Internationale de l'Eclairage) XYZ color space, which is compatible with the common RGB working spaces. Monte Carlo simulation for light transport in tissue was then used to specify the relationship among the tristimulus XYZ values and the concentrations of oxygenated hemoglobin (CHbO), deoxygenated hemoglobin (CHbR), and total hemoglobin (CHbT) and cerebral tissue oxygen saturation (StO2). Applying the fast Fourier transform to each pixel of the sequential images of CHbT along the timeline, SLFOs of cerebral blood volume were visualized as a spatial map of power spectral density (PSD) at specific frequencies related to vasomotion. To confirm the feasibility of this method, we performed in vivo experiments using exposed rat brain during a cortical spreading depression (CSD) evoked by topical application of KCl. Cerebral hemodynamic responses to CSD such as initial hypoperfusion, profound hyperemia, and post-CSD oligemia and hypoxemia were successfully visualized with this method. At the transition to the hyperemia phase from hypoperfusion, CHbO and StO2 were significantly increased, which implied vasodilatation in arterioles and increased cerebral blood volume in response to CSD. In the wake of the hyperemic phase, CHbO and CHbT were significantly reduced to 25 ± 12% and 3.5 ± 1% of baseline, respectively, suggesting long-lasting vasoconstriction after CSD. In this persistent oligemia, StO2 significantly dropped to at most 23 ± 12% of the level before CSD, indicating long-lasting hypoxemia. The PSD value of SLFOs in CHbT for arteriole regions during CSD was significantly reduced to 28 ± 20% of baseline with respect to the pre-CSD level, which was correlated with the reduction in StO2. The results showed the possibility of RGB camera-based diffuse reflectance spectroscopy imaging for evaluating cerebral hemodynamics and SLFOs under normal and pathologic conditions.
Collapse
Affiliation(s)
- Afrina Mustari
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoki Nakamura
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Manabu Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Izumi Nishidate
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
122
|
Ozturk ED, Tan CO. Human cerebrovascular function in health and disease: insights from integrative approaches. J Physiol Anthropol 2018; 37:4. [PMID: 29454381 PMCID: PMC5816507 DOI: 10.1186/s40101-018-0164-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The marked increase in the size of the brain, and consequently, in neural processing capability, throughout human evolution is the basis of the higher cognitive function in humans. However, greater neural, and thus information processing capability, comes at a significant metabolic cost; despite its relatively small size, the modern human brain consumes almost a quarter of the glucose and oxygen supply in the human body. Fortunately, several vascular mechanisms ensure sufficient delivery of glucose and oxygen to the active neural tissue (neurovascular coupling), prompt removal of neural metabolic by-products (cerebral vasoreactivity), and constant global blood supply despite daily variations in perfusion pressure (cerebral autoregulation). The aim of this review is to provide an integrated overview of the available data on these vascular mechanisms and their underlying physiology. We also briefly review modern experimental approaches to assess these mechanisms in humans, and further highlight the importance of these mechanisms for humans' evolutionary success by providing examples of their healthy adaptations as well as pathophysiological alterations. CONCLUSIONS Data reviewed in this paper demonstrate the importance of the cerebrovascular function to support humans' unique ability to form new and different interactions with each other and their surroundings. This highlights that there is much insight into the neural and cognitive functions that could be gleaned from interrogating the cerebrovascular function.
Collapse
Affiliation(s)
- Erin D. Ozturk
- Cerebrovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, MA USA
- Department of Psychology, Harvard University, Cambridge, MA USA
| | - Can Ozan Tan
- Cerebrovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, MA USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA USA
| |
Collapse
|
123
|
A comparison of static and dynamic cerebral autoregulation during mild whole-body cold stress in individuals with and without cervical spinal cord injury: a pilot study. Spinal Cord 2018; 56:469-477. [PMID: 29330514 DOI: 10.1038/s41393-017-0021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Experimental study. OBJECTIVES To characterize static and dynamic cerebral autoregulation (CA) of individuals with cervical spinal cord injury (SCI) compared to able-bodied controls in response to moderate increases in mean arterial pressure (MAP) caused by mild whole-body cold stress. SETTING Japan METHODS: Five men with complete autonomic cervical SCI (sustained > 5 y) and six age-matched able-bodied men participated in hemodynamic, temperature, catecholamine and respiratory measurements for 60 min during three consecutive stages: baseline (10 min; 33 °C water through a thin-tubed whole-body suit), mild cold stress (20 min; 25 °C water), and post-cold recovery (30 min; 33 °C water). Static CA was determined as the ratio between mean changes in middle cerebral artery blood velocity and MAP, dynamic CA as transfer function coherence, gain, and phase between spontaneous changes in MAP to middle cerebral artery blood velocity. RESULTS MAP increased in both groups during cold and post-cold recovery (mean differences: 5-10 mm Hg; main effect of time: p = 0.001). Static CA was not different between the able-bodied vs. the cervical SCI group (mean (95% confidence interval (CI)) of between-group difference: -4 (-11 to 3) and -2 (-5 to 1) cm/s/mm Hg for cold (p = 0.22) and post-cold (p = 0.24), respectively). At baseline, transfer function phase was shorter in the cervical SCI group (mean (95% CI) of between-group difference: 0.6 (0.2 to 1.0) rad; p = 0.006), while between-group differences in changes in phase were not different in response to the cold stress (interaction term: p = 0.06). CONCLUSIONS This pilot study suggests that static CA is similar between individuals with cervical SCI and able-bodied controls in response to moderate increases in MAP, while dynamic CA may be impaired in cervical SCI because of disturbed sympathetic control.
Collapse
|
124
|
Liu Q, Wang B, Liu Y, Lv Z, Li W, Li Z, Fan Y. Frequency-specific Effective Connectivity in Subjects with Cerebral Infarction as Revealed by NIRS Method. Neuroscience 2018; 373:169-181. [PMID: 29337235 DOI: 10.1016/j.neuroscience.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
Abstract
A connectivity-based approach can highlight the network reorganization in the chronic phases after stroke and contributes to the development of therapeutic interventions. Using dynamic Bayesian inference, this study aimed to assess the effective connectivity (EC) in various frequency bands through the near-infrared spectroscopy (NIRS) method in subjects with cerebral infarction (CI). A phase-coupling model was established based on phase information extracted using the wavelet transform of NIRS signals. Coupling strength and the main coupling direction were estimated using dynamic Bayesian inference. Wilcoxon test and chi-square test were used to determine the significant difference in EC between two groups. Results showed that the coupling strength of the EC in the CI group significantly decreased relative to that in the healthy group. The decrease was most significant in the frequency intervals IV (0.021 Hz-0.052 Hz; p = 0.0006) and VI (0.005 Hz-0.095 Hz; p = 0.0028). The main coupling direction changed from the right prefrontal cortex to the right motor cortex and left motor cortex in the frequency intervals IV (p1 = 0.041, p2 = 0.047) and II (p1 = 0.0017, p2 = 0.0036), respectively. The EC decreased or was even lost significantly in the EC map of the CI group. Experimental results indicated that information propagation was blocked in the CI group than in the healthy group and resulted in the decreased coupling strength and connectivity loss. The main coupling direction of the motor section changed from driving into being driven because of the degradation of limb movement function.
Collapse
Affiliation(s)
- Qianying Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China
| | - Bitian Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China
| | - Ying Liu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Zeping Lv
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China
| | - Zengyong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China; Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing 100176, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
125
|
Barnes SC, Ball N, Haunton VJ, Robinson TG, Panerai RB. The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis. Am J Physiol Heart Circ Physiol 2017; 313:H1240-H1248. [DOI: 10.1152/ajpheart.00331.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Squat-stand maneuvers (SSMs) have been used to improve the coherence of transfer function analysis (TFA) estimates during the assessment of dynamic cerebral autoregulation (dCA). There is a need to understand the influence of peripheral changes resulting from SSMs on cerebral blood flow, which might confound estimates of dCA. Healthy subjects ( n = 29) underwent recordings at rest (5-min standing) and 15 SSMs (0.05 Hz). Heart rate (three-lead ECG), end-tidal CO2 (capnography), blood pressure (Finometer), cerebral blood velocity (CBV; transcranial Doppler, middle cerebral artery), and the angle of the thigh (tilt sensor) were measured continuously. The response of CBV to SSMs was decomposed into the relative contributions of mean arterial pressure (MAP), resistance-area product (RAP), and critical closing pressure (CrCP). Upon squatting, a rise in MAP (83.6 ± 21.1% contribution) was followed by increased CBV. A dCA response could be detected, determined by adjustments in RAP and CrCP (left hemisphere) with peak contributions of 24.8 ± 12.7% and 27.4 ± 22.8%, respectively, at different times during SSMs. No interhemispheric differences were detected. During standing, the contributions of MAP, RAP, and CrCP changed considerably. In conclusion, the changes of CBV subcomponents during repeated SSMs indicate a complex response of CBV to SSMs that can only be partially explained by myogenic mechanisms. More work is needed to clarify the potential contribution of other cofactors, such as breath-to-breath changes in Pco2, heart rate, stroke volume, and the neurogenic component of dCA. NEW & NOTEWORTHY Here, we describe the different contributions to the cerebral blood flow response after squat-stand maneuvers. Furthermore, we demonstrate the complex interaction of peripheral and cerebral parameters for the first time. Moreover, we show that the cerebral blood velocity response to squatting is likely to include a significant metabolic component.
Collapse
Affiliation(s)
- Sam C. Barnes
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Naomi Ball
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria Joanna Haunton
- National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G. Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
126
|
Yoshida H, Hamner JW, Ishibashi K, Tan CO. Relative contributions of systemic hemodynamic variables to cerebral autoregulation during orthostatic stress. J Appl Physiol (1985) 2017; 124:321-329. [PMID: 29025902 DOI: 10.1152/japplphysiol.00700.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postural changes impair the ability of the cerebrovasculature to buffer against dynamic pressure fluctuations, but the mechanisms underlying this impairment have not been elucidated. We hypothesized that autoregulatory impairment may reflect the impact of static central volume shifts on hemodynamic factors other than arterial pressure (AP). In 14 young volunteers, we assessed the relation of fluctuations in cerebral blood flow (CBF) to those in AP, cardiac output, and CO2, during oscillatory lower body pressure (LBP) (±20 mmHg at 0.01 and 0.06 Hz) at three static levels (-20, 0, and +20 mmHg). Static and dynamic changes in AP, cardiac output, and CO2 explained over 70% of the variation in CBF fluctuations. However, their contributions were different across frequencies and levels: dynamic AP changes explained a substantial proportion of the variation in faster CBF fluctuations (partial R2 = 0.75, standardized β = 0.83, P < 0.01), whereas those in CO2 explained the largest portion of the variation in slow fluctuations (partial R2 = 0.43, β = 0.51, P < 0.01). There was, however, a major contribution of slow dynamic AP changes during negative (β = 0.43) but not neutral (β = 0.05) or positive (β = -0.07) LBP. This highlights the differences in contributions of systemic variables to dynamic and static autoregulation and has important implications for understanding orthostatic intolerance. NEW & NOTEWORTHY While fluctuations in blood pressure drive faster fluctuations in cerebral blood flow, overall level of CO2 and the magnitude of its fluctuations, along with cardiac output, determine the magnitude of slow ones. The effect of slow blood pressure fluctuations on cerebrovascular responses becomes apparent only during pronounced central volume shifts (such as when standing). This underlines distinct but interacting contributions of static and dynamic changes in systemic hemodynamic variables to the cerebrovascular regulation.
Collapse
Affiliation(s)
- Hisao Yoshida
- Graduate School of Engineering, Chiba University , Chiba , Japan
| | - Jason W Hamner
- Cerebrovascular Research Laboratory, Spaulding Rehabilitation Hospital , Boston, Massachusetts
| | - Keita Ishibashi
- Graduate School of Engineering, Chiba University , Chiba , Japan
| | - Can Ozan Tan
- Cerebrovascular Research Laboratory, Spaulding Rehabilitation Hospital , Boston, Massachusetts.,Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
127
|
Brassard P, Tymko MM, Ainslie PN. Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Auton Neurosci 2017; 207:37-47. [DOI: 10.1016/j.autneu.2017.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
|
128
|
Kim TJ, Lee BU, Sunwoo JS, Byun JI, Moon J, Lee ST, Jung KH, Chu K, Kim M, Lim JM, Lee E, Lee SK, Jung KY. The effect of dim light at night on cerebral hemodynamic oscillations during sleep: A near-infrared spectroscopy study. Chronobiol Int 2017; 34:1325-1338. [PMID: 29064336 DOI: 10.1080/07420528.2017.1363225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003-0.02 Hz), neurogenic VLFOs (0.02-0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04-0.15 Hz), and total LFOs (0.003-0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.
Collapse
Affiliation(s)
- Tae-Joon Kim
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Byeong Uk Lee
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Jun-Sang Sunwoo
- b Department of Neurology , Soonchunhyang University Seoul Hospital , Seoul , South Korea
| | - Jung-Ick Byun
- c Department of Neurology , Kyung Hee University Hospital at Gangdong , Seoul , South Korea
| | - Jangsup Moon
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Soon-Tae Lee
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Keun-Hwa Jung
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Kon Chu
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Manho Kim
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea.,d Neuroscience and Protein Metabolism Medical Research Center , Seoul National University College of Medicine , Seoul , South Korea
| | - Jong-Min Lim
- e Department of Lighting Environment Research , Korea Institute of Lighting Technology , Seoul , South Korea
| | - Eunil Lee
- f Department of Preventive Medicine , Korea University College of Medicine , Seoul , South Korea
| | - Sang Kun Lee
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Ki-Young Jung
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| |
Collapse
|
129
|
Bosch BM, Bringard A, Ferretti G, Schwartz S, Iglói K. Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study. NEUROPHOTONICS 2017; 4:041404. [PMID: 28785600 PMCID: PMC5526475 DOI: 10.1117/1.nph.4.4.041404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/05/2017] [Indexed: 05/06/2023]
Abstract
Regular physical exercise has been shown to benefit neurocognitive functions, especially enhancing neurogenesis in the hippocampus. However, the effects of a single exercise session on cognitive functions are controversial. To address this issue, we measured hemodynamic changes in the brain during physical exercise using near-infrared spectroscopy (NIRS) and investigated related effects on memory consolidation processes. Healthy young participants underwent two experimental visits. During each visit, they performed an associative memory task in which they first encoded a series of pictures, then spent 30-min exercising or resting, and finally were asked to recall the picture associations. We used NIRS to track changes in oxygenated hemoglobin concentration over the prefrontal cortex during exercise and rest. To characterize local tissue oxygenation and perfusion, we focused on low frequency oscillations in NIRS, also called vasomotion. We report a significant increase in associative memory consolidation after exercise, as compared to after rest, along with an overall increase in vasomotion. Additionally, performance improvement after exercise correlated positively with power in the neurogenic component (0.02 to 0.04 Hz) and negatively with power in the endothelial component (0.003 to 0.02 Hz). Overall, these results suggest that changes in vasomotion over the prefrontal cortex during exercise may promote memory consolidation processes.
Collapse
Affiliation(s)
- Blanca Marin Bosch
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
| | - Aurélien Bringard
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- Geneva University Hospitals, Department of Anesthesiology, Pharmacology, and Intensive Care, Geneva, Switzerland
| | - Guido Ferretti
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- Geneva University Hospitals, Department of Anesthesiology, Pharmacology, and Intensive Care, Geneva, Switzerland
| | - Sophie Schwartz
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- University of Geneva, Swiss Center for Affective Neurosciences, Geneva, Switzerland
- University of Geneva, Geneva Neuroscience Center, Geneva, Switzerland
| | - Kinga Iglói
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- University of Geneva, Swiss Center for Affective Neurosciences, Geneva, Switzerland
- University of Geneva, Geneva Neuroscience Center, Geneva, Switzerland
- Address all correspondence to: Kinga Igloi, E-mail:
| |
Collapse
|
130
|
Tian F, Morriss MC, Chalak L, Venkataraman R, Ahn C, Liu H, Raman L. Impairment of cerebral autoregulation in pediatric extracorporeal membrane oxygenation associated with neuroimaging abnormalities. NEUROPHOTONICS 2017; 4:041410. [PMID: 28840161 PMCID: PMC5562949 DOI: 10.1117/1.nph.4.4.041410] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 05/27/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-supporting therapy for critically ill patients with severe respiratory and/or cardiovascular failure. Cerebrovascular impairment can result in hemorrhagic and ischemic complications commonly seen in the patients supported on ECMO. We investigated the degree of cerebral autoregulation impairment during ECMO as well as whether it is predictive of neuroimaging abnormalities. Spontaneous fluctuations of mean arterial pressure (MAP) and cerebral tissue oxygen saturation ([Formula: see text]) were continuously measured during the ECMO run. The dynamic relationship between the MAP and [Formula: see text] fluctuations was assessed based on wavelet transform coherence (WTC). Neuroimaging was conducted during and/or after ECMO as standard of care, and the abnormalities were evaluated based on a scoring system that had been previously validated among ECMO patients. Of the 25 patients, 8 (32%) had normal neuroimaging, 7 (28%) had mild to moderate neuroimaging abnormalities, and the other 10 (40%) had severe neuroimaging abnormalities. The degrees of cerebral autoregulation impairment quantified based on WTC showed significant correlations with the neuroimaging scores ([Formula: see text]; [Formula: see text]). Evidence that cerebral autoregulation impairment during ECMO was related to the patients' neurological outcomes was provided.
Collapse
Affiliation(s)
- Fenghua Tian
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Michael Craig Morriss
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| | - Lina Chalak
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| | - Ramgopal Venkataraman
- University of Texas at Arlington, Department of Accounting, Arlington, Texas, United States
| | - Chul Ahn
- University of Texas Southwestern Medical Center, Department of Clinical Science, Dallas, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Lakshmi Raman
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| |
Collapse
|
131
|
Cheng CA, Cheng CG, Chu H, Lin HC, Chung CH, Chiu HW, Chien WC. Risk reduction of long-term major adverse cardiovascular events after endoscopic thoracic sympathectomy in palmar hyperhidrosis. Clin Auton Res 2017; 27:393-400. [PMID: 28929251 DOI: 10.1007/s10286-017-0464-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Palmar hyperhidrosis (PH) is excessive sweating of the palms resulting from sympathetic overactivity, and patients who undergo endoscopic thoracic sympathectomy (ETS) show reduced cardiac demand after 1 year and improved cerebral perfusion within 2-4 weeks. However, the long-term risks of major adverse cardiovascular events (MACE) following ETS remain unclear. METHODS We searched the Longitudinal National Health Insurance Database in Taiwan and identified PH patients (International Classification of Disease, Ninth Revision, Clinical Modification diagnostic code 708.8) from the outpatient database and patients who underwent ETS (procedure code 05.29) from the inpatient database between 2000 and 2010; furthermore, we excluded patients younger than 18 years of age or older than 65 years of age. We defined MACE as stroke (diagnostic codes 430-437), myocardial infarction (diagnostic code 410), or death. Patients followed until the first cardiac event or December 31, 2010. Risk factors were identified using a multivariable Cox proportional hazards regression. RESULTS The incidence of MACE was significantly lower in patients with ETS (0.76%) than without (1.67%). In PH patients, ETS significantly reduced the risk of MACE (adjusted hazard ratio 0.473; 95% confidence interval 0.277-0.808). CONCLUSION PH patients who underwent ETS showed a reduced risk of MACE over a long-term follow-up period. This result could provide support for patients with PH who are considering undergoing ETS because of its additional cardiovascular benefits.
Collapse
Affiliation(s)
- Chun-An Cheng
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, Taipei Medical University, No. 250, Wu-Hsing Street, 110, Taipei, Taiwan
| | - Chun-Gu Cheng
- Department of Emergency, Armed Taoyuan General Hospital, Taoyuan, Taiwan.,Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsin Chu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Aviation Physiology Research Laboratory, Gangshan Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Hung-Che Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, 7115R, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, Taipei Medical University, No. 250, Wu-Hsing Street, 110, Taipei, Taiwan.
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, 7115R, No.325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC. .,School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
132
|
Waltz X, Beaudin AE, Hanly PJ, Mitsis GD, Poulin MJ. Effects of continuous positive airway pressure and isocapnic-hypoxia on cerebral autoregulation in patients with obstructive sleep apnoea. J Physiol 2017; 594:7089-7104. [PMID: 27644162 DOI: 10.1113/jp272967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Altered cerebral autoregulation (CA) in obstructive sleep apnoea (OSA) patients may contribute to increased stroke risk in this population; the gold standard treatment for OSA is continuous positive airway pressure, which improves cerebrovascular regulation and may decrease the risk of stroke. Isocapnic-hypoxia impairs CA in healthy subjects, but it remains unknown in OSA whether impaired CA is further exacerbated by isocapnic-hypoxia and whether it is improved by treatment with continuous positive airway pressure. During normoxia, CA was altered in the more severe but not in the less severe OSA patients, while, in contrast, during isocapnic-hypoxia, CA was similar between groups and tended to improve in patients with more severe OSA compared to normoxia. From a clinical perspective, one month of continuous positive airway pressure treatment does not improve CA. From a physiological perspective, this study suggests that sympathetic overactivity may be responsible for altered CA in the more severe OSA patients. ABSTRACT Cerebral autoregulation (CA) impairment may contribute to the increased risk of stroke associated with obstructive sleep apnoea (OSA). It is unknown if impaired CA is further exacerbated by isocapnic-hypoxia and whether it is improved by treatment of OSA with continuous positive airway pressure (CPAP). CA was assessed during wakefulness in 53 OSA patients (50.3 ± 9.3 years) and 21 controls (49.8 ± 8.6 years) at baseline and following a minimum of 1 month of effective CPAP therapy (OSA patients, n = 40). Control participants (n = 21) performed a follow-up visit to control for time effects within OSA patients between baseline and the post-CPAP visit. Beat-by-beat middle cerebral artery blood flow velocity and mean arterial blood pressure (MBP), and breath-by-breath end-tidal partial pressure of CO2 (P ET ,CO2) were monitored. CA was determined during normoxia and isocapnic-hypoxia using transfer function (phase and gain) and coherence analysis (including multiple and partial coherence (using MBP and P ET ,CO2 as inputs)) in the very low frequency range (0.03-0.07 Hz). OSA patients were divided into two subgroups (less severe and more severe) based upon the median respiratory disturbance index (RDI). During normoxia, the more severe OSA patients (RDI 45.9 ± 10.3) exhibited altered CA compared to controls and the less severe OSA patients (RDI 24.5 ± 5.9). In contrast, during isocapnic-hypoxia, CA was similar between groups. CPAP had no effect on CA. In conclusion, CA is altered in the more severe OSA patients during normoxia but not during isocapnic-hypoxia and CPAP treatment does not impact CA.
Collapse
Affiliation(s)
- Xavier Waltz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew E Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
133
|
Witter T, Tzeng YC, O'Donnell T, Kusel J, Walker B, Berry M, Taylor CE. Inter-individual Relationships between Sympathetic Arterial Baroreflex Function and Cerebral Perfusion Control in Healthy Males. Front Neurosci 2017; 11:457. [PMID: 28860964 PMCID: PMC5559461 DOI: 10.3389/fnins.2017.00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
Maintenance of adequate cerebral perfusion during normal physiological challenges requires integration between cerebral blood flow (CBF) and systemic blood pressure control mechanisms. Previous studies have shown that cardiac baroreflex sensitivity (BRS) is inversely related to some measures of cerebral autoregulation. However, interactions between the sympathetic arterial baroreflex and cerebral perfusion control mechanisms have not been explored. To determine the nature and magnitude of these interactions we measured R–R interval, blood pressure, CBF velocity, and muscle sympathetic nerve activity (MSNA) in 11 healthy young males. Sympathetic BRS was estimated using modified Oxford method as the relationship between beat-to-beat diastolic blood pressure (DBP) and MSNA. Integrated control of CBF was quantified using transfer function analysis (TFA) metrics derived during rest and Tieck's autoregulatory index following bilateral thigh cuff deflation. Sympathetic BRS during modified Oxford trials was significantly related to autoregulatory index (r = 0.64, p = 0.03). Sympathetic BRS during spontaneous baseline was significantly related to transfer function gain (r = −0.74, p = 0.01). A more negative value for sympathetic BRS indicates more effective arterial baroreflex regulation, and a lower transfer function gain reflects greater cerebral autoregulation. Therefore, these findings indicate that males with attenuated CBF regulation have greater sympathetic BRS (and vice versa), consistent with compensatory interactions between blood pressure and cerebral perfusion control mechanisms.
Collapse
Affiliation(s)
- Trevor Witter
- Wellington Medical Technology Group, Centre for Translational Physiology, University of OtagoWellington, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Centre for Translational Physiology, University of OtagoWellington, New Zealand
| | - Terry O'Donnell
- Wellington Medical Technology Group, Centre for Translational Physiology, University of OtagoWellington, New Zealand
| | - Jessica Kusel
- Wellington Medical Technology Group, Centre for Translational Physiology, University of OtagoWellington, New Zealand
| | - Bridget Walker
- Wellington Medical Technology Group, Centre for Translational Physiology, University of OtagoWellington, New Zealand
| | - Mary Berry
- Wellington Medical Technology Group, Centre for Translational Physiology, University of OtagoWellington, New Zealand
| | - Chloe E Taylor
- School of Science and Health, Western Sydney UniversitySydney, NSW, Australia.,School of Medicine, Western Sydney UniversitySydney, NSW, Australia
| |
Collapse
|
134
|
Verbree J, Bronzwaer A, van Buchem MA, Daemen M, van Lieshout JJ, van Osch M. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. J Cereb Blood Flow Metab 2017; 37:2921-2927. [PMID: 27837189 PMCID: PMC5536799 DOI: 10.1177/0271678x16679419] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.
Collapse
Affiliation(s)
- J Verbree
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Agt Bronzwaer
- 2 Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.,3 Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A van Buchem
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mjap Daemen
- 4 Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - J J van Lieshout
- 2 Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.,3 Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands.,5 MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Mjp van Osch
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
135
|
Mahdi A, Nikolic D, Birch AA, Olufsen MS, Panerai RB, Simpson DM, Payne SJ. Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices. Med Eng Phys 2017; 47:151-158. [PMID: 28694108 DOI: 10.1016/j.medengphy.2017.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022]
Abstract
Dynamic cerebral autoregulation, that is the transient response of cerebral blood flow to changes in arterial blood pressure, is currently assessed using a variety of different time series methods and data collection protocols. In the continuing absence of a gold standard for the study of cerebral autoregulation it is unclear to what extent does the assessment depend on the choice of a computational method and protocol. We use continuous measurements of blood pressure and cerebral blood flow velocity in the middle cerebral artery from the cohorts of 18 normotensive subjects performing sit-to-stand manoeuvre. We estimate cerebral autoregulation using a wide variety of black-box approaches (including the following six autoregulation indices ARI, Mx, Sx, Dx, FIR and ARX) and compare them in the context of reproducibility and variability. For all autoregulation indices, considered here, the intra-class correlation was greater during the standing protocol, however, it was significantly greater (Fisher's Z-test) for Mx (p < 0.03), Sx (p < 0.003) and Dx (p < 0.03). In the specific case of the sit-to-stand manoeuvre, measurements taken immediately after standing up greatly improve the reproducibility of the autoregulation coefficients. This is generally coupled with an increase of the within-group spread of the estimates.
Collapse
Affiliation(s)
- Adam Mahdi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Dragana Nikolic
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Anthony A Birch
- Department of Medical Physics and Bioengineering, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, USA
| | - Ronney B Panerai
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, UK
| | - David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
136
|
Castro P, Freitas J, Santos R, Panerai R, Azevedo E. Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects. Eur J Appl Physiol 2017; 117:1817-1831. [PMID: 28681121 DOI: 10.1007/s00421-017-3674-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE The study of dynamic cerebral autoregulation (CA), which adapts cerebral blood flow to arterial blood pressure (ABP) fluctuations, has been limited in orthostatic intolerance syndromes, mainly due to its stationary prerequisites hardly to meet during maneuvers to provoke syncope itself. New techniques of continuous estimates of CA could overcome this pitfall. We aimed to evaluate CA during head-up tilt test in common conditions causing syncope. METHODS We compared three groups: eight controls; eight patients with autonomic failure due to familial amyloidotic polyneuropathy; eight patients with vasovagal syncope (VVS). ABP and cerebral blood flow velocity (CBFV) were measured with Finometer® and transcranial Doppler. We calculated cerebrovascular resistance index (CVRi), critical closing pressure (CrCP) and resistance area product (RAP), and derived CA continuously from autoregulation index [ARI(t)]. RESULTS With HUTT, AF subjects showed a pronounced decrease in CBFV (-36 ± 17 versus -7 ± 6%, p < 0.0001), ABP (-29 ± 27 versus 7 ± 12%, p < 0.0001) and RAP (-17 ± 23 versus 3 ± 18%, p < 0.0001) but not CVRi (p = 0.110). VVS subjects showed progressive cerebral vasoconstriction prior to syncope, (reduced CBFV 19 ± 15 versus 1 ± 6, p < 0.000; increased RAP 12 ± 18 versus 2 ± 3%, p = 0.024 and CVRi 12 ± 18 versus 2 ± 3%, p = 0.005). ARI(t) increased significantly in AF patients (5.7 ± 1.2 versus 6.9 ± 1.2, p = 0.040) and VVS (5.8 ± 1.2 versus 7.3 ± 1.2, p = 0.015) in response to ABP fall during syncope. CONCLUSIONS Our data suggest that dynamic cerebral autoregulatory response to orthostatic challenge is neither affected by autonomic dysfunction nor in neutrally mediated syncope. This study also emphasizes that RAP + CrCP model is more informative than CVRi, mainly during cerebral vasodilatory response to orthostatic hypotension.
Collapse
Affiliation(s)
- Pedro Castro
- Department of Neurology, São João Hospital Center, Faculty of Medicine of University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal.
| | - João Freitas
- Autonomic Unit, São João Hospital Center, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Rosa Santos
- Department of Neurology, São João Hospital Center, Faculty of Medicine of University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal
| | - Ronney Panerai
- Department of Cardiovascular Sciences and NIH Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center, Faculty of Medicine of University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal
| |
Collapse
|
137
|
Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci 2017; 67:345-351. [PMID: 28155036 PMCID: PMC10717011 DOI: 10.1007/s12576-017-0525-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Ageing is the primary risk factor for cognitive deterioration. Given that the cerebral blood flow (CBF) or regulation of cerebral circulation is attenuated in the elderly, it could be expected that ageing-induced cognitive deterioration may be affected by a decrease in CBF as a result of brain ischemia and energy depletion. CBF regulation associated with cerebral metabolism thus likely plays an important role in the preservation of cognitive function. However, in some specific conditions (e.g. during exercise), change in CBF does not synchronize with that of cerebral metabolism. Our recent study demonstrated that cognitive function was more strongly affected by changes in cerebral metabolism than by changes in CBF during exercise. Therefore, it remains unclear how an alteration in CBF or its regulation affects cognitive function. In this review, I summarize current knowledge on previous investigations providing the possibility of an interaction between regulation of CBF or cerebral metabolism and cognitive function.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-Shi, Saitama, 350-8585, Japan.
| |
Collapse
|
138
|
Alterations in autonomic cerebrovascular control after spinal cord injury. Auton Neurosci 2017; 209:43-50. [PMID: 28416148 PMCID: PMC6432623 DOI: 10.1016/j.autneu.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
Among chronic cardiovascular and metabolic sequelae of spinal cord injury (SCI) is an up-to four-fold increase in the risk of ischemic and hemorrhagic stroke, suggesting that individuals with SCI cannot maintain stable cerebral perfusion. In able-bodied individuals, the cerebral vasculature is able to regulate cerebral perfusion in response to swings in arterial pressure (cerebral autoregulation), blood gases (cerebral vasoreactivity), and neural metabolic demand (neurovascular coupling). This ability depends, at least partly, on intact autonomic function, but high thoracic and cervical spinal cord injuries result in disruption of sympathetic and parasympathetic cerebrovascular control. In addition, alterations in autonomic and/or vascular function secondary to paralysis and physical inactivity can impact cerebrovascular function independent of the disruption of autonomic control due to injury. Thus, it is conceivable that SCI results in cerebrovascular dysfunction that may underlie an elevated risk of stroke in this population, and that rehabilitation strategies targeting this dysfunction may alleviate the long-term risk of adverse cerebrovascular events. However, despite this potential direct link between SCI and the risk of stroke, studies exploring this relationship are surprisingly scarce, and the few available studies provide equivocal results. The focus of this review is to provide an integrated overview of the available data on alterations in cerebral vascular function after SCI in humans, and to provide suggestions for future research.
Collapse
|
139
|
Xing CY, Tarumi T, Meijers RL, Turner M, Repshas J, Xiong L, Ding K, Vongpatanasin W, Yuan LJ, Zhang R. Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span. Hypertension 2017; 69:712-720. [PMID: 28193707 DOI: 10.1161/hypertensionaha.116.08986] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/08/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
Age-related alterations in systemic and cerebral hemodynamics are not well understood. The purpose of this study is to characterize age-related alterations in beat-to-beat oscillations in arterial blood pressure (BP), heart rate (HR), cerebral blood flow (CBF), cardiac baroreflex sensitivity, and dynamic cerebral autoregulation across the adult life span. We studied 136 healthy adults aged 21 to 80 years (60% women). Beat-to-beat BP, HR, and CBF velocity were measured at rest and during sit-stand maneuvers to mimic effects of postural changes on BP and CBF. Transfer function analysis was used to assess baroreflex sensitivity and dynamic cerebral autoregulation. Carotid-femoral pulse wave velocity was measured to assess central arterial stiffness. Advanced aging was associated with elevated carotid-femoral pulse wave velocity, systolic and pulse BP, cerebrovascular resistance, and CBF pulsatility, but reduced mean CBF velocity. Compared with the young and middle-aged, older adults had lower beat-to-beat BP, HR, and CBF variability in the low-frequency ranges at rest, but higher BP and CBF variability during sit-stand maneuvers. Baroreflex sensitivity was reduced, whereas dynamic cerebral autoregulation gain was elevated at rest in older adults. Multiple linear regression analysis indicated that systolic BP variability is correlated positively with carotid-femoral pulse wave velocity independent of HR variability. In conclusion, advanced aging is associated with elevated pulsatility in BP and CBF; reduced beat-to-beat low-frequency oscillations in BP, HR, and CBF; and impaired baroreflex sensitivity and dynamic cerebral autoregulation at rest. The augmented BP and CBF variability in older adults during sit-stand maneuvers indicate diminished cardiovascular regulatory capability and increased hemodynamic stress on the cerebral circulation with aging.
Collapse
Affiliation(s)
- Chang-Yang Xing
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Takashi Tarumi
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Rutger L Meijers
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Marcel Turner
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Justin Repshas
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Li Xiong
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Kan Ding
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Wanpen Vongpatanasin
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Li-Jun Yuan
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.)
| | - Rong Zhang
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (C.-Y.X., T.T., R.L.M., M.T., J.R., R.Z.); Department of Internal Medicine (C.-Y.X., W.V., R.Z.) and Department of Neurology and Neurotherapeutics (T.T., K.D., R.Z.), University of Texas Southwestern Medical Center, Dallas; Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China (C.-Y.X., L.-J.Y.); Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, The Netherlands (R.L.M.); and Department of Medicine and Therapeutics, Chinese University of Hong Kong, China (L.X.).
| |
Collapse
|
140
|
Marmarelis VZ, Shin DC, Tarumi T, Zhang R. Comparison of Model-Based Indices of Cerebral Autoregulation and Vasomotor Reactivity Using Transcranial Doppler versus Near-Infrared Spectroscopy in Patients with Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2017; 56:89-105. [PMID: 27911329 PMCID: PMC5240580 DOI: 10.3233/jad-161004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 01/24/2023]
Abstract
We recently introduced model-based "physiomarkers" of dynamic cerebral autoregulation and CO2 vasomotor reactivity as an aid for diagnosis of early-stage Alzheimer's disease (AD) [1], where significant impairment of dynamic vasomotor reactivity (DVR) was observed in early-stage AD patients relative to age-matched controls. Milder impairment of DVR was shown in patients with amnestic mild cognitive impairment (MCI) using the same approach in a subsequent study [2]. The advocated approach utilizes subject-specific data-based models of cerebral hemodynamics to quantify the dynamic effects of resting-state changes in arterial blood pressure and end-tidal CO2 (the putative inputs) upon cerebral blood flow velocity (the putative output) measured at the middle cerebral artery via transcranial Doppler (TCD). The obtained input-output models are then used to compute model-based indices of DCA and DVR from model-predicted responses to an input pressure pulse or an input CO2 pulse, respectively. In this paper, we compare these model-based indices of DVR and DCA in 46 amnestic MCI patients, relative to 20 age-matched controls, using TCD measurements with their counterparts using Near-Infrared Spectroscopy (NIRS) measurements of blood oxygenation at the lateral prefrontal cortex in 43 patients and 22 age-matched controls. The goal of the study is to assess whether NIRS measurements can be used instead of TCD measurements to obtain model-based physiomarkers with comparable diagnostic utility. The results corroborate this view in terms of the ability of either output to yield model-based physiomarkers that can differentiate the group of aMCI patients from age-matched healthy controls.
Collapse
Affiliation(s)
- Vasilis Z. Marmarelis
- Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, USA
| | - Dae C. Shin
- Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, USA
| | - Takashi Tarumi
- Exercise Physiology & Rehabilitation Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rong Zhang
- Exercise Physiology & Rehabilitation Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
141
|
van den Brule JMD, Vinke EJ, van Loon LM, van der Hoeven JG, Hoedemaekers CWE. Low spontaneous variability in cerebral blood flow velocity in non-survivors after cardiac arrest. Resuscitation 2016; 111:110-115. [PMID: 28007503 DOI: 10.1016/j.resuscitation.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate spontaneous variability in the time and frequency domain in mean flow velocity (MFV) and mean arterial pressure (MAP) in comatose patients after cardiac arrest, and determine possible differences between survivors and non-survivors. METHODS A prospective observational study was performed at the ICU of a tertiary care university hospital in the Netherlands. We studied 11 comatose patients and 10 controls. MFV in the middle cerebral artery was measured with simultaneously recording of MAP. Coefficient of variation (CV) was used as a standardized measure of dispersion in the time domain. In the frequency domain, the average spectral power of MAP and MFV were calculated in the very low, low and high frequency bands. RESULTS In survivors CV of MFV increased from 4.66 [3.92-6.28] to 7.52 [5.52-15.23] % at T=72h. In non-survivors CV of MFV decreased from 9.02 [1.70-9.36] to 1.97 [1.97-1.97] %. CV of MAP was low immediately after admission (1.46 [1.09-2.25] %) and remained low at 72h (3.05 [1.87-3.63] %) (p=0.13). There were no differences in CV of MAP between survivors and non-survivors (p=0.30). We noticed significant differences between survivors and non-survivors in the VLF band for average spectral power of MAP (p=0.03) and MFV (p=0.003), whereby the power of both MAP and MFV increased in survivors during admission, while remaining low in non-survivors. CONCLUSIONS Cerebral blood flow is altered after cardiac arrest, with decreased spontaneous fluctuations in non-survivors. Most likely, these changes are the consequence of impaired intrinsic myogenic vascular function and autonomic dysregulation.
Collapse
Affiliation(s)
- J M D van den Brule
- Department of Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - E J Vinke
- Department of Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - L M van Loon
- Department of Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J G van der Hoeven
- Department of Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C W E Hoedemaekers
- Department of Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
142
|
Guo H, Schaller F, Tierney N, Smith SA, Shi X. New Insight into the Mechanism of Cardiovascular Dysfunction in the Elderly: Transfer Function Analysis. Exp Biol Med (Maywood) 2016; 230:549-57. [PMID: 16118405 DOI: 10.1177/153537020523000806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study sought to test the hypothesis that alterations in the relationships between (i) mean arterial pressure (MAP) and heart rate (HR), (ii) cardiac output (CO) and MAP, and (Hi) total Peripheral resistance (TPR) and MAP variability contribute to the diminished dynamic control of cardiovascular function with advanced age. Six-minute hemodynamic data were continuously recorded in 11 elderly (70 ± 2 years) and 11 young (26 ± 1 year) healthy volunteers under supine resting condition and during lower body negative pressure–induced orthostatic challenge. The data were converted using fast Fourier transform, and the ratio of cross-spectra to auto-spectra between two signals (i.e., MAP-HR, CO-MAP, TPR-MAP) was computed for transfer function analysis. In the low-frequency ranges (LF; 0.04–O.14 Hz) and high-frequency ranges (0.15–0.30 Hz), the gain and coherence of the transfer function describing the relationship between MAP-HR signals were significantly greater in younger than in older adults. The phase degree was significantly >0 in both groups under all conditions, suggesting that the MAP variability preceded the HR variability. In contrast, the coherence between CO-MAP signals in both age groups was <0.5, indicating that the beat-to-beat MAP variability was not significantly related to the CO signals. However, the transfer function gain and coherence of TPR-MAP signals were significantly greater in the young group (coherence ≥0.5 in the LF range), suggesting a more effective dynamic vasomotor control. In conclusion, the oscillations in CO-MAP signals are not significantly synchronized or not related in a simply linear fashion in both age groups. The MAP variability is more related to the oscillation of TPR signals in the young group only. Advanced age not only diminishes MAP-HR transfer function gain, but also weakens its coherence. Thus, alterations in the relationship between MAP-HR variability and TPR-MAP variability may significantly contribute to the diminished dynamic control of cardiovascular function manifest in the elderly.
Collapse
Affiliation(s)
- Hong Guo
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
143
|
Bu L, Li J, Li F, Liu H, Li Z. Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors: an exploratory, experimental study. BMJ Open 2016; 6:e013357. [PMID: 27810980 PMCID: PMC5128848 DOI: 10.1136/bmjopen-2016-013357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The objective of this study was to assess the effects of long-term offshore work on cerebral oxygenation oscillations in sailors based on the wavelet phase coherence (WPCO) of near-infrared spectroscopy (NIRS) signals. METHODS The fatigue severity scale (FSS) was first applied to assess the fatigue level of sailors and age-matched controls. Continuous recordings of NIRS signals were then obtained from the prefrontal lobes in 30 healthy sailors and 30 age-matched controls during the resting state. WPCO between the left and right prefrontal oscillations was analysed and Pearson correlation analysis was used to study the relationship between the FSS and the wavelet amplitude (WA), and between the FSS and the WPCO level. RESULTS The periodic oscillations of Delta (HbO2) signals were identified at six frequency intervals: I (0.6-2 Hz); II (0.145-0.6 Hz); III (0.052-0.145 Hz); IV (0.021-0.052 Hz); V (0.0095-0.021 Hz); and VI (0.005-0.0095 Hz). The WA in intervals I (F=8.823, p=0.004) and III (F=4.729, p=0.034) was significantly lower in sailors than that in the controls. The WPCO values of sailor group were significantly lower in intervals III (F=4.686, p=0.039), IV (F=4.864, p=0.036) and V (F=5.195, p=0.03) than those of the control group. In the sailor group, the WA in interval I (r=-0.799, p<0.01) and in interval III (r=-0.721, p<0.01) exhibited a negative correlation with the FSS. Also, the WPCO exhibited a negative correlation with the FSS in intervals III (r=-0.839, p<0.01), IV (r=-0.765, p<0.01) and V (r=-0.775, p<0.01) in the sailor group. CONCLUSIONS The negative correlation between WA and FSS indicates that the lower oscillatory activities might contribute to the development of fatigue. The low WPCO in intervals III, IV and V represents a reduced phase synchronisation of myogenic, neurogenic and endothelial metabolic activities respectively and this may suggest a decline of cognitive function.
Collapse
Affiliation(s)
- Lingguo Bu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Heshan Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, P. R. China
| |
Collapse
|
144
|
Saleem S, Teal PD, Kleijn WB, Ainslie PN, Tzeng YC. Identification of human sympathetic neurovascular control using multivariate wavelet decomposition analysis. Am J Physiol Heart Circ Physiol 2016; 311:H837-48. [DOI: 10.1152/ajpheart.00254.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
The dynamic regulation of cerebral blood flow (CBF) is thought to involve myogenic and chemoreflex mechanisms, but the extent to which the sympathetic nervous system also plays a role remains debated. Here we sought to identify the role of human sympathetic neurovascular control by examining cerebral pressure-flow relations using linear transfer function analysis and multivariate wavelet decomposition analysis that explicitly accounts for the confounding effects of dynamic end-tidal Pco2 (PetCO2) fluctuations. In 18 healthy participants randomly assigned to the α1-adrenergic blockade group ( n = 9; oral Prazosin, 0.05 mg/kg) or the placebo group ( n = 9), we recorded blood pressure, middle cerebral blood flow velocity, and breath-to-breath PetCO2. Analyses showed that the placebo administration did not alter wavelet phase synchronization index (PSI) values, whereas sympathetic blockade increased PSI for frequency components ≤0.03 Hz. Additionally, three-way interaction effects were found for PSI change scores, indicating that the treatment response varied as a function of frequency and whether PSI values were PetCO2 corrected. In contrast, sympathetic blockade did not affect any linear transfer function parameters. These data show that very-low-frequency CBF dynamics have a composite origin involving, not only nonlinear and nonstationary interactions between BP and PetCO2, but also frequency-dependent interplay with the sympathetic nervous system.
Collapse
Affiliation(s)
- Saqib Saleem
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
- Interdisciplinary Neuroprotection Research Group, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Paul D. Teal
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
| | - W. Bastiaan Kleijn
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
| | - Philip N. Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Yu-Chieh Tzeng
- Interdisciplinary Neuroprotection Research Group, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
145
|
Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 2016; 143:91-105. [PMID: 27591921 PMCID: PMC5139986 DOI: 10.1016/j.neuroimage.2016.08.058] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Haemodynamics-based neuroimaging is widely used to study brain function. Regional blood flow changes characteristic of neurovascular coupling provide an important marker of neuronal activation. However, changes in systemic physiological parameters such as blood pressure and concentration of CO2 can also affect regional blood flow and may confound haemodynamics-based neuroimaging. Measurements with functional near-infrared spectroscopy (fNIRS) may additionally be confounded by blood flow and oxygenation changes in extracerebral tissue layers. Here we investigate these confounds using an extended version of an existing computational model of cerebral physiology, ‘BrainSignals’. Our results show that confounding from systemic physiological factors is able to produce misleading haemodynamic responses in both positive and negative directions. By applying the model to data from previous fNIRS studies, we demonstrate that such potentially deceptive responses can indeed occur in at least some experimental scenarios. It is therefore important to record the major potential confounders in the course of fNIRS experiments. Our model may then allow the observed behaviour to be attributed among the potential causes and hence reduce identification errors. Confounding of fNIRS haemoglobin signals is simulated using a computational model. Model is extended to simulate scalp haemodynamics. Changes in blood pressure and CO2 can mimic and mask functional activation. Experimental recording of systemic factors is recommended to aid interpretation.
Collapse
|
146
|
Wang W, Wang B, Bu L, Xu L, Li Z, Fan Y. Vigilance Task-Related Change in Brain Functional Connectivity as Revealed by Wavelet Phase Coherence Analysis of Near-Infrared Spectroscopy Signals. Front Hum Neurosci 2016; 10:400. [PMID: 27547182 PMCID: PMC4974280 DOI: 10.3389/fnhum.2016.00400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022] Open
Abstract
This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults (24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers). The task was divided into two sessions: the first 10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were calculated in five frequency intervals: 0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz (III), 0.021–0.052 Hz (IV), and 0.0095–0.021 Hz (V). The significant WPCO formed global connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT) shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6–2 Hz was not attributed to the vigilance task per se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University Jinan, China
| | - Bitian Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University Jinan, China
| | - Lingguo Bu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University Jinan, China
| | - Liwei Xu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University Jinan, China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong UniversityJinan, China; National Research Center for Rehabilitation Technical AidsBeijing, China
| | - Yubo Fan
- National Research Center for Rehabilitation Technical Aids Beijing, China
| |
Collapse
|
147
|
Phillips AA, Hansen A, Krassioukov AV. In with the new and out with the old: enter multivariate wavelet decomposition, exit transfer function. Am J Physiol Heart Circ Physiol 2016; 311:H735-7. [PMID: 27473940 DOI: 10.1152/ajpheart.00512.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Aaron A Phillips
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada; and
| | - Alex Hansen
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Andrei V Krassioukov
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada; and GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, Canada
| |
Collapse
|
148
|
Ogoh S, Sørensen H, Hirasawa A, Sasaki H, Washio T, Hashimoto T, Bailey DM, Secher NH. Dynamic cerebral autoregulation is unrelated to decrease in external carotid artery blood flow during acute hypotension in healthy young men. Exp Physiol 2016; 101:1040-9. [PMID: 27228963 DOI: 10.1113/ep085772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Dynamic cerebral autoregulation (CA) is impaired by sympathetic blockade, and the external carotid artery (ECA) vascular bed may prevent adequate internal carotid artery blood flow. We examined whether α1 -receptor blockade-induced attenuation of dynamic CA is related to reduced ECA vasoconstriction. What is the main finding and its importance? α1 -Receptor blockade attenuated dynamic CA, but in contrast to our hypothesis did not affect the ECA blood flow response to acute hypotension. These findings suggest that the recovery of cerebral blood flow during acute hypotension is unrelated to vasoconstriction within the ECA territory. External carotid artery (ECA) vasoconstriction may defend internal carotid artery (ICA) blood flow during acute hypotension. We hypothesized that the α1 -receptor blockade-induced delay in ICA recovery to the baseline level from acute hypoperfusion is related to attenuated ECA vasoconstriction. The ICA and ECA blood flow were determined by duplex ultrasound during thigh-cuff release-induced acute hypotension while the α1 -receptor blocker prazosin [1 mg (20 kg)(-1) ] was administered to nine seated young healthy men. Both ICA (mean ± SD; by 17 ± 8%, P = 0.005) and ECA (by 37 ± 15%, P < 0.001) blood flow decreased immediately after occluded thigh-cuff release, with a more rapid ICA blood flow recovery to the baseline level (9 ± 5 s) than for the ECA blood flow (17 ± 5 s; P = 0.019). The ICA blood flow recovery from hypoperfusion was delayed with prazosin (17 ± 4 s versus control 9 ± 5 s, P = 0.006), whereas ECA recovery remained unchanged (P = 0.313) despite a similar reduction in mean arterial pressure (-20 ± 4 mmHg versus control -23 ± 7 mmHg, P = 0.148). These findings suggest that α1 -receptor blockade-induced attenuation of the ICA blood flow response to acute hypotension is unrelated to the reduction in ECA blood flow. The sympathetic nervous system via the ECA vascular bed does not contribute to dynamic CA during acute hypotension.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Henrik Sørensen
- The Copenhagen Muscle Research Centre, Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ai Hirasawa
- Advanced Triage Team, Kyorin University School of Medicine, Mitaka-Shi, Tokyo, Japan
| | - Hiroyuki Sasaki
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takeshi Hashimoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Damian M Bailey
- Neurovascular Research Laboratory, Research Institute of Health and Wellbeing, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Niels H Secher
- The Copenhagen Muscle Research Centre, Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
149
|
Wang B, Zhang M, Bu L, Xu L, Wang W, Li Z. Posture-related changes in brain functional connectivity as assessed by wavelet phase coherence of NIRS signals in elderly subjects. Behav Brain Res 2016; 312:238-45. [PMID: 27335218 DOI: 10.1016/j.bbr.2016.06.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/29/2022]
Abstract
Postural instability and falls are commonly seen because of aging and motor disabilities. This study aims to assess the posture-related changes in brain functional connectivity by wavelet phase coherence (WPCO) of oxyhemoglobin concentration change (Δ[HbO2]) signals measured through near-infrared spectroscopy (NIRS) in elderly subjects. The NIRS signals were continuously recorded from the prefrontal cortex and sensorimotor cortical areas in 39 healthy elderly subjects and 22 young healthy subjects during 20min resting and 10min standing states. Eight connection types were obtained from the recorded brain areas. The WPCO were calculated in five frequency intervals in each channel pair as follows: I, 0.6-2Hz; II, 0.145-0.6Hz; III, 0.052-0.145Hz; IV, 0.021-0.052Hz; and V, 0.0095-0.021Hz. Results show that posture change and age significantly interacts with the right prefrontal cortex (PFC) and left sensorimotor cortex (SMC) connectivity in interval V (F=5.010, p=0.028). The left and right PFC connectivity in interval I, the left and right SMC connectivity in interval IV, and the connectivity in interval V, including right PFC and right SMC connectivity, left PFC and left SMC connectivity, and right PFC and left SMC connectivity, showed a significant difference between the Group Elderly and Group Young in response to posture change (p<0.05). This study provides new insight into the mechanism of posture control, and results may be useful in assessing the risk of postural instability in aged persons.
Collapse
Affiliation(s)
- Bitan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Lingguo Bu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Liwei Xu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Wei Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; National Research Center for Rehabilitation Technical Aids, Beijing 100176, PR China.
| |
Collapse
|
150
|
Hilz MJ, Wang R, Marthol H, Liu M, Tillmann A, Riss S, Hauck P, Hösl KM, Wasmeier G, Stemper B, Köhrmann M. Partial pharmacologic blockade shows sympathetic connection between blood pressure and cerebral blood flow velocity fluctuations. J Neurol Sci 2016; 365:181-7. [PMID: 27206903 DOI: 10.1016/j.jns.2016.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
Abstract
Cerebral autoregulation (CA) dampens transfer of blood pressure (BP)-fluctuations onto cerebral blood flow velocity (CBFV). Thus, CBFV-oscillations precede BP-oscillations. The phase angle (PA) between sympathetically mediated low-frequency (LF: 0.03-0.15Hz) BP- and CBFV-oscillations is a measure of CA quality. To evaluate whether PA depends on sympathetic modulation, we assessed PA-changes upon sympathetic stimulation with and without pharmacologic sympathetic blockade. In 10 healthy, young men, we monitored mean BP and CBFV before and during 120-second cold pressor stimulation (CPS) of one foot (0°C ice-water). We calculated mean values, standard deviations and sympathetic LF-powers of all signals, and PAs between LF-BP- and LF-CBFV-oscillations. We repeated measurements after ingestion of the adrenoceptor-blocker carvedilol (25mg). We compared parameters before and during CPS, without and after carvedilol (analysis of variance, post-hoc t-tests, significance: p<0.05). Without carvedilol, CPS increased BP, CBFV, BP-LF- and CBFV-LF-powers, and shortened PA. Carvedilol decreased resting BP, CBFV, BP-LF- and CBFV-LF-powers, while PAs remained unchanged. During CPS, BPs, CBFVs, BP-LF- and CBFV-LF-powers were lower, while PAs were longer with than without carvedilol. With carvedilol, CPS no longer shortened resting PA. Sympathetic activation shortens PA. Partial adrenoceptor blockade abolishes this PA-shortening. Thus, PA-measurements provide a subtle marker of sympathetic influences on CA and might refine CA evaluation.
Collapse
Affiliation(s)
- Max J Hilz
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Ruihao Wang
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Harald Marthol
- Department of Psychiatry, Addiction, Psychotherapy and Psychosomatics, Klinikum am Europakanal, Am Europakanal 71, 91056 Erlangen, Germany.
| | - Mao Liu
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Alexandra Tillmann
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Stephan Riss
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Paulina Hauck
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Katharina M Hösl
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, Prof.-Ernst-Nathan-Strasse 1, 90419 Nuremberg, Germany.
| | - Gerald Wasmeier
- Department of Cardiology, Klinik Neustadt a. d. Aisch, Paracelsusstraße 30-36, 91413 Neustadt a. d. Aisch, Germany.
| | - Brigitte Stemper
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany; Bayer HealthCare, Bayer Pharma AG, Global Development Specialty Medicine, Müllerstr. 178, Building P300, Room 239, 13353 Berlin, Germany.
| | - Martin Köhrmann
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany.
| |
Collapse
|