101
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
102
|
Feng H, Liu G, Li L, Ren X, Jiang Y, Hou W, Liu R, Liu K, Liu H, Huang H. Quantitative Proteomics Reveal the Role of Matrine in Regulating Lipid Metabolism. ACS OMEGA 2024; 9:24308-24320. [PMID: 38882153 PMCID: PMC11170650 DOI: 10.1021/acsomega.3c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Hyperlipidemia (HLP) is a prevalent systemic metabolic disorder characterized by disrupted lipid metabolism. Statin drugs have long been the primary choice for managing lipid levels, but intolerance issues have prompted the search for alternative treatments. Matrine, a compound derived from the traditional Chinese medicine Kushen, exhibits anti-inflammatory and lipid-lowering properties. Nevertheless, the mechanism by which matrine modulates lipid metabolism remains poorly understood. Here, we investigated the molecular mechanisms underlying matrine's regulation of lipid metabolism. Employing quantitative proteomics, we discovered that matrine increases the expression of LDL receptor (LDLR) in HepG2 and A549 cells, with subsequent experiments validating its role in enhancing LDL uptake. Notably, in hyperlipidemic hamsters, matrine effectively lowered lipid levels without affecting body weight, which highlights LDLR as a critical target for matrine's impact on HLP. Moreover, matrine's potential inhibitory effects on tumor cell LDL uptake hint at broader applications in cancer research. Additionally, thermal proteome profiling analysis identified lipid metabolism-related proteins that may interact with matrine. Together, our study reveals matrine's capacity to upregulate LDLR expression and highlights its potential in treating HLP. These findings offer insights into matrine's mechanism of action and open new avenues for drug research and lipid metabolism regulation.
Collapse
Affiliation(s)
- Huixu Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Luhan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Jiang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Wanting Hou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruilong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
103
|
Khan H, Zamzam A, Shaikh F, Saposnik G, Mamdani M, Qadura M. Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features-A Pilot Study. J Clin Med 2024; 13:3382. [PMID: 38929911 PMCID: PMC11203750 DOI: 10.3390/jcm13123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Carotid stenosis (CS) is an atherosclerotic disease of the carotid artery that can lead to devastating cardiovascular outcomes such as stroke, disability, and death. The currently available treatment for CS is medical management through risk reduction, including control of hypertension, diabetes, and/or hypercholesterolemia. Surgical interventions are currently suggested for patients with symptomatic disease with stenosis >50%, where patients have suffered from a carotid-related event such as a cerebrovascular accident, or asymptomatic disease with stenosis >60% if the long-term risk of death is <3%. There is a lack of current plasma protein biomarkers available to predict patients at risk of such adverse events. Methods: In this study, we investigated several growth factors and biomarkers of inflammation as potential biomarkers for adverse CS events such as stroke, need for surgical intervention, myocardial infarction, and cardiovascular-related death. In this pilot study, we use a support vector machine (SVM), random forest models, and the following four significantly elevated biomarkers: C-X-C Motif Chemokine Ligand 6 (CXCL6); Interleukin-2 (IL-2); Galectin-9; and angiopoietin-like protein (ANGPTL4). Results: Our SVM model best predicted carotid cerebrovascular events with an area under the curve (AUC) of >0.8 and an accuracy of 0.88, demonstrating strong prognostic capability. Conclusions: Our SVM model may be used for risk stratification of patients with CS to determine those who may benefit from surgical intervention.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| |
Collapse
|
104
|
Liu S, Zhang B, Zhou J, Lv J, Zhang J, Li X, Yang W, Guo Y. Inhibition of differentiation of monocyte-derived macrophages toward an M2-Like phenotype May Be a neglected mechanism of β-AR receptor blocker therapy for atherosclerosis. Front Pharmacol 2024; 15:1378787. [PMID: 38903990 PMCID: PMC11188457 DOI: 10.3389/fphar.2024.1378787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The clinical efficacy of adrenergic β-receptor (β-AR) blockers in significantly stabilizing atherosclerotic plaques has been extensively supported by evidence-based medical research; however, the underlying mechanism remains unclear. Recent findings have highlighted the impact of lipid-induced aberrant polarization of macrophages during normal inflammatory-repair and regenerative processes on atherosclerosis formation and progression. In this review, we explore the relationship between macrophage polarization and atherosclerosis, as well as the influence of β-AR blockers on macrophage polarization. Based on the robust evidence supporting the use of β-AR blockers for treating atherosclerosis, we propose that their main mechanism involves inhibiting monocyte-derived macrophage differentiation towards an M2-like phenotype.
Collapse
Affiliation(s)
| | | | - Jingqun Zhou
- Affiliated Renhe Hospital, China Three Gorges University, Yichang, China
| | | | | | | | | | | |
Collapse
|
105
|
Ni J, Huang K, Xu J, Lu Q, Chen C. Novel biomarkers identified by weighted gene co-expression network analysis for atherosclerosis. Herz 2024; 49:198-209. [PMID: 37721628 DOI: 10.1007/s00059-023-05204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND This study aimed to screen out the potential diagnostic biomarkers for atherosclerosis (AS). METHODS We downloaded the gene expression profiles GSE66360, GSE28829, GSE41571, GSE71226, and GSE100927 from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using the "limma" package in R. Weighted gene co-expression network analysis (WGCNA) was applied to reveal the correlation between genes in different samples. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The interaction pairs of proteins were retained by the STRING database, and the protein-protein interaction (PPI) network was visualized with the hub genes. Finally, the R packages "ggpubr" and "preprocessCore" were used to analyze immune cell infiltration. RESULTS In total, 40 overlapping genes both in GSE66360 and GSE28829 were found to be related to the occurrence of AS. Further, the top 10 network hub genes including TYROBP, CSF1R, TLR2, CD14, CCL4, FCER1G, CD163, TREM1, PLEK, and C5AR1 were identified as significant key genes. Moreover, four genes (TYROBP, CSF1R, FCGR1B, and CD14) were verified that could efficiently diagnose AS. Finally, the gene TYROBP was found to have a strong correlation with immune-infiltrating cells. CONCLUSION Our study identified four genes (TYROBP, CSF1R, FCGR1B, and CD14) that may be effective biomarkers for AS, with the potential to guide the clinical diagnosis of AS.
Collapse
Affiliation(s)
- Jiajun Ni
- Clinical Medicine-Internal Medicine, School of Medicine of Nantong University, Nantong University, No. 19 Qixiu Road, 22600, Nantong City, Jiangsu Province, China
- Department of Cardiology, Qidong Hospital Affiliated to Nantong University (Qidong People's Hospital), No. 568 Minle Middle Road, 226200, Qidong City, Nantong City, Jiangsu Province, China
| | - Kaijian Huang
- Department of Cardiology, Qidong Hospital Affiliated to Nantong University (Qidong People's Hospital), No. 568 Minle Middle Road, 226200, Qidong City, Nantong City, Jiangsu Province, China
| | - Jialin Xu
- Endocrinology department, Qidong Hospital Affiliated to Nantong University (Qidong People's Hospital), No. 568 Minle Middle Road, 226200, Qidong City, Nantong City, Jiangsu Province, China
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 568 Minle Middle Road, 226200, Qidong City, Nantong City, Jiangsu Province, China.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 568 Minle Middle Road, 226200, Qidong City, Nantong City, Jiangsu Province, China
| |
Collapse
|
106
|
Atehortua L, Sean Davidson W, Chougnet CA. Interactions Between HDL and CD4+ T Cells: A Novel Understanding of HDL Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2024; 44:1191-1201. [PMID: 38660807 PMCID: PMC11111342 DOI: 10.1161/atvbaha.124.320851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Several studies in animal models and human cohorts have recently suggested that HDLs (high-density lipoproteins) not only modulate innate immune responses but also adaptative immune responses, particularly CD4+ T cells. CD4+ T cells are central effectors and regulators of the adaptive immune system, and any alterations in their homeostasis contribute to the pathogenesis of cardiovascular diseases, autoimmunity, and inflammatory diseases. In this review, we focus on how HDLs and their components affect CD4+ T-cell homeostasis by modulating cholesterol efflux, immune synapsis, proliferation, differentiation, oxidative stress, and apoptosis. While the effects of apoB-containing lipoproteins on T cells have been relatively well established, this review focuses specifically on new connections between HDL and CD4+ T cells. We present a model where HDL may modulate T cells through both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Laura Atehortua
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| | - W. Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
107
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
108
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
109
|
Javanshir E, Ebrahimi ZJ, Mirzohreh ST, Ghaffari S, Banisefid E, Alamdari NM, Roshanravan N. Disparity of gene expression in coronary artery disease: insights from MEIS1, HIRA, and Myocardin. Mol Biol Rep 2024; 51:712. [PMID: 38824221 DOI: 10.1007/s11033-024-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.
Collapse
Affiliation(s)
- Elnaz Javanshir
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Roshanravan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
110
|
Xiao F, Jia Z, Wang L, Liu M, Chen X, Gu Z, Chen Y, Li Y, Chen M, Hong M. T-cell Immunoglobulin and Mucin Domain 3 in Circulating Monocytes as a Novel Biomarker for Coronary Artery Disease. J Cardiovasc Transl Res 2024; 17:648-656. [PMID: 38062335 DOI: 10.1007/s12265-023-10466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 07/03/2024]
Abstract
The diagnostic role of T-cell immunoglobulin and mucin domain 3 (Tim-3) expression levels in circulating monocytes in coronary artery disease (CAD) remains to be determined. Here, we enrolled of 265 patients and isolated circulating monocytes from the blood of all participants. We found that the Tim-3 expression levels in monocytes were lower in CAD patients than in the control group. Spearman correlation analysis verified that the Tim-3 levels in monocytes were negatively correlated with the Gensini score and the number of coronary vessels. Multivariate logistic regression analysis showed that the Tim-3 levels in circulating monocytes were negatively correlated with CAD, severe CAD, and three-vessel CAD. The ROC curve showed that Tim-3 possessed high diagnostic value for CAD, severe CAD, and three-vessel CAD, with CAD prediction being the most significant of these values. In conclusion, Tim-3 in circulating monocytes is a novel biomarker for CAD.
Collapse
Affiliation(s)
- Fangping Xiao
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Jia
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Department of Pathology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Gu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhou Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingyue Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei Hong
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
111
|
Ali A, Mounika N, Nath B, Johny E, Kuladhipati I, Das R, Hussain M, Bandyopadhyay A, Adela R. Platelet-derived sTLT-1 is associated with platelet-mediated inflammation in coronary artery disease patients. Cytokine 2024; 178:156581. [PMID: 38508060 DOI: 10.1016/j.cyto.2024.156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The development of coronary artery disease (CAD) depends heavily on platelet activation, and inflammation plays a major role in all stages of atherosclerosis. Platelet-specific soluble triggering receptor expressed on myeloid cells like transcript 1 (sTLT-1) facilitate clot formation and have been linked to chronic inflammation. In this study, we explored the role of platelet-derived sTLT-1 in platelet-mediated inflammation in CAD patients. Plasma levels of sTLT-1 were measured using enzyme-linked immunosorbent assay in CAD patients (n = 163) and healthy controls (n = 99). Correlation analysis was performed to determine the circulatory sTLT-1 levels with platelet activation markers, immune cells, and inflammatory cytokines/chemokines. Increased plasma sTLT-1 levels were observed in CAD patients compared with those in healthy controls (p < 0.0001). A positive correlation was observed between sTLT-1 and platelet activation markers (P-selectin, PAC-1), CD14++ CD16- cells (classical monocytes), Natural killer T (NKT) cells, and platelet-immune cell aggregates with monocytes, neutrophils, dendritic cells, CD11c+ cells, and NKT cells. In contrast, a significant negative correlation was observed with CD8 cells. Furthermore, a significant positive correlation was observed between sTLT-1 and inflammatory markers (TNF-α, IL-1β, IL-2, IL-6, IL-12p70, IL-18, CXCL-12, and CCL-11). Logistic regression analysis identified sTLT-1 and triglycerides as predictors of CAD. Receiver operating characteristic curve (ROC) analysis showed that sTLT-1 had a higher sensitivity and specificity for predicting CAD. Our findings suggest that platelet activation induces the release of sTLT-1 into the circulation in CAD patients, which aggregates with immune cells and enhances inflammatory responses.
Collapse
Affiliation(s)
- Amir Ali
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Nadella Mounika
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Bishamber Nath
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | | | - Rajesh Das
- Nemcare Hospital G.S. Road, Bhangagarh, Guwahati, Assam, India
| | - Monowar Hussain
- Nemcare Hospital G.S. Road, Bhangagarh, Guwahati, Assam, India
| | | | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India.
| |
Collapse
|
112
|
Chen X, Cao Y, Guo Y, Liu J, Ye X, Li H, Zhang L, Feng W, Xian S, Yang Z, Wang L, Wang T. microRNA-125b-1-3p mediates autophagy via the RRAGD/mTOR/ULK1 signaling pathway and mitigates atherosclerosis progression. Cell Signal 2024; 118:111136. [PMID: 38471617 DOI: 10.1016/j.cellsig.2024.111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Atherosclerosis is characterised by lipid accumulation and formation of foam cells in arterial walls. Dysregulated autophagy is a crucial factor in atherosclerosis development. The significance of microRNA (miR)-125b-1-3p in cardiovascular disease is well-established; however, its precise role in regulating autophagy and impact on atherosclerosis in vascular smooth muscle cells (VSMCs) remain unclear. Here, we observed reduced autophagic activity and decreased miR-125b expression during atherosclerosis progression. miR-125b-1-3p overexpression significantly reduced atherosclerotic plaque development in mice; it also led to decreased lipid uptake and deposition in VSMCs, enhanced autophagy, and suppression of smooth muscle cell phenotypic changes in-vitro. An interaction between miR-125b-1-3p and the RRAGD/mTOR/ULK1 pathway was revealed, elucidating its role in promoting autophagy. Therefore, miR-125b-1-3p plays a pivotal role in enhancing autophagic processes, inhibiting foam cell formation in VSMCs and mitigating atherosclerosis progression, partly through RRAGD/mTOR/ULK1 signaling axis modulation. Thus, miR-125b-1-3p is a promising target for preventive and therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Xin Chen
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China; Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong Cao
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China; Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yining Guo
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China; Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohan Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Li
- Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwei Feng
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqi Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingjun Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndromes, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Ting Wang
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
113
|
Ngai D, Sukka SR, Tabas I. Crosstalk between efferocytic myeloid cells and T-cells and its relevance to atherosclerosis. Front Immunol 2024; 15:1403150. [PMID: 38873597 PMCID: PMC11169609 DOI: 10.3389/fimmu.2024.1403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Santosh R. Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
114
|
Yu C, Zhang Y, Chen H, Chen Z, Yang K. Identification of Diagnostic Genes of Aortic Stenosis That Progresses from Aortic Valve Sclerosis. J Inflamm Res 2024; 17:3459-3473. [PMID: 38828052 PMCID: PMC11144011 DOI: 10.2147/jir.s453100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Background Aortic valve sclerosis (AVS) is a pathological state that can progress to aortic stenosis (AS), which is a high-mortality valvular disease. However, effective medical therapies are not available to prevent this progression. This study aimed to explore potential biomarkers of AVS-AS advancement. Methods A microarray dataset and an RNA-sequencing dataset were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened from AS and AVS samples. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning model construction were conducted to identify diagnostic genes. A receiver operating characteristic (ROC) curve was generated to evaluate diagnostic value. Immune cell infiltration was then used to analyze differences in immune cell proportion between tissues. Finally, immunohistochemistry was applied to further verify protein concentration of diagnostic factors. Results A total of 330 DEGs were identified, including 92 downregulated and 238 upregulated genes. The top 5% of DEGs (n = 17) were screened following construction of a PPI network. IL-7 and VCAM-1 were identified as the most significant candidate genes via least absolute shrinkage and selection operator (LASSO) regression. The diagnostic value of the model and each gene were above 0.75. Proportion of anti-inflammatory M2 macrophages was lower, but the fraction of pro-inflammatory gamma-delta T cells was elevated in AS samples. Finally, levels of IL-7 and VCAM-1 were validated to be higher in AS tissue than in AVS tissue using immunohistochemistry. Conclusion IL-7 and VCAM-1 were identified as biomarkers during the disease progression. This is the first study to analyze gene expression differences between AVS and AS and could open novel sights for future studies on alleviating or preventing the disease progression.
Collapse
Affiliation(s)
- Chenxi Yu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Yifeng Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Hui Chen
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Ke Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
115
|
Ma L, Gao Y, Yang G, Zhao L, Zhao Z, Zhao Y, Zhang Y, Li S, Li S. Notoginsenoside R1 Ameliorate High-Fat-Diet and Vitamin D3-Induced Atherosclerosis via Alleviating Inflammatory Response, Inhibiting Endothelial Dysfunction, and Regulating Gut Microbiota. Drug Des Devel Ther 2024; 18:1821-1832. [PMID: 38845851 PMCID: PMC11155380 DOI: 10.2147/dddt.s451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Aim Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1β levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1β inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.
Collapse
Affiliation(s)
- Liying Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yuhang Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shenhui Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| |
Collapse
|
116
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
117
|
Duan H, Tao N, Lv L, Yan KX, You YG, Mao Z, Wang CY, Li X, Jin JY, Wu CT, Wang H. Hepatocyte growth factor enhances the ability of dental pulp stem cells to ameliorate atherosclerosis in apolipoprotein E-knockout mice. World J Stem Cells 2024; 16:575-590. [PMID: 38817328 PMCID: PMC11135256 DOI: 10.4252/wjsc.v16.i5.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), a chronic inflammatory disease of blood vessels, is a major contributor to cardiovascular disease. Dental pulp stem cells (DPSCs) are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflammation-related diseases. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases. AIM To modify DPSCs with HGF (DPSC-HGF) and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout (ApoE-/-) mouse model and an in vitro cellular model. METHODS ApoE-/- mice were fed with a high-fat diet (HFD) for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs (DPSC-Null) through tail vein at weeks 4, 7, and 11, respectively, and the therapeutic efficacy and mechanisms were analyzed by histopathology, flow cytometry, lipid and glucose measurements, real-time reverse transcription polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay at the different time points of the experiment. An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells (HAOECs), and indirect co-cultured with supernatant of DPSC-Null (DPSC-Null-CM) or DPSC-HGF-CM, and the effect and mechanisms were analyzed by flow cytometry, RT-PCR and western blot. Nuclear factor-κB (NF-κB) activators and inhibitors were also used to validate the related signaling pathways. RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors, and the percentage of macrophages in the aorta, and DPSC-HGF treatment had more pronounced effects. DPSCs treatment had no effect on serum lipoprotein levels. The FACS results showed that DPSCs treatment reduced the percentages of monocytes, neutrophils, and M1 macrophages in the peripheral blood and spleen. DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-α stimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway. CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/- mice on a HFD, and could be of greater value in stem cell-based treatments for AS.
Collapse
Affiliation(s)
- Han Duan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Ning Tao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lin Lv
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kai-Xin Yan
- Department of Cardiology, The Sixth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100037, China
| | - Yong-Gang You
- Department of Orthopaedics, The Fourth Medical Centre, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chang-Yao Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
| | - Xue Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Yan Jin
- Third Cadet Regiment, School of Basic Medical Science, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei Province, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
118
|
Brown PA. Genes Differentially Expressed Across Major Arteries Are Enriched in Endothelial Dysfunction-Related Gene Sets: Implications for Relative Inter-artery Atherosclerosis Risk. Bioinform Biol Insights 2024; 18:11779322241251563. [PMID: 38765020 PMCID: PMC11100403 DOI: 10.1177/11779322241251563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/13/2024] [Indexed: 05/21/2024] Open
Abstract
Atherosclerosis differs across major arteries. Although the biological basis is not fully understood, limited evidence of genetic differences has been documented. This study, therefore, was aimed to identify differentially expressed genes between clinically relevant major arteries and investigate their enrichment in endothelial dysfunction-related gene sets. A bioinformatic analysis of publicly available gene-level read counts for coronary, aortic, and tibial arteries was performed. Differential gene expression was conducted with DeSeq2 at a false discovery rate of 0.05. Differentially expressed genes were then subjected to over-representation analysis and active-subnetwork-oriented enrichment analysis, both at a false discovery rate of 0.005. Enriched terms common to both analyses were categorized for each contrast into immunity/inflammation-, membrane biology-, lipid metabolism-, and coagulation-related terms, and the top differentially expressed genes validated against Swiss Institute of Bioinformatics' Bgee database. There was mostly upregulation of differentially expressed genes for the coronary/tibial and aorta/tibial contrasts, but milder changes for the coronary/aorta contrast. Transcriptomic differences between coronary or aortic versus tibial samples largely involved immunity/inflammation-, membrane biology-, lipid metabolism-, and coagulation-related genes, suggesting potential to modulate endothelial dysfunction and atherosclerosis. These results imply atheroprone coronary and aortic environments compared with tibial artery tissue, which may explain observed relative inter-artery atherosclerosis risk.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Kingston, Jamaica
| |
Collapse
|
119
|
Wu H, Sheng J, Wang Z, Zu Z, Xiang K, Qi J, Wang Z, Lu G, Zhang L. Tannic acid-poloxamer self-assembled nanoparticles for advanced atherosclerosis therapy by regulation of macrophage polarization. J Mater Chem B 2024; 12:4708-4716. [PMID: 38654609 DOI: 10.1039/d3tb01157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atherosclerosis (AS) is a significant contributor to cardiovascular events. Advanced AS is particularly concerning, as it leads to the formation of high-risk vulnerable plaques. Current treatments for AS focus on antithrombotic and lipid-lowering interventions, which are effective in treating early-stage AS. Recent studies have shown that macrophage polarization plays a crucial role in the development of AS. This study presents a new biomedical application of natural tannic acid as an anti-inflammatory nanoplatform for advanced AS. Tannic acid-poloxamer nanoparticles (TPNP) are fabricated through self-assembly of tannic acid (TA) and poloxamer. TPNP has the potential to provide effective treatment for advanced AS. According to in vitro studies, TPNP has been found to suppress the inflammatory response in lipopolysaccharide-stimulated macrophages by scavenging reactive oxygen species (ROS), downregulating the expression levels of inflammatory cytokines (such as interleukin-10 and tumor necrosis factor-α) and regulating polarization of macrophages. In vivo studies further reveal that TPNP can retard the development of advanced atherosclerotic plaques by reducing ROS production and promoting M2 macrophage polarization in the aorta of ApoE-/- mice. Overall, these findings suggest that TPNP could be used to develop natural multifunctional nanoplatforms for molecular therapy of AS and other inflammation-related diseases.
Collapse
Affiliation(s)
- Haoguang Wu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Shunde, Foshan, Guangdong 528308, China
| | - Jie Sheng
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Zhiyue Wang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Ziyue Zu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Kaiyan Xiang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Jianchen Qi
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Zhicheng Wang
- Department of Cardiology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangming Lu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Longjiang Zhang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
120
|
Zhang S, Wang J, Chen S, Zhang Y, He R, Wang X, Ding F, Hu W, Dai Y, Lu L, Zhang R, Ni J, Chen Q. Serum levels of lipoprotein-associated phospholipase A2 are associated with coronary atherosclerotic plaque progression in diabetic and non-diabetic patients. BMC Cardiovasc Disord 2024; 24:251. [PMID: 38745157 PMCID: PMC11092249 DOI: 10.1186/s12872-024-03931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Lp-PLA2 is linked to cardiovascular diseases and poor outcomes, especially in diabetes, as it functions as a pro-inflammatory and oxidative mediator. OBJECTIVES This research aimed to explore if there is a connection between the serum levels of Lp-PLA2 and the progression of coronary plaques (PP) in individuals with type 2 diabetes mellitus (T2DM) and those without the condition. MATERIALS AND METHODS Serum Lp-PLA2 levels were measured in 137 T2DM patients with PP and 137 T2DM patients with no PP, and in 205 non-diabetic patients with PP and 205 non-diabetic patients with no PP. These individuals met the criteria for eligibility and underwent quantitative coronary angiography at the outset and again after about one year of follow-up. The attributes and parameters of the participants at the outset were recorded. RESULTS Increased serum levels of Lp-PLA2 were closely associated with coronary artery PP, and also significantly correlated with change of MLD, change of diameter stenosis and change of cumulative coronary obstruction in both diabetic and non-diabetic groups, with higher correlation coefficients in diabetic patients as compared with non-diabetic patients. Moreover, multivariate logistic regression analysis showed that serum Lp-PLA2 level was an independent determinant of PP in both groups, with OR values more significant in diabetic patients than in non-diabetic patients. CONCLUSIONS Levels of serum Lp-PLA2 show a significant association with the progression of coronary atherosclerotic plaque in patients with T2DM and those without, especially among individuals with diabetes.
Collapse
Affiliation(s)
- Shudong Zhang
- Department of Cardiovascular Medicine, Wuxi branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi, China
| | - Jiangang Wang
- Health Management Medicine Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Cardiovascular Medicine, Wuxi branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi, China
| | - Ruming He
- Department of Cardiovascular Medicine, Wuxi branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi, China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Hu
- Eachy biopharma, Zhangjiagang, Jiangsu Province, China
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Wuxi branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi, China.
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
| | - Qiujing Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
121
|
Zhuo S, Song S, Wang C, Wang Z, Zhang M, Lin D, Chen K. Inflammatory corpuscle AIM2 facilitates macrophage foam cell formation by inhibiting cholesterol efflux protein ABCA1. Sci Rep 2024; 14:10782. [PMID: 38734775 PMCID: PMC11088673 DOI: 10.1038/s41598-024-61495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
The inflammatory corpuscle recombinant absents in melanoma 2 (AIM2) and cholesterol efflux protein ATP binding cassette transporter A1(ABCA1) have been reported to play opposing roles in atherosclerosis (AS) plaques. However, the relationship between AIM2 and ABCA1 remains unclear. In this study, we explored the potential connection between AIM2 and ABCA1 in the modulation of AS by bioinformatic analysis combined with in vitro experiments. The GEO database was used to obtain AS transcriptional profiling data; screen differentially expressed genes (DEGs) and construct a weighted gene co-expression network analysis (WGCNA) to obtain AS-related modules. Phorbol myristate acetate (PMA) was used to induce macrophage modelling in THP-1 cells, and ox-LDL was used to induce macrophage foam cell formation. The experiment was divided into Negative Control (NC) group, Model Control (MC) group, AIM2 overexpression + ox-LDL (OE AIM2 + ox-LDL) group, and AIM2 short hairpin RNA + ox-LDL (sh AIM2 + ox-LDL) group. The intracellular cholesterol efflux rate was detected by scintillation counting; high-performance liquid chromatography (HPLC) was used to detect intracellular cholesterol levels; apoptosis levels were detected by TUNEL kit; levels of inflammatory markers (IL-1β, IL-18, ROS, and GSH) were detected by ELISA kits; and levels of AIM2 and ABCA1 proteins were detected by Western blot. Bioinformatic analysis revealed that the turquoise module correlated most strongly with AS, and AIM2 and ABCA1 were co-expressed in the turquoise module with a trend towards negative correlation. In vitro experiments demonstrated that AIM2 inhibited macrophage cholesterol efflux, resulting in increased intracellular cholesterol levels and foam cell formation. Moreover, AIM2 had a synergistic effect with ox-LDL, exacerbating macrophage oxidative stress and inflammatory response. Silencing AIM2 ameliorated the above conditions. Furthermore, the protein expression levels of AIM2 and ABCA1 were consistent with the bioinformatic analysis, showing a negative correlation. AIM2 inhibits ABCA1 expression, causing abnormal cholesterol metabolism in macrophages and ultimately leading to foam cell formation. Inhibiting AIM2 may reverse this process. Overall, our study suggests that AIM2 is a reliable anti-inflammatory therapeutic target for AS. Inhibiting AIM2 expression may reduce foam cell formation and, consequently, inhibit the progression of AS plaques.
Collapse
Affiliation(s)
- Shujiang Zhuo
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Sufei Song
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Chaoyi Wang
- Department of Data Science, Macau University of Science and Technology, Macau, China
| | - Zhe Wang
- Department of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Ming Zhang
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Daobin Lin
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China.
| | - Kaili Chen
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China.
| |
Collapse
|
122
|
Mehta H, Narang T, Dogra S, Handa S, Hatwal J, Batta A. Cardiovascular Considerations and Implications for Treatment in Psoriasis: An Updated Review. Vasc Health Risk Manag 2024; 20:215-229. [PMID: 38745849 PMCID: PMC11093123 DOI: 10.2147/vhrm.s464471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Psoriasis, a prevalent chronic inflammatory skin disorder affecting 2-3% of the global population, has transcended its dermatological confines, revealing a profound association with cardiovascular diseases (CVD). This comprehensive review explores the intricate interplay between psoriasis and cardiovascular system, delving into genetic links, immune pathways, and adipose tissue dysfunction beyond conventional CVD risk factors. The pathophysiological connections unveil unique signatures, distinct from other inflammatory skin conditions, in particular psoriasis-specific genetic polymorphisms in IL-23 and TNF-α have consistently been linked to CVD. The review navigates the complex landscape of psoriasis treatments, addressing challenges and future directions in particular relevance to CVDs in psoriasis. Therapeutic interventions, including TNF inhibitors (TNFi), present promise in reducing cardiovascular risks, and methotrexate could constitute a favourable choice. Conversely, the relationship between IL-12/23 inhibitors and cardiovascular risk remains uncertain, while recent evidence indicates that Janus kinase inhibitors may not carry CVD risks. Emerging evidence supports the safety and efficacy of IL-17 and IL-23 inhibitors in patients with CVDs, hinting at evolving therapeutic paradigms. Lifestyle modifications, statins, and emerging therapies offer preventive strategies. Dedicated screening guidelines for CVD risk assessment in psoriasis are however lacking. Further, the impact of different disease phenotypes and treatment hierarchies in cardiovascular outcomes remains elusive, demanding ongoing research at the intersection of dermatology, rheumatology, and cardiology. In conclusion, unraveling the intricate connections between psoriasis and CVD provides a foundation for a holistic approach to patient care. Collaboration between specialties, advancements in screening methodologies, and a nuanced understanding of treatment impacts are essential for comprehensive cardiovascular risk management in individuals with psoriasis.
Collapse
Affiliation(s)
- Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juniali Hatwal
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital (DMCH), Ludhiana, 141001, India
| |
Collapse
|
123
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
124
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
125
|
Zhang S, Zhu X, Chen Y, Wen Z, Shi P, Ni Q. The role and therapeutic potential of macrophages in the pathogenesis of diabetic cardiomyopathy. Front Immunol 2024; 15:1393392. [PMID: 38774880 PMCID: PMC11106398 DOI: 10.3389/fimmu.2024.1393392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yupeng Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhige Wen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiyu Shi
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
126
|
Xiong X, Yan Z, Yan L, Yang X, Li D, Lin G. Oxidized low-density lipoproteins impair the pro-atherosclerotic effect of granulocyte-macrophage-colony-stimulating factor-producing T helper cells on macrophages. Scand J Immunol 2024; 99:e13362. [PMID: 38605563 DOI: 10.1111/sji.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/13/2024]
Abstract
T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1β (IL-1β), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.
Collapse
Affiliation(s)
- Xiaofang Xiong
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Zheng Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Long Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Xuexue Yang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Dongsheng Li
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Guizhen Lin
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| |
Collapse
|
127
|
Mou D, Wu S, Jiao L, Zhou Y, Bai X. T Helper Cells Producing Granulocyte-Macrophage Colony Stimulating Factor as a Risk Marker for Coronary Heart Disease. Bull Exp Biol Med 2024; 177:15-21. [PMID: 38954298 DOI: 10.1007/s10517-024-06122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 07/04/2024]
Abstract
Coronary heart disease (CHD) is related to aberrant aggregation of immune cells in the plaques. This study focused on identification of abnormal T cell subtypes and inflammatory factors in CHD patients. To this end, the subtypes of T cells in peripheral blood of CHD patients (n=141) and healthy controls (n=46) were analyzed by flow cytometry. Plasma concentrations of cytokines were analyzed by multiplex assay. It was shown that the number of T helper cells producing granulocyte-macrophage CSF (GM-CSF) was higher in CHD patients in comparison with healthy controls. In addition, the fractions of Th1 and Th17 cells as well as the levels of IL-4, IL-5, IL-6, and IL-10 in CHD patients also surpassed the control values (p<0.05). However, the level of GM-CSF was insignificantly lower in CHD patients. Thus, we revealed a relationship between the number of T cells producing GM-CSF and the severity of CHD. Our results can be used to develop new potential biomarkers for CHD detection.
Collapse
Affiliation(s)
- D Mou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - S Wu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - L Jiao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Y Zhou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - X Bai
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China.
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
128
|
Gu J, Yang W, Lin S, Ying D. Identification of co-expressed genes and immune infiltration features related to the progression of atherosclerosis. J Appl Genet 2024; 65:331-339. [PMID: 37996696 DOI: 10.1007/s13353-023-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that affects arterial walls and is a leading cause of cardiovascular disease. Gene co-expression modules can provide insight into the molecular mechanisms underlying atherosclerosis progression. In this study, gene co-expression network analysis (WGCNA) was done to identify gene co-expression modules associated with atherosclerosis progression. Before conducting WGCNA, preprocessing and soft power selection were performed on the GSE28829, GSE100927, GSE43292, GSE10334, and GSE16134 datasets ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi ). Co-expression modules were identified using dynamic tree cuts, and their correlations and trait associations were visualized. Enrichment analysis was performed on the blue and magenta modules to identify biological processes (BP) and pathways related to atherosclerosis. The CIBERSORT algorithm was used to predict immune cell infiltration in early and advanced atherosclerotic plaques. We identified 12 co-expression modules, in which blue and magenta were most highly correlated with atherosclerosis progression. The blue module was enriched for inflammation- and immune-related BP and pathways, including phagosome, lysosome, osteoclast differentiation, chemokine signaling pathway, platelet activation, NF-kappa B signaling pathway, Fc gamma R-mediated phagocytosis, lipid and atherosclerosis, autophagy, and apoptosis. The magenta module was significantly enriched for vascular permeability regulation, positive and negative regulation of epithelial to mesenchymal transition, and lamellipodium. Additionally, the CIBERSORT algorithm predicted less abundance of T regulatory cells and monocytes in advanced compared to early atherosclerotic plaques. The enrichment analysis of BP, cellular components, molecular functions, and atherosclerosis-related pathways in the blue and magenta modules showed that inflammation and immune response played a key role in the progression of atherosclerosis. Our study provides insights into the molecular mechanisms underlying atherosclerosis progression and identifies potential therapeutic targets for the treatment of atherosclerosis. The identification of immune cell subtypes associated with atherosclerosis could lead to the development of immunomodulatory therapies to prevent or treat atherosclerosis.
Collapse
Affiliation(s)
- Junqing Gu
- Yuyao Municipal People's Hospital, Yuyao City, China
| | - Wenwei Yang
- Longshan Hospital, Cixi City, Yuyao City, China
| | - Shun Lin
- Linhai City First People's Hospital, Yuyao City, China
| | - Danqing Ying
- Yuyao City Lanjiang Street Community Health Service Center, Yuyao City, China.
| |
Collapse
|
129
|
Lin CC, Li CI, Liu CS, Lin CH, Yang SY, Li TC. Association of carotid atherosclerosis markers with all-cause and cardiovascular disease-specific mortality in persons with type 2 diabetes: a causal mediation analysis with glucose variation. Acta Diabetol 2024; 61:657-669. [PMID: 38393346 DOI: 10.1007/s00592-024-02243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
AIMS Glucose variation (GV) is independently associated with mortality in patients with diabetes. However, no study has examined the effects of carotid atherosclerosis markers on mortality after considering GV. Our purpose is to investigate the independent effects of carotid atherosclerosis markers in persons with type 2 diabetes (T2DM) after considering GV and the mediation effects of carotid atherosclerosis markers on associations between GV with cardiovascular disease (CVD) mortality. MATERIALS AND METHODS This study is a retrospective cohort study including 3628 persons with T2DM who were admitted to a medical center between January 01, 2001 and October 31, 2021. GV was defined as a coefficient of variation (CV) of repeated measurements within a year before the index date (date of first IMT assessment). Carotid atherosclerosis markers included intima-media thickness (IMT), plaque, and stenosis. The outcomes consisted of all-cause and expanded cardiovascular disease (CVD) mortality. Cox proportional hazards models were applied. RESULTS Among the participants, 286 (7.9%) had IMT ≥ 2 mm, 2834 (78.1%) had carotid plaque, and 464 (12.8%) had carotid stenosis ≥ 50%. When GV was considered, IMT, carotid plaque, and carotid stenosis were significant factors for all-cause mortality (except IMT considering HbA1c-CV) and expanded CVD mortality. IMT was a significant mediator in the associations of fasting plasma glucose (FPG)-CV with all-cause and expanded CVD mortality (2 and 3.19%, respectively), and carotid stenosis was a significant mediator in the association between FPG-CV and expanded CVD mortality (3.83%). CONCLUSIONS Our statistical evaluations show suggests that carotid atherosclerosis markers are important predictors of CVD mortality in persons with T2DM if GV is considered. In addition, IMT and carotid stenosis were significant mediators in the association between GV and mortality.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Ing Li
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chiu-Shong Liu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shing-Yu Yang
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., 406040, Taichung, Taiwan, R.O.C
| | - Tsai-Chung Li
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., 406040, Taichung, Taiwan, R.O.C..
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C..
| |
Collapse
|
130
|
Zhang Y, Yang Y, Feng Y, Gao X, Pei L, Li X, Gao B, Liu L, Wang C, Gao S. Sonodynamic therapy for the treatment of atherosclerosis. J Pharm Anal 2024; 14:100909. [PMID: 38799235 PMCID: PMC11127226 DOI: 10.1016/j.jpha.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 05/29/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease, stroke, and peripheral vascular disease. Despite the current treatments, mortality and disability still remain high. Sonodynamic therapy (SDT), a non-invasive and localized methodology, has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques. Promising progress has been made through cell and animal assays, as well as clinical trials. For example, the effect of SDT on apoptosis and autophagy of cells in AS, especially macrophages, and the concept of non-lethal SDT has also been proposed. In this review, we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS; we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages, T lymphocytes, neovascularization, smooth muscle cells, lipid, extracellular matrix and efferocytosis within plaques; additionally, we discuss the safety of SDT. A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
Collapse
Affiliation(s)
- Yan Zhang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Yang
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudi Feng
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyan Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liping Pei
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaopan Li
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Liu
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengzeng Wang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuochen Gao
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
131
|
Böttrich T, Bauer P, Gröβer V, Huber M, Raifer H, Frech T, Nolte S, Dombrowski T, Cemic F, Sommer N, Ringseis R, Eder K, Krüger K, Weyh C. Subpopulations of regulatory T cells are associated with subclinical atherosclerotic plaques, levels of LDL, and cardiorespiratory fitness in the elderly. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:288-296. [PMID: 37951470 PMCID: PMC11117006 DOI: 10.1016/j.jshs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Atherosclerosis forms the pathological basis for the development of cardiovascular disease. Since pathological processes initially develop without clinically relevant symptoms, the identification of early markers in the subclinical stage plays an important role for initiating early interventions. There is evidence that regulatory T cells (Tregs) are involved in the development of atherosclerosis. Therefore, the present study aimed to identify and investigate associations with Tregs and their subsets in a cohort of healthy elderly individuals with and without subclinical atherosclerotic plaques (SAP). In addition, various lifestyle and risk factors, such as cardiorespiratory fitness, were investigated as associated signatures. METHODS A cross-sectional study was performed in 79 participants (male: n = 50; age = 63.6 ± 3.7 years; body mass index = 24.9 ± 3.1 kg/m²; mean ± SD) who had no previous diagnosis of chronic disease and were not taking medication. Ultrasound of the carotids to identify SAP, cardiovascular function measurement for vascular assessment and a cardiorespiratory fitness test to determine peak oxygen uptake were performed. Additionally, tests were conducted to assess blood lipids and determine glucose levels. Immunophenotyping of Tregs and their subtypes (resting (rTregs) and effector/memory (mTregs)) was performed by 8-chanel flow cytometry. Participants were categorized according to atherosclerotic plaque status. Linear and logistic regression models were used to analyze associations between parameters. RESULTS SAP was detected in a total of 29 participants. The participants with plaque were older (64.8 ± 3.6 years vs. 62.9 ± 3.5 years) and had higher peripheral systolic blood pressure (133.8 ± 14.7 mmHg vs. 125.8 ± 10.9 mmHg). The participants with SAP were characterized by a lower percentage of rTregs (28.8% ± 10.7% vs. 34.6% ± 10.7%) and a higher percentage of mTregs (40.3% ± 14.7% vs. 30.0% ± 11.9%). Multiple logistic regression identified age (odds ratio (OR) = 1.20 (95% confidence interval (95%CI): 1.01-1.42)) and mTregs (OR = 1.05 (95%CI: 1.02-1.10)) as independent risk factors for SAP. Stepwise linear regression could reveal an association of peak oxygen uptake (β = 0.441), low-density lipoprotein (LDL) (β = -0.096), and SAP (β = 6.733) with mTregs and LDL (β = 0.104) with rTregs. CONCLUSION While at an early stage of SAP, the total proportion of Tregs gives no indication of vascular changes, this is indicated by a shift in the Treg subgroups. Factors such as serum LDL or cardiopulmonary fitness may be associated with this shift and may also be additional diagnostic indicators. This could be used to initiate lifestyle-based preventive measures at an early stage, which may have a protective effect against disease progression.
Collapse
Affiliation(s)
- Tim Böttrich
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Pascal Bauer
- Department of Cardiology and Angiology, Justus-Liebig-University Giessen, Giessen 35392, Germany
| | - Vincent Gröβer
- Department of Cardiology and Angiology, Justus-Liebig-University Giessen, Giessen 35392, Germany
| | - Magdalena Huber
- Department of Cardiology and Angiology, Justus-Liebig-University Giessen, Giessen 35392, Germany
| | - Hartmann Raifer
- Institute for Systems Immunology, Center for Tumor und Immunology, Marburg 35032, Germany
| | - Torsten Frech
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Theresa Dombrowski
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Franz Cemic
- TH Mittelhessen, Department of Computer Science, University of Applied Sciences Giessen, Giessen 35390, Germany
| | - Natascha Sommer
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen 35394, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen 35394, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen 35390, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen 35390, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany.
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| |
Collapse
|
132
|
Kotewitsch M, Heimer M, Schmitz B, Mooren FC. Non-coding RNAs in exercise immunology: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:311-338. [PMID: 37925072 PMCID: PMC11116971 DOI: 10.1016/j.jshs.2023.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTDiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.
Collapse
Affiliation(s)
- Mona Kotewitsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Melina Heimer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany.
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| |
Collapse
|
133
|
Ozawa K, Packwood W, Muller MA, Qi Y, Xie A, Varlamov O, McCarty OJ, Chung D, López JA, Lindner JR. Removal of endothelial surface-associated von villebrand factor suppresses accelerate datherosclerosis after myocardial infarction. J Transl Med 2024; 22:412. [PMID: 38693516 PMCID: PMC11062912 DOI: 10.1186/s12967-024-05231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-β1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.
Collapse
Affiliation(s)
- Koya Ozawa
- Sydney Medical School Nepean, Faculty of Medicine and Health, Department of Cardiology, The University of Sydney, Nepean Hospital, Sydney, NSW, Australia
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew A Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aris Xie
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Box 801394, 415 Lane Rd, Charlottesville, VA, 22908, USA
| | - Oleg Varlamov
- Oregon National Primate Research Center, Portland, OR, USA
| | - Owen J McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, USA
| | - Dominic Chung
- BloodWorks Research Institute, University of Washington, Seattle, WA, USA
| | - José A López
- BloodWorks Research Institute, University of Washington, Seattle, WA, USA
| | - Jonathan R Lindner
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Box 801394, 415 Lane Rd, Charlottesville, VA, 22908, USA.
| |
Collapse
|
134
|
Huang J, Zhu Z, Schlüter D, Lambertsen KL, Song W, Wang X. Ubiquitous regulation of cerebrovascular diseases by ubiquitin-modifying enzymes. Clin Transl Med 2024; 14:e1719. [PMID: 38778460 PMCID: PMC11111633 DOI: 10.1002/ctm2.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.
Collapse
Affiliation(s)
- Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
- BRIGDE—Brain Research—Inter‐Disciplinary Guided Excellence, Department of Clinical ResearchUniversity of Southern DenmarkOdense CDenmark
- Department of NeurologyOdense University HospitalOdense CDenmark
| | - Weihong Song
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Xu Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceZhejiang Provincial Clinical Research Center for Mental DisordersInstitute of AgingSchool of Mental HealthAffiliated Kangning HospitalThe Second Affiliated HospitalYuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
135
|
Zhang X, Heo GS, Li A, Lahad D, Detering L, Tao J, Gao X, Zhang X, Luehmann H, Sultan D, Lou L, Venkatesan R, Li R, Zheng J, Amrute J, Lin CY, Kopecky BJ, Gropler RJ, Bredemeyer A, Lavine K, Liu Y. Development of a CD163-Targeted PET Radiotracer That Images Resident Macrophages in Atherosclerosis. J Nucl Med 2024; 65:775-780. [PMID: 38548349 PMCID: PMC11064833 DOI: 10.2967/jnumed.123.266910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Indexed: 05/03/2024] Open
Abstract
Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.
Collapse
Affiliation(s)
- Xiuli Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Joan Tao
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Xuefeng Gao
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Rajiu Venkatesan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Ran Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Junedh Amrute
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin J Kopecky
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
136
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
137
|
Ahmad I, Gupta S, Faulkner P, Mullens D, Thomas M, Sytha SP, Ivanov I, Cai JJ, Heaps CL, Newell-Fugate AE. Single-nucleus transcriptomics of epicardial adipose tissue from female pigs reveals effects of exercise training on resident innate and adaptive immune cells. Cell Commun Signal 2024; 22:243. [PMID: 38671495 PMCID: PMC11046969 DOI: 10.1186/s12964-024-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a leading cause of death in women. Epicardial adipose tissue (EAT) secretes cytokines to modulate coronary artery function, and the release of fatty acids from EAT serves as a readily available energy source for cardiomyocytes. However, despite having beneficial functions, excessive amounts of EAT can cause the secretion of proinflammatory molecules that increase the instability of atherosclerotic plaques and contribute to CAD progression. Although exercise mitigates CAD, the mechanisms by which exercise impacts EAT are unknown. The Yucatan pig is an excellent translational model for the effects of exercise on cardiac function. Therefore, we sought to determine if chronic aerobic exercise promotes an anti-inflammatory microenvironment in EAT from female Yucatan pigs. METHODS Sexually mature, female Yucatan pigs (n = 7 total) were assigned to sedentary (Sed, n = 3) or exercise (Ex, n = 4) treatments, and coronary arteries were occluded (O) with an ameroid to mimic CAD or remained non-occluded (N). EAT was collected for bulk (n = 7 total) and single nucleus transcriptomic sequencing (n = 2 total, 1 per exercise treatment). RESULTS Based on the bulk transcriptomic analysis, exercise upregulated S100 family, G-protein coupled receptor, and CREB signaling in neurons canonical pathways in EAT. The top networks in EAT affected by exercise as measured by bulk RNA sequencing were SRC kinase family, fibroblast growth factor receptor, Jak-Stat, and vascular endothelial growth factor. Single nucleus transcriptomic analysis revealed that exercise increased the interaction between immune, endothelial, and mesenchymal cells in the insulin-like growth factor pathway and between endothelial and other cell types in the platelet endothelial cell adhesion molecule 1 pathway. Sub-clustering revealed nine cell types in EAT, with fibroblast and macrophage populations predominant in O-Ex EAT and T cell populations predominant in N-Ex EAT. Unlike the findings for exercise alone as a treatment, there were not increased interactions between endothelial and mesenchymal cells in O-Ex EAT. Coronary artery occlusion impacted the most genes in T cells and endothelial cells. Genes related to fatty acid metabolism were the most highly upregulated in non-immune cells from O-Ex EAT. Sub-clustering of endothelial cells revealed that N-Ex EAT separated from other treatments. CONCLUSIONS According to bulk transcriptomics, exercise upregulated pathways and networks related to growth factors and immune cell communication. Based on single nucleus transcriptomics, aerobic exercise increased cell-to-cell interaction amongst immune, mesenchymal, and endothelial cells in female EAT. Yet, exercise was minimally effective at reversing alterations in gene expression in endothelial and mesenchymal cells in EAT surrounding occluded arteries. These findings lay the foundation for future work focused on the impact of exercise on cell types in EAT.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shreyan Gupta
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Patricia Faulkner
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Destiny Mullens
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Micah Thomas
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sharanee P Sytha
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Cristine L Heaps
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
138
|
Ma T, Wang Y, Ma J, Cui H, Feng X, Ma X. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review. J Orthop Surg Res 2024; 19:265. [PMID: 38671500 PMCID: PMC11046814 DOI: 10.1186/s13018-024-04748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Hormonal necrosis of the femoral head is caused by long-term use of glucocorticoids and other causes of abnormal bone metabolism, lipid metabolism imbalance and blood microcirculation disorders in the femoral head, resulting in bone trabecular fracture, bone tissue necrosis collapse, and hip dysfunction. It is the most common type of non-traumatic necrosis of the femoral head, and its pathogenesis is complex, while impaired blood circulation is considered to be the key to its occurrence. There are a large number of microvessels in the femoral head, among which H-type vessels play a decisive role in the "angiogenesis and osteogenesis coupling", and thus have an important impact on the occurrence and development of femoral head necrosis. Glucocorticoids can cause blood flow injury of the femoral head mainly through coagulation dysfunction, endothelial dysfunction and impaired angiogenesis. Glucocorticoids may inhibit the formation of H-type vessels by reducing the expression of HIF-1α, PDGF-BB, VGEF and other factors, thus causing damage to the "angiogenesis-osteogenesis coupling" and reducing the ability of necrosis reconstruction and repair of the femoral head. Leads to the occurrence of hormonal femoral head necrosis. Therefore, this paper reviewed the progress in the study of the mechanism of hormone-induced femoral head necrosis based on microvascular blood flow at home and abroad, hoping to provide new ideas for the study of the mechanism of femoral head necrosis and provide references for clinical treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Tiancheng Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China.
- Tianjin Orthopedic Institute, Tianjin, 300050, China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China.
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Xiaotian Feng
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| |
Collapse
|
139
|
Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Anti-Cancer, Anti-Angiogenic, and Anti-Atherogenic Potential of Key Phenolic Compounds from Virgin Olive Oil. Nutrients 2024; 16:1283. [PMID: 38732529 PMCID: PMC11085358 DOI: 10.3390/nu16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
140
|
Shao X, Zeng W, Wang Q, Liu S, Guo Q, Luo D, Luo Q, Wang D, Wang L, Zhang Y, Diao H, Piao S, Yan M, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) suppression of macrophage pyroptosis: Key to stabilizing rupture-prone plaques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117705. [PMID: 38219878 DOI: 10.1016/j.jep.2024.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Research on the Chinese herbal formula Fufang Zhenzhu Tiaozhi (FTZ) has demonstrated its effectiveness in treating hyperlipidemia and glycolipid metabolic disorders. Additionally, FTZ has shown inhibitory effects on oxidative stress, regulation of lipid metabolism, and reduction of inflammation in these conditions. However, the precise mechanisms through which FTZ modulates macrophage function in atherosclerosis remain incompletely understood. Therefore, this study aims to investigate whether FTZ can effectively stabilize rupture-prone plaques by suppressing macrophage pyroptosis and impeding the development of M1 macrophage polarization in ApoE-/- mice. METHODS To assess the impact of FTZ on macrophage function and atherosclerosis in ApoE-/- mice, we orally administered FTZ at a dosage of 1.2 g/kg body weight daily for 14 weeks. Levels of interleukin-18 and interleukin-1β were quantified using ELISA kits to gauge FTZ's influence on inflammation. Total cholesterol content was measured with a Cholesterol Assay Kit to evaluate FTZ's effect on lipid metabolism. Aortic tissues were stained with Oil Red O, and immunohistochemistry techniques were applied to assess atherosclerotic lesions and plaque stability. To evaluate the effects of FTZ on macrophage pyroptosis and oxidative damage, immunofluorescence staining was utilized. Additionally, we conducted an analysis of protein and mRNA expression levels of NLRP3 inflammasome-related genes and macrophage polarization-related genes using RT-PCR and western blotting techniques. RESULTS This study illustrates the potential therapeutic effectiveness of FTZ in mitigating the severity of atherosclerosis and improving serum lipid profiles by inhibiting inflammation. The observed enhancements in atherosclerosis severity and inflammation can be attributed to the suppression of NLRP3 inflammasome activity and M1 polarization by FTZ. CONCLUSION The current findings indicate that FTZ provides protection against atherosclerosis, positioning it as a promising candidate for novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qing Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Suping Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qiaoling Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qingmao Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
141
|
Aydın C, Demirkıran A, Aykaç H, Uslu N, Alpsoy Ş. Can the Glasgow prognostic score predict ischemic stroke in patients with infective endocarditis? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231299. [PMID: 38656008 DOI: 10.1590/1806-9282.20231299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 04/26/2024]
Abstract
OBJECTIVE The Glasgow prognosis score is a simple parameter calculated using serum levels of albumin and C-reactive protein. The aim of this study was to examine whether this parameter may predict ischemic stroke in patients with infective endocarditis. METHODS A total of 80 patients who were diagnosed with definitive infective endocarditis according to Duke criteria between 2016 and 2023 were included in the study. Glasgow prognosis score was based on serum levels of albumin and C-reactive protein. In imaging methods, patients were divided into two groups according to whether they had a stroke or not. These two groups were compared in terms of biochemical parameters, and infective endocarditis findings on echocardiography and Glasgow prognosis score. RESULTS We found that the results were statistically similar except for serum C-reactive protein (Group 1: 54.9±71.1 and Group 2: 39±70.7; p=0.03), neutrophil (Group 1: 19.8±10.8*109/L and Group 2: 13.3±7.3*109/L; p=0.014), albumin (Group 1: 2.3±0.6 and Group 2: 2.8±0.5; p=0.03), and Glasgow prognosis score (Group 1: median 2, min.-max. (1-2) and Group 2: median 1, min.-max. (0-1); p=0.004). In the receiver operating characteristics analysis, Glasgow prognosis score had 82.4% sensitivity and 58.3% specificity in predicting ischemic stroke if the Glasgow prognosis score cutoff was ≥1. In multivariate logistic regression analysis, chronic renal failure [odds ratio (OR): 1.098; 95% confidence interval: 1.054-1.964; p=0.044], age (OR: 1.050; 95%CI 1.006-1.096; p=0.024), and Glasgow prognosis score (OR: 0.695; 95%CI 0.411-0.949; p=0.035) were independent variables in predicting ischemic stroke. CONCLUSION High Glasgow prognosis score is an independent predictor of ischemic stroke in patients with infective endocarditis. Glasgow prognosis score, determined using albumin and C-reactive protein levels, is a simple and practical index for predicting the prognosis of patients hospitalized with infective endocarditis.
Collapse
Affiliation(s)
- Cihan Aydın
- Namık Kemal University, Faculty of Medicine, Department of Cardiology - Tekirdağ, Turkey
| | - Aykut Demirkıran
- Namık Kemal University, Faculty of Medicine, Department of Cardiology - Tekirdağ, Turkey
| | - Hüseyin Aykaç
- Namık Kemal University, Faculty of Medicine, Department of Cardiology - Tekirdağ, Turkey
| | - Nurullah Uslu
- Namık Kemal University, Faculty of Medicine, Department of Cardiology - Tekirdağ, Turkey
| | - Şeref Alpsoy
- Namık Kemal University, Faculty of Medicine, Department of Cardiology - Tekirdağ, Turkey
| |
Collapse
|
142
|
He C, Kim HI, Park J, Guo J, Huang W. The role of immune cells in different stages of atherosclerosis. Int J Med Sci 2024; 21:1129-1143. [PMID: 38774746 PMCID: PMC11103388 DOI: 10.7150/ijms.94570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of immune cells in the intima of arteries. Experimental and clinical evidence shows that both innate and adaptive immunity orchestrate the progression of atherosclerosis. The heterogeneous nature of immune cells within atherosclerosis lesions is important. Studies utilizing high-dimensional mass spectrometry and single-cell RNA sequencing of leukocytes from atherosclerotic lesions show the diversity and adaptability of these immune cell subtypes. Their migration, compositional changes, phenotypic alterations, and adaptive responses are key features throughout atherosclerosis progression. Understanding how these immune cells and their subtypes affect atherogenesis would help to develop novel therapeutic approaches that control atherosclerosis progression. Precise targeting of specific immune system components involved in atherosclerosis, rather than broad suppression of the immune system with anti-inflammatory agents, can more accurately regulate the progress of atherosclerosis with fewer side effects. In this review, we cover the most recent advances in the field of atherosclerosis to understand the role of various immune cells on its development. We focus on the complex network of immune cells and the interaction between the innate immune system and adaptive immune system.
Collapse
Affiliation(s)
- Cong He
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, PR China
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou 571199, PR China
| | - Wei Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, PR China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou 571199, PR China
| |
Collapse
|
143
|
Song WP, Bo XW, Dou HX, Fan Q, Wang H. Association between periodontal disease and coronary heart disease: A bibliometric analysis. Heliyon 2024; 10:e28325. [PMID: 38571655 PMCID: PMC10988017 DOI: 10.1016/j.heliyon.2024.e28325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Background Periodontal disease and coronary heart disease are both prevalent diseases worldwide and cause patients physical and mental suffering and a global burden. Recent studies have suggested a link between periodontal disease and coronary heart disease, but there is less research in this field from the perspective of bibliometrics. Objective This study aimed to quantitatively analyze the literature on periodontal disease and coronary heart disease to summarize intellectual bases, research hotspots, and emerging trends and pave the way for future research. Methods The Science Citation Index Expanded database was used to retrieve study records on periodontal disease and coronary heart disease from 1993 to 2022. After manual screening, the data were used for cooperative network analysis (including countries/regions, institutions and authors), keyword analysis, and reference co-citation analysis by CiteSpace software. Microsoft Excel 2019 was applied for curve fitting of annual trend in publications and citations. Results A total of 580 studies were included in the analysis. The number of publications and citations in this field has shown an upward trend over the past 30 years. There was less direct collaboration among authors and institutions in this field but closer collaboration between countries. The United States was the country with the most published articles in this field (169/580, 29.14%). Based on the results of keyword analysis and literature co-citation analysis, C-reactive protein, oral flora, atherosclerosis, infection, and inflammation were previous research hotspots, while global burden and cardiovascular outcomes were considered emerging trends in this field. Conclusion Studies on periodontal disease and coronary heart disease, which have attracted the attention of an increasing number of researchers, have been successfully analyzed using bibliometrics and visualization techniques. This paper will help scholars better understand the dynamic evolution of periodontal disease and coronary heart disease and point out the direction for future research. Clinical significance This paper presents an overview between periodontal disease and coronary heart disease. Further exploration of the two diseases themselves and the potential causal relationship between the two is necessary and relevant, which may impact basic research, diagnosis, and treatment related to both diseases. This will aid the work of researchers and specialist doctors, and ultimately benefit patients with both diseases.
Collapse
Affiliation(s)
- Wen-peng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiao-wen Bo
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Hui-xin Dou
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100029, China
| | - Qian Fan
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100029, China
| |
Collapse
|
144
|
Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front Endocrinol (Lausanne) 2024; 15:1321323. [PMID: 38665261 PMCID: PMC11043478 DOI: 10.3389/fendo.2024.1321323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diabetes is estimated to reach almost 630 million cases worldwide by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air pollution exposure has been implicated in the onset and progression of diabetes. Increased exposure to fine particulate matter air pollution (PM2.5) is associated with increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air pollution exposure is a driver of cardiovascular disease onset and exacerbation and can increase cardiovascular risk among those with diabetes. In this review, we summarize the literature describing the relationships between air pollution exposure, diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt glucose homeostasis. We discuss how air pollution and diabetes, via shared mechanisms leading to endothelial dysfunction, drive increased cardiovascular disease risk. We identify portable air cleaners as potentially useful tools to prevent adverse cardiovascular outcomes due to air pollution exposure across the diabetes spectrum, while emphasizing the need for further study in this particular population. Given the enormity of the health and financial impacts of air pollution exposure on patients with diabetes, a greater understanding of the interventions to reduce cardiovascular risk in this population is needed.
Collapse
Affiliation(s)
- Luke J. Bonanni
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Sharine Wittkopp
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Clarine Long
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - José O. Aleman
- Division of Endocrinology, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Jonathan D. Newman
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| |
Collapse
|
145
|
Luo J, Wang H, Chen J, Wei X, Feng J, Zhang Y, Zhou Y. The Application of Drugs and Nano-Therapies Targeting Immune Cells in Hypoxic Inflammation. Int J Nanomedicine 2024; 19:3441-3459. [PMID: 38617798 PMCID: PMC11015843 DOI: 10.2147/ijn.s456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Immune cells are pivotal in the dynamic interplay between hypoxia and inflammation. During hypoxic conditions, HIF-1α, a crucial transcription factor, facilitates the adaptation of immune cells to the hypoxic micro-environment. This adaptation includes regulating immune cell metabolism, significantly impacting inflammation development. Strategies for anti-inflammatory and hypoxic relief have been proposed, aiming to disrupt the hypoxia-inflammation nexus. Research extensively focuses on anti-inflammatory agents and materials that target immune cells. These primarily mitigate hypoxic inflammation by encouraging M2-macrophage polarization, restraining neutrophil proliferation and infiltration, and maintaining Treg/TH17 balance. Additionally, oxygen-releasing nano-materials play a significant role. By alleviating hypoxia and clearing reactive oxygen species (ROS), these nano-materials indirectly influence immune cell functions. This paper delves into the response of immune cells under hypoxic conditions and the resultant effects on inflammation. It provides a comprehensive overview of various therapies targeting specific immune cells for anti-inflammatory purposes and explores nano-materials that either carry or generate oxygen to alleviate anoxic micro-environments.
Collapse
Affiliation(s)
- Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
146
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
147
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
148
|
Wu H, Yang L, Ren D, Gu Y, Ding X, Zhao Y, Fu G, Zhang H, Yi L. Combinatory data-independent acquisition and parallel reaction monitoring method for revealing the lipid metabolism biomarkers of coronary heart disease and its comorbidities. J Sep Sci 2024; 47:e2300848. [PMID: 38682821 DOI: 10.1002/jssc.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
Disorders of lipid metabolism are a common cause of coronary heart disease (CHD) and its comorbidities. In this study, ultra-performance liquid chromatography-high-resolution mass spectrometry in data-independent acquisition (DIA) mode was applied to collect abundant tandem mass spectrometry data, which provided valuable information for lipid annotation. For the lipid isomers that could not be completely separated by chromatography, parallel reaction monitoring (PRM) mode was used for quantification. A total of 223 plasma lipid metabolites were annotated, and 116 of them were identified for their fatty acyl chain composition and location. In addition, 152 plasma lipids in patients with CHD and its comorbidities were quantitatively analyzed. Multivariate statistical analysis and metabolic pathway analysis demonstrated that glycerophospholipid and sphingolipid metabolism deserved more attention for CHD. This study proposed a method combining DIA and PRM for high-throughput characterization of plasma lipids. The results also improved our understanding of metabolic disorders of CHD and its comorbidities, which can provide valuable suggestions for medical intervention.
Collapse
Affiliation(s)
- Hao Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lijuan Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiaoxue Ding
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- College of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- College of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Guanghui Fu
- School of Science, Kunming University of Science and Technology, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- College of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
149
|
Quan YZ, Ma A, Ren CQ, An YP, Qiao PS, Gao C, Zhang YK, Li XW, Lin SM, Li NN, Chen DL, Pan Y, Zhou H, Lin DM, Lin SQ, Li M, Yang BX. Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway. Atherosclerosis 2024; 391:117478. [PMID: 38417185 DOI: 10.1016/j.atherosclerosis.2024.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid infiltration and plaque formation in blood vessel walls. Ganoderic acids (GA), a class of major bioactive compounds isolated from the Chinese traditional medicine Ganoderma lucidum, have multiple pharmacological activities. This study aimed to determine the anti-atherosclerotic effect of GA and reveal the pharmacological mechanism. METHODS ApoE-/- mice were fed a high-cholesterol diet and treated with GA for 16 weeks to induce AS and identify the effect of GA. Network pharmacological analysis was performed to predict the anti-atherosclerotic mechanisms. An invitro cell model was used to explore the effect of GA on macrophage polarization and the possible mechanism involved in bone marrow dereived macrophages (BMDMs) and RAW264.7 cells stimulated with lipopolysaccharide or oxidized low-density lipoprotein. RESULTS It was found that GA at 5 and 25 mg/kg/d significantly inhibited the development of AS and increased plaque stability, as evidenced by decreased plaque in the aorta, reduced necrotic core size and increased collagen/lipid ratio in lesions. GA reduced the proportion of M1 macrophages in plaques, but had no effect on M2 macrophages. In vitro experiments showed that GA (1, 5, 25 μg/mL) significantly decreased the proportion of CD86+ macrophages and the mRNA levels of IL-6, IL-1β, and MCP-1 in macrophages. Experimental results showed that GA inhibited M1 macrophage polarization by regulating TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS This study demonstrated that GA play an important role in plaque stability and macrophage polarization. GA exert the anti-atherosclerotic effect partly by regulating TLR4/MyD88/NF-κB signaling pathways to inhibit M1 polarization of macrophages. Our study provides theoretical basis and experimental data for the pharmacological activity and mechanisms of GA against AS.
Collapse
Affiliation(s)
- Ya-Zhu Quan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Chao-Qun Ren
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Pan-Shuang Qiao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Cai Gao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Kun Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, 404020, China
| | - Xiao-Wei Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; China Resources Pharmaceutical Group Limited, Beijing, 100000, China
| | - Si-Mei Lin
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Di-Long Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, 404020, China
| | - Yan Pan
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dong-Mei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shu-Qian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
150
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|