101
|
Zhao X, Qi X, Lian W, Tong X, Wang H, Su L, Wei P, Zhuang Z, Gong J, Bai L. Trichomicin Suppresses Colorectal Cancer via Comprehensive Regulation of IL-6 and TNFα in Tumor Cells, TAMs, and CAFs. Front Pharmacol 2020; 11:386. [PMID: 32317968 PMCID: PMC7146085 DOI: 10.3389/fphar.2020.00386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Trichomicin, a small-molecule compound isolated from fungi, has been identified with bioactivity of antitumor. In this study, a colon cancer subcutaneous mice model was used to evaluate the antitumor effects of Trichomicin in vivo. Treatment with Trichomicin significantly inhibited tumor growth in a xenograft mouse colon cancer model. The underlying molecular mechanism has also been investigated through the quantification of relevant proteins. The expression levels of IL-6 and TNFα were reduced in tumor tissues of mice treated with Trichomicin, which was consistent with results of in vitro experiments in which Trichomicin suppressed the expression of IL-6 and TNFα in tumor and stromal cells. In addition, Trichomicin inhibited TNFα-induced activation of NF-κB and basal Stat3 signaling in vitro, which resulted in reduced expression of the immune checkpoint protein PD-L1 in tumor and stromal cells. Conclusively, Trichomicin, a promising new drug candidate with antitumor activity, exerted antitumor effects against colon cancer through inhibition of the IL-6 and TNFα signaling pathways.
Collapse
Affiliation(s)
- Xi Zhao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqiang Qi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Surgery and Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Wenrui Lian
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Tong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Wang
- Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Liya Su
- Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Wei
- Department of Medical Immunology, Basic Medical College, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
102
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
103
|
Dikmen K, Kerem M. Stage predictivity of neutrophil/lymphocyte and platelet/lymphocyte ratios in pancreatic neuroendocrine tumors. Turk J Surg 2020; 36:1-8. [PMID: 32637869 DOI: 10.5578/turkjsurg.4375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Objectives This study aimed to analyze the correlations between European Neuroendocrine Tumor Society (ENEST), Tumor Node Metastasis (TNM) staging systems and pre-operative neutrophil/lymphocyte (NLR) and platelet/lymphocyte ratios (PLR) in patients with pancreatic neuroendocrine tumor (PNET). Material and Methods Forty-four patients with diagnosed PNET were analyzed retrospectively. Accordingly, the patients' blood and clinicopathological parameters were analyzed. The correlations between laboratory parameters and tumor stages were evaluated using Eta correlation analysis. The control group was composed of volunteering healthy participants who had similarities with our study group as regards age and gender. Results According to ENETS classification, 34% of the patients were stage I, 25% were stage II, 20.4% were stage III and 20.4% were stage IV. NLR and PLR mean values were 2.4 and 127, respectively. NLR values of the patients in the study group were higher than those of the control group (p= 0.001). NLR and PLR values of stage I, II, III and IV patients tended to increase in parallel to the higher stages according to ENETS system (p= 0.0001 and p= 0.0001, respectively). Similarly, NLR and PLR values increased in parallel to the higher stages according to TNM system (p= 0.0001 and p= 0.0001, respectively). In addition, NLR values were found to be higher in patients with lymph node metastasis than in those without (p= 0.001). Conclusion Increased levels of inflammatory mediators such as NLR and PLR are associated with advanced stages of patients with PNET.
Collapse
Affiliation(s)
- Kürşat Dikmen
- Department of General Surgery, Gazi University School of Medicine, Ankara, Turkey
| | - Mustafa Kerem
- Department of General Surgery, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
104
|
Szeponik L, Akeus P, Rodin W, Raghavan S, Quiding-Järbrink M. Regulatory T cells specifically suppress conventional CD8αβ T cells in intestinal tumors of APC Min/+ mice. Cancer Immunol Immunother 2020; 69:1279-1292. [PMID: 32185408 PMCID: PMC7303072 DOI: 10.1007/s00262-020-02540-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
The presence of activated T cells in colorectal cancer tissues is a strong predictor of patient survival. Our previous studies have shown that regulatory T cells (Treg) are able to reduce T cell transendothelial migration in vitro and accumulation of effector T cells in intestinal tumors in vivo in the murine APCMin/+ model for microsatellite stable intestinal tumors. In this study, we investigated the effect of Treg depletion on the density and effector functions of different TCRαβ+ and TCRγδ+ T cell populations in intestinal tumors. We used the APCMin/+\DEREG mouse model, which harbor a diphtheria toxin receptor under the control of the FOXP3 promoter, to deplete Treg in tumor bearing mice. We found that the density of conventional TCRαβ+CD8αβ+ T cells was significantly increased in Treg-depleted tumors in comparison with Treg-proficient tumors. Furthermore, TCRαβ+CD8αβ+ T cells showed increased proliferation and activation as well as increased Granzyme B and IFN-γ production in Treg-depleted tumors. In sharp contrast, the densities and effector functions of TCRαβ+CD8αα+ T cells and TCRγδ+ T cells remained unchanged by Treg depletion. We also documented a distinct population of IL-17A+TNF+ TCRγδ+CD8− T cells in tumors, which were not affected by Treg depletion. We conclude that Treg depletion affects only conventional TCRαβ+CD8αβ+ T cells in intestinal tumors, while unconventional T cells and T cells in unaffected tissue are not altered. Immunotherapies aimed at depleting Treg from tumors may thus be a viable option for reinvigoration of conventional cytotoxic T cells with a Th1 cytokine profile.
Collapse
Affiliation(s)
- Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Paulina Akeus
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William Rodin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
105
|
Plummer R, Hu GF, Liu T, Yoo J. Angiogenin regulates PKD activation and COX-2 expression induced by TNF-α and bradykinin in the colonic myofibroblast. Biochem Biophys Res Commun 2020; 525:870-876. [PMID: 32171525 DOI: 10.1016/j.bbrc.2020.02.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The myofibroblast is a gastrointestinal stromal cell that is a target of tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine strongly implicated in colitis-associated cancer. Crosstalk between TNF-α and other pro-inflammatory mediators amplify inflammatory signaling but the mechanism is unknown. Angiogenin (ANG) is a 14-kDa angiogenesis protein that is regulated in patients with inflammatory bowel disease. However, the role of ANG on inflammatory mediator crosstalk in the myofibroblast is unknown. METHODS The human colonic myofibroblast cell line 18Co, as well as primary mouse and human colonic myofibroblasts, were exposed to TNF-α (10 ng/ml) and bradykinin (BK, 100 nM). ANG was quantified by ELISA. The expression of cyclo-oxygenase-2 (COX-2) and phosphorylation of PKD was assessed by Western Blot. RESULTS Primary mouse and human colonic myofibroblasts exposed to TNF-α/BK led to enhanced PKD phosphorylation and synergistic COX-2 expression. 18Co cells secrete high levels of ANG (24h, 265 ± 5 pg/ml). The monoclonal antibody 26-2F, which neutralizes ANG, inhibited TNF-α/BK-mediated PKD phosphorylation and synergistic COX-2 expression in primary human myofibroblasts. Likewise, in primary mouse myofibroblasts that do not express ANG (ANG-KO), TNF-α/BK failed to enhance PKD phosphorylation and COX-2 expression. CONCLUSIONS TNF-α/BK enhance PKD phosphorylation and COX-2 expression in primary mouse and human colonic myofibroblasts. Angiogenin is produced by the myofibroblast, and inhibition of ANG signaling, either by its absence (ANG-KO) or by pharmacologic inhibition, blocks enhanced PKD phosphorylation and synergistic COX-2 expression induced by TNF-α/BK. ANG mediates crosstalk signaling between TNF-α/BK in the regulation of stroma-derived COX-2 and may be a novel therapeutic target for the management of colitis-associated cancer.
Collapse
Affiliation(s)
- Robert Plummer
- Department of Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Guo-Fu Hu
- Department of Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Tiegang Liu
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - James Yoo
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
106
|
Begka C, Pattaroni C, Mooser C, Nancey S, McCoy KD, Velin D, Maillard MH. Toll-Interacting Protein Regulates Immune Cell Infiltration and Promotes Colitis-Associated Cancer. iScience 2020; 23:100891. [PMID: 32114379 PMCID: PMC7049660 DOI: 10.1016/j.isci.2020.100891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/25/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Expression of Toll-interacting protein (Tollip), a potent TLR modulator, decreases in patients with inflammatory bowel diseases (IBD), whereas Tollip−/− mice are susceptible to colitis. Tollip expression was shown to be reduced in sporadic adenoma . In contrast, we found variable Tollip expression in patients with colitis-associated adenomas. In Tollip−/− mice challenged to develop colitis-associated cancer (CAC), tumor formation was significantly reduced owing to decreased mucosal proliferative and apoptotic indexes. This protection was associated with blunt inflammatory responses without significant changes in microbial composition. mRNA expression of Cd62l and Ccr5 homing receptors was reduced in colons of untreated Tollip−/− mice, whereas CD62L+ CD8+ T cells accumulated in the periphery. In Tollip-deficient adenomas Ctla-4 mRNA expression and tumor-infiltrating CD4+ Foxp3+ regulatory T cell (Treg) were decreased. Our data show that protection from CAC in Tollip-deficient mice is associated with defects in lymphocyte accumulation and composition in colitis-associated adenomas. Tollip protects from colitis but promotes colitis-associated cancer onset Tollip-deficient tumors demonstrate decreased cell turnover and inflammation Tollip ablation favors naive CD8+ T cell accumulation in peripheral lymphoid organs Regulatory T cell accumulation is aberrant in Tollip-deficient tumors
Collapse
Affiliation(s)
- Christina Begka
- Service of Gastroenterology and Hepatology, Department of Medicine, University Hospital of Lausanne, CHUV-Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland; University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Céline Pattaroni
- Service of Pneumology, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Chemin de Boveresses 155, 1066 Epalinges, Switzerland
| | - Catherine Mooser
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Stéphane Nancey
- Lyon Sud Hospital, Hospices Civils de Lyon, CHU, Lyon, France
| | | | - Kathy D McCoy
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Department of Medicine, University Hospital of Lausanne, CHUV-Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland; University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Michel H Maillard
- Service of Gastroenterology and Hepatology, Department of Medicine, University Hospital of Lausanne, CHUV-Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland; University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland; Crohn and Colitis Center, Gastroentérologie Beaulieu SA, Lausanne, Switzerland.
| |
Collapse
|
107
|
Jo E, Jang HJ, Yang KE, Jang MS, Huh YH, Yoo HS, Park JS, Jang IS, Park SJ. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement Med Ther 2020; 20:1. [PMID: 32020859 PMCID: PMC7076896 DOI: 10.1186/s12906-019-2780-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cordyceps militaris (L.) Fr. (C. militaris) exhibits pharmacological activities, including antitumor properties, through the regulation of the nuclear factor kappa B (NF-κB) signaling. Tumor Necrosis Factor (TNF) and TNF-α modulates cell survival and apoptosis through NF- κB signaling. However, the mechanism underlying its mode of action on the NF-κB pathway is unclear. METHODS Here, we analyzed the effect of C. militaris extract (CME) on the proliferation of ovarian cancer cells by confirming viability, morphological changes, migration assay. Additionally, CME induced apoptosis was determined by apoptosis assay and apoptotic body formation under TEM. The mechanisms of CME were determined through microarray, immunoblotting and immunocytochemistry. RESULTS CME reduced the viability of cells in a dose-dependent manner and induced morphological changes. We confirmed the decrease in the migration activity of SKOV-3 cells after treatment with CME and the consequent induction of apoptosis. Immunoblotting results showed that the CME-mediated upregulation of tumor necrosis factor receptor 1 (TNFR1) expression induced apoptosis of SKOV-3 cells via the serial activation of caspases. Moreover, CME negatively modulated NF-κB activation via TNFR expression, suggestive of the activation of the extrinsic apoptotic pathway. The binding of TNF-α to TNFR results in the disassociation of IκB from NF-κB and the subsequent translocation of the active NF-κB to the nucleus. CME clearly suppressed NF-κB translocation induced by interleukin (IL-1β) from the cytosol into the nucleus. The decrease in the expression levels of B cell lymphoma (Bcl)-xL and Bcl-2 led to a marked increase in cell apoptosis. CONCLUSION These results suggest that C. militaris inhibited ovarian cancer cell proliferation, survival, and migration, possibly through the coordination between TNF-α/TNFR1 signaling and NF-κB activation. Taken together, our findings provide a new insight into a novel treatment strategy for ovarian cancer using C. militaris.
Collapse
Affiliation(s)
- Eunbi Jo
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Hyun-Jin Jang
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Eun Yang
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Min Su Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-100, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, South Korea
| | - Jun Soo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-100, Republic of Korea
| | - Ik-Soon Jang
- Division of Analytical Science, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon, 305-333, Republic of Korea. .,Division of Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea.
| |
Collapse
|
108
|
Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia 2020; 34:1540-1552. [PMID: 31919471 PMCID: PMC7266746 DOI: 10.1038/s41375-019-0674-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Specific and reciprocal interactions with the bone marrow microenvironment (BMM) govern the course of hematological malignancies. Matrix metalloproteinase-9 (MMP-9), secreted by leukemia cells, facilitates tumor progression via remodeling of the extracellular matrix (ECM) of the BMM. Hypothesizing that leukemias may instruct the BMM to degrade the ECM, we show, that MMP-9-deficiency in the BMM prolongs survival of mice with BCR-ABL1-induced B-cell acute lymphoblastic leukemia (B-ALL) compared with controls and reduces leukemia-initiating cells. MMP-9-deficiency in the BMM leads to reduced degradation of proteins of the ECM and reduced invasion of B-ALL. Using various in vivo and in vitro assays, as well as recipient mice deficient for the receptor for tumor necrosis factor (TNF) α (TNFR1) we demonstrate that B-ALL cells induce MMP-9-expression in mesenchymal stem cells (MSC) and possibly other cells of the BMM via a release of TNFα. MMP-9-expression in MSC is mediated by activation of nuclear factor kappa B (NF-κB) downstream of TNFR1. Consistently, knockdown of TNF-α in B-ALL-initiating cells or pharmacological inhibition of MMP-9 led to significant prolongation of survival in mice with B-ALL. In summary, leukemia cell-derived Tnfα induced MMP-9-expression by the BMM promoting B-ALL progression. Inhibition of MMP-9 may act as an adjunct to existing therapies.
Collapse
|
109
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
110
|
Yoshimura T, Nakamura K, Li C, Fujisawa M, Shiina T, Imamura M, Li T, Mukaida N, Matsukawa A. Cancer Cell-Derived Granulocyte-Macrophage Colony-Stimulating Factor Is Dispensable for the Progression of 4T1 Murine Breast Cancer. Int J Mol Sci 2019; 20:ijms20246342. [PMID: 31888216 PMCID: PMC6941073 DOI: 10.3390/ijms20246342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
We previously reported that 4T1 murine breast cancer cells produce GM-CSF that up-regulates macrophage expression of several cancer promoting genes, including Mcp-1/Ccl2, Ccl17 and Rankl, suggesting a critical role of cancer cell-derived GM-CSF in cancer progression. Here, we attempted to define whether 4T1 cell-derived GM-CSF contributes to the expression of these genes by 4T1tumors, and their subsequent progression. Intraperitoneal injection of anti-GM-CSF neutralizing antibody did not decrease the expression of Mcp-1, Ccl17 or Rankl mRNA by 4T1 tumors. To further examine the role of cancer cell-derived GM-CSF, we generated GM-CSF-deficient 4T1 cells by using the Crisper-Cas9 system. As previously demonstrated, 4T1 cells are a mixture of cells and cloning of cells by itself significantly reduced tumor growth and lung metastasis. By contrast, GM-CSF-deficiency did not affect tumor growth, lung metastasis or the expression of these chemokine and cytokine genes in tumor tissues. By in-situ hybridization, the expression of Mcp-1 mRNA was detected in both F4/80-expressing and non-expressing cells in tumors of GM-CSF-deficient cells. These results indicate that cancer cell-derived GM-CSF is dispensable for the tuning of the 4T1 tumor microenvironment and the production of MCP-1, CCL17 or RANKL in the 4T1 tumor microenvironment is likely regulated by redundant mechanisms.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
- Correspondence: ; Tel.: +81-86-235-7143
| | - Kaoru Nakamura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| | - Tsuyoshi Shiina
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| | - Mayu Imamura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| | - Tiantian Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan; (K.N.); (C.L.); (M.F.); (T.S.); (M.I.); (T.L.); (A.M.)
| |
Collapse
|
111
|
Kvorjak M, Ahmed Y, Miller ML, Sriram R, Coronnello C, Hashash JG, Hartman DJ, Telmer CA, Miskov-Zivanov N, Finn OJ, Cascio S. Cross-talk between Colon Cells and Macrophages Increases ST6GALNAC1 and MUC1-sTn Expression in Ulcerative Colitis and Colitis-Associated Colon Cancer. Cancer Immunol Res 2019; 8:167-178. [PMID: 31831633 DOI: 10.1158/2326-6066.cir-19-0514] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Patients with ulcerative colitis have an increased risk of developing colitis-associated colon cancer (CACC). Changes in glycosylation of the oncoprotein MUC1 commonly occur in chronic inflammation, including ulcerative colitis, and this abnormally glycosylated MUC1 promotes cancer development and progression. It is not known what causes changes in glycosylation of MUC1. Gene expression profiling of myeloid cells in inflamed and malignant colon tissues showed increased expression levels of inflammatory macrophage-associated cytokines compared with normal tissues. We analyzed the involvement of macrophage-associated cytokines in the induction of aberrant MUC1 glycoforms. A coculture system was used to examine the effects of M1 and M2 macrophages on glycosylation-related enzymes in colon cancer cells. M2-like macrophages induced the expression of the glycosyltransferase ST6GALNAC1, an enzyme that adds sialic acid to O-linked GalNAc residues, promoting the formation of tumor-associated sialyl-Tn (sTn) O-glycans. Immunostaining of ulcerative colitis and CACC tissue samples confirmed the elevated number of M2-like macrophages as well as high expression of ST6GALNAC1 and the altered MUC1-sTn glycoform on colon cells. Cytokine arrays and blocking antibody experiments indicated that the macrophage-dependent ST6GALNAC1 activation was mediated by IL13 and CCL17. We demonstrated that IL13 promoted phosphorylation of STAT6 to activate transcription of ST6GALNAC1. A computational model of signaling pathways was assembled and used to test IL13 inhibition as a possible therapy. Our findings revealed a novel cellular cross-talk between colon cells and macrophages within the inflamed and malignant colon that contributes to the pathogenesis of ulcerative colitis and CACC.See related Spotlight on p. 160.
Collapse
Affiliation(s)
- Michael Kvorjak
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yasmine Ahmed
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle L Miller
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raahul Sriram
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jana G Hashash
- Department of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas J Hartman
- Department of Pathology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Cheryl A Telmer
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Natasa Miskov-Zivanov
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sandra Cascio
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Fondazione Ri.Med, Palermo, Italy.,Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
112
|
Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019; 51:27-41. [PMID: 31315034 DOI: 10.1016/j.immuni.2019.06.025] [Citation(s) in RCA: 2003] [Impact Index Per Article: 400.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Inflammation predisposes to the development of cancer and promotes all stages of tumorigenesis. Cancer cells, as well as surrounding stromal and inflammatory cells, engage in well-orchestrated reciprocal interactions to form an inflammatory tumor microenvironment (TME). Cells within the TME are highly plastic, continuously changing their phenotypic and functional characteristics. Here, we review the origins of inflammation in tumors, and the mechanisms whereby inflammation drives tumor initiation, growth, progression, and metastasis. We discuss how tumor-promoting inflammation closely resembles inflammatory processes typically found during development, immunity, maintenance of tissue homeostasis, or tissue repair and illuminate the distinctions between tissue-protective and pro-tumorigenic inflammation, including spatiotemporal considerations. Defining the cornerstone rules of engagement governing molecular and cellular mechanisms of tumor-promoting inflammation will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
113
|
Ovarian Cancer Dissemination-A Cell Biologist's Perspective. Cancers (Basel) 2019; 11:cancers11121957. [PMID: 31817625 PMCID: PMC6966436 DOI: 10.3390/cancers11121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) comprises multiple disease states representing a variety of distinct tumors that, irrespective of tissue of origin, genetic aberrations and pathological features, share common patterns of dissemination to the peritoneal cavity. EOC peritoneal dissemination is a stepwise process that includes the formation of malignant outgrowths that detach and establish widespread peritoneal metastases through adhesion to serosal membranes. The cell biology associated with outgrowth formation, detachment, and de novo adhesion is at the nexus of diverse genetic backgrounds that characterize the disease. Development of treatment for metastatic disease will require detailed characterization of cellular processes involved in each step of EOC peritoneal dissemination. This article offers a review of the literature that relates to the current stage of knowledge about distinct steps of EOC peritoneal dissemination, with emphasis on the cell biology aspects of the process.
Collapse
|
114
|
Grazioso TP, Brandt M, Djouder N. Diet, Microbiota, and Colorectal Cancer. iScience 2019; 21:168-187. [PMID: 31669832 PMCID: PMC6889474 DOI: 10.1016/j.isci.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/03/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium is a very dynamic tissue under a high regenerative pressure, which makes it susceptible to malignant transformation. Proper integration of various cell signaling pathways and a balanced cross talk between different cell types composing the organ are required to maintain intestinal homeostasis. Dysregulation of this balance can lead to colorectal cancer (CRC). Here, we review important insights into molecular and cellular mechanisms of CRC. We discuss how perturbation in complex regulatory networks, including the Wnt, Notch, BMP, and Hedgehog pathways; and how variations in inflammatory signaling, nutrients, and microbiota can affect intestinal homeostasis contributing to the malignant transformation of intestinal cells.
Collapse
Affiliation(s)
- Tatiana P Grazioso
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Marta Brandt
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain.
| |
Collapse
|
115
|
Wang Z, Hua W, Li C, Chang H, Liu R, Ni Y, Sun H, Li Y, Wang X, Hou M, Liu Y, Xu Z, Ji M. Protective Role of Fecal Microbiota Transplantation on Colitis and Colitis-Associated Colon Cancer in Mice Is Associated With Treg Cells. Front Microbiol 2019; 10:2498. [PMID: 31798539 PMCID: PMC6861520 DOI: 10.3389/fmicb.2019.02498] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Colitis-associated cancer (CAC) is the most serious outcome of inflammatory bowel disease, which has an alteration of commensal intestinal microbiota. However, the role of intestinal microbiota on CAC progression is not well-understood. Fecal microbiota transplantation (FMT) was used for treating murine azoxymethane–dextran sodium sulfate (AOM-DSS) model of CAC. Composition of gut microbiota during FMT treatment was analyzed. RT-PCR and ELISA were used to detect the inflammatory factors, and immunofluorescence was applied to examine the phospho-nuclear factor (NF)-κB p65/p100 and Ki67-positive cells in the colons. In addition, flow cytometry was performed to analyze the immune cell after FMT treatment. Rehabilitation of the intestinal microbiota by FMT restored both the ratio and diversity of microbiota during CAC progression. Remarkably, a favorable morphometric outcome characterized by decreased tumor load and size was observed in CAC mice with FMT treatment. In addition, an anti-inflammatory function of FMT was demonstrated by decreasing pro-inflammatory factors but increasing anti-inflammatory factors through inhibiting canonical NF-κB activity and cellular proliferation in colons of CAC mice. The expression of CD4+CD25+Foxp3+ regulatory T cells (Tregs) was significantly increased after FMT treatment in CAC mice, but not T helper (Th)1/2/17 cells. Our study aids in the understanding of CAC pathogenesis and reveals a previously unrecognized role for FMT in the treatment of CAC through restoring the intestinal microbiota and inducing regulatory T cells.
Collapse
Affiliation(s)
- Zitao Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hao Chang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ran Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yangyue Ni
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongzhi Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yangyang Li
- Department of Endocrinology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Endocrinology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.,Department of Endocrinology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
116
|
Wang C, Li W, Wang H, Ma Y, Zhao X, Zhang X, Yang H, Qian J, Li J. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiol 2019; 19:246. [PMID: 31694526 PMCID: PMC6836350 DOI: 10.1186/s12866-019-1610-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIMS To explore the inhibition mechanism of Saccharomyces boulardii (S. boulardii) on ulcerative colitis (UC) carcinogenesis. METHODS C57BL/6 mice were treated with azoxymethane and dextran sulfate sodium (AOM/DSS) to develop a UC carcinogenesis model. The treatment group was lavaged with S. boulardii (5 × 107 CFU/d) for 12 weeks. The mice were sacrificed and the tumor load in the treatment group was compared with that of a control group. The levels of TNF-α and IL-6 in colon tissue were measured by enzyme-linked immunosorbent assays. The influence of S. boulardii on TNF-α and IL-6 regulation was also investigated using different colon cell lines. Differences in intestinal microbiota in both stool and intestinal mucosa samples were assessed using 16S rDNA sequencing. RESULTS S. boulardii treatment reduced AOM/DSS-induced UC carcinogenesis in mice, as indicated by the reduced tumor load and reduced TNF-α and IL-6 levels in vivo, as well its effects on TNF-α and IL-6 activities in vitro. Significant changes in both fecal and mucosal microbiota were observed among the control, the AOM/DSS treated, and AOM/DSS plus S. boulardii treated groups. For fecal microbiota, the AOM/DSS treated group was lower in Lactobacillus, but higher in Oscillibacter and Lachnoclostridium than the control group. After intervention with S. boulardii, the percentage of Bacillus and Lactococcus increased, but Lachnoclostridium, Oscillibacter, Bacteroides, and Pseudomonas decreased. For the intestinal mucosal microbiota, the AOM/DSS treated group was lower in Bifidobacterium and Ruminococcaceae_UCG-014 and higher in Alloprevotella than the control group. After S. boulardii exposure, the percentage contributions of Lachnoclostridium and Lachnospiraceae_NK4A136 increased. CONCLUSIONS S. boulardii effectively reduced UC carcinogenesis in an AOM/DSS induced mice model. This positive result can likely be attributed to the reduction of TNF-α and IL-6 levels or the blockade of their function combined with alterations to the intestinal microbiota.
Collapse
Affiliation(s)
- Chunsaier Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenbin Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongying Wang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinhua Zhao
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xudong Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New Lambton Heights, New South Wales, Australia
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
117
|
IRW and IQW Reduce Colitis-Associated Cancer Risk by Alleviating DSS-Induced Colonic Inflammation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6429845. [PMID: 31772935 PMCID: PMC6854911 DOI: 10.1155/2019/6429845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022]
Abstract
Background and Objective Bioactive peptides exert great influence in animals and human health by targeting gastrointestinal tracts. The colitis model of mice was induced by dextran sulfate sodium (DSS). Thirty-two 8-week-old mice weighing 23 g on average were randomly assigned to four groups of 8 each: mice fed basal diet (CON), mice fed basal diet with 5% DSS (DSS), mice fed 0.03% IRW with 5% DSS (IRW-DSS), and mice fed 0.03% IRW with 5% DSS (IQW-DSS). After an adaptation period of 3 days, on day 8, all mice were slaughtered. Serum samples were collected to determine the level of amino acids; colonic tissue was quick-frozen for the determination of gene expression. Methods The aim of this study was to assess the ability of two kinds of peptides (IRW and IQW) to repair intestinal inflammatory in the DSS-induced model in accordance with serum amino acids and intestinal inflammatory factors. Results The results demonstrated that the addition of IRW and IQW had a mitigating effect on DSS-induced intestinal inflammation. The level of Asp decreased in the serum of mice supplemented with IRW-DSS (P < 0.05), and IQW enhanced the level of Leu, but lowered the level of Ser (P < 0.05). IQW and IRW addition reduced the level of TNF-α and IL-17 (P < 0.05). No other significant effects were observed. Conclusions The present study demonstrated that intracolic administration of IRW and IQW might be a novel option for preventing inflammatory bowel disease via regulating the level of serum amino acid and enhancing the intestinal immune defense.
Collapse
|
118
|
Han W, Xie B, Li Y, Shi L, Wan J, Chen X, Wang H. Orally Deliverable Nanotherapeutics for the Synergistic Treatment of Colitis-Associated Colorectal Cancer. Theranostics 2019; 9:7458-7473. [PMID: 31695780 PMCID: PMC6831307 DOI: 10.7150/thno.38081] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Colitis-associated colorectal cancer (CAC) poses substantial challenges for effective treatment. Currently, there is a considerable need for the development of orally bioavailable dosage forms that enable the safe and effective delivery of therapeutic drugs to local diseased lesions in the gastrointestinal tract. Experimental Design: In this study, we developed orally deliverable nanotherapeutics for the synergistic treatment of inflammatory bowel diseases (IBDs) and CAC. Water-insoluble curcumin (CUR) and 7-ethyl-10-hydroxycamptothecin (SN38), which served as anti-inflammatory and cytotoxic agents, respectively, were chemically engineered into hydrophilic mucoadhesive chitosan for the generation of chitosan-drug amphiphiles. Results: The resulting amphiphilic constructs formed core-shell nanostructures in aqueous solutions and were orally administered for in vivo therapeutic studies. Using a preclinical CAC mouse model, we showed that the orally delivered nanotherapeutics locally accumulated in inflamed intestinal regions and tumor tissues. Furthermore, the therapeutic synergy of the combined nanotherapeutics in CAC mice was evaluated. Compared with their individual drug forms, combined CUR and SN38 nanoparticles yielded synergistic effects to alleviate intestinal inflammation and protect mice from ulcerative colitis. Notably, the combinatorial therapy demonstrated a remarkable tumor shrinkage with only ~6% of the total tumors exceeding 4 mm in diameter, whereas ~35% of tumors were observed to exceed a diameter of 4 mm in the saline-treated CAC mice. These data suggest a new and reliable approach for improving the treatment of IBD and CAC. Conclusions: Our results showed that bioadhesive chitosan materials can be used to produce colloidal-stable nanotherapeutics that are suitable for oral delivery. Both nanotherapeutics exhibited substantial accumulation in inflamed intestinal regions and tumor tissues and showed good synergy for treating CAC, warranting further clinical translation.
Collapse
Affiliation(s)
- Weidong Han
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Binbin Xie
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yiran Li
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Linlin Shi
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Jianqin Wan
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Xiaona Chen
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| |
Collapse
|
119
|
Xiao Y, Wang X, Dong X, Zhang Y, Liu H. RBPJ inhibits the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway. Onco Targets Ther 2019; 12:8075-8084. [PMID: 31632061 PMCID: PMC6778847 DOI: 10.2147/ott.s212519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background Recombination signal-binding protein J (RBPJ) is a crucial downstream effector of Notch signaling, which is involved cell proliferation, differentiation, and apoptosis. It plays an important role in tumorigenesis although the further studies and concrete evidence are still needed. Especially for endometrial carcinoma, the functions and mechanism of RBPJ are still elusive. Methods The RNA expressions of RBPJ, miR-155, NF-κB, TNF-α and κB-Ras1 were examined by rt-PCR, and their protein levels were determined by Western Blot. Their expressions were inhibited by transient transfection of related siRNAs. Wound healing and transwell invasion assays were performed in ECC003 cells for measuring the migration and invasion ability, respectively. The ROS levels were detected by flow cytometry with H2DCFDA. Purpose This study was designed to investigate biological characteristics and molecular pathway of RBPJ in endometrial carcinoma cells, which may provide a potential therapeutic target for the treatments against endometrial carcinoma. Results It was shown in our study that the expression levels of RBPJ were significantly downregulated in different endometrial carcinoma cell lines. And a siRNA-mediated reduction of RBPJ enhanced the migration and invasion ability of ECC003 obviously. Besides, the results showed that the reactive oxygen
species (ROS) levels increase when inhibiting RBPJ. To investigate the molecular pathway of RBPJ, we examined the expression of nuclear factor-κB (NF-κB), NF-κB inhibitor interacting Ras-like protein 1 (κB-Ras1), tumor necrosis factor-α (TNF-α) and miR-155. The results suggested that the expression of NF-κB and TNF-α significantly was promoted, while κB-Ras1 was inhibited. An upregulated expression was observed with miR-155 as well, which suggested the inhibition of NF-κB signal pathway was mediated by miR-155. Our results of Notch intracellular domain (NICD) knockdown also demonstrated that NICD is required for the inhibition of RBPJ on miR-155. And knockdown of miR-155 could inhibit the mobility of endometrial carcinoma cells. Conclusion Our study suggested that RBPJ can inhibit the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Gynecology, Chengwu People's Hospital, Heze, Shandong Province 274700, People's Republic of China
| | - Xiaoli Wang
- Department of Gynecology, Liangshan People's Hospital, Jining, Shandong Province 272699, People's Republic of China
| | - Xiping Dong
- Department of Obstetrics and Gynecology, The First People's Hospital of Ji'nan, Ji'nan, Shandong Province 250011, People's Republic of China
| | - Yan Zhang
- Department of Gynecology, Chengwu People's Hospital, Heze, Shandong Province 274700, People's Republic of China
| | - Haibin Liu
- Department of Gynecology and Obstetrics, Heze Municipal Hospital, Heze, Shandong Province 274000, People's Republic of China
| |
Collapse
|
120
|
Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Biosci Rep 2019; 39:BSR20191437. [PMID: 31488616 PMCID: PMC6753326 DOI: 10.1042/bsr20191437] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023] Open
Abstract
Transient receptor potential channel subfamily A member 1 (TRPA1) is a non-selective cationic channel, identified initially as a cold sensory receptor. TRPA1 responds to diverse exogenous and endogenous stimuli associated with pain and inflammation. However, the information on the role of TRPA1 toward T-cell responses remains scanty. In silico data suggest that TRPA1 can play an important role in the T-cell activation process. In this work, we explored the endogenous expression of TRPA1 and its function in T cells. By reverse transcription polymerase chain reaction (RT-PCR), confocal microscopy and flow cytometry, we demonstrated that TRPA1 is endogenously expressed in primary murine splenic T cells as well as in primary human T cells. TRPA1 is primarily located at the cell surface. TRPA1-specific activator namely allyl isothiocyanate (AITC) increases intracellular calcium ion (Ca2+) levels while two different inhibitors namely A-967079 as well as HC-030031 reduce intracellular Ca2+ levels in T cells; TRPA1 inhibition also reduces TCR-mediated calcium influx. TRPA1 expression was found to be increased during αCD3/αCD28 (TCR) or Concanavalin A (ConA)-driven stimulation in T cells. TRPA1-specific inhibitor treatment prevented induction of cluster of differentiation 25 (CD25), cluster of differentiation 69 (CD69) in ConA/TCR stimulated T cells and secretion of cytokines like tumor necrosis factor (TNF), interferon γ (IFN-γ), and interleukin 2 (IL-2) suggesting that endogenous activity of TRPA1 may be involved in T-cell activation. Collectively these results may have implication in T cell-mediated responses and indicate possible role of TRPA1 in immunological disorders.
Collapse
|
121
|
Kobaek-Larsen M, Baatrup G, K. Notabi M, El-Houri RB, Pipó-Ollé E, Christensen Arnspang E, Christensen LP. Dietary Polyacetylenic Oxylipins Falcarinol and Falcarindiol Prevent Inflammation and Colorectal Neoplastic Transformation: A Mechanistic and Dose-Response Study in A Rat Model. Nutrients 2019; 11:nu11092223. [PMID: 31540047 PMCID: PMC6769548 DOI: 10.3390/nu11092223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Falcarinol (FaOH) and falcarindiol (FaDOH) are cytotoxic and anti-inflammatory polyacetylenic oxylipins, which are commonly found in the carrot family (Apiaceae). FaOH and FaDOH have previously demonstrated a chemopreventive effect on precursor lesions of colorectal cancer (CRC) in azoxymethane (AOM)-induced rats. The purpose of the present study was to elucidate possible mechanisms of action for the preventive effect of FaOH and FaDOH on colorectal precancerous lesions and to determine how this effect was dependent on dose. Gene expression studies performed by RT-qPCR of selected cancer biomarkers in tissue from biopsies of neoplastic tissue revealed that FaOH and FaDOH downregulated NF-κβ and its downstream inflammatory markers TNFα, IL-6, and COX-2. The dose-dependent anti-neoplastic effect of FaOH and FaDOH in AOM-induced rats was investigated in groups of 20 rats receiving a standard rat diet (SRD) supplemented with 0.16, 0.48, 1.4, 7 or 35 µg FaOH and FaDOH g−1 feed in the ratio 1:1 and 20 rats were controls receiving only SRD. Analysis of aberrant crypt foci (ACF) showed that the average number of small ACF (<7 crypts) and large ACF (>7 crypts) decreased with increasing dose of FaOH and FaDOH and that this inhibitory effect on early neoplastic formation of ACF was dose-dependent, which was also the case for the total number of macroscopic neoplasms. The CRC protective effects of apiaceous vegetables are mainly due to the inhibitory effect of FaOH and FaDOH on NF-κB and its downstream inflammatory markers, especially COX-2.
Collapse
Affiliation(s)
- Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-2461-3161
| | - Gunnar Baatrup
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Martine K. Notabi
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Rime Bahij El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Emma Pipó-Ollé
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Eva Christensen Arnspang
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, 6700 Esbjerg, Denmark;
| |
Collapse
|
122
|
Choo SM, Park SM, Cho KH. Minimal intervening control of biomolecular networks leading to a desired cellular state. Sci Rep 2019; 9:13124. [PMID: 31511585 PMCID: PMC6739335 DOI: 10.1038/s41598-019-49571-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
A cell phenotype can be represented by an attractor state of the underlying molecular regulatory network, to which other network states eventually converge. Here, the set of states converging to each attractor is called its basin of attraction. A central question is how to drive a particular cell state toward a desired attractor with minimal interventions on the network system. We develop a general control framework of complex Boolean networks to provide an answer to this question by identifying control targets on which one-time temporary perturbation can induce a state transition to the boundary of a desired attractor basin. Examples are shown to illustrate the proposed control framework which is also applicable to other types of complex Boolean networks.
Collapse
Affiliation(s)
- Sang-Mok Choo
- Department of Mathematics, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
123
|
Zhu F, Liu XX, Fan H. Role of NLRP6 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27:1076-1082. [DOI: 10.11569/wcjd.v27.i17.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease of unknown etiology. The symptoms of IBD are prone to recurrent episodes, and there is currently limited treatment and efficacy. Recently, there have been many studies showing that the nucleotide-binding oligomerization domain-like receptor containing the pyrin domain containing protein (NLR family, pyrin domain containing 6, NLRP6) regulates intestinal immunity and microorganisms in inflammatory bowel disease and related tumors. NLRP6 promotes the secretion of interleukin (IL)-18 and antimicrobial peptides, and IL-18 can inhibit the production of IL-22BP, enhance the role of IL-22, and promote the proliferation of epithelial cells through the MyD88 pathway. NLRP6 also regulates the secretion of mucoprotein 2 by goblet cells via Toll-like receptors, clears intestinal bacteria, regulates intestinal immune function, and maintains intestinal flora. Because IBD is associated with a tendency of malignant transformation, and researchers have found that NLRP6 can act on NOTCH and Wnt, activate chemokine ligand 5 and IL-6 signaling, regulate epithelial cell proliferation, and affect the development of IBD-related colorectal cancer. This article reviews the role of NLRP6 in IBD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
124
|
Kanehara K, Ohnuma S, Kanazawa Y, Sato K, Kokubo S, Suzuki H, Karasawa H, Suzuki T, Suzuki C, Naitoh T, Unno M, Abe T. The indole compound MA-35 attenuates tumorigenesis in an inflammation-induced colon cancer model. Sci Rep 2019; 9:12739. [PMID: 31484999 PMCID: PMC6726640 DOI: 10.1038/s41598-019-48974-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
In inflammatory bowel disease, chronic inflammation results in the development of colon cancer known as colitis-associated cancer. This disease is associated with tumor necrosis factor-α (TNF-α) signaling. In addition, intestinal fibrosis is a common clinical complication that is promoted by transforming growth factor β1 (TGF-β1). In our previous study, MA-35 attenuated renal fibrosis by inhibiting both TNF-α and TGF-β1 signaling. This study aimed to identify the possible antitumor effects and antifibrotic effects of MA-35 using an AOM/DSS mouse model. MA-35 was orally administered every day for 70 days in the AOM/DSS mouse model. There was no difference in weight loss between the AOM/DSS group and the AOMDSS + MA-35 group, but the disease activity index score and the survival rate were improved by MA-35. MA-35 blocked the anemia and shortening of the colon induced by AOM/DSS. MA-35 reduced the macroscopic formation of tumors in the colon. In the microscopic evaluation, MA-35 reduced inflammation and fibrosis in areas with dysplasia. Furthermore, the TNF-α mRNA level in the colon tended to be reduced, and the interleukin 6, TGF-β1 and fibronectin 1 mRNA levels in the colon were significantly reduced by MA-35. These results suggested that MA-35 inhibited AOM/DSS-induced carcinogenesis by reducing inflammation and fibrosis.
Collapse
Affiliation(s)
- Keigo Kanehara
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Shinobu Ohnuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Yoshitake Kanazawa
- Department of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Keisuke Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Shoji Kokubo
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hideyuki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hideaki Karasawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan. .,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
125
|
Triner D, Shah YM. Hypoxic Regulation of Neutrophils in Cancer. Int J Mol Sci 2019; 20:ijms20174189. [PMID: 31461847 PMCID: PMC6747474 DOI: 10.3390/ijms20174189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Neutrophils have been well-characterized for their role in the host anti-microbial response. However, it is now appreciated that neutrophils have a critical role in tumorigenesis and tumor progression in the majority of solid tumors. Recent studies have indicated a critical role for hypoxia in regulating neutrophil function in tumors. Furthermore, neutrophil-specific expression of hypoxia-inducible transcription factors may represent a novel therapeutic target for human cancer. In this review, we highlight the function of neutrophils in cancer and the role of the neutrophil hypoxic response in regulating the neoplastic progression of cancer.
Collapse
Affiliation(s)
- Daniel Triner
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
126
|
Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci Rep 2019; 9:10731. [PMID: 31341177 PMCID: PMC6656753 DOI: 10.1038/s41598-019-46917-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic urogenital schistosomiasis can lead to squamous cell carcinoma of the bladder. The International Agency for Research on Cancer classifies the infection with S. haematobium as a group 1 carcinogen, a definitive cause of cancer. By contrast, hepatointestinal schistosomiasis due to the chronic infection with S. mansoni or S. japonicum associated with liver periportal fibrosis, does not apparently lead to malignancy. The effects of culturing human epithelial cells, HCV29, established from normal urothelium, and H69, established from cholangiocytes, in the presence of S. haematobium or S. mansoni eggs were investigated. Cell growth of cells co-cultured with schistosome eggs was monitored in real time, and gene expression analysis of oncogenesis, epithelial to mesenchymal transition and apoptosis pathways was undertaken. Schistosome eggs promoted proliferation of the urothelial cells but inhibited growth of cholangiocytes. In addition, the tumor suppressor P53 pathway was significantly downregulated when exposed to schistosome eggs, and downregulation of estrogen receptor was predicted in urothelial cells exposed only to S. haematobium eggs. Overall, cell proliferative responses were influenced by both the tissue origin of the epithelial cells and the schistosome species.
Collapse
|
127
|
Ahmed A, Schmidt C, Brunner T. Extra-Adrenal Glucocorticoid Synthesis in the Intestinal Mucosa: Between Immune Homeostasis and Immune Escape. Front Immunol 2019; 10:1438. [PMID: 31316505 PMCID: PMC6611402 DOI: 10.3389/fimmu.2019.01438] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones predominantly produced in the adrenal glands in response to physiological cues and stress. Adrenal GCs mediate potent anti-inflammatory and immunosuppressive functions. Accumulating evidence in the past two decades has demonstrated other extra-adrenal organs and tissues capable of synthesizing GCs. This review discusses the role and regulation of GC synthesis in the intestinal epithelium in the regulation of normal immune homeostasis, inflammatory diseases of the intestinal mucosa, and the development of intestinal tumors.
Collapse
Affiliation(s)
- Asma Ahmed
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Pharmacology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Christian Schmidt
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
128
|
Chandrasekaran B, Pal D, Kolluru V, Tyagi A, Baby B, Dahiya NR, Youssef K, Alatassi H, Ankem MK, Sharma AK, Damodaran C. The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis 2019; 39:1537-1547. [PMID: 30124785 DOI: 10.1093/carcin/bgy109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Chemopreventive effects and associated mechanisms of withaferin A (WA) against intestinal and colon carcinogenesis remain unknown. We investigated the chemopreventive effect of WA on transgenic adenomatous polyposis coli (APCMin/+) mouse and chemically induced azoxymethane/dextran sodium sulfate (AOM/DSS) models of intestinal and colon carcinogenesis. Oral WA administration (4 and 3 mg/kg) inhibited tumor initiation and progression of intestinal polyps formation in APCMin/+ mice and colon carcinogenesis in the AOM/DSS mouse model. WA-administered mice showed a significant reduction in both number [duodenum, 33% (P > 0.05); jejunum, 32% (P < 0.025); ileum, 43% ( P < 0.001); and colon 59% (P < 0.01] and size of polyps in APCMin/+ mice compared with the respective controls. Similarly, tumor multiplicity was significantly reduced (P < 0.05) in the colon of WA-administered AOM/DSS mice. Pathological analysis showed reduced adenomas and tissue inflammation in WA-administered mouse models. Molecular studies suggested that WA inhibited the expression of inflammatory (interluekin-6, tumor necrosis factor-alpha and cyclooxygenase-2), pro-survival (pAKT, Notch1 and NF-κB) markers in APCMin/+ and AOM/DSS models. The results suggest that WA is a potent agent for preventing colon carcinogenesis and further investigation is required to show clinical utility of the agent.
Collapse
Affiliation(s)
| | - Deeksha Pal
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Becca Baby
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Nisha R Dahiya
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Khafateh Youssef
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Houda Alatassi
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
129
|
Chen T, Shi N, Afzali A. Chemopreventive Effects of Strawberry and Black Raspberry on Colorectal Cancer in Inflammatory Bowel Disease. Nutrients 2019; 11:E1261. [PMID: 31163684 PMCID: PMC6627270 DOI: 10.3390/nu11061261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer-related death in the United States and the fourth globally with a rising incidence. Inflammatory bowel disease (IBD) is a chronic immunologically mediated disease that imposes a significant associated health burden, including the increased risk for colonic dysplasia and CRC. Carcinogenesis has been attributed to chronic inflammation and associated with oxidative stress, genomic instability, and immune effectors as well as the cytokine dysregulation and activation of the nuclear factor kappa B (NFκB) signaling pathway. Current anti-inflammation therapies used for IBD treatment have shown limited effects on CRC chemoprevention, and their long-term toxicity has limited their clinical application. However, natural food-based prevention approaches may offer significant cancer prevention effects with very low toxicity profiles. In particular, in preclinical and clinical pilot studies, strawberry and black raspberry have been widely selected as food-based interventions because of their potent preventive activities. In this review, we summarize the roles of strawberry, black raspberry, and their polyphenol components on CRC chemoprevention in IBD.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Ni Shi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Anita Afzali
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH 43210, USA.
- Inflammatory Bowel Disease Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
130
|
Zhu J, Petit PF, Van den Eynde BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 2019; 68:835-847. [PMID: 30406374 PMCID: PMC11028327 DOI: 10.1007/s00262-018-2269-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy based on checkpoint inhibitors is providing substantial clinical benefit, but only to a minority of cancer patients. The current priority is to understand why the majority of patients fail to respond. Besides T-cell dysfunction, T-cell apoptosis was reported in several recent studies as a relevant mechanism of tumoral immune resistance. Several death receptors (Fas, DR3, DR4, DR5, TNFR1) can trigger apoptosis when activated by their respective ligands. In this review, we discuss the immunomodulatory role of the main death receptors and how these are shaping the tumor microenvironment, with a focus on Fas and its ligand. Fas-mediated apoptosis of T cells has long been known as a mechanism allowing the contraction of T-cell responses to prevent immunopathology, a phenomenon known as activation-induced cell death, which is triggered by induction of Fas ligand (FasL) expression on T cells themselves and qualifies as an immune checkpoint mechanism. Recent evidence indicates that other cells in the tumor microenvironment can express FasL and trigger apoptosis of tumor-infiltrating lymphocytes (TIL), including endothelial cells and myeloid-derived suppressor cells. The resulting disappearance of TIL prevents anti-tumor immunity and may in fact contribute to the absence of TIL that is typical of "cold" tumors that fail to respond to immunotherapy. Interfering with the Fas-FasL pathway in the tumor microenvironment has the potential to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium
| | - Pierre-Florent Petit
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium.
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.
| |
Collapse
|
131
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
132
|
Omidi-Ardali H, Lorigooini Z, Soltani A, Balali-Dehkordi S, Amini-Khoei H. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: protective effect of the trigonelline. Inflammopharmacology 2019; 27:1265-1273. [PMID: 30924005 DOI: 10.1007/s10787-019-00581-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Pathogenesis of the inflammatory bowel disease (IBD) involves the combination of immunological and inflammatory factors. IBD is associated with several extra-intestinal manifestations. The exact underlying bridge between the probable cardiac diseases in IBD patients is undetermined. Trigonelline is an alkaloid with several therapeutic potential properties. In this study, we aimed to assess the probable underlying mechanisms of this comorbidity as well as protective effect of trigonelline focusing inflammatory response and oxidative state in mouse model of colitis. Dextran sodium sulfate (DSS) was used for induction of colitis in mice. Trigonelline (10, 50 and 100 mg/kg) was administrated via intraperitoneal rout (i.p.) for 14 continuous days. Heart, intestine and serum samples were taken for assessment of total antioxidant capacity, malondialdehyde (MDA), gene expressions of inflammatory markers including tumor necrosis factor alpha (Tnf-α), interleukin 1-beta (Il/1β), toll- like receptor 4 (Tlr4) as well as for evaluation of histopathological alterations. Results demonstrated that trigonelline effectively attenuated the cellular/molecular and histopathological adverse effects of colitis in the intestine and heart tissues. In this regards, we found that trigonelline decreased the MDA level, attenuated the expression of Tnf-α, Il/1β and, Tlr4 as well as modulated the histopathological alterations in the intestine. Furthermore, trigonelline increased the antioxidant capacity in the related experimental groups. We concluded that IBD (colitis) is associated with comorbid cellular/molecular modifications in the heart and for the first time, we found that trigonelline has potential therapeutic effects (at least partially) to attenuate the cardiac manifestations of the colitis.
Collapse
Affiliation(s)
- Hossein Omidi-Ardali
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
133
|
Song CH, Kim N, Sohn SH, Lee SM, Nam RH, Na HY, Lee DH, Surh YJ. Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model. Gut Liver 2019; 12:682-693. [PMID: 30400733 PMCID: PMC6254630 DOI: 10.5009/gnl18221] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background/Aims Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods The effects of 17β-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-κB, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions E2 acts through the estrogen receptor β signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Korea
| | - Sung Hwa Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, Seoul National University College of Pharmacy, Seoul, Korea
| |
Collapse
|
134
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
135
|
Biondo LA, Teixeira AAS, Silveira LS, Souza CO, Costa RGF, Diniz TA, Mosele FC, Rosa Neto JC. Tributyrin in Inflammation: Does White Adipose Tissue Affect Colorectal Cancer? Nutrients 2019; 11:nu11010110. [PMID: 30626010 PMCID: PMC6357117 DOI: 10.3390/nu11010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer affects the large intestine, leading to loss of white adipose tissue (WAT) and alterations in adipokine secretion. Lower incidence of colorectal cancer is associated with increased fibre intake. Fructooligosaccharides (FOS) are fibres that increase production of butyrate by the intestinal microbiota. Tributyrin, a prodrug of butyric acid, exerts beneficial anti-inflammatory effects on colorectal cancer. Our aim was to characterise the effects of diets rich in FOS and tributyrin within the context of a colon carcinogenesis model, and characterise possible support of tumorigenesis by WAT. C57/BL6 male mice were divided into four groups: a control group (CT) fed with chow diet and three colon carcinogenesis-induced groups fed either with chow diet (CA), tributyrin-supplemented diet (BUT), or with FOS-supplemented diet. Colon carcinogenesis decreased adipose mass in subcutaneous, epididymal, and retroperitoneal tissues, while also reducing serum glucose and leptin concentrations. However, it did not alter the concentrations of adiponectin, interleukin (IL)-6, IL-10, and tumour necrosis factor alpha (TNF)-α in WAT. Additionally, the supplements did not revert the colon cancer affected parameters. The BUT group exhibited even higher glucose tolerance and levels of IL-6, VEGF, and TNF-α in WAT. To conclude our study, FOS and butyrate supplements were not beneficial. In addition, butyrate worsened adipose tissue inflammation.
Collapse
Affiliation(s)
- Luana Amorim Biondo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| | - Alexandre Abilio S Teixeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| | - Loreana S Silveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
- Department of Physical Education, Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP, Brazil.
| | - Camila O Souza
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| | - Raquel G F Costa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| | - Francielle C Mosele
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| | - José Cesar Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524-lab.435, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
136
|
Santiago L, Castro M, Pardo J, Arias M. Mouse Model of Colitis-Associated Colorectal Cancer (CAC): Isolation and Characterization of Mucosal-Associated Lymphoid Cells. Methods Mol Biol 2019; 1884:189-202. [PMID: 30465204 DOI: 10.1007/978-1-4939-8885-3_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide presenting high mortality due to low treatment efficacy. Existing evidence indicates that inflammatory bowel disease (IBD) is associated with a higher risk of developing CRC. Many murine models of inflammation-related colon carcinogenesis (CAC) have been developed to study colon carcinogenesis and novel treatments. A commonly used model involves the combination of a single dose of azoxymethane (AOM), together with three cycles of the inflammatory agent dextran sodium sulfate (DSS) (5 days in drinking water followed by a two-week rest). Following this protocol, around 50% of the animals develop CRCs after 45 days and almost 100% of animals after 60 days. During CAC development, immune cells, cytokines, and other immune mediators are involved in both tumorigenesis and the elimination of cancer cells during immunotherapy. Thus, the study of mucosal immune responses (including lamina propria mononuclear cells and intraepithelial lymphocytes) is important to understand the role of the immune system during development and therapy in CRC. Single immune cell suspensions from lamina propria and epithelium can be purified combining selective tissue digestion and Percoll gradient centrifugation. Isolated cells can be characterized using flow cytometry by analyzing surface antigens or intracellular cytokines and cytotoxic mediators or employed for further investigations like comparative studies of mRNA expression, cell-proliferation assay, protein analysis, or even functional cytotoxicity assays. The CAC model is useful to study the involvement of immune cells not only during the carcinogenesis process but, in addition, during the treatment with novel immunotherapy protocols.
Collapse
Affiliation(s)
- Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Marta Castro
- Faculty of Veterinary, Department of Physiology, University of Zaragoza, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Aragon I+D Foundation (ARAID), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.
| |
Collapse
|
137
|
Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers (Basel) 2018; 11:cancers11010024. [PMID: 30591653 PMCID: PMC6356226 DOI: 10.3390/cancers11010024] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.
Collapse
|
138
|
Wang L, Wang E, Wang Y, Mines R, Xiang K, Sun Z, Zhou G, Chen KY, Rakhilin N, Chao S, Ye G, Wu Z, Yan H, Shen H, Everitt J, Bu P, Shen X. miR-34a is a microRNA safeguard for Citrobacter-induced inflammatory colon oncogenesis. eLife 2018; 7:e39479. [PMID: 30543324 PMCID: PMC6314783 DOI: 10.7554/elife.39479] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammation often induces regeneration to repair the tissue damage. However, chronic inflammation can transform temporary hyperplasia into a fertile ground for tumorigenesis. Here, we demonstrate that the microRNA miR-34a acts as a central safeguard to protect the inflammatory stem cell niche and reparative regeneration. Although playing little role in regular homeostasis, miR-34a deficiency leads to colon tumorigenesis after Citrobacter rodentium infection. miR-34a targets both immune and epithelial cells to restrain inflammation-induced stem cell proliferation. miR-34a targets Interleukin six receptor (IL-6R) and Interleukin 23 receptor (IL-23R) to suppress T helper 17 (Th17) cell differentiation and expansion, targets chemokine CCL22 to hinder Th17 cell recruitment to the colon epithelium, and targets an orphan receptor Interleukin 17 receptor D (IL-17RD) to inhibit IL-17-induced stem cell proliferation. Our study highlights the importance of microRNAs in protecting the stem cell niche during inflammation despite their lack of function in regular tissue homeostasis.
Collapse
Affiliation(s)
- Lihua Wang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Ergang Wang
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Yi Wang
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
- Affiliated Hospital of Nanjing University of TCMNanjingChina
| | - Robert Mines
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Kun Xiang
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Zhiguo Sun
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Gaiting Zhou
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Kai-Yuan Chen
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
| | - Nikolai Rakhilin
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- School of Electrical and Computer EngineeringCornell UniversityNew yorkUnited States
| | - Shanshan Chao
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Gaoqi Ye
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhenzhen Wu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huiwen Yan
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Shen
- Affiliated Hospital of Nanjing University of TCMNanjingChina
| | - Jeffrey Everitt
- Department of Pathology, Animal Pathology CoreDuke UniversityDurhamUnited States
| | - Pengcheng Bu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiling Shen
- Center for Genomics and Computational BiologyDuke UniversityDurhamUnited States
- Department of Biomedical EngineeringDuke UniversityDurhamUnited States
- School of Electrical and Computer EngineeringCornell UniversityNew yorkUnited States
| |
Collapse
|
139
|
Galanopoulos M, Tsoukali E, Gkeros F, Vraka M, Karampekos G, Matzaris GJ. Screening and surveillance methods for dysplasia in inflammatory bowel disease patients: Where do we stand? World J Gastrointest Endosc 2018; 10:250-258. [PMID: 30364842 PMCID: PMC6198309 DOI: 10.4253/wjge.v10.i10.250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Patients with long-standing ulcerative colitis (UC) and extensive Crohn’s colitis (CC) are at increased risk for dysplasia and colorectal cancer (CRC). Several studies have shown that UC extending proximal to the rectum, CC involving at least 1/3 of the colon, co-existence of primary sclerosing cholangitis, undetermined or unclassified colitis, family history of CRC and young age at diagnosis appear to be independent risk factors for inflammatory bowel disease (IBD) - related CRC. Therefore, screening and surveillance for CRC in IBD patients is highly recommended by international and national guidelines, whilst colonoscopy remains the unequivocal tool in order to detect potentially resectable dysplastic lesions or CRC at an early stage. Although the importance of screening and surveillance is widely proven, there is a controversy regarding the time of the first colonoscopy and the criteria of who should undergo surveillance. In addition, there are different recommendations among scientific societies concerning which endoscopic method is more efficient to detect dysplasia early, as well as the terminology for reporting visible lesions and the management of those lesions. This article concisely presents the main endoscopic methods and techniques performed for detecting dysplasia and CRC surveillance in patients with IBD focusing on their evidence-based accuracy and efficiency, as well as their cost-effectiveness. Finally, newer methods are mentioned, highlighting their applicability in daily endoscopic practice.
Collapse
Affiliation(s)
- Michail Galanopoulos
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Emmanouela Tsoukali
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Filippos Gkeros
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Marina Vraka
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Georgios Karampekos
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Gerassimos J Matzaris
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| |
Collapse
|
140
|
Yang X, Li X, Yuan M, Tian C, Yang Y, Wang X, Zhang X, Sun Y, He T, Han S, Chen G, Liu N, Gao Y, Hu D, Xing Y, Shang H. Anticancer Therapy-Induced Atrial Fibrillation: Electrophysiology and Related Mechanisms. Front Pharmacol 2018; 9:1058. [PMID: 30386232 PMCID: PMC6198283 DOI: 10.3389/fphar.2018.01058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Some well-established immunotherapy, radiotherapy, postoperation, anticancer drugs such as anthracyclines, antimetabolites, human epidermal growth factor receptor 2 blockers, tyrosine kinase inhibitors, alkylating agents, checkpoint inhibitors, and angiogenesis inhibitors, are significantly linked to cardiotoxicity. Cardiotoxicity is a common complication of several cancer treatments. Some studies observed complications of cardiac arrhythmia associated with the treatment of cancer, including atrial fibrillation (AF), supraventricular arrhythmias, and cardiac repolarization abnormalities. AF increases the risk of cardiovascular morbidity and mortality; it is associated with an almost doubled risk of mortality and a nearly 5-fold increase in the risk of stroke. The occurrence of AF is also usually researched in patients with advanced cancer and those undergoing active cancer treatments. During cancer treatments, the incidence rate of AF affects the prognosis of tumor treatment and challenges the treatment strategy. The present article is mainly focused on the cardiotoxicity of cancer treatments. In our review, we discuss these anticancer therapies and how they induce AF and consequently provide information on the precaution of AF during cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianmai He
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanwei Xing
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
141
|
Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients 2018; 10:nu10101380. [PMID: 30262787 PMCID: PMC6212930 DOI: 10.3390/nu10101380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoneine is an ergothioneine analog with greater antioxidant activity and is the major form of organic selenium in the blood, muscles, and other tissues of tuna. The aim of this study was to determine whether a selenoneine-rich diet exerts antioxidant activities that can prevent carcinogenesis in two types of colorectal cancer model in mice. We administrated selenoneine-containing tuna dark muscle extract (STDME) to mice for one week and used azoxymethane (AOM) and dextran sodium sulfate (DSS) for inducing colorectal carcinogenesis. Next, we examined the incidence of macroscopic polyps and performed functional analysis of immune cells from the spleen. In the AOM/DSS-induced colitis-associated cancer (CAC) model, the oral administration of STDME significantly decreased tumor incidence and inhibited the accumulation of myeloid-derived suppressor cells (MDSCs) while also inhibiting the downregulation of interferon-γ (IFN-γ) production during carcinogenesis. These results suggest that dietary STDME may be an effective agent for reducing colorectal tumor progression.
Collapse
|
142
|
Singh K, Coburn LA, Asim M, Barry DP, Allaman MM, Shi C, Washington MK, Luis PB, Schneider C, Delgado AG, Piazuelo MB, Cleveland JL, Gobert AP, Wilson KT. Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 2018; 78:4303-4315. [PMID: 29853605 PMCID: PMC6072585 DOI: 10.1158/0008-5472.can-18-0116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023]
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis and restricts M1 macrophage activation in gastrointestinal (GI) infections. However, the role of macrophage ODC in colonic epithelial-driven inflammation is unknown. Here, we investigate cell-specific effects of ODC in colitis and colitis-associated carcinogenesis (CAC). Human colonic macrophages expressed increased ODC levels in active ulcerative colitis and Crohn's disease, colitis-associated dysplasia, and CAC. Mice lacking Odc in myeloid cells (OdcΔmye mice) that were treated with dextran sulfate sodium (DSS) exhibited improved survival, body weight, and colon length and reduced histologic injury versus control mice. In contrast, GI epithelial-specific Odc knockout had no effect on clinical parameters. Despite reduced histologic damage, colitis tissues of OdcΔmye mice had increased levels of multiple proinflammatory cytokines and chemokines and enhanced expression of M1, but not M2 markers. In the azoxymethane-DSS model of CAC, OdcΔmye mice had reduced tumor number, burden, and high-grade dysplasia. Tumors from OdcΔmye mice had increased M1, but not M2 macrophages. Increased levels of histone 3, lysine 9 acetylation, a marker of open chromatin, were manifest in tumor macrophages of OdcΔmye mice, consistent with our findings that macrophage ODC affects histone modifications that upregulate M1 gene transcription during GI infections. These findings support the concept that macrophage ODC augments epithelial injury-associated colitis and CAC by impairing the M1 responses that stimulate epithelial repair, antimicrobial defense, and antitumoral immunity. They also suggest that macrophage ODC is an important target for colon cancer chemoprevention.Significance: Ornithine decarboxylase contributes to the pathogenesis of colitis and associated carcinogenesis by impairing M1 macrophage responses needed for antitumoral immunity; targeting ODC in macrophages may represent a new strategy for chemoprevention. Cancer Res; 78(15); 4303-15. ©2018 AACR.
Collapse
Affiliation(s)
- Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Claus Schneider
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
143
|
Yao H, Wang H, Li C, Fang JY, Xu J. Cancer Cell-Intrinsic PD-1 and Implications in Combinatorial Immunotherapy. Front Immunol 2018; 9:1774. [PMID: 30105035 PMCID: PMC6077319 DOI: 10.3389/fimmu.2018.01774] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
Programmed death 1 (PD-1) and its two natural ligands PD-L1 and PD-L2 are responsible for delivering inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. In previous studies, PD-1 was found only expressed on the surface of immune cells, such as T cells and B cells while PD-1’s ligands PD-L1 and PD-L2 were found expressed in some tumor cells. However, recent studies revealed intrinsic expression of PD-1 in melanoma and some other cancers. In melanoma cells, PD-1 can be activated by its ligand PD-L1 expressed by tumor cells, modulating downstream mammalian target of rapamycin signaling and promoting tumor growth independent of adaptive immunity. In addition to melanoma, PD-1 was also detected in liver cancer cells as well as in non-small lung cancer cells. Unlike its oncogenic functions in melanoma and hepatic carcinoma cells, PD-1 seemed to play a distinct role in lung cancer, as blockade of PD-1 instead promoted tumor cells proliferation. Tumor-intrinsic PD-1 expression seems to be widespread in many tumor types, according to our reanalysis on cancer transcriptomic and proteomic data. The multifaceted roles of PD-1 in tumor cells beyond immune checkpoint signaling may explain the differential therapeutic effects of anti-PD-1 and anti-PD-L1 drugs and provide crucial information when developing combinatorial approaches to enhance antitumor immunity.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, MOH Key Laboratory of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Huanbin Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, MOH Key Laboratory of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chushu Li
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, MOH Key Laboratory of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, MOH Key Laboratory of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, MOH Key Laboratory of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
144
|
Amôr NG, de Oliveira CE, Gasparoto TH, Vilas Boas VG, Perri G, Kaneno R, Lara VS, Garlet GP, da Silva JS, Martins GA, Hogaboam C, Cavassani KA, Campanelli AP. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget 2018; 9:30894-30904. [PMID: 30112116 PMCID: PMC6089399 DOI: 10.18632/oncotarget.25768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/19/2018] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma (SCC) is the second most common form of skin cancer and the mechanism(s) involved in the progression of this tumor are unknown. Increases in the expression of IL-33/ST2 axis components have been demonstrated to contribute to neoplastic transformation in several tumor models and interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Based on these observations, we sought to determine the role of the IL-33/ST2 pathway during the development of SCC. Our findings show that ST2-deficiency led to a marked decrease in the severity of skin lesions, suggesting that ST2 signaling contributed to tumor development. An analysis of tumor lesions in wild-type and ST2KO mice revealed that a lack of ST2 was associated with specific and significant reductions in the numbers of CD4+ T cells, CD8+ T cells, dendritic cells, and macrophages. In addition, NK cells that were isolated from ST2KO mice exhibited higher cytotoxic activity than cells isolated from wild-type mice. Notably, ST2 deficiency resulted in lower IFN-γ, TNF-α, IL-10, and IL-17 production in tumor samples. Our findings indicate that the IL-33/ST2 pathway contributes to the development of SCC by affecting leukocyte migration to tumor microenvironment and impairing NK cytotoxic activity.
Collapse
Affiliation(s)
- Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Carine Ervolino de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Vanessa Garcia Vilas Boas
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Graziela Perri
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, R. Prof. Dr. Antônio Celso Wagner Zanin, Botucatu, SP, 18618-689, Brazil
| | - Vanessa Soares Lara
- Department of Stomatology - Oral Pathology, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gislâine A Martins
- Department of Biomedical Sciences (Research Division of Immunology) and Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cory Hogaboam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Karen A Cavassani
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, Bauru, SP, 17012-901, Brazil
| |
Collapse
|
145
|
Alt EU, Barabadi Z, Pfnür A, Ochoa JE, Daneshimehr F, Lang LM, Lin D, Braun SE, Chandrasekar B, Izadpanah R. TRAF3IP2, a novel therapeutic target in glioblastoma multiforme. Oncotarget 2018; 9:29772-29788. [PMID: 30038719 PMCID: PMC6049871 DOI: 10.18632/oncotarget.25710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (glioblastoma) remains one of the deadliest cancers. Pro-inflammatory and pro-tumorigenic mediators present in tumor microenvironment (TME) facilitate communication between tumor cells and adjacent non-malignant cells, resulting in glioblastoma growth. Since a majority of these mediators are products of NF-κB- and/or AP-1-responsive genes, and as TRAF3 Interacting Protein 2 (TRAF3IP2) is an upstream regulator of both transcription factors, we hypothesized that targeting TRAF3IP2 blunts tumor growth by inhibiting NF-κB and pro-inflammatory/pro-tumorigenic mediators. Our in vitro data demonstrate that similar to primary glioblastoma tumor tissues, malignant glioblastoma cell lines (U87 and U118) express high levels of TRAF3IP2. Silencing TRAF3IP2 expression inhibits basal and inducible NF-κB activation, induction of pro-inflammatory mediators, clusters of genes involved in cell cycle progression and angiogenesis, and formation of spheroids. Additionally, silencing TRAF3IP2 significantly increases apoptosis. In vivo studies indicate TRAF3IP2-silenced U87 cells formed smaller tumors. Additionally, treating existing tumors formed by wild type U87 cells with lentiviral TRAF3IP2 shRNA markedly regresses their size. Analysis of residual tumors revealed reduced expression of pro-inflammatory/pro-tumorigenic/pro-angiogenic mediators and kinesins. In contrast, the expression of IL-10, an anti-inflammatory cytokine, was increased. Together, these novel data indicate that TRAF3IP2 is a master regulator of malignant signaling in glioblastoma, and its targeting modulates the TME and inhibits tumor growth by suppressing the expression of mediators involved in inflammation, angiogenesis, growth, and malignant transformation. Our data identify TRAF3IP2 as a potential therapeutic target in glioblastoma growth and dissemination.
Collapse
Affiliation(s)
- Eckhard U Alt
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zahra Barabadi
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Andreas Pfnür
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Joana E Ochoa
- Department of Surgery, Tulane University Health Science Center, New Orleans, Louisiana, USA
| | - Fatemeh Daneshimehr
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Lea M Lang
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Dong Lin
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Stephen E Braun
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Veterans Memorial Hospital, Columbia, Missouri, USA
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Surgery, Tulane University Health Science Center, New Orleans, Louisiana, USA
| |
Collapse
|
146
|
Alessandra-Perini J, Rodrigues-Baptista KC, Machado DE, Nasciutti LE, Perini JA. Anticancer potential, molecular mechanisms and toxicity of Euterpe oleracea extract (açaí): A systematic review. PLoS One 2018; 13:e0200101. [PMID: 29966007 PMCID: PMC6028114 DOI: 10.1371/journal.pone.0200101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer is an increasingly frequent malignancy worldwide, and despite the advances in drug development, it is still necessary to develop new plant-derived medicines. Euterpe oleracea (açaí) is abundant in South and Central America and has health benefits due to its high levels of phytochemicals, including lignans and polyphenols. The aim of this review was to systematically describe the safety and antitumor effects of açaí in preclinical models using rodents to provide a more comprehensive assessment of açaí for both therapeutic uses and the development of future clinical studies in cancer. Eligible studies were identified using four international databases (PubMed, Medline, Lilacs and SciELO) from their inception date through December 2017. The included studies were analyzed with methodological rigor (QATRS) to enable better quality control for these experimental studies. Sixty publications were identified in the databases, but only 9 articles were eligible: 6 evaluated the pharmacological effects of açaí in animal models of cancer (1 model each of esophageal cancer, urothelial cancer, melanoma and Walker-256 tumor and 2 models of colon cancer), and 3 were toxicological assays using preclinical models with rodents. Overall, 747 animals were analyzed. On a QATRS score scale of 0-20, the quality of the studies ranged from 16 to 20 points. Pulp was the main fraction of açaí administered, and an oral administration route was most common. The açaí dosage administered by gavage ranged from 30 mg/kg to 40,000 mg/kg, and açaí fed in the diet accounted for 2.5% to 5% of the diet. The anticarcinogenic and chemopreventive activities of açaí were observed in all experimental models of cancer and reduced the incidence, tumor cell proliferation, multiplicity and size of the tumors due to the antiinflammatory, antiproliferative and proapoptotic properties of açaí. No genotoxic effects were observed after açaí administration. The results of this review suggest that açaí is safe and can be used as a chemoprotective agent against cancer development. Açaí therapy may be a novel strategy for treating cancer.
Collapse
Affiliation(s)
- Jéssica Alessandra-Perini
- Morphological Science Program—PCM, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Karina Cristina Rodrigues-Baptista
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- Program of Post-graduation in Public Health and Environment—ENSP, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Escorsim Machado
- Morphological Science Program—PCM, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- University Center IBMR, Laureate Universities, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eurico Nasciutti
- Morphological Science Program—PCM, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamila Alessandra Perini
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- Program of Post-graduation in Public Health and Environment—ENSP, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- Research Division, National Institute of Traumatology and Orthopedics—INTO, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
147
|
Morgillo F, Dallio M, Della Corte CM, Gravina AG, Viscardi G, Loguercio C, Ciardiello F, Federico A. Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia 2018; 20:721-733. [PMID: 29859426 PMCID: PMC6014569 DOI: 10.1016/j.neo.2018.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Dallio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Gerarda Gravina
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Viscardi
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmelina Loguercio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
148
|
Zheng XB, He XW, Zhang LJ, Qin HB, Lin XT, Liu XH, Zhou C, Liu HS, Hu T, Cheng HC, He XS, Wu XR, Chen YF, Ke J, Wu XJ, Lan P. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice. Gastroenterol Rep (Oxf) 2018; 7:127-138. [PMID: 30976426 PMCID: PMC6454852 DOI: 10.1093/gastro/goy017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/28/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Increasing interest has developed in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of inflammatory bowel disease (IBD) and IBD-induced cancer. However, whether MSCs have the ability to suppress or promote tumor development remains controversial. The stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis is well known to play a critical role in the homing of MSCs. In this study, we aimed to evaluate the role of CXCR4-overexpressing MSCs on the tumorigenesis of IBD. Methods MSCs were transduced with lentiviral vector carrying either CXCR4 or green fluorescent protein (GFP). Chemotaxis and invasion assays were used to detect CXCR4 expression. A mouse model of colitis-associated tumorigenesis was established using azoxymethane and dextran sulfate sodium (DSS). The mice were divided into three groups and then injected with phosphate buffer saline (PBS), MSC-GFP or MSC-CXCR4. Results Compared with the mice injected with MSC-GFP, the mice injected with MSC-CXCR4 showed relieved weight loss, longer colons, lower tumor numbers and decreased tumor load; expression of pro-inflammatory cytokines decreased, and signal transducer and activator of transcription 3 (STAT3) phosphorylation level in colon tissue was down-regulated. Conclusion CXCR4-overexpressing MSCs exhibited effective anti-tumor function, which may be associated with enhanced homing to inflamed intestinal tissues.
Collapse
Affiliation(s)
- Xiao-Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Wen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Long-Juan Zhang
- Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hua-Bo Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xu-Tao Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xuan-Hui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hai-Chun Cheng
- Department of Gastrointestinal Surgery, Shenzhen Baoan Shajing People's Hospital, Guangzhou Medical University, Shenzhen, Guangdong, P.R. China
| | - Xiao-Sheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jia Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
149
|
Nallathambi R, Mazuz M, Namdar D, Shik M, Namintzer D, Vinayaka AC, Ion A, Faigenboim A, Nasser A, Laish I, Konikoff FM, Koltai H. Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression. Cannabis Cannabinoid Res 2018; 3:120-135. [PMID: 29992185 PMCID: PMC6038055 DOI: 10.1089/can.2018.0010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Colorectal cancer remains the third most common cancer diagnosis and fourth leading cause of cancer-related mortality worldwide. Purified cannabinoids have been reported to prevent proliferation, metastasis, and induce apoptosis in a variety of cancer cell types. However, the active compounds from Cannabis sativa flowers and their interactions remain elusive. Research Aim: This study was aimed to specify the cytotoxic effect of C. sativa-derived extracts on colon cancer cells and adenomatous polyps by identification of active compound(s) and characterization of their interaction. Materials and Methods: Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography and gas chromatograph/mass spectrometry and their cytotoxic activity was determined using alamarBlue-based assay (Resazurin) and tetrazolium dye-based assay (XTT) on cancer and normal colon cell lines and on dysplastic adenomatous polyp cells. Annexin V Assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle, and RNA sequencing was used to determine gene expression. Results: The unheated cannabis extracts (C2F), fraction 7 (F7), and fraction 3 (F3) had cytotoxic activity on colon cancer cells, but reduced activity on normal colon cell lines. Moreover, synergistic interaction was found between F7 and F3 and the latter contains mainly cannabigerolic acid. The F7 and F7+F3 cytotoxic activity involved cell apoptosis and cell cycle arrest in S or G0/G1 phases, respectively. RNA profiling identified 2283 differentially expressed genes in F7+F3 treatment, among them genes related to the Wnt signaling pathway and apoptosis-related genes. Moreover, F7, F3, and F7+F3 treatments induced cell death of polyp cells. Conclusions:C. sativa compounds interact synergistically for cytotoxic activity against colon cancer cells and induce cell cycle arrest, apoptotic cell death, and distinct gene expression. F3, F7, and F7+F3 are also active on adenomatous polyps, suggesting possible future therapeutic value.
Collapse
Affiliation(s)
| | - Moran Mazuz
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Dvory Namdar
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Michal Shik
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Diana Namintzer
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aurel Ion
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Adi Faigenboim
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Ahmad Nasser
- The Interinstitutional Analytical Instrumentation Unit (IU), ARO, Volcani Center, Bet Dagan, Israel
| | - Ido Laish
- Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Fred M Konikoff
- Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hinanit Koltai
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
150
|
Xu T, Kong Z, Zhao H. Relationship Between Tumor Necrosis Factor-α rs361525 Polymorphism and Gastric Cancer Risk: A Meta-Analysis. Front Physiol 2018; 9:469. [PMID: 29867530 PMCID: PMC5962813 DOI: 10.3389/fphys.2018.00469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor (TNF)-α, a major part in inflammatory, infectious and tumor processes, and is pivotal at the early stages of gastric cancer. Relationship between its risk and TNF-α rs361525 polymorphism has been demonstrated, but remains conflicting and controversial. Therefore, a meta-analysis was conducted to more precisely estimate this relationship. PubMed, Web of Science, EMBASE and CNKI were comprehensively searched to find out relevant articles through October 5, 2017. The strength of the relationship was assessed using pooled odds ratios and 95% confidence intervals. Totally 20 articles were included involving 4,084 cases and 7,010 controls. No significant relationship between TNF-α rs361525 polymorphism and increased GC risk was found in the whole populations. Subgroup analyses uncovered TNF-α rs361525 polymorphism intensified the risk of GC among Asians under five models, but decreased the risk of GC among Caucasiansin the allelic and dominant models. Subgroup analysis by genotyping methods revealed increased risk for other methods. In conclusion, this meta-analysis suggests TNF-α rs361525 polymorphism is related to the risk of GC, especially for Asians.
Collapse
Affiliation(s)
- Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhijun Kong
- Department of General Surgery, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China
| | - Hui Zhao
- Department of General Surgery, Wuxi Third People's Hospital, Wuxi, China
| |
Collapse
|