101
|
Yano M, Nishino M, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Tanaka A, Matsunaga-Lee Y, Egami Y, Shutta R, Tanouchi J, Yamada T, Yasumura Y, Tamaki S, Hayashi T, Nakagawa A, Nakagawa Y, Suna S, Nakatani D, Hikoso S, Sakata Y. High density lipoprotein cholesterol / C reactive protein ratio in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:2791-2801. [PMID: 33934563 PMCID: PMC8318396 DOI: 10.1002/ehf2.13350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS The impacts of high density lipoprotein cholesterol (HDL-C) as an anti-inflammatory and C reactive protein (CRP) as inflammatory properties on the pathogenesis of heart failure were reported. At present, the clinical significance of the HDL-C/CRP ratio in heart failure with preserved ejection fraction (HFpEF) patients remains unknown. METHODS AND RESULTS We examined the data on 796 consecutive HFpEF (left ventricular ejection fraction ≥50%) patients hospitalized due to acute decompensated heart failure from the PURSUIT-HFpEF registry, a prospective, multicentre observational study. We calculated the HDL/CRP ratios and evaluated the relationship between the values and clinical outcomes, including degree of cardiac function. The mean follow-up duration was 420 ± 346 days. All-cause death occurred in 118 patients, of which 51 were cardiac deaths. HDL/CRP ≤ 4.05 was independently and significantly associated with all-cause death (odds ratio = 1.84, 95% CI: 1.06-3.20, P = 0.023), and HDL/CRP ≤ 3.14 was associated with cardiac death by multivariate Cox proportional hazard analysis (odds ratio = 2.86, 95% CI: 1.36-6.01, P = 0.003). HDL-C/CRP ratio significantly correlated with the product of the left atrial volume and left ventricular mass index as well as the tricuspid annular plane systolic excursion by multiple regression analysis (standardized beta-coefficient = -0.085, P = 0.034 and standardized beta-coefficient = 0.081, P = 0.044, respectively). CONCLUSIONS HDL-C/CRP ratio was a useful marker for predicting all-cause death and cardiac death and correlated with left ventricular diastolic function and right ventricular systolic function in HFpEF patients.
Collapse
Affiliation(s)
- Masamichi Yano
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Masami Nishino
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Kohei Ukita
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Akito Kawamura
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Hitoshi Nakamura
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yutaka Matsuhiro
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Koji Yasumoto
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Masaki Tsuda
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Naotaka Okamoto
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Akihiro Tanaka
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yasuharu Matsunaga-Lee
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yasuyuki Egami
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Ryu Shutta
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Jun Tanouchi
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Takahisa Yamada
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Yoshio Yasumura
- Division of Cardiology, Amagasaki Chuo Hospital, Amagasaki, Japan
| | - Shunsuke Tamaki
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | | | - Akito Nakagawa
- Division of Cardiology, Amagasaki Chuo Hospital, Amagasaki, Japan.,Department of Medical Informatics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Nakagawa
- Division of Cardiology, Kawanishi City Hospital, Kawanishi, Japan
| | - Shinichiro Suna
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisaku Nakatani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
102
|
Sobieszek G, Powrózek T, Skwarek-Dziekanowska A, Małecka-Massalska T. Clinical Significance of TNFRSF1A36T/C Polymorphism in Cachectic Patients with Chronic Heart Failure. J Clin Med 2021; 10:jcm10051095. [PMID: 33807923 PMCID: PMC7961661 DOI: 10.3390/jcm10051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: One of the main factors contributing to the development of nutritional deficits in chronic heart failure (CHF) patients is the systemic inflammatory process. Progressing inflammatory response leads to exacerbation of the disease and could develop into cardiac cachexia (CC), characterized by involuntary weight loss followed by muscle wasting. The aim of this study was to assess the relationship between rs767455 (36 T/C) of the TNFRSF1A and the occurrence of nutritional disorders in CHF patients with cachexia. Materials and Methods: We enrolled 142 CHF individuals who underwent cardiac and nutritional screening in order to assess cardiac performance and nutritional status. The relationship between TNFRSF1A rs767455 genotypes and patients' features was investigated. Results: A greater distribution of the TT genotype among cachectic patients in contrast to non-cachectic individuals was found (TT frequencies of 62.9% and 37.1%, respectively; p = 0.013). We noted a significantly lower albumin concentration (p = 0.039) and higher C-reactive protein (CRP) levels (p = 0.019) in patients with the TT genotype. Regarding cardiac parameters, CHF individuals bearing the TT genotype demonstrated a significant reduction in ejection fraction (EF) (p = 0.033) in contrast to other genotype carriers; moreover, they had a significantly higher concentration of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in the blood (p = 0.018). We also noted a lower frequency of TT genotype carriers among individuals qualified as grades I or II of the New York Heart Association (NYHA) (p = 0.006). The multivariable analysis selected the TT genotype as an unfavorable factor related to a higher chance of cachexia in CHF patients (Odds ratio (OR) = 2.56; p = 0.036). Conclusions: The rs767455TT genotype of TNFRSF1A can be considered as an unfavorable factor related to a higher risk of cachexia in CHF patients.
Collapse
Affiliation(s)
- Grzegorz Sobieszek
- Department of Cardiology, 1st Military Clinical Hospital with the Outpatient Clinic, 20-080 Lublin, Poland;
- Correspondence: (G.S.); (T.P.); Tel.: +48-261-183-614 (G.S.); +48-814-486-080 (T.P.)
| | - Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, 20-059 Lublin, Poland;
- Correspondence: (G.S.); (T.P.); Tel.: +48-261-183-614 (G.S.); +48-814-486-080 (T.P.)
| | - Aneta Skwarek-Dziekanowska
- Department of Cardiology, 1st Military Clinical Hospital with the Outpatient Clinic, 20-080 Lublin, Poland;
| | | |
Collapse
|
103
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
104
|
Bozkurt D, Bozgul SMK, Emgin O, Butun O, Kose T, Simsek E, Hekimgil M, Kilic S. Mortal Interaction Between Hemophagocytic Syndrome and Newly Developed Heart Failure. Arq Bras Cardiol 2021; 116:395-401. [PMID: 33909765 PMCID: PMC8159566 DOI: 10.36660/abc.20190642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hemophagocytic syndrome (HPS) ia s devastating hyperinflammatory syndrome. Heart failure (HF) with preserved ejection fraction (HFpEF) status is closely correlated with increased inflammation, both systemic and intramyocardial. OBJECTIVES This study sought to determine mortality predictors and reliable follow-up parameters in HPS that developed HFpEF during the clinical course. METHOD Thirty-nine patients, diagnosed as HPS, according to HLH 2004 diagnostic criteria, with an HScore of ≥169 and proven bone marrow aspiration or biopsy, were recruited retrospectively. Both traditional, serum C-reactive protein, albumin and ferritin levels with lymphocyte, and platelet counts, as well as non-traditional risk factors, neutrophil-to-lymphocyte count (NLR), monocyte-to-lymphocyte count (MLR), mean platelet volume (MPV), and N-Terminal pro-brain natriuretic peptide (NTproBNP), were investigated retrospectively. The relationship between time-changed laboratory values both among themselves and with mortality. The overall significance level was set at 5%. RESULTS This study showed that temporal change of cardiothoracic ratio (CTR), serum NTproBNP, ferritin, CRP, and albumin levels were detected as mortality predictors (p<0.05, for all) in the univariate analysis. Lymphocyte and platelet counts with NLR and MPV values were also significant (p<0.05). The relationship between NT-proBNP and increased systemic inflammatory markers proved to be significant. In addition to traditional risk factors, serum ferritin levels, NLR, MLR, and MPV levels also proved to be significantly correlated with each other. CONCLUSION Accompanied by reliable follow-up parameters, rapid diagnosis and aggressive anti-inflammatory treatment with tight volume control can be life-saving in HPS patients who suffer from HFpEF. Close monitoring of inflammation may predict the outcome of patients suffering from HFpEF.
Collapse
Affiliation(s)
- Devrim Bozkurt
- Ege UniversityFaculty of MedicineDepartment of Internal MedicineIzmirTurquiaEge University Faculty of Medicine - Department of Internal Medicine, Intensive Care Unit Sectio, Izmir - Turquia
| | - Sukriye Miray Kilincer Bozgul
- Ege UniversityFaculty of MedicineDepartment of Internal MedicineIzmirTurquiaEge University Faculty of Medicine - Department of Internal Medicine, Intensive Care Unit Sectio, Izmir - Turquia
| | - Omer Emgin
- Ege UniversityFaculty of MedicineDepartment of Internal MedicineIzmirTurquiaEge University Faculty of Medicine - Department of Internal Medicine, Intensive Care Unit Sectio, Izmir - Turquia
| | - Osman Butun
- Ege UniversityFaculty of MedicineDepartment of Internal MedicineIzmirTurquiaEge University Faculty of Medicine - Department of Internal Medicine, Intensive Care Unit Sectio, Izmir - Turquia
| | - Timur Kose
- Ege UniversityFaculty of MedicineDepartment of Bioistatistics and InformaticsIzmirTurquiaEge University Faculty of Medicine - Department of Bioistatistics and Informatics, Izmir - Turquia
| | - Evrim Simsek
- Ege UniversityFaculty of MedicineIzmirTurquiaEge University Faculty of Medicine – Cardiology, Izmir - Turquia
| | - Mine Hekimgil
- Ege UniversityFaculty of MedicineDepartment of PathologyIzmirTurquiaEge University Faculty of Medicine - Department of Pathology, Izmir - Turquia
| | - Salih Kilic
- Health Sciences UniversityAdana Research and Training HospitalDepartment of CardiologyAdanaTurquiaHealth Sciences University, Adana Research and Training Hospital - Department of Cardiology, Adana – Turquia,Correspondência: Salih Kilic • Health Sciences University, Adana Research and Training Hospital - Department of Cardiology, Adana Turkey, E-mail:
| |
Collapse
|
105
|
Zhou B, Wang DDH, Qiu Y, Airhart S, Liu Y, Stempien-Otero A, O'Brien KD, Tian R. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest 2021; 130:6054-6063. [PMID: 32790648 PMCID: PMC7598081 DOI: 10.1172/jci138538] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDWhile mitochondria play an important role in innate immunity, the relationship between mitochondrial dysfunction and inflammation in heart failure (HF) is poorly understood. In this study we aimed to investigate the mechanistic link between mitochondrial dysfunction and inflammatory activation in peripheral blood mononuclear cells (PBMCs), and the potential antiinflammatory effect of boosting the NAD level.METHODSWe compared the PBMC mitochondrial respiration of 19 hospitalized patients with stage D HF with that of 19 healthy participants. We then created an in vitro model of sterile inflammation by treating healthy PBMCs with mitochondrial damage-associated molecular patterns (MitoDAMPs) isolated from human heart tissue. Last, we enrolled patients with stage D HF and sampled their blood before and after taking 5 to 9 days of oral nicotinamide riboside (NR), a NAD precursor.RESULTSWe demonstrated that HF is associated with both reduced respiratory capacity and elevated proinflammatory cytokine gene expressions. In our in vitro model, MitoDAMP-treated PBMCs secreted IL-6 that impaired mitochondrial respiration by reducing complex I activity. Last, oral NR administration enhanced PBMC respiration and reduced proinflammatory cytokine gene expression in 4 subjects with HF.CONCLUSIONThese findings suggest that systemic inflammation in patients with HF is causally linked to mitochondrial function of the PBMCs. Increasing NAD levels may have the potential to improve mitochondrial respiration and attenuate proinflammatory activation of PBMCs in HF.TRIAL REGISTRATIONClinicalTrials.gov NCT03727646.FUNDINGThis study was funded by the NIH, the University of Washington, and the American Heart Association.
Collapse
Affiliation(s)
- Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - Dennis Ding-Hwa Wang
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yanhua Qiu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - Sophia Airhart
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yaxin Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - April Stempien-Otero
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| |
Collapse
|
106
|
Bondar G, Silacheva I, Bao TM, Deshmukh S, Kulkarni NS, Nakade T, Grogan T, Elashoff D, Deng MC. Initial independent validation of a genomic heart failure survival prediction algorithm. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1882847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Galyna Bondar
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
- LeukoLifeDx, Inc.,Rumson, New Jersey, United States
| | - Irina Silacheva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
| | - Tra-Mi Bao
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
- LeukoLifeDx, Inc.,Rumson, New Jersey, United States
| | - Sumeet Deshmukh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Neha S. Kulkarni
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| | - Taisuke Nakade
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
| | - Tristan Grogan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
| | - David Elashoff
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
| | - Mario C. Deng
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
- LeukoLifeDx, Inc.,Rumson, New Jersey, United States
| |
Collapse
|
107
|
Arabi M, Nasab SH, Lorigooini Z, Boroujeni SN, Mortazavi SM, Anjomshoa M, Amini-Khoei H. Auraptene exerts protective effects on maternal separation stress-induced changes in behavior, hippocampus, heart and serum of mice. Int Immunopharmacol 2021; 93:107436. [PMID: 33556667 DOI: 10.1016/j.intimp.2021.107436] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 11/25/2022]
Abstract
Early life stress is associated with various complications. Auraptene has significant antioxidant and anti-inflammatory effects. This study aimed to assess the probable underlying mechanisms that mediate changes in the behavior, hippocampus, heart and serum in the mouse model of maternal separation (MS) stress. We evaluated the possible protective effects of auraptene in these changes focusing on inflammatory response and oxidative state. Mice were treated with auraptene (5, 10, and 50 mg/kg). In addition, anxiety-like behaviors were evaluated using behavioral tests; including open field test (OFT) and elevated plus maze (EPM). Hippocampus and heart samples were assessed histopathologically. Levels of malondialdehyde (MDA) and antioxidant capacity, as well as nitrite levels, were measured in serum, heart, and hippocampal tissues. Moreover, gene expression of inflammatory markers (Il-1β and Tlr-4) was evaluated in the heart and hippocampus. Results showed that auraptene reversed the negative effects of MS on behavior (increased time spent in central zone of the OFT and time and entries to the open arms of the EPM). Auraptene mitigated adverse effects of MS on the hippocampus (increased diameter and decreased percentage of dark neurons in the CA3 area). Accordingly, auraptene decreased MDA and nitrite levels and increased the antioxidant capacity in serum, and hippocampal samples. However, we observed different effects for different doses of auraptene in the heart samples. We concluded that MS is associated with anxiety-like behavior and cellular/molecular modifications in the heart, hippocampus and serum. We found that auraptene exerted protective effects against these negative effects of MS in mouse.
Collapse
Affiliation(s)
- Mehran Arabi
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shohreh Hosseini Nasab
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Mohsen Mortazavi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
108
|
Kessler EL, Oerlemans MIFJ, van den Hoogen P, Yap C, Sluijter JPG, de Jager SCA. Immunomodulation in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. J Cardiovasc Transl Res 2021; 14:63-74. [PMID: 32444946 PMCID: PMC7892675 DOI: 10.1007/s12265-020-10026-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
The heart failure (HF) epidemic is growing and approximately half of the HF patients have heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome, characterized by a preserved left ventricular ejection fraction (LVEF ≥ 50%) with diastolic dysfunction, and is associated with high morbidity and mortality. Underlying comorbidities of HFpEF, i.e., hypertension, type 2 diabetes mellitus, obesity, and renal failure, lead to a systemic pro-inflammatory state, thereby affecting normal cardiac function. Increased inflammatory biomarkers predict incident HFpEF and are higher in patients with HFpEF as compared with heart failure with reduced ejection fraction (HFrEF). Randomized trials in HFpEF patients using traditional HF medication failed to demonstrate a clear benefit on hard endpoints (mortality and/or HF hospitalization). Therefore, therapies targeting underlying comorbidities and systemic inflammation in early HFpEF may provide better opportunities. Here, we provide an overview of the current state and future perspectives of immunomodulatory therapies for HFpEF.
Collapse
Affiliation(s)
- Elise L Kessler
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, 3511 EP, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martinus I F J Oerlemans
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Patricia van den Hoogen
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carmen Yap
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands.
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
109
|
Perez AL, Grodin JL, Chaikijurajai T, Wu Y, Hernandez AF, Butler J, Metra M, Felker GM, Voors AA, McMurray JJ, Armstrong PW, O'Connor C, Starling RC, Tang WHW. Interleukin-6 and Outcomes in Acute Heart Failure: An ASCEND-HF Substudy. J Card Fail 2021; 27:670-676. [PMID: 33497809 DOI: 10.1016/j.cardfail.2021.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The inflammatory cytokine IL-6 has been previously implicated in the pathophysiology of acute decompensated heart failure (HF). Prior observations in acute HF patients have suggested that IL-6 may be associated with outcomes and modulated by nesiritide. We aimed to evaluate the associations between serial IL-6 measurements, mortality and rehospitalization in acute HF. METHODS AND RESULTS We analyzed the associations between IL-6 in acute HF, readmission, and mortality (30 and 180 days) using a cohort of 883 hospitalized patients from the ASCEND-HF trial (nesiritide vs placebo). Plasma IL-6 was measured at randomization (baseline), 48-72 hours, and 30 days. The median IL-6 was highest at baseline (14.1 pg/mL) and decreased at subsequent time points (7.6 pg/mL at 30 days). In a univariable Cox regression analysis, the baseline IL-6 was associated with 30- and 180-day mortality (hazard ratio per log 1.74, 95% confidence interval 1.09-2.78, P = .021; hazard ratio 3.23, confidence interval 1.18-8.86, P = .022, respectively). However, there was no association after multivariable adjustment. IL-6 at 48-72 hours was found to be independently associated with 30-day mortality (hazard ratio 8.2, confidence interval 1.2-57.5, P= .03), but not 180-day mortality in multivariable analysis that included the ASCEND-HF risk model and amino terminal pro-B-type natriuretic peptide as covariates. In comparison with placebo, nesiritide therapy was not associated with differences in serial IL-6 levels. CONCLUSIONS Although elevated IL-6 levels were associated with higher all-cause mortality in acute HF, no independent association with this outcome was identified at baseline or 30-day measurements. In contrast with prior reports, we did not observe any impact of nesiritide over placebo on serial IL-6 levels.
Collapse
Affiliation(s)
- Antonio L Perez
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Justin L Grodin
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yuping Wu
- Department of Mathematics & Statistics, Cleveland State University, Cleveland, Ohio
| | | | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Marco Metra
- Department of Cardiology, University of Brescia, Brescia, Italy
| | | | - Adriaan A Voors
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Paul W Armstrong
- Department of Cardiology, University of Alberta, Edmonton, Canada
| | | | - Randall C Starling
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
110
|
Luo J, Zhu X, Jian J, Chen XU, Yin K. Cardiovascular disease in patients with COVID-19: evidence from cardiovascular pathology to treatment. Acta Biochim Biophys Sin (Shanghai) 2021; 53:273-282. [PMID: 33428706 PMCID: PMC7929476 DOI: 10.1093/abbs/gmaa176] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) caused by the novel coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly developed into a global pneumonia pandemic. Cardiovascular disease is the major comorbidity of COVID-19 patients and is closely related to the severity of COVID-19. SARS-CoV-2 infection can directly or indirectly cause a series of cardiac complications, including acute myocardial injury and myocarditis, heart failure and cardiac arrest, arrhythmia, acute myocardial infarction, cardiogenic shock, Takotsubo cardiomyopathy, and coagulation abnormalities. Intensive research on the SARS-CoV-2-associated cardiovascular complications is urgently needed to elucidate its exact mechanism and to identify potential drug targets, which will help to formulate effective prevention and treatment strategies. Hence, this review will summarize recent progress regarding the effects of COVID-19 on the cardiovascular system and describe the underlying mechanism of cardiovascular injury caused by SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Jie Jian
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - X u Chen
- *Correspondence address. Tel: +86-13907736890; E-mail: (X.C.) / Tel: +86-773-5369253; E-mail: (K.Y.)
| | - Kai Yin
- *Correspondence address. Tel: +86-13907736890; E-mail: (X.C.) / Tel: +86-773-5369253; E-mail: (K.Y.)
| |
Collapse
|
111
|
Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8815349. [PMID: 33488934 PMCID: PMC7790555 DOI: 10.1155/2020/8815349] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Cardiac remodeling describes a series of structural and functional changes in the heart after myocardial infarction (MI). Adverse post-MI cardiac remodeling directly jeopardizes the recovery of cardiac functions and the survival rate in MI patients. Several classes of drugs are proven to be useful to reduce the mortality of MI patients. However, it is an ongoing challenge to prevent the adverse effects of cardiac remodeling. The present review aims to identify the pharmacological therapies from the existing clinical drugs for the treatment of adverse post-MI cardiac remodeling. Post-MI cardiac remodeling is a complex process involving ischemia/reperfusion, inflammation, cell death, and deposition of extracellular matrix (ECM). Thus, the present review included two parts: (1) to examine the basic pathophysiology in the cardiovascular system and the molecular basis of cardiac remodeling and (2) to identify the pathological aspects of cardiac remodeling and the potential of the existing pharmacotherapies. Ultimately, the present review highlights drug repositioning as a strategy to discover effective therapies from the existing drugs against post-MI cardiac remodeling.
Collapse
|
112
|
Geesala R, Issuree PD, Maretzky T. The Role of iRhom2 in Metabolic and Cardiovascular-Related Disorders. Front Cardiovasc Med 2020; 7:612808. [PMID: 33330676 PMCID: PMC7732453 DOI: 10.3389/fcvm.2020.612808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obesity is associated with metabolic imbalance leading to diabetes, dyslipidemia, and cardiovascular diseases (CVDs), in which inflammation is caused by exposure to inflammatory stimuli, such as accumulating sphingolipid ceramides or intracellular stress. This inflammatory response is likely to be prolonged by the effects of dietary and blood cholesterol, thereby leading to chronic low-grade inflammation and endothelial dysfunction. Elevated levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF) are predictive of CVDs and have been widely studied for potential therapeutic strategies. The release of TNF is controlled by a disintegrin and metalloprotease (ADAM) 17 and both are positively associated with CVDs. ADAM17 also cleaves most of the ligands of the epidermal growth factor receptor (EGFR) which have been associated with hypertension, atherogenesis, vascular dysfunction, and cardiac remodeling. The inactive rhomboid protein 2 (iRhom2) regulates the ADAM17-dependent shedding of TNF in immune cells. In addition, iRhom2 also regulates the ADAM17-mediated cleavage of EGFR ligands such as amphiregulin and heparin-binding EGF-like growth factor. Targeting iRhom2 has recently become a possible alternative therapeutic strategy in chronic inflammatory diseases such as lupus nephritis and rheumatoid arthritis. However, what role this intriguing interacting partner of ADAM17 plays in the vasculature and how it functions in the pathologies of obesity and associated CVDs, are exciting questions that are only beginning to be elucidated. In this review, we discuss the role of iRhom2 in cardiovascular-related pathologies such as atherogenesis and obesity by providing an evaluation of known iRhom2-dependent cellular and inflammatory pathways.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Priya D Issuree
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thorsten Maretzky
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
113
|
Miao K, Zhou L, Ba H, Li C, Gu H, Yin B, Wang J, Yang XP, Li Z, Wang DW. Transmembrane tumor necrosis factor alpha attenuates pressure-overload cardiac hypertrophy via tumor necrosis factor receptor 2. PLoS Biol 2020; 18:e3000967. [PMID: 33270628 PMCID: PMC7714153 DOI: 10.1371/journal.pbio.3000967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important pathogenic role in cardiac hypertrophy and heart failure (HF); however, anti-TNF is paradoxically negative in clinical trials and even worsens HF, indicating a possible protective role of TNF-α in HF. TNF-α exists in transmembrane (tmTNF-α) and soluble (sTNF-α) forms. Herein, we found that TNF receptor 1 (TNFR1) knockout (KO) or knockdown (KD) by short hairpin RNA or small interfering RNA (siRNA) significantly alleviated cardiac hypertrophy, heart dysfunction, fibrosis, and inflammation with increased tmTNF-α expression, whereas TNFR2 KO or KD exacerbated the pathological phenomena with increased sTNF-α secretion in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro, respectively, indicating the beneficial effects of TNFR2 associated with tmTNF-α. Suppressing TNF-α converting enzyme by TNF-α Protease Inhibitor-1 (TAPI-1) to increase endogenous tmTNF-α expression significantly alleviated TAC-induced cardiac hypertrophy. Importantly, direct addition of exogenous tmTNF-α into cardiomyocytes in vitro significantly reduced ISO-induced cardiac hypertrophy and transcription of the pro-inflammatory cytokines and induced proliferation. The beneficial effects of tmTNF-α were completely blocked by TNFR2 KD in H9C2 cells and TNFR2 KO in primary myocardial cells. Furthermore, we demonstrated that tmTNF-α displayed antihypertrophic and anti-inflammatory effects by activating the AKT pathway and inhibiting the nuclear factor (NF)-κB pathway via TNFR2. Our data suggest that tmTNF-α exerts cardioprotective effects via TNFR2. Specific targeting of tmTNF-α processing, rather than anti-TNF therapy, may be more useful for the treatment of hypertrophy and HF. In contrast to detrimental effects of soluble tumor necrosis factor-alpha (TNF-α) via TNFR1, this study shows that transmembrane TNF-α protects the heart by suppressing pressure overload-induced cardiac hypertrophy and inflammation via TNFR2. Targeting tmTNF-α processing may be more useful than TNF-antagonist for treatment of hypertrophy and heart failure.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cardiomegaly/metabolism
- Cardiomegaly/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- NF-kappa B/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Kun Miao
- Division of Cardiology, Department of Internal Medicine and Department of Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhou
- Division of Cardiology, Department of Internal Medicine and Department of Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongping Ba
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenxi Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiyan Gu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingjiao Yin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoya Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (ZL); (DWW)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Department of Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (ZL); (DWW)
| |
Collapse
|
114
|
de Boer RA, Hulot J, Tocchetti CG, Aboumsallem JP, Ameri P, Anker SD, Bauersachs J, Bertero E, Coats AJ, Čelutkienė J, Chioncel O, Dodion P, Eschenhagen T, Farmakis D, Bayes‐Genis A, Jäger D, Jankowska EA, Kitsis RN, Konety SH, Larkin J, Lehmann L, Lenihan DJ, Maack C, Moslehi JJ, Müller OJ, Nowak‐Sliwinska P, Piepoli MF, Ponikowski P, Pudil R, Rainer PP, Ruschitzka F, Sawyer D, Seferovic PM, Suter T, Thum T, van der Meer P, Van Laake LW, von Haehling S, Heymans S, Lyon AR, Backs J. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2020; 22:2272-2289. [PMID: 33094495 PMCID: PMC7894564 DOI: 10.1002/ejhf.2029] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022] Open
Abstract
The co-occurrence of cancer and heart failure (HF) represents a significant clinical drawback as each disease interferes with the treatment of the other. In addition to shared risk factors, a growing body of experimental and clinical evidence reveals numerous commonalities in the biology underlying both pathologies. Inflammation emerges as a common hallmark for both diseases as it contributes to the initiation and progression of both HF and cancer. Under stress, malignant and cardiac cells change their metabolic preferences to survive, which makes these metabolic derangements a great basis to develop intersection strategies and therapies to combat both diseases. Furthermore, genetic predisposition and clonal haematopoiesis are common drivers for both conditions and they hold great clinical relevance in the context of personalized medicine. Additionally, altered angiogenesis is a common hallmark for failing hearts and tumours and represents a promising substrate to target in both diseases. Cardiac cells and malignant cells interact with their surrounding environment called stroma. This interaction mediates the progression of the two pathologies and understanding the structure and function of each stromal component may pave the way for innovative therapeutic strategies and improved outcomes in patients. The interdisciplinary collaboration between cardiologists and oncologists is essential to establish unified guidelines. To this aim, pre-clinical models that mimic the human situation, where both pathologies coexist, are needed to understand all the aspects of the bidirectional relationship between cancer and HF. Finally, adequately powered clinical studies, including patients from all ages, and men and women, with proper adjudication of both cancer and cardiovascular endpoints, are essential to accurately study these two pathologies at the same time.
Collapse
Affiliation(s)
- Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jean‐Sébastien Hulot
- Université de Paris, PARCC, INSERMParisFrance
- CIC1418 and DMU CARTE, AP‐HP, Hôpital Européen Georges‐PompidouParisFrance
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational ResearchFederico II UniversityNaplesItaly
| | | | - Pietro Ameri
- Department of Internal Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenoaItaly
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Stefan D. Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site BerlinCharité‐Universitätsmedizin Berlin (Campus CVK)BerlinGermany
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Edoardo Bertero
- Comprehensive Heart Failure CenterUniversity Clinic WürzburgWürzburgGermany
| | | | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’University of Medicine Carol DavilaBucharestRomania
| | | | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research)HamburgGermany
| | - Dimitrios Farmakis
- University of Cyprus Medical SchoolNicosiaCyprus
- Cardio‐Oncology Clinic, Heart Failure Unit, Department of CardiologyAthens University Hospital ‘Attikon’, National and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Antoni Bayes‐Genis
- Heart Failure Unit and Cardiology DepartmentHospital Universitari Germans Trias i Pujol, CIBERCVBadalonaSpain
- Department of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- CIBER CardiovascularInstituto de Salud Carlos IIIMadridSpain
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT)University Hospital HeidelbergHeidelbergGermany
| | - Ewa A. Jankowska
- Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart DiseasesUniversity HospitalWroclawPoland
| | - Richard N. Kitsis
- Departments of Medicine (Cardiology) and Cell BiologyWilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, Albert Einstein College of MedicineNew YorkNYUSA
| | - Suma H. Konety
- Cardiovascular Division, Cardio‐Oncology Program, Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | | | - Lorenz Lehmann
- Cardio‐Oncology Unit, Department of CardiologyUniversity of HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHeidelberg/MannheimGermany
- DKFZ (German Cancer Research Center)HeidelbergGermany
| | - Daniel J. Lenihan
- Cardio‐Oncology Center of Excellence, Cardiovascular DivisionWashington University in St. LouisSt. LouisMOUSA
| | - Christoph Maack
- Comprehensive Heart Failure CenterUniversity Clinic WürzburgWürzburgGermany
| | - Javid J. Moslehi
- Division of Cardiovascular Medicine and OncologyCardio‐Oncology Program, Vanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTNUSA
| | - Oliver J. Müller
- Department of Internal Medicine IIIUniversity of KielKielGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHamburg/Kiel/LübeckGermany
| | - Patrycja Nowak‐Sliwinska
- School of Pharmaceutical SciencesUniversity of Geneva, Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
- Translational Research Center in OncohaematologyGenevaSwitzerland
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart DiseasesUniversity HospitalWroclawPoland
| | - Radek Pudil
- 1st Department Medicine‐CardioangiologyUniversity Hospital and Medical FacultyHradec KraloveCzech Republic
| | - Peter P. Rainer
- Medical University of GrazUniversity Heart Center – Division of CardiologyGrazAustria
| | - Frank Ruschitzka
- Department of CardiologyUniversity Hospital Zurich, University Heart CenterZurichSwitzerland
| | - Douglas Sawyer
- Center for Molecular Medicine, Maine Medical Center Research InstituteMaine Medical CenterScarboroughMEUSA
| | - Petar M. Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and ArtsBelgradeSerbia
| | - Thomas Suter
- Swiss Cardiovascular CentreBern UniversityBernSwitzerland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical SchoolHannoverGermany
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Linda W. Van Laake
- Division Heart and Lungs and Regenerative Medicine CentreUniversity Medical Centre Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart CenterUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Cardiovascular SciencesCentre for Molecular and Vascular Biology, KU LeuvenLeuvenBelgium
| | - Alexander R. Lyon
- Cardio‐Oncology Service, Royal Brompton Hospital, and National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Johannes Backs
- Institute of Experimental CardiologyHeidelberg University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHeidelberg/MannheimGermany
| |
Collapse
|
115
|
Yano M, Egami Y, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Tanaka A, Matsunaga-Lee Y, Shutta R, Nishino M, Tanouchi J. Atrial fibrillation type modulates the clinical predictive value of neutrophil-to-lymphocyte ratio for atrial fibrillation recurrence after catheter ablation. IJC HEART & VASCULATURE 2020; 31:100664. [PMID: 33163615 PMCID: PMC7599425 DOI: 10.1016/j.ijcha.2020.100664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 10/31/2022]
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) has been proposed as an indicator of a systemic inflammatory response. There are baseline differences in the inflammation status between paroxysmal atrial fibrillation (PAF) and persistent AF (PerAF). The NLR changes and late recurrences of AF (LRAF) after ablation depending on the AF type remain unknown. METHODS Consecutive AF patients undergoing pulmonary vein isolation (PVI) by radiofrequency catheter ablation were enrolled from September 2014 to June 2018. The peripheral blood leukocyte NLR 1 day before and 36-48 h after PVI were measured. First, the relationship between NLR changes after to before ablation (ΔNLR) and ERAFs/LRAFs in PAF and PerAF patients were investigated to exclude the baseline inflammation status and evaluate catheter ablation induced inflammation. Second, the clinical impact of the NLR for predicting LRAFs was evaluated. RESULTS There hundred sixty-nine PAF and 264 PerAF patients from Osaka Rosai AF registry were enrolled. The ratio of ERAFs/LRAFs in PAF and PerAF patients were 26.8%/22.5% and 39.4%/29.9%, respectively. In PAF and PerAF patients, the ΔNLR was significantly higher with ERAF than no-ERAF (p = 0.022 and p = 0.010, respectively). In PAF patients, the ΔNLR was significantly higher with LRAF than no-LRAF (p = 0.017), while with PerAF, the ΔNLR did not significantly differ between LRAFs and no-LRAFs. In PAF, the ΔNLR was independently and significantly associated with LRAFs after PVI (p = 0.029). CONCLUSION The ΔNLR was significantly higher only in PAF patients with LRAFs than no-LRAFs, but not in PerAF patients. The ΔNLR was useful for predicting LRAFs after PVI in PAF patients.
Collapse
Affiliation(s)
- Masamichi Yano
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Yasuyuki Egami
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Kohei Ukita
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Akito Kawamura
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Hitoshi Nakamura
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Yutaka Matsuhiro
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Koji Yasumoto
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Masaki Tsuda
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Naotaka Okamoto
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Akihiro Tanaka
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Yasuharu Matsunaga-Lee
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Ryu Shutta
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Masami Nishino
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Jun Tanouchi
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| |
Collapse
|
116
|
Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A, Sultana F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med 2020; 8:2050312120965752. [PMID: 33194199 PMCID: PMC7594225 DOI: 10.1177/2050312120965752] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cytokines are highly inducible small glycoproteins or regulatory proteins of low molecular weight secreted by different cell types. They regulate intercellular communication and mediate a number of physiological functions in the human immune system. Numerous prospective studies report that inflammatory cytokines strongly predict coronary artery disease, myocardial infarction, heart failure and other adverse cardiac events. Inflammatory cascade is believed to be a causative factor in the development of atherosclerotic process. Several aspects of atherogenesis are accelerated by cytokines. This article provides an overall overview of current understanding of cytokines in various cardiovascular events. Besides, inflammatory cytokines trigger cellular events that can induce malignancy and carcinogenesis. Elevated expression of several cytokines such as interleukin-1, interleukin-6, interleukin-10, tumor necrosis factor-α, macrophage migration inhibitory factor and transforming growth factor-β are involved in tumor initiation and progression. Thus, they exert a pivotal role in cancer pathogenesis. This review highlights the role of several cytokines in various events of tumorigenesis. Actually, this article summarizes the contributions of cytokines in the pathogenesis of cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Md Ibrahim
- College of Medicine, University of South
Alabama, Mobile, AL, USA
| | - Md Lukman Hakim
- Department of Pharmaceutical Sciences,
North South University, Dhaka, Bangladesh
| | - Md. Salim Ahammed
- Department of Pharmacy, University of
Information Technology and Sciences, Dhaka, Bangladesh
| | - Asma Kabir
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Farhana Sultana
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| |
Collapse
|
117
|
Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, Akbari A, Inabadi M, Savardashtaki A, Johnston TP, Sahebkar A. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 2020; 19:345-357. [PMID: 32921216 DOI: 10.1080/14787210.2020.1822737] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has the characteristics of high transmission, diverse clinical manifestations, and a long incubation period. In addition to infecting the respiratory system, COVID-19 also has adverse effects on the cardiovascular system. COVID-19 causes acute myocardial injuries, as well as chronic damage to the cardiovascular system. AREAS COVERED The present review is aimed at providing current information on COVID-19 and the cardiovascular system. PubMed, Scopus, Science direct, and Google Scholar were searched. EXPERT OPINION It is suggested that heart injury caused by COVID-19 infection might be an important cause of severe clinical phenotypes or adverse events in affected patients. Myocardial damage is closely related to the severity of the disease and even the prognosis in patients with COVID-19. In addition to disorders that are caused by COVID-19 on the cardiovascular system, more protection should be employed for patients with preexisting cardiovascular disease (CVD). Hence, it is very important that once relevant symptoms appear, patients with COVID-19 be rapidly treated to reduce mortality. Thus, early measurements of cardiac damage via biomarkers following hospitalization for COVID-19 infections in a patient with preexisting CVD are recommended, together with careful monitoring of any myocardial injury that might be caused by the infection.Abbreviations: ICU: An intensive care unit; 2019-nCoV: 2019 novel coronavirus; ACEI: ACE inhibitor; ACS: Acute coronary syndrome; ARDS: Acute respiratory distress syndrome; AT1R: Ang II type 1 receptor; ATP: Adenosine triphosphate; ACC: American College of Cardiology; ACE: Angiotensin converting enzyme; Ang II: Angiotensin II; ARB: Angiotensin II receptor blocker; AV block: Atrioventricular block; CAD: Coronary artery disease; CVD: Cardiovascular disease; CT: Computerized tomography; CHF: Congestive heart failure; CHD: Coronary heart disease; CK-MB: Creatine kinase isoenzyme-MB; CRP: C-reactive protein; cTnI: Cardiac troponin I; EAT: Epicardial adipose tissue; ECMO: Extracorporeal membrane oxygenation; FDA: Food and Drug Administration; G-CSF: Granulocyte colony-stimulating factor; HFrEF: HF with a reduced ejection fraction; synhACE2: Human isoform of ACE2; IL: Interleukin; IABP: Intra-aortic balloon counterpulsation; IP10: Interferon γ-induced protein 10 kDa; LPC: Lysophosphatidylcholine; Mas: Mitochondrial assembly receptor; MCP1: Monocyte chemoattractant protein-1; MERS: Middle East respiratory syndrome; MIP1a: macrophage inflammatory protein 1a: MOF: Multiple organ failure; MI: Myocardial infarction; MRI: Magnetic resonance imaging; MYO: Myohe-moglobin; NT-proBNP: N-terminal pro-brain natriuretic peptide; PCPS: Percutaneous cardiopulmonary assistance; rhACE2: Recombinant human ACE2; SARS: Severe acute respiratory syndrome; Th: T helper; RAS: Renin-angiotensin system; TNF-α: Tumor necrosis factor-α; WHO: World Health Organization.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hajar Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbari
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Inabadi
- Department of Biology, Islamic Azad University, Jahrom Branch, Jahrom, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies' Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
118
|
Maayah ZH, Takahara S, Dyck JRB. The beneficial effects of reducing NLRP3 inflammasome activation in the cardiotoxicity and the anti-cancer effects of doxorubicin. Arch Toxicol 2020; 95:1-9. [PMID: 32852568 DOI: 10.1007/s00204-020-02876-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/12/2020] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a powerful broad-spectrum anti-neoplastic anthracycline antibiotic. However, DOX may cause a dose-dependent cardiotoxicity that can eventually progress to congestive heart failure and death. Numerous molecular mechanisms have been implicated in the cardiotoxic effect of DOX including topoisomerase IIβ and generation of free radicals. However, targeting these pathways appears to be insufficient to mitigate the cardiotoxic effects of DOX and/or ultimately reduces the anti-tumor activity of DOX. Thus, there remains a crucial need to identify novel pharmacological targets that can alleviate the cardiotoxic effects of DOX without reducing its anti-tumor activity. Recent studies have suggested that the Nucleotide-Binding Domain-Like Receptor Protein 3 (NLRP3) inflammasome is implicated in tumor progression and the chemoresistance of cancer cells to DOX. Of interest, reducing NLRP3 inflammasome activity alleviates DOX-induced cardiotoxicity. Therefore, we postulate that strategies that target the NLRP3 inflammasome can help mitigate the cardiotoxic effects of DOX while maintaining and/or even enhancing its anti-cancer activity. Herein, we review the current knowledge about the potential implication of the NLRP3 inflammasome in the anti-cancer and cardiotoxic effects of DOX.
Collapse
Affiliation(s)
- Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shingo Takahara
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,458 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
119
|
Inflammation and "The Epileptic Heart". Epilepsy Behav 2020; 109:107077. [PMID: 32303462 DOI: 10.1016/j.yebeh.2020.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/11/2023]
|
120
|
The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys Rev 2020; 12:947-968. [PMID: 32691301 PMCID: PMC7429613 DOI: 10.1007/s12551-020-00742-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of cardiovascular pathologies. These signaling networks contribute to the development of age-related diseases, suggesting crosstalk between the development of aging and cardiovascular disease. Inhibition and/or attenuation of these signaling networks also delays the onset of disease. Therefore, a concept of targeting the signaling networks that are involved in inflammation and oxidative stress may represent a novel treatment paradigm for many types of heart disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress especially in heart failure with preserved ejection fraction and emphasize the nature of the crosstalk of these signaling processes as well as possible therapeutic implications for cardiovascular medicine.
Collapse
|
121
|
Zhao M, Wang M, Zhang J, Ye J, Xu Y, Wang Z, Ye D, Liu J, Wan J. Advances in the relationship between coronavirus infection and cardiovascular diseases. Biomed Pharmacother 2020; 127:110230. [PMID: 32428835 PMCID: PMC7218375 DOI: 10.1016/j.biopha.2020.110230] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has once again aroused people's concern about coronavirus. Seven human coronaviruses (HCoVs) have been discovered so far, including HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU115, severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2. Existing studies show that the cardiovascular disease increased the incidence and severity of coronavirus infection. At the same time, myocardial injury caused by coronavirus infection is one of the main factors contributing to poor prognosis. In this review, the recent clinical findings about the relationship between coronaviruses and cardiovascular diseases and the underlying pathophysiological mechanisms are discussed. This review aimed to provide assistance for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
122
|
Katsi V, Antoniou CK, Manolakou P, Toutouzas K, Tousoulis D. What's in a prick? Vaccines and the cardiovascular system. Hellenic J Cardiol 2020; 61:233-240. [PMID: 31740362 DOI: 10.1016/j.hjc.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/22/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence suggests a crucial role for vaccines in cardiovascular disease, mediated not only by disease prevention but also by immunomodulatory effects. This review attempts to briefly present the effects of pathogens and vaccines on the cardiovascular system and potential mechanisms for the development of vaccines against cardiovascular diseases per se. Current epidemiological evidence regarding vaccine effectiveness in different categories of heart disease is discussed, as well as current international guidelines' recommendations. In summary, cardiologists should strive to promote vaccination against specific pathogens with proven beneficial effects on cardiovascular diseases.
Collapse
Affiliation(s)
- Vasiliki Katsi
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| |
Collapse
|
123
|
Bajaj NS, Gupta K, Gharpure N, Pate M, Chopra L, Kalra R, Prabhu SD. Effect of immunomodulation on cardiac remodelling and outcomes in heart failure: a quantitative synthesis of the literature. ESC Heart Fail 2020; 7:1319-1330. [PMID: 32198851 PMCID: PMC7261557 DOI: 10.1002/ehf2.12681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Immunomodulation in heart failure (HF) has been studied in several randomized controlled trials (RCTs) with variable effects on cardiac structure, function, and outcomes. We sought to determine the effect of immunomodulation on left ventricular ejection fraction (LVEF), LV end-diastolic dimension (LVEDD), and all-cause mortality in patients with HF with reduced ejection fraction (HFrEF) through meta-analyses and trial sequential analyses (TSAs) of RCTs. METHODS AND RESULTS PubMed, Embase®, Cochrane CENTRAL, and ClinicalTrials.gov were systematically reviewed to identify RCTs that studied the effects of immunomodulation in patients with HFrEF. The primary endpoint in this analysis was change in LVEF. Secondary outcomes were changes in LVEDD and all-cause mortality. TSA was used to quantify the statistical reliability of data in the cumulative meta-analyses. Nineteen RCTs with 1341 HFrEF subjects were eligible for analyses. The aetiology of HF, specific immunomodulation strategy, and treatment duration were variable across trials. Immunomodulation led to a greater improvement in LVEF [mean difference: +5.7% 95% confidence interval (CI): 3.0-8.5%, P < 0.001] and reduction in LVEDD (mean difference: -3.7 mm, 95% CI: -7.0 to -0.4 mm, P = 0.028) than no immunomodulation in meta-analyses and TSAs. We observed a non-significant decrease in all-cause mortality among those on immumomodulation (risk ratio: 0.7, 95% CI: 0.4-1.3, P = 0.234), but the Z-curve for cumulative treatment effect of immunomodulation in the TSA did not cross the boundary of futility. CONCLUSIONS Immunomodulation led to improved cardiac structure and function in patients with HFrEF. While these benefits did not translate into a significant improvement in mortality, our analysis suggests that larger studies of targeted immunomodulation are needed to understand the true benefits.
Collapse
Affiliation(s)
- Navkaranbir S. Bajaj
- Division of Cardiovascular DiseaseUniversity of Alabama at Birmingham1900 University Boulevard, 311 THTBirminghamAL35294‐0006USA
- Cardiology Service, Birmingham Veterans Affair Medical CenterBirminghamALUSA
- Division of Molecular Imaging and Therapeutics, Department of RadiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kartik Gupta
- Division of Cardiovascular DiseaseUniversity of Alabama at Birmingham1900 University Boulevard, 311 THTBirminghamAL35294‐0006USA
| | - Nitin Gharpure
- Division of Cardiovascular DiseaseUniversity of Alabama at Birmingham1900 University Boulevard, 311 THTBirminghamAL35294‐0006USA
| | - Mike Pate
- Division of Cardiovascular DiseaseUniversity of Alabama at Birmingham1900 University Boulevard, 311 THTBirminghamAL35294‐0006USA
| | - Lakshay Chopra
- Division of Cardiovascular DiseaseUniversity of Alabama at Birmingham1900 University Boulevard, 311 THTBirminghamAL35294‐0006USA
| | - Rajat Kalra
- Cardiovascular DivisionUniversity of MinnesotaMinneapolisMNUSA
| | - Sumanth D. Prabhu
- Division of Cardiovascular DiseaseUniversity of Alabama at Birmingham1900 University Boulevard, 311 THTBirminghamAL35294‐0006USA
- Cardiology Service, Birmingham Veterans Affair Medical CenterBirminghamALUSA
| |
Collapse
|
124
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
125
|
Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, Qiu Z. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep 2020; 22:948-956. [PMID: 32468049 PMCID: PMC7339405 DOI: 10.3892/mmr.2020.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease that can lead to heart expansion and severe heart failure, but the specific pathogenesis remains unclear. Sox5 is a member of the Sox family with a key role in cardiac function. However, the role of Sox5 in DCM remains unclear. In the present study, wild-type mice were intraperitoneally injected with doxorubicin (Dox) to induce DCM, and heart specimens from human patients with DCM were used to investigate the preliminary role of Sox5 in DCM. The present study demonstrated that, compared with control human hearts, the hearts of patients with DCM exhibited high expression levels of Sox5 and activation of the wnt/β-catenin pathway. This result was consistent with Dox-induced DCM in mice. Furthermore, in Dox-treated mice, apoptosis was activated during the development of DCM. Inflammation and collagen deposition also increased in DCM mice. The results of the present study indicate that Sox5 may be associated with the development of DCM. Sox5 may be a novel potential factor that regulates DCM.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ben Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Li Yin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
126
|
|
127
|
Vasanthan V, Fatehi Hassanabad A, Pattar S, Niklewski P, Wagner K, Fedak PWM. Promoting Cardiac Regeneration and Repair Using Acellular Biomaterials. Front Bioeng Biotechnol 2020; 8:291. [PMID: 32363184 PMCID: PMC7180212 DOI: 10.3389/fbioe.2020.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease is a common cause of end-stage heart failure and has persisted as one of the main causes of end stage heart failure requiring transplantation. Maladaptive myocardial remodeling due to ischemic injury involves multiple cell types and physiologic mechanisms. Pathogenic post-infarct remodeling involves collagen deposition, chamber dilatation and ventricular dysfunction. There have been significant improvements in medication and revascularization strategies. However, despite medical optimization and opportunities to restore blood flow, physicians lack therapies that directly access and manipulate the heart to promote healthy post-infarct myocardial remodeling. Strategies are now arising that use bioactive materials to promote cardiac regeneration by promoting angiogenesis and inhibiting cardiac fibrosis; and many of these strategies leverage the unique advantage of cardiac surgery to directly visualize and manipulate the heart. Although cellular-based strategies are emerging, multiple barriers exist for clinical translation. Acellular materials have also demonstrated preclinical therapeutic potential to promote angiogenesis and attenuate fibrosis and may be able to surmount these translational barriers. Within this review we outline various acellular biomaterials and we define epicardial infarct repair and intramyocardial injection, which focus on administering bioactive materials to the cardiac epicardium and myocardium respectively to promote cardiac regeneration. In conjunction with optimized medical therapy and revascularization, these techniques show promise to upregulate pathways of cardiac regeneration to preserve heart function.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Simranjit Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Niklewski
- MDP Solutions, Cincinnati, OH, United States
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Health Economics and Clinical Outcomes Research, Xavier University, Cincinnati, OH, United States
| | - Karl Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
128
|
Bekar L, Kalçık M, Katar M, Yetim M, Çelik O, Doğan T, Karavelioğlu Y, Gölbaşı Z. Investigation of ICAM-1 levels in hypertensive patients with fragmented QRS complexes. Acta Cardiol 2020; 75:123-129. [PMID: 30650029 DOI: 10.1080/00015385.2018.1555200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective: Fragmented QRS (fQRS) detected on a 12-lead electrocardiogram (ECG) has been demonstrated to be a marker of myocardial fibrosis. Intercellular adhesion molecule-1 (ICAM-1) is a protein which plays an important role in fibro-inflammatory processes. In this study, we aimed to investigate the relationship between ICAM-1 levels and the presence of fQRS in hypertensive patients.Methods: Ninety consecutive patients who were diagnosed with hypertension were included in the study. ECG and transthoracic echocardiography were performed to all patients. fQRS was defined as additional R' wave or notching/splitting of S wave in two contiguous ECG leads. Serum ICAM-1 levels were measured using the enzyme-linked immunosorbent assay method. Patients were divided into two groups according to the presence of fQRS.Results: A total of 90 patients (female, 65%; mean age: 54.6 ± 8.5 years) were included in the study. fQRS was detected on ECG recordings of 47 (52.2%) patients. The demographic characteristics were similar between the groups. Left atrial diameter (p = .003), interventricular septal thickness (p = .013), posterior wall thickness (p = .01), left ventricular mass (p = .002), left ventricular mass index (p < .001), left ventricular hypertrophy (p = .001), and ICAM-1 levels (p < .001) were found to be significantly increased in fQRS(+) group. In multivariate analysis, only high ICAM-1 level was observed to be an independent predictor for the presence of fQRS (odds ratio: 1.029; 95%Confidence Interval: 1.013-1.045, p < .001).Conclusion: A significant association exists between serum ICAM-1 levels and the presence of fQRS in hypertensive patients. The presence of fQRS may be used as an indicator of inflammation in hypertensive patients.
Collapse
Affiliation(s)
- Lütfü Bekar
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Macit Kalçık
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Muzaffer Katar
- Department of Biochemistry, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey
| | - Mucahit Yetim
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Oğuzhan Çelik
- Department of Cardiology, Muğla Sıtkı Koçman Training and Research Hospital, Muğla, Turkey
| | - Tolga Doğan
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Yusuf Karavelioğlu
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Zehra Gölbaşı
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| |
Collapse
|
129
|
Abstract
Inflammation has long been known to play a role in heart failure (HF). Earlier studies demonstrated that inflammation contributes to the pathogenesis of HF with reduced ejection fraction (HFrEF), and the knowledge about molecules and cell types specifically involved in inflammatory events has been constantly increased ever since. However, conflicting results of several trials with anti-inflammatory treatments led to the conclusions that inflammation does participate in the progression of HFrEF, but more likely it is not the primary event. Conversely, it has been suggested that inflammation drives the development of HF with preserved ejection fraction (HFpEF). Recently the pharmacological blockade of interleukin-1 has been shown to prevent HF hospitalization and mortality in patients with prior myocardial infarction, lending renewed support to the hypothesis that inflammation is a promising therapeutic target in HF. Inflammation has also been proposed to underlie both HF and commonly associated conditions, such as chronic kidney disease or cancer. Within this last paradigm, an emergent role has been ascribed to clonal hematopoiesis of indeterminate potential. Here, we summarize the recent evidence about the role of inflammation in HF, highlighting the similarities and differences in HFrEF vs. HFpEF, and discuss the diagnostic and therapeutic opportunities raised by antinflammatory-based approaches.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB11.208, Dallas, TX, 75390-8573, USA.
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
130
|
Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev 2020; 33:155-179. [PMID: 32172721 DOI: 10.1017/s0954422420000049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome that represents a major cause of morbidity and mortality in Western countries. Several nutraceuticals have shown interesting clinical results in HF prevention as well as in the treatment of the early stages of the disease, alone or in combination with pharmacological therapy. The aim of the present expert opinion position paper is to summarise the available clinical evidence on the role of phytochemicals in HF prevention and/or treatment that might be considered in those patients not treated optimally as well as in those with low therapy adherence. The level of evidence and the strength of recommendation of particular HF treatment options were weighed up and graded according to predefined scales. A systematic search strategy was developed to identify trials in PubMed (January 1970 to June 2019). The terms 'nutraceuticals', 'dietary supplements', 'herbal drug' and 'heart failure' or 'left verntricular dysfunction' were used in the literature search. The experts discussed and agreed on the recommendation levels. Available clinical trials reported that the intake of some nutraceuticals (hawthorn, coenzyme Q10, l-carnitine, d-ribose, carnosine, vitamin D, probiotics, n-3 PUFA and beet nitrates) might be associated with improvements in self-perceived quality of life and/or functional parameters such as left ventricular ejection fraction, stroke volume and cardiac output in HF patients, with minimal or no side effects. Those benefits tended to be greater in earlier HF stages. Available clinical evidence supports the usefulness of supplementation with some nutraceuticals to improve HF management in addition to evidence-based pharmacological therapy.
Collapse
|
131
|
Li Q, Qin L, Li J. Enhancement by TNF-α of TTX-resistant Na V current in muscle sensory neurons after femoral artery occlusion. Am J Physiol Regul Integr Comp Physiol 2020; 318:R772-R780. [PMID: 32101460 DOI: 10.1152/ajpregu.00338.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Femoral artery occlusion in rats has been used to study human peripheral artery disease (PAD). Using this animal model, a recent study suggests that increases in levels of tumor necrosis factor-α (TNF-α) and its receptor lead to exaggerated responses of sympathetic nervous activity and arterial blood pressure as metabolically sensitive muscle afferents are activated. Note that voltage-dependent Na+ subtype NaV1.8 channels (NaV1.8) are predominately present in chemically sensitive thin fiber sensory nerves. The purpose of this study was to examine the role played by TNF-α in regulating activity of NaV1.8 currents in muscle dorsal root ganglion (DRG) neurons of rats with PAD induced by femoral artery occlusion. DRG neurons from control and occluded limbs of rats were labeled by injecting the fluorescent tracer DiI into the hindlimb muscles 5 days before the experiments. A voltage patch-clamp mode was used to examine TTX-resistant (TTX-R) NaV currents. Results were as follows: 72 h of femoral artery occlusion increased peak amplitude of TTX-R [1,922 ± 139 pA in occlusion (n = 11 DRG neurons) vs. 1,178 ± 39 pA in control (n = 10), means ± SE; P < 0.001 between the 2 groups] and NaV1.8 currents [1,461 ± 116 pA in occlusion (n = 11) and 766 ± 48 pA in control (n = 10); P < 0.001 between groups] in muscle DRG neurons. TNF-α exposure amplified TTX-R and NaV1.8 currents in DRG neurons of occluded muscles in a dose-dependent manner. Notably, the amplification of TTX-R and NaV1.8 currents induced by TNF-α was attenuated in DRG neurons with preincubation with respective inhibitors of the intracellular signaling pathways p38-MAPK, JNK, and ERK. In conclusion, our data suggest that NaV1.8 is engaged in the role of TNF-α in amplifying muscle afferent inputs as the hindlimb muscles are ischemic; p38-MAPK, JNK, and ERK pathways are likely necessary to mediate the effects of TNF-α.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
132
|
The 3' Untranslated Region Protects the Heart from Angiotensin II-Induced Cardiac Dysfunction via AGGF1 Expression. Mol Ther 2020; 28:1119-1132. [PMID: 32061268 DOI: 10.1016/j.ymthe.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
The messenger RNA (mRNA) 3' untranslated regions (3' UTRs), as cis-regulated elements bound by microRNAs (miRNAs), affect their gene translation. However, the role of the trans-regulation of 3' UTRs during heart dysfunction remains elusive. Compared with administration of angiogenic factor with G-patch and forkhead-associate domains 1 (Aggf1), ectopic expression of Aggf1 with its 3' UTR significantly suppressed cardiac dysfunction in angiotensin II-infused mice, with upregulated expression of both Aggf1 and myeloid cell leukemia 1 (Mcl1). Along their 3' UTRs, Mcl1 and Aggf1 mRNAs share binding sites for the same miRNAs, including miR-105, miR-101, and miR-93. We demonstrated that the protein-coding Mcl1 and Aggf1 mRNAs communicate and co-regulate each other's expression through competition for these three miRNAs that target both transcripts via their 3' UTRs. Our results indicate that Aggf1 3' UTR, as a trans-regulatory element, accelerates the cardioprotective role of Aggf1 in response to hypertensive conditions by elevating Mcl1 expression. Our work broadens the scope of gene therapy targets and provides a new insight into gene therapy strategies involving 3' UTRs.
Collapse
|
133
|
Li W, Li L, Li W, Chopp M, Venkat P, Zacharek A, Chen Z, Landschoot-Ward J, Chen J. Spleen associated immune-response mediates brain-heart interaction after intracerebral hemorrhage. Exp Neurol 2020; 327:113209. [PMID: 31987832 DOI: 10.1016/j.expneurol.2020.113209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) patients frequently encounter cardiovascular complications which may contribute to increased mortality and poor long term outcome. ICH induces systemic oxidative stress and activates peripheral immune responses which are involved in the pathological cascade leading to cardiac dysfunction and heart failure after ICH. We have previously reported that ICH induces progressive cardiac dysfunction in mice without primary cardiac diseases. In this study, we have investigated the role of immune response in mediating cardiac dysfunction post ICH in mice. METHODS Adult male C57BL/6 J mice were randomly assigned to the following groups (n = 8/group): 1) sham control; 2) ICH; 3) splenectomy with ICH (ICH + Spx); 4) splenectomy alone (Spx). Echocardiography was performed at 7 and 28 days after ICH. A battery of neurological and cognitive tests were performed. Flow cytometry, western blot and immunostaining were used to test mechanisms of ICH induced cardiac dysfunction. RESULTS Compared to sham control mice, Spx alone does not induce acute (7 day) or chronic (28 day) cardiac dysfunction. ICH induces significant neurological and cognitive deficits, as well as acute and chronic cardiac dysfunction compared to sham control mice. Mice subjected to ICH + Spx exhibit significantly improved neurological and cognitive function compared to ICH mice. Mice with ICH + Spx also exhibit significantly improved acute and chronic cardiac function compared to ICH mice indicated by increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), decreased cardiac fibrosis, decreased cardiomyocyte hypertrophy, decreased cardiac infiltration of immune cells and decreased expression of inflammatory factor and oxidative stress in the heart. CONCLUSIONS Our study demonstrates that splenectomy attenuates ICH-induced neurological and cognitive impairment as well as ICH-induced cardiac dysfunction in mice. Inflammatory cell infiltration into heart and immune responses mediated by the spleen may contribute to ICH-induce acute and chronic cardiac dysfunction and pathological cardiac remodeling.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA.
| | - Linlin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenkui Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA.
| |
Collapse
|
134
|
Abstract
The observation that heart failure with reduced ejection fraction is associated with elevated circulating levels of pro-inflammatory cytokines opened a new area of research that has revealed a potentially important role for the immune system in the pathogenesis of heart failure. However, until the publication in 2019 of the CANTOS trial findings on heart failure outcomes, all attempts to target inflammation in the heart failure setting in phase III clinical trials resulted in neutral effects or worsening of clinical outcomes. This lack of positive results in turn prompted questions on whether inflammation is a cause or consequence of heart failure. This Review summarizes the latest developments in our understanding of the role of the innate and adaptive immune systems in the pathogenesis of heart failure, and highlights the results of phase III clinical trials of therapies targeting inflammatory processes in the heart failure setting, such as anti-inflammatory and immunomodulatory strategies. The most recent of these studies, the CANTOS trial, raises the exciting possibility that, in the foreseeable future, we might be able to identify those patients with heart failure who have a cardio-inflammatory phenotype and will thus benefit from therapies targeting inflammation.
Collapse
|
135
|
Electrochemical immunosensors for the detection of cytokine tumor necrosis factor alpha: A review. Talanta 2020; 211:120758. [PMID: 32070602 DOI: 10.1016/j.talanta.2020.120758] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
In this review, we focus on recent developments in nonlabeled@label-free and labeled@sandwich assay concepts of tumor necrosis factor-alpha (TNF-α) using numerous electrochemical approaches. The fundamental role of such nanostructured materials for the improvement of the analytical response and thus the analytical figures of merit of various TNF-α sensing operations were revealed. Also, this examination focused on recent developments in immuno-electrochemical cytokine TNF-α sensors based on nanostructured materials from 2006 to 2019.
Collapse
|
136
|
Bondar G, Xu W, Elashoff D, Li X, Faure-Kumar E, Bao TM, Grogan T, Moose J, Deng MC. Comparing NGS and NanoString platforms in peripheral blood mononuclear cell transcriptome profiling for advanced heart failure biomarker development. J Biol Methods 2020; 7:e123. [PMID: 31976350 PMCID: PMC6974694 DOI: 10.14440/jbm.2020.300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
In preparation to create a clinical assay that predicts 1-year survival status of advanced heart failure (AdHF) patients before surgical/interventional therapies and to select the appropriate clinical assay platform for the future assay, we compared the properties of next generation sequencing (NGS) used in the gene discovery phase to the NanoString platform used in the clinical assay development phase. In 25 AdHF patients in a tertiary academic medical center from 2015 to 2016, PBMC samples were collected and aliquoted for NGS RNA whole transcriptome sequencing and compared to 770 genes represented on NanoString's PanCancer IO 360 Gene Expression research panel. Prior to statistical analysis, NanoString and NGS expression values were log transformed. We computed Pearson correlation coefficients for each sample, comparing gene expression values between NanoString and NGS across the set of matched genes and for each of the matched genes across the set of samples. Genes were grouped by average NGS expression, and the NanoString-NGS correlation for each group was computed. Out of 770 genes from the NanoString panel, 734 overlapped between both platforms and showed high intrasample correlation. Within an individual sample, there was an expression-level dependent correlation between both platforms. The low- vs. intermediate/high-expression groups showed NGS average correlation 0.21 vs. 0.58-0.68, respectively, and NanoString average correlation 0.07-0.34 vs. 0.59-0.70, respectively. NanoString demonstrated high reproducibility (R 2 > 0.99 for 100 ng input), sensitivity (probe counts between 100 and 500 detected and quantified), and robustness (similar gene signature scores across different RNA input concentrations, cartridges, and outcomes). Data from NGS and NanoString were highly correlated. These platforms play a meaningful, complementary role in the biomarker development process.
Collapse
Affiliation(s)
- Galyna Bondar
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
- LeukoLifeDx, Point Pleasant, NJ 08742, USA
| | - Wenjie Xu
- Nanostring Technologies, Seattle, WA 98109, USA
| | - David Elashoff
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
| | - Xinmin Li
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
| | - Emmanuelle Faure-Kumar
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
| | - Tra-Mi Bao
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
- LeukoLifeDx, Point Pleasant, NJ 08742, USA
| | - Tristan Grogan
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
| | - Jim Moose
- LeukoLifeDx, Point Pleasant, NJ 08742, USA
| | - Mario C. Deng
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA 90095, USA
- LeukoLifeDx, Point Pleasant, NJ 08742, USA
| |
Collapse
|
137
|
Meyre P, Conen D. Does tooth brushing protect from atrial fibrillation and heart failure? Eur J Prev Cardiol 2019; 27:1832-1834. [PMID: 31786951 DOI: 10.1177/2047487319886413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Pascal Meyre
- Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Canada
| |
Collapse
|
138
|
Liang S, Lai P, Li X, Xu J, Bao Y, Fang Y, Ding M. Ulinastatin Reduces the Severity of Intestinal Damage in the Neonatal Rat Model of Necrotizing Enterocolitis. Med Sci Monit 2019; 25:9123-9130. [PMID: 31786582 PMCID: PMC6904988 DOI: 10.12659/msm.919413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Ulinastatin is a protease inhibitor derived from urine that has shown anti-inflammatory effects in human disease, including in sepsis. Necrotizing enterocolitis (NEC) is a common gastrointestinal disease in premature infants. Our aim was to explore the effects of ulinastatin on a neonatal NEC rat model. Material/Methods Forty-five neonatal rats were divided into 3 groups: normal control; NEC+sepsis-induced kidney injury (SIRS); NEC/SIRS+ulinastatin. The NEC/SIRS model was induced by injection of intraperitoneal saline, enteral formula feeding, hypoxia-hyperoxide, and cold stress exposure. The NEC/SIRS neonatal rats were perfused with ulinastatin at a dose of 10 000 u/kg/day. Giemsa staining and hematoxylin and eosin (H&E) were performed to evaluate the severity of intestinal damage. To assess intestinal cell apoptosis, we examined the expression of caspase-3 by TUNEL staining and western blot analysis. Intestinal levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) were examined using ELISA assay. Results Rats in the NEC treated with ulinastatin group had better physiological status and histological score compared to the NEC/SIRS group. Ulinastatin reduced NEC-induced weight loss. Macroscopic and microscopic morphology analyses showed that rats in the NEC treated with ulinastatin group had lower severity of intestinal damage compared to the NEC/SIRS group. TUNEL staining and caspase-3 expression detection results revealed that ulinastatin significantly inhibited intestinal cell apoptosis of NEC. Furthermore, ulinastatin decreased the intestinal levels of IL-1β, IL-6, and TNF-α in NEC. Conclusions Ulinastatin could ameliorate the severity of intestinal damage in NEC and possess anti-apoptosis and anti-inflammation effects.
Collapse
Affiliation(s)
- Shuxia Liang
- Department of Ophthalmology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Panjian Lai
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Xiaobing Li
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Jie Xu
- Operating Room, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Yunguang Bao
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Yuanshu Fang
- Department of Laboratory Animals Center, Jinhua Institute for Food and Drug Control, Jinhua, Zhejiang, China (mainland)
| | - Mingxing Ding
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China (mainland)
| |
Collapse
|
139
|
Kennel PJ, Liao X, Saha A, Ji R, Zhang X, Castillero E, Brunjes D, Takayama H, Naka Y, Thomas T, George I, Mancini D, Schulze PC. Impairment of Myocardial Glutamine Homeostasis Induced By Suppression of the Amino Acid Carrier SLC1A5 in Failing Myocardium. Circ Heart Fail 2019; 12:e006336. [DOI: 10.1161/circheartfailure.119.006336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter J. Kennel
- Division of Cardiology (P.J.K., X.L., A.S., R.J., X.Z., D.B.)
- Division of Cardiology, Department of Internal Medicine I, University Hospital Jena, Friedrich-Schiller-University, Germany (P.J.K., P.C.S.)
| | - Xianghai Liao
- Division of Cardiology (P.J.K., X.L., A.S., R.J., X.Z., D.B.)
| | - Amit Saha
- Division of Cardiology (P.J.K., X.L., A.S., R.J., X.Z., D.B.)
| | - Ruiping Ji
- Division of Cardiology (P.J.K., X.L., A.S., R.J., X.Z., D.B.)
| | - Xiaokan Zhang
- Division of Cardiology (P.J.K., X.L., A.S., R.J., X.Z., D.B.)
| | - Estibaliz Castillero
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons (E.C., H.T., Y.N., I.G.)
| | - Danielle Brunjes
- Division of Cardiology (P.J.K., X.L., A.S., R.J., X.Z., D.B.)
- Mount Sinai Heart, New York (D.B., D.M.)
| | - Hiroo Takayama
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons (E.C., H.T., Y.N., I.G.)
| | - Yoshifumi Naka
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons (E.C., H.T., Y.N., I.G.)
| | - Tiffany Thomas
- Department of Pathology and Cell Biology (T.T.), Columbia University, New York, NY
| | - Isaac George
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons (E.C., H.T., Y.N., I.G.)
| | | | - P. Christian Schulze
- Division of Cardiology, Department of Internal Medicine I, University Hospital Jena, Friedrich-Schiller-University, Germany (P.J.K., P.C.S.)
| |
Collapse
|
140
|
Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep 2019; 71:1228-1234. [PMID: 31670059 DOI: 10.1016/j.pharep.2019.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sepsis causes organ dysfunctions via elevation of oxidative stress and inflammation. Lipopolysaccharide (LPS) is the major surface molecule of most gram-negative bacteria and routinely used as a sepsis model in investigation studies. Crocin is an active compound of saffron which has different pharmacological properties such as anti-oxidant and anti-inflammatory. In this research, the protective effect of crocin was evaluated against LPS-induced toxicity in the embryonic cardiomyocyte cell line (H9c2). METHODS The cells were pre-treated with different concentration of crocin (10, 20 and 40 μM) for 24 h, and then LPS was added (10 μg/ml) for another 24 h. Afterward, the percentage of cell viability and the levels of inflammatory cytokines (TNF-α, PGE2, IL-1β, and IL-6), gene expression levels (TNF-α, COX-2, IL-1β, IL-6, and iNOS), and the level of nitric oxide (NO) and thiol were measured. RESULTS Our results showed that LPS reduced cell viability, increased the levels of cytokines, gene-expression, nitric oxide, and thiol. Crocin attenuated the LPS-induced toxicity in H9c2 cells via reducing the levels of inflammatory factors (TNF-α, PGE2, IL-1β, and IL-6, p < 0.001), gene expression (TNF-α, COX-2, IL-1β, IL-6, and iNOS, p < 0.001), and NO (p < 0.001), whereas increased the level of thiol content (p < 0.001). CONCLUSION The observed results revealed that crocin has preventive effects on the LPS induced sepsis and its cardiac toxicity in-vitro model. Probably, these findings are related to anti-inflammatory and anti-oxidant properties of crocin. However, performing further animal studies are necessary to support the therapeutic effects of crocin in septic shock cardiac dysfunction.
Collapse
Affiliation(s)
- Vafa Baradaran Rahim
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Khammar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
141
|
Brayson D, Frustaci A, Verardo R, Chimenti C, Russo MA, Hayward R, Ahmad S, Vizcay-Barrena G, Protti A, Zammit PS, dos Remedios CG, Ehler E, Shah AM, Shanahan CM. Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies. JCI Insight 2019; 4:126315. [PMID: 31622279 PMCID: PMC6948859 DOI: 10.1172/jci.insight.126315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues, yet its impact upon the heart is unknown. Here, we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy, and we show that a potentially novel mouse model of cardiac-specific prelamin A accumulation exhibited a phenotype consistent with inflammatory cardiomyopathy, which we observed to be similar to HIV-associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings (a) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (b) have implications for the management of HIV patients with cardiac disease, suggesting protease inhibitors should be replaced with alternative therapies (i.e., nonnucleoside reverse transcriptase inhibitors); and (c) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy.
Collapse
Affiliation(s)
- Daniel Brayson
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Andrea Frustaci
- Department of Cardiovascular, Nefrologic, Anestesiologic and Geriatric Sciences, La Sapienza University of Rome, Italy.,National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Romina Verardo
- National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Cristina Chimenti
- Department of Cardiovascular, Nefrologic, Anestesiologic and Geriatric Sciences, La Sapienza University of Rome, Italy.,National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Matteo Antonio Russo
- MEBIC Open University San Raffaele and IRCCS San Raffaele Pisana, Laboratory of Molecular and Cellular Pathology, Milan, Italy
| | - Robert Hayward
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Sadia Ahmad
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | | | - Andrea Protti
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Elisabeth Ehler
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| |
Collapse
|
142
|
The role of toll-like receptors in myocardial toxicity induced by doxorubicin. Immunol Lett 2019; 217:56-64. [PMID: 31707054 DOI: 10.1016/j.imlet.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Doxorubicin is an effective antitumor drug commonly used in the treatment of a wide variety of cancers. However, doxorubicin may cause cardiac toxicity, which can cause congestive heart failure in severe cases, and this seriously limits its clinical application. It is believed that doxorubicin promotes the formation of reactive oxygen species, inducing oxidative stress, and at the same time, reduces the content of antioxidant substances in cardiac tissues, causing adverse effects. Toll-like receptors (TLRs) are biomolecules expressed on the surfaces of macrophages, dendritic cells, and epithelial cells that can recognize various types of pathogen-related or damage-related molecular patterns. In recent years, a large number of studies have confirmed that TLRs play important roles in the cardiac toxicity induced by doxorubicin. This review aimed to explore the role of TLRs in the cardiac toxicity induced by doxorubicin and provide possible solutions.
Collapse
|
143
|
Affiliation(s)
- Adam D DeVore
- Department of Medicine and Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.D.D.)
| | - Ankeet S Bhatt
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.S.B.)
| |
Collapse
|
144
|
Ekizler FA, Cay S, Açar B, Tak BT, Kafes H, Ozeke O, Cetin EHO, Ozcan F, Topaloglu S, Tufekcioglu O, Aras D. Monocyte to high-density lipoprotein cholesterol ratio predicts adverse cardiac events in patients with hypertrophic cardiomyopathy. Biomark Med 2019; 13:1175-1186. [DOI: 10.2217/bmm-2019-0089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: The aim of the study was to investigate the monocyte count to HDL cholesterol ratio (MHR) on the prognosis of patients with hypertrophic cardiomyopathy (HCM). Materials & methods: A total of 411 patients with HCM were assessed. The primary end point was cardiovascular death or malignant arrhythmic events. Results: During the follow-up, primary end point was developed in 54 (13.1%) patients. Receiver operating characteristic (ROC) analysis showed that using a cut-off level of 14.57, MHR predicted the occurrence of primary end point with a sensitivity of 72% and specificity of 72%. In the multivariate model, high MHR was the only significant predictor of the primary end point. Conclusion: This study showed that higher MHR level is an independent predictor of malignant arrhythmia and death in patients with HCM.
Collapse
Affiliation(s)
- Firdevs Aysenur Ekizler
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Serkan Cay
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Burak Açar
- Department of Cardiology, Faculty of Medicine, Kocaeli University, 41060 Kocaeli, Turkey
| | - Bahar Tekin Tak
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Habibe Kafes
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Ozcan Ozeke
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Elif Hande Ozcan Cetin
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Firat Ozcan
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Serkan Topaloglu
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Omac Tufekcioglu
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| | - Dursun Aras
- Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Heart-Education & Research Hospital, 06110 Ankara, Turkey
| |
Collapse
|
145
|
Role of Myocardial Infarction-Induced Neuroinflammation for Depression-Like Behavior and Heart Failure in Ovariectomized Female Rats. Neuroscience 2019; 415:201-214. [DOI: 10.1016/j.neuroscience.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
|
146
|
Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol 2019; 18:733-744. [PMID: 30228378 DOI: 10.1038/s41577-018-0065-8] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past few decades have generated growing recognition that the immune system makes an important contribution to cardiac development, composition and function. Immune cells infiltrate the heart at gestation and remain in the myocardium, where they participate in essential housekeeping functions throughout life. After myocardial infarction or in response to infection, large numbers of immune cells are recruited to the heart to remove dying tissue, scavenge pathogens and promote healing. Under some circumstances, immune cells can cause irreversible damage, contributing to heart failure. This Review focuses on the role of the immune system in the heart under both homeostatic and perturbed conditions.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
147
|
Transcript levels for extracellular matrix proteins are altered in MK5-deficient cardiac ventricular fibroblasts. J Mol Cell Cardiol 2019; 132:164-177. [DOI: 10.1016/j.yjmcc.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
|
148
|
Abe H, Takeda N, Isagawa T, Semba H, Nishimura S, Morioka MS, Nakagama Y, Sato T, Soma K, Koyama K, Wake M, Katoh M, Asagiri M, Neugent ML, Kim JW, Stockmann C, Yonezawa T, Inuzuka R, Hirota Y, Maemura K, Yamashita T, Otsu K, Manabe I, Nagai R, Komuro I. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat Commun 2019; 10:2824. [PMID: 31249305 PMCID: PMC6597788 DOI: 10.1038/s41467-019-10859-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
The fibrogenic response in tissue-resident fibroblasts is determined by the balance between activation and repression signals from the tissue microenvironment. While the molecular pathways by which transforming growth factor-1 (TGF-β1) activates pro-fibrogenic mechanisms have been extensively studied and are recognized critical during fibrosis development, the factors regulating TGF-β1 signaling are poorly understood. Here we show that macrophage hypoxia signaling suppresses excessive fibrosis in a heart via oncostatin-m (OSM) secretion. During cardiac remodeling, Ly6Chi monocytes/macrophages accumulate in hypoxic areas through a hypoxia-inducible factor (HIF)-1α dependent manner and suppresses cardiac fibroblast activation. As an underlying molecular mechanism, we identify OSM, part of the interleukin 6 cytokine family, as a HIF-1α target gene, which directly inhibits the TGF-β1 mediated activation of cardiac fibroblasts through extracellular signal-regulated kinase 1/2-dependent phosphorylation of the SMAD linker region. These results demonstrate that macrophage hypoxia signaling regulates fibroblast activation through OSM secretion in vivo. Fibrosis is a hallmark of several cardiac pathologies and its underlying mechanisms are still poorly defined. Here the authors show that macrophage hypoxia signaling following transverse aortic constriction in mice suppresses the activation of cardiac fibroblasts by secreting oncostatin M.
Collapse
Affiliation(s)
- Hajime Abe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, SE5 9NU, UK
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| | - Takayuki Isagawa
- Graduate School of Biomedical Science, Nagasaki University, 1-7-1sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroaki Semba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Cardiovascular Medicine, The Cardiovascular Institute, 3-2-19 Nishiazabu, Minato-ku, Tokyo, 106-00031, Japan
| | - Satoshi Nishimura
- PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.,Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Masaki Suimye Morioka
- Depertment of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8510, Japan
| | - Yu Nakagama
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuyuki Sato
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Katsura Soma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Katsuhiro Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Wake
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masataka Asagiri
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Michael L Neugent
- Department of Biological Sciences, The University of Texas at Dallas, 800W. Campbell Road FO 3.704G, Richardson, TX, 75080, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, 800W. Campbell Road FO 3.704G, Richardson, TX, 75080, USA
| | - Christian Stockmann
- Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland.,Cancer Research Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Tomo Yonezawa
- Center for Therapeutic Innovation, Gene Research Center, Center for Frontier Life Sciences, Nagasaki University, Graduate School of Biomedical Sciences, 1-12-14 Sakamoto, Nagasaki, 852-8523, Japan
| | - Ryo Inuzuka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Maemura
- Graduate School of Biomedical Science, Nagasaki University, 1-7-1sakamoto, Nagasaki, 852-8501, Japan
| | - Takeshi Yamashita
- Department of Cardiovascular Medicine, The Cardiovascular Institute, 3-2-19 Nishiazabu, Minato-ku, Tokyo, 106-00031, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, SE5 9NU, UK
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Ryozo Nagai
- Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, Tochigi, 329-0498, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
149
|
Hu D, Li L, Li S, Wu M, Ge N, Cui Y, Lian Z, Song J, Chen H. Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. J Mol Cell Cardiol 2019; 133:99-111. [PMID: 31181226 DOI: 10.1016/j.yjmcc.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the closed, high-pressure and circular blood vascular circulation, the lymphatic system forms an open, low-pressure and unidirectional transit network from the extracellular space to the venous system. It plays a key role in regulating tissue fluid homeostasis, absorption of gastrointestinal lipids, and immune surveillance throughout the body. Despite the critical physiological functions of the lymphatic system, a complete understanding of the lymphatic vessels lags far behind that of the blood vasculatures due to the challenge of their visualization. During the last 20 years, discoveries of underlying genes responsible for lymphatic vessel biology, combined with state-of-the-art lymphatic function imaging and quantification techniques, have established the importance of the lymphatic vasculature in the pathogenesis of cardiovascular diseases including lymphedema, obesity and metabolic diseases, dyslipidemia, hypertension, inflammation, atherosclerosis and myocardial infraction. In this review, we highlight the most recent advances in the field of lymphatic vessel biology, with an emphasis on the new identification techniques of lymphatic system, pathophysiological mechanisms of atherosclerosis and myocardial infarction, and new therapeutic perspectives of lymphangiogenesis.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Long Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Sufang Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Nana Ge
- Department of Geriatrics, Beijing Renhe Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Zheng Lian
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
150
|
Lourenço P, Pereira J, Ribeiro A, Ferreira-Coimbra J, Barroso I, Guimarães JT, Leite-Moreira A, Bettencourt P. C-reactive protein decrease associates with mortality reduction only in heart failure with preserved ejection fraction. J Cardiovasc Med (Hagerstown) 2019; 20:23-29. [PMID: 30407267 DOI: 10.2459/jcm.0000000000000726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The prognostic role of high-sensitivity C-reactive protein (hsCRP) in acute heart failure is less well established than for chronic heart failure and the impact of its variation is unknown. We studied the impact of hsCRP variation in acute heart failure and whether it differed according to left ventricular function. METHODS We analyzed patients prospectively included in an acute heart failure registry. Admission and discharge hsCRP were evaluated as part of the registry's protocol and its relative variation (ΔhsCRP) was assessed. ΔhsCRP during hospitalization = [(admission hsCRP - discharge hsCRP)/admission hsCRP] × 100. Endpoint: all-cause death; follow-up: 3 years. A multivariate Cox-regression model was used to assess the prognostic value of ΔhsCRP (continuous and categorical variable: cut-off 40% decrease); analysis was stratified according to ventricular function. RESULTS We studied 439 patients: mean age 75 years, 50.1% men and 69.2% had heart failure with reduced ejection fraction (HFrEF). Median discharge hsCRP was 12.4 mg/l and median ΔhsCRP was ∼40%. During follow-up 247 patients (56.3%) died: 73 (54.1%) heart failure with preserved ejection fraction (HFpEF) patients and 174 (57.2%) HFrEF patients. The multivariate-adjusted hazard ratio of 3-year mortality in HFpEF patients with hsCRP decrease of at least 40% during hospitalization was 0.56 (95% CI 0.32-0.99). A decrease of at least 40% in hsCRP was not mortality-associated in HFrEF patients. There was interaction between ΔhsCRP and left ventricular ejection fraction. CONCLUSION A decrease of at least 40% in hsCRP in acute heart failure was associated with a 44% decrease in 3-year death risk in HFpEF patients. No association between ΔhsCRP and prognosis existed in HFrEF patients. Inflammation appears to play a different role according to left ventricular function.
Collapse
Affiliation(s)
| | | | | | | | - Isaac Barroso
- Serviço de Patologia Clínica, Centro Hospitalar São João
| | - João-Tiago Guimarães
- Serviço de Patologia Clínica, Centro Hospitalar São João.,Faculdade de Medicina da Universidade do Porto, Unidade I&D Cardiovascular do Porto
| | - Adelino Leite-Moreira
- Faculdade de Medicina da Universidade do Porto, Unidade I&D Cardiovascular do Porto.,Serviço de Cirurgia Cardiotorácica, Centro Hospitalar São João
| | - Paulo Bettencourt
- Faculdade de Medicina da Universidade do Porto, Unidade I&D Cardiovascular do Porto.,Serviço de Medicina Interna, Hospital CUF Porto, Porto, Portugal
| |
Collapse
|