101
|
Shang Z, Li Y, Zhang M, Tian J, Han R, Shyr CR, Messing E, Yeh S, Niu Y, Chang C. Antiandrogen Therapy with Hydroxyflutamide or Androgen Receptor Degradation Enhancer ASC-J9 Enhances BCG Efficacy to Better Suppress Bladder Cancer Progression. Mol Cancer Ther 2015; 14:2586-94. [PMID: 26264279 DOI: 10.1158/1535-7163.mct-14-1055-t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
Abstract
Recent studies suggest that the androgen receptor (AR) might play important roles in influencing bladder cancer progression, yet its clinical application remains unclear. Here, we developed a new combined therapy with Bacillus Calmette-Guérin (BCG) and the AR degradation enhancer ASC-J9 or antiandrogen hydroxyflutamide (HF) to better suppress bladder cancer progression. Mechanism dissection revealed that ASC-J9 treatment enhanced BCG efficacy to suppress bladder cancer cell proliferation via increasing the recruitment of monocytes/macrophages that involved the promotion of BCG attachment/internalization to the bladder cancer cells through increased integrin-α5β1 expression and IL6 release. Such consequences might then enhance BCG-induced bladder cancer cell death via increased TNFα release. Interestingly, we also found that ASC-J9 treatment could directly promote BCG-induced HMGB1 release to enhance the BCG cytotoxic effects for suppression of bladder cancer cell growth. In vivo approaches also concluded that ASC-J9 could enhance the efficacy of BCG to better suppress bladder cancer progression in BBN-induced bladder cancer mouse models. Together, these results suggest that the newly developed therapy combining BCG plus ASC-J9 may become a novel therapy to better suppress bladder cancer progress.
Collapse
Affiliation(s)
- Zhiqun Shang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yanjun Li
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Minghao Zhang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. Department of Urology, Tianjin Third Central Hospital, Tianjin, China
| | - Jing Tian
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Ruifa Han
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Chih-Rong Shyr
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Edward Messing
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Shuyuan Yeh
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York.
| | - Chawnshang Chang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China. George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
102
|
Rubinow KB, Wang S, den Hartigh LJ, Subramanian S, Morton GJ, Buaas FW, Lamont D, Gray N, Braun RE, Page ST. Hematopoietic androgen receptor deficiency promotes visceral fat deposition in male mice without impairing glucose homeostasis. Andrology 2015; 3:787-96. [PMID: 26097106 DOI: 10.1111/andr.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/27/2015] [Accepted: 05/02/2015] [Indexed: 12/12/2022]
Abstract
Androgen deficiency in men increases body fat, but the mechanisms by which testosterone suppresses fat deposition have not been elucidated fully. Adipose tissue macrophages express the androgen receptor (AR) and regulate adipose tissue remodeling. Thus, testosterone signaling in macrophages could alter the paracrine function of these cells and thereby contribute to the metabolic effects of androgens in men. A metabolic phenotyping study was performed to determine whether the loss of AR signaling in hematopoietic cells results in greater fat accumulation in male mice. C57BL/6J male mice (ages 12-14 weeks) underwent bone marrow transplant from either wild-type (WT) or AR knockout (ARKO) donors (n = 11-13 per group). Mice were fed a high-fat diet (60% fat) for 16 weeks. At baseline, 8 and 16 weeks, glucose and insulin tolerance tests were performed, and body composition was analyzed with fat-water imaging by MRI. No differences in body weight were observed between mice transplanted with WT bone marrow [WT(WTbm)] or ARKO bone marrow [WT(ARKObm)] prior to initiation of the high-fat diet. After 8 weeks of high-fat feeding, WT(ARKObm) mice exhibited significantly more visceral and total fat mass than WT(WTbm) animals. Despite this, no differences between groups were observed in glucose tolerance, insulin sensitivity, or plasma concentrations of insulin, glucose, leptin, or cholesterol, although WT(ARKObm) mice had higher plasma levels of adiponectin. Resultant data indicate that AR signaling in hematopoietic cells influences body fat distribution in male mice, and the absence of hematopoietic AR plays a permissive role in visceral fat accumulation. These findings demonstrate a metabolic role for AR signaling in marrow-derived cells and suggest a novel mechanism by which androgen deficiency in men might promote increased adiposity. The relative contributions of AR signaling in macrophages and other marrow-derived cells require further investigation.
Collapse
Affiliation(s)
- K B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - S Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - L J den Hartigh
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - S Subramanian
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - G J Morton
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - F W Buaas
- Jackson Laboratory, Bar Harbor, ME, USA
| | - D Lamont
- Jackson Laboratory, Bar Harbor, ME, USA
| | - N Gray
- Jackson Laboratory, Bar Harbor, ME, USA
| | - R E Braun
- Jackson Laboratory, Bar Harbor, ME, USA
| | - S T Page
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
103
|
Bishop JL, Davies A, Ketola K, Zoubeidi A. Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocr Relat Cancer 2015; 22:R165-82. [PMID: 25934687 DOI: 10.1530/erc-15-0137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) has become the most common form of cancer in men in the developed world, and it ranks second in cancer-related deaths. Men that succumb to PCa have a disease that is resistant to hormonal therapies that suppress androgen receptor (AR) signaling, which plays a central role in tumor development and progression. Although AR continues to be a clinically relevant therapeutic target in PCa, selection pressures imposed by androgen-deprivation therapies promote the emergence of heterogeneous cell populations within tumors that dictate the severity of disease. This cellular plasticity, which is induced by androgen deprivation, is the focus of this review. More specifically, we address the emergence of cancer stem-like cells, epithelial-mesenchymal or myeloid plasticity, and neuroendocrine transdifferentiation as well as evidence that demonstrates how each is regulated by the AR. Importantly, because all of these cell phenotypes are associated with aggressive PCa, we examine novel therapeutic approaches for targeting therapy-induced cellular plasticity as a way of preventing PCa progression.
Collapse
Affiliation(s)
- Jennifer L Bishop
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair Davies
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsi Ketola
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
104
|
Urushima H, Inomata-Kurashiki Y, Nishimura K, Sumi R, Shimomura I, Nonomura N, Ito T, Maeda K. The effects of androgen deprivation therapy with weight management on serum aP2 and adiponectin levels in prostate cancer patients. Aging Male 2015; 18:72-6. [PMID: 25746209 DOI: 10.3109/13685538.2015.1017809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Androgen deprivation therapy (ADT) for the treatment of prostate cancer (PCa) causes an increase in total body fat, leading to a net gain in body weight. Moreover, the use of the luteinizing hormone-releasing hormone agonists in ADT causes a decrease in serum androgen levels, leading to the development of metabolic syndrome (MetS). Androgen blockade significantly increases plasma adiponectin levels, which has some efficacy against MetS, whereas ADT increases fasting plasma insulin and decreases insulin sensitivity, suggesting that there are other mechanisms involved in the onset of MetS besides adiponectin activation. We investigated the effects of ADT on serum aP2 and adiponectin in PCa patients. Six months post-ADT, serum aP2 and adiponectin levels were significantly increased, although there were no changes in patient body weight and no correlation between the changes in serum aP2 and total adiponectin levels. The serum adiponectin and aP2 levels have independent implications in ADT for PCa; therefore, their combined measurement will clarify the impact on the development of obesity-related diseases during ADT. Contrary to adiponectin, high serum aP2 levels were correlated with the late development of MetS. Further studies are needed to investigate the future occurrence of metabolic diseases post-ADT.
Collapse
|
105
|
Kant V, Kumar D, Kumar D, Prasad R, Gopal A, Pathak NN, Kumar P, Tandan SK. Topical application of substance P promotes wound healing in streptozotocin-induced diabetic rats. Cytokine 2015; 73:144-55. [DOI: 10.1016/j.cyto.2014.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022]
|
106
|
Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang Z, Pouliot F, Magyar C, Sung JL, Xu J, Deng G, West BL, Bollag G, Fradet Y, Lacombe L, Jung ME, Huang J, Wu L. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res 2015; 75:950-62. [PMID: 25736687 DOI: 10.1158/0008-5472.can-14-0992] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing evidence suggests that tumor-associated macrophages (TAM) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling, and immunosuppression. In this study, prostate cancer under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to prostate cancer disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF1 or CSF1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF1 signaling through its receptor, CSF1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared with ABT alone.
Collapse
Affiliation(s)
- Jemima Escamilla
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shiruyeh Schokrpur
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Connie Liu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Saul J Priceman
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, California
| | - Diana Moughon
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ziyue Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California. Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Frederic Pouliot
- Department of Surgery, Urology Division, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Clara Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - James L Sung
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingying Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | | | | | - Yves Fradet
- Department of Surgery, Urology Division, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Louis Lacombe
- Department of Surgery, Urology Division, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California. Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
107
|
Zhuang H, Hong Y, Gao J, Chen S, Ma Y, Wang S. A poly(γ-glutamic acid)-based hydrogel loaded with superoxide dismutase for wound healing. J Appl Polym Sci 2015. [DOI: 10.1002/app.42033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Huahong Zhuang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yanhang Hong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Jingchen Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yina Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
108
|
Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis 2015; 6:e1597. [PMID: 25590807 PMCID: PMC4669743 DOI: 10.1038/cddis.2014.544] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/18/2014] [Accepted: 11/05/2014] [Indexed: 01/13/2023]
Abstract
Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.
Collapse
|
109
|
Hsu CL, Liu JS, Lin AC, Yang CH, Chung WH, Wu WG. Minoxidil may suppress androgen receptor-related functions. Oncotarget 2015; 5:2187-97. [PMID: 24742982 PMCID: PMC4039155 DOI: 10.18632/oncotarget.1886] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a Kd value of 2.6 μM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Departments of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan, ROC
| | | | | | | | | | - Wen-Guey Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
110
|
Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol 2014; 4:370. [PMID: 25566507 PMCID: PMC4274903 DOI: 10.3389/fonc.2014.00370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 01/22/2023] Open
Abstract
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.
Collapse
Affiliation(s)
- Mannan Nouri
- Vancouver Prostate Centre , Vancouver, BC , Canada ; The University of British Columbia , Vancouver, BC , Canada
| | - Ellca Ratther
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Nataly Stylianou
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Brett G Hollier
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre Queensland, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology , Brisbane, QLD , Australia ; Department of Surgery, St Vincent's Hospital, The University of Melbourne , Melbourne, VIC , Australia ; Monash University , Melbourne, VIC , Australia
| |
Collapse
|
111
|
Rieger S, Zhao H, Martin P, Abe K, Lisse TS. The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochem Funct 2014; 33:1-13. [PMID: 25529612 DOI: 10.1002/cbf.3086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration.
Collapse
Affiliation(s)
- Sandra Rieger
- Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Salisbury Cove, ME, USA
| | | | | | | | | |
Collapse
|
112
|
Rana K, Davey RA, Zajac JD. Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian J Androl 2014; 16:169-77. [PMID: 24480924 PMCID: PMC3955325 DOI: 10.4103/1008-682x.122590] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.
Collapse
Affiliation(s)
| | | | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
113
|
Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer. ACTA ACUST UNITED AC 2014; 4:935-950. [PMID: 26594314 DOI: 10.4155/cli.14.77] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are frequent diseases in middle-aged to elderly men worldwide. While both diseases are linked to abnormal growth of the prostate, the epidemiological and pathological features of these two prostate diseases are different. BPH nodules typically arise from the transitional zone, and, in contrast, PCa arises from the peripheral zone. Androgen deprivation therapy alone may not be sufficient to cure these two prostatic diseases due to its undesirable side effects. The alteration of androgen receptor-mediated inflammatory signals from infiltrating immune cells and prostate stromal/epithelial cells may play key roles in those unwanted events. Herein, this review will focus on the roles of androgen/androgen receptor signals in the inflammation-induced progression of BPH and PCa.
Collapse
|
114
|
Xiong H, Pamer EG. Monocytes and infection: modulator, messenger and effector. Immunobiology 2014; 220:210-4. [PMID: 25214476 DOI: 10.1016/j.imbio.2014.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022]
Abstract
Monocytes are a subset of circulating blood cells with remarkable plasticity. They can develop into a wide range of terminally differentiated cells and perform versatile functions during infection, tumor formation and in the setting of chronic inflammation. This review focuses on the role of monocytes during microbial infection and summarizes our understanding of the diverse roles that monocytes play in defense against different pathogens.
Collapse
Affiliation(s)
- Huizhong Xiong
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
115
|
Haertel E, Werner S, Schäfer M. Transcriptional regulation of wound inflammation. Semin Immunol 2014; 26:321-8. [DOI: 10.1016/j.smim.2014.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/18/2014] [Indexed: 12/23/2022]
|
116
|
Jetten N, Roumans N, Gijbels MJ, Romano A, Post MJ, de Winther MPJ, van der Hulst RRWJ, Xanthoulea S. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One 2014; 9:e102994. [PMID: 25068282 PMCID: PMC4113363 DOI: 10.1371/journal.pone.0102994] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/25/2014] [Indexed: 12/16/2022] Open
Abstract
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.
Collapse
Affiliation(s)
- Nadine Jetten
- Department of Molecular Genetics, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Plastic Surgery, NUTRIM, School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marion J. Gijbels
- Department of Molecular Genetics, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Gynecology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark J. Post
- Department of Physiology, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Menno P. J. de Winther
- Department of Molecular Genetics, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rene R. W. J. van der Hulst
- Department of Plastic Surgery, NUTRIM, School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Plastic Surgery, NUTRIM, School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
117
|
Valente Duarte de Sousa IC. Novel pharmacological approaches for the treatment of acne vulgaris. Expert Opin Investig Drugs 2014; 23:1389-410. [PMID: 24890096 DOI: 10.1517/13543784.2014.923401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Acne vulgaris is the most common skin disease worldwide; yet, current treatment options, although effective, are associated with unwanted side effects, chronicity, relapses and recurrences. The adequate control of the four pathogenic mechanisms, involved in the appearance of acne lesions, is paramount to treatment success. AREAS COVERED The authors discuss and evaluate the pathogenic pathways related to the mechanisms of action of novel molecules, which are currently under investigation for the treatment of acne vulgaris. The manuscript is based on comprehensive searches made through PubMed, GoogleScholar and ClinicalTrial.gov, using different combination of key words, which include acne vulgaris, pathogenesis, treatment, sebogenesis and Propionibacterium acnes. EXPERT OPINION In the near future, more effective treatments with fewer side effects are expected. The use of topical antiandrogens, acetylcholine inhibitors and PPAR modulators seem to be promising options for controlling sebum production. Retinoic acid metabolism-blocking agents and IL-1α inhibitors have the potential to become legitimate alternative options to retinoid therapy in the management of infundibular dyskeratosis. Indeed, the authors believe that there will likely be a decline in the use of antibiotics for controlling P. acnes colonization and targeting the inflammation cascade.
Collapse
|
118
|
Abstract
Age-related changes in skin contribute to impaired wound healing after surgical procedures. Changes in skin with age include decline in thickness and composition, a decrease in the number of most cell types, and diminished microcirculation. The microcirculation provides tissue perfusion, fluid homeostasis, and delivery of oxygen and other nutrients. It also controls temperature and the inflammatory response. Surgical incisions cause further disruption of the microvasculature of aged skin. Perioperative management can be modified to minimize insults to aged tissues. Judicious use of fluids, maintenance of normal body temperature, pain control, and increased tissue oxygen tension are examples of adjustable variables that support the microcirculation. Anesthetic agents influence the microcirculation of a combination of effects on cardiac output, arterial pressure, and local microvascular changes. The authors examined the role of anesthetic management in optimizing the microcirculation and potentially improving postoperative wound repair in older persons.
Collapse
|
119
|
Corrales JJ, Almeida M, Martín-Martín L, Miralles JM, Orfao A. Testosterone replacement therapy in hypogonadal men is associated with increased expression of LAMP-2 (CD107b) by circulating monocytes and dendritic cells. Clin Endocrinol (Oxf) 2014; 80:577-84. [PMID: 24111582 DOI: 10.1111/cen.12338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/10/2013] [Accepted: 09/17/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Accumulated experimental data indicates that androgen therapy has effects on inflammation and protects from autoimmune disorders. Despite this, the in vivo effects of testosterone replacement therapy on human antigen-presenting cells-for example, monocytes and dendritic cells- remain unknown. OBJECTIVE, DESIGN AND PATIENTS We monitored the effects of testosterone replacement therapy on the number and the functionality -as assessed by the expression of CD107b (lysosome-associated membrane protein 2, LAMP-2)- of resting and in vitro-stimulated peripheral blood (classical and nonclassical) monocytes and dendritic cells (myeloid and plasmacytoid) from hypogonadal men. RESULTS Our results show that testosterone replacement therapy induces overexpression of CD107b by circulating monocytes and dendritic cells from hypogonadal men, both under resting (i.e. nonstimulated) conditions and after in vitro stimulation. CD107b overexpression mostly involved monocytes and in vitro stimulation with CpG oligodeoxynucleotides. Of note, a strong correlation was found between CD107b expression on monocytes and serum gonadotrophins levels. CONCLUSION These results support the existence of an effect of testosterone therapy, and potentially also of gonadotrophins, on circulating antigen-presenting cells.
Collapse
Affiliation(s)
- J J Corrales
- Servicio de Endocrinología, Departamento de Medicina, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
120
|
Huang CK, Pang H, Wang L, Niu Y, Luo J, Chang E, Sparks JD, Lee SO, Chang C. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension 2014; 63:1345-53. [PMID: 24688120 DOI: 10.1161/hypertensionaha.113.02804] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The male sex has a higher risk to develop coronary artery diseases, including atherosclerosis. The androgen receptor (AR) is expressed in several atherosclerosis-associated cell types, including monocytes/macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs), but its pathophysiological role in each cell type during the development of atherosclerotic lesions remains unclear. Using the Cre-loxP system, we selectively knocked out AR in these 3 cell types and the resultant AR knockout (ARKO) mice, monocyte/macrophage ARKO, EC-ARKO, and SMC-ARKO, were then crossed with the low-density lipoprotein receptor (LDLR) deficient (LDLR(-/-)) mice to develop monocyte/macrophage ARKO-LDLR(-/-), EC-ARKO-LDLR(-/-), and SMC-ARKO-LDLR(-/-) mice for the study of atherosclerosis. The results showed that the monocyte/macrophage ARKO-LDLR(-/-) mice had reduced atherosclerosis compared with the wild-type-LDLR(-/-) control mice. However, no significant difference was detected in EC-ARKO-LDLR(-/-) and SMC-ARKO-LDLR(-/-) mice compared with wild-type-LDLR(-/-) mice, suggesting that the AR in monocytes/macrophages, and not in ECs and SMCs, plays a major role to promote atherosclerosis. Molecular mechanism dissection suggested that AR in monocytes/macrophages upregulated the tumor necrosis factor-α, integrin β2, and lectin-type oxidized LDL receptor 1 molecules that are involved in 3 major inflammation-related processes in atherosclerosis, including monocytes/macrophages migration and adhesion to human umbilical vein ECs, and subsequent foam cell formation. Targeting AR via the AR degradation enhancer, ASC-J9, in wild-type-LDLR(-/-) mice showed similar effects as seen in monocyte/macrophage ARKO-LDLR(-/-) mice with little influence on lipid profile. In conclusion, the AR in monocytes/macrophages plays key roles in atherosclerosis and targeting AR with ASC-J9 may represent a new potential therapeutic approach to battle atherosclerosis.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Ave, Box 626, Rochester, NY 14642. or Lin Wang, Chawnshang Chang Sex Hormone Research Center, The Kidney and Blood Purification Center, Tianjin Institute of Urology, Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, China 300211. E-mail
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol Cell Biol 2013; 34:362-73. [PMID: 24248594 DOI: 10.1128/mcb.01360-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IpaH proteins are bacterium-specific E3 enzymes that function as type three secretion system (T3SS) effectors in Salmonella, Shigella, and other Gram-negative bacteria. IpaH enzymes recruit host substrates for ubiquitination via a leucine-rich repeat (LRR) domain, which can inhibit the catalytic domain in the absence of substrate. The basis for substrate recognition and the alleviation of autoinhibition upon substrate binding is unknown. Here, we report the X-ray structure of Salmonella SspH1 in complex with human PKN1. The LRR domain of SspH1 interacts specifically with the HR1b coiled-coil subdomain of PKN1 in a manner that sterically displaces the catalytic domain from the LRR domain, thereby activating catalytic function. SspH1 catalyzes the ubiquitination and proteasome-dependent degradation of PKN1 in cells, which attenuates androgen receptor responsiveness but not NF-κB activity. These regulatory features are conserved in other IpaH-substrate interactions. Our results explain the mechanism whereby substrate recognition and enzyme autoregulation are coupled in this class of bacterial ubiquitin ligases.
Collapse
|
122
|
Izumi K, Chang C. Targeting inflammatory cytokines-androgen receptor (AR) signaling with ASC-J9 ® to better battle prostate cancer progression. Oncoimmunology 2013; 2:e26853. [PMID: 24498558 PMCID: PMC3902114 DOI: 10.4161/onci.26853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Inflammatory cytokines and chemokines released by macrophages in the prostate cancer microenvironment may signal via the androgen receptor (AR) to influence tumor progression. In particular, macrophages appear to promote tumorigenesis by altering the chemokine (C-C motif) ligand 4 (CCL4)/AR signaling axis. This process can be blocked by ASC-J9®, an enhancer of AR degradation. ASC-J9® also inhibits the CCL2-dependent, signal transducer and activator of transcription 3 (STAT3)-mediated pro-metastatic signaling cascade that is generally activated by androgen deprivation therapy. Thus, targeting inflammatory cytokines signaling via the AR, with ASC-J9®, represents a promising therapeutic approach against prostate cancer progression.
Collapse
Affiliation(s)
- Kouji Izumi
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center; University of Rochester Medical Center; Rochester, NY USA ; Department of Integrative Cancer Therapy and Urology; Kanazawa University; Kanazawa, Japan
| | - Chawnshang Chang
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center; University of Rochester Medical Center; Rochester, NY USA ; Sex Hormone Research Center; China Medical University and Hospital; Taichung, Taiwan
| |
Collapse
|
123
|
Tian M, Zhang X, Wang L, Li Y. Curcumin Induces ABCA1 Expression and Apolipoprotein A-I-Mediated Cholesterol Transmembrane in the Chronic Cerebral Hypoperfusion Aging Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1027-42. [DOI: 10.1142/s0192415x13500699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cerebral hypoperfusion or aging often results in the disturbances of cholesterol and lipoprotein, which have been well depicted as a common pathological status contributing to neurodegenerative diseases such as vascular dementia (VaD) and Alzheimer's dementia (AD). The pathway of the liver X receptor-β (LXR-β)/retinoic X receptor-α (RXR-α)/ABCA1 plays a vital role in lipoprotein metabolism. Curcumin, a kind of phenolic compound, has been widely used. It has been reported that curcumin can reduce the levels of cholesterol in serum, but the underlying mechanisms are poorly understood. In this study, we evaluated the effects of curcumin on the cholesterol level in brain, vascular cognitive impairment and explored whether the mechanisms for those effects are through activating LXR-β/RXR-α and ABCA1 expression and apoA-I. With a Morris water test, we found that curcumin treatment could attenuate cognitive impairment. With HE and Nissl staining, we found that curcumin could significantly ameliorate the abnormal changes of pyramidal neurons. Meanwhile, the expression of LXR-β, RXR-α, ABCA1 and apoA-I mRNA and protein were increased in a dose-dependent manner after curcumin treatment. Interestingly, both serum HDL cholesterol and total cholesterol levels were statistically higher in the curcumin treatment group than those other groups. We conclude that curcumin has the ability to activate permissive LXR-β/RXR-α signaling and thereby modulate ABCA1 and apoA-I-mediated cholesterol transmembrane transportation, which is a new preventive and therapeutic strategy for cerevascular diseases.
Collapse
Affiliation(s)
- Mingyuan Tian
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Linhui Wang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Yu Li
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
124
|
Melnik BC, Plewig G. Impaired Notch-MKP-1 signalling in hidradenitis suppurativa: an approach to pathogenesis by evidence from translational biology. Exp Dermatol 2013; 22:172-7. [PMID: 23489419 DOI: 10.1111/exd.12098] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 12/13/2022]
Abstract
Recent findings in familial hidradenitis suppurativa (HS) demonstrated loss-of-function mutations of components of the γ-secretase (GS) complex leading to decreased protease cleaving activity, which may compromise canonical Notch signalling. Appropriate Notch signalling is of pivotal importance for maintaining the inner and outer root sheath of the hair follicle and skin appendages. This viewpoint on the pathogenesis of HS is primarily supported by circumstantial evidence derived from translational biology. Impaired Notch signalling is proposed to be the major pathogenic mechanism of HS. Deficient Notch signalling switches the fate of outer root sheath cells, resulting in conversion of hair follicles to keratin-enriched epidermal cysts. Impaired Notch signalling may compromise apocrine gland homoeostasis as well. Damage-associated molecular pattern molecules released by either ruptured epidermal cysts exposing keratin fibres or altered structural components of less maintained apocrine glands may both stimulate TLR-mediated innate immunity. All aggravating factors of HS, that is, smoking, obesity, skin occlusion, androgens and progesterone, may further promote inflammation by release of proinflammatory cytokines derived from activated monocyte/macrophages. Inappropriate Notch signalling may not only initiate inflammation in HS but may lead to insufficient feedback inhibition of overstimulated innate immunity. Regular Notch signalling via induction of MAPK phosphatase-1 (MKP-1) terminates TLR-MAPK-signalling in macrophages and IL-23 secreting DCs, the key players for Th17 cell polarization. Thus, impaired Notch signalling links HS to other Th17-driven comorbidities. All major therapeutic interventions in HS appear to attenuate increased MAPK activation of innate immune cells due to impaired Notch-mediated feedback regulation of innate immunity.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
125
|
Chong C, Wang Y, Maitz PKM, Simanainen U, Li Z. An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing. BURNS & TRAUMA 2013; 1:95-101. [PMID: 27574631 PMCID: PMC4978100 DOI: 10.4103/2321-3868.118935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Current dermal regenerative scafolds provide wound coverage, and structural support and guidance for tissue repair, but usually lack enough bio-signals needed for speeding up skin cell growth, migration, wound closure, and skin regeneration. In this study, an androgen receptor (AR) inhibitor called ASC-J9 is used to demonstrate the concept and feasibility of fabricating drug-loaded scafolds via electrospinning. Inhibition of androgen is known to promote skin wound healing. The novel ASC-J9 - loaded porous scafold was fabricated for skin wound repair using electrospun fibers of collagen and polycaprolactone (PCL) blend. Our preliminary results indicated that ASC-J9 - loaded scafolds facilitated more efficient attachment and ingrowth of dermal fbroblasts, compared to the control collagen-PCL scafold. A signifcant increase of cell proliferation was observed with the drug-loaded scafold over a 28-day period. The drug-loaded scafold also accelerated keratinocyte migration and wound closure in a contraction-inhibited mouse wound model over 21 days. The data indicated a sustained release of ASC-J9 from the scafold and its potential to accelerate wound healing by promoting cell proliferation and migration over an extended period of time. More importantly, our results proved the concept and feasibility of fabricating drug-releasing or bioactive dermal scaffolds for more efective wound healing.
Collapse
Affiliation(s)
| | - Yiwei Wang
- Burns & Reconstructive Surgery Research Group, Australia
| | - Peter K M Maitz
- Burns & Reconstructive Surgery Research Group, Australia ; Burns Unit, Concord Repatriation General Hospital, Concord, New South Wales 2139 Australia
| | | | - Zhe Li
- Burns & Reconstructive Surgery Research Group, Australia ; Burns Unit, Concord Repatriation General Hospital, Concord, New South Wales 2139 Australia
| |
Collapse
|
126
|
Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, Li W, Janjetovic Z, Postlethwaite A, Zouboulis CC, Tuckey RC. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol 2013; 137:107-23. [PMID: 23435015 PMCID: PMC3674137 DOI: 10.1016/j.jsbmb.2013.02.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/07/2013] [Accepted: 02/08/2013] [Indexed: 12/13/2022]
Abstract
The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7Δ-steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or autoimmune diseases. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Izumi K, Fang LY, Mizokami A, Namiki M, Li L, Lin WJ, Chang C. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med 2013; 5:1383-401. [PMID: 23982944 PMCID: PMC3799493 DOI: 10.1002/emmm.201202367] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
Increased CCL2 expression in prostate cancer (PCa) cells enhanced metastasis via macrophage recruitment. However, its linkage to androgen receptor (AR)-mediated PCa progression remains unclear. Here, we identified a previously unrecognized regulation: targeting AR with siRNA in PCa cells increased macrophage recruitment via CCL2 up-regulation, which might then result in enhancing PCa invasiveness. Molecular mechanism dissection revealed that targeting PCa AR with siRNA promoted PCa cell migration/invasion via CCL2-dependent STAT3 activation and epithelial–mesenchymal transition (EMT) pathways. Importantly, pharmacologic interruption of the CCL2/CCR2-STAT3 axis suppressed EMT and PCa cell migration, providing a new mechanism linking CCL2 and EMT. Simultaneously targeting PCa AR with siRNA and the CCL2/CCR2-STAT3 axis resulted in better suppression of PCa growth and metastasis in a xenograft PCa mouse model. Human PCa tissue microarray analysis suggests that increased CCL2 expression may be potentially associated with poor prognosis of PCa patients. Together, these results may provide a novel therapeutic approach to better battle PCa progression and metastasis at the castration resistant stage via the combination of targeting AR with siRNA and anti-CCL2/CCR2-STAT3 signalling.
Collapse
Affiliation(s)
- Kouji Izumi
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Chang C, Yeh S, Lee SO, Chang TM. Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells. NUCLEAR RECEPTOR SIGNALING 2013; 11:e001. [PMID: 24653668 PMCID: PMC3960937 DOI: 10.1621/nrs.11001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Abstract
The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in
vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases.
Collapse
Affiliation(s)
- Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Soo Ok Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Ta-Min Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| |
Collapse
|
129
|
Lin TH, Izumi K, Lee SO, Lin WJ, Yeh S, Chang C. Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death Dis 2013; 4:e764. [PMID: 23928703 PMCID: PMC3763432 DOI: 10.1038/cddis.2013.270] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 01/09/2023]
Abstract
Despite androgen deprivation therapy (ADT) suppression of prostate cancer (PCa) growth, its overall effects on PCa metastasis remain unclear. Using human (C4-2B/THP1) and mouse (TRAMP-C1/RAW264.7) PCa cells–macrophages co-culture systems, we found currently used anti-androgens, MDV3100 (enzalutamide) or Casodex (bicalutamide), promoted macrophage migration to PCa cells that consequently led to enhanced PCa cell invasion. In contrast, the AR degradation enhancer, ASC-J9, suppressed both macrophage migration and subsequent PCa cell invasion. Mechanism dissection showed that Casodex/MDV3100 reduced the AR-mediated PIAS3 expression and enhanced the pSTAT3-CCL2 pathway. Addition of CCR2 antagonist reversed the Casodex/MDV3100-induced macrophage migration and PCa cell invasion. In contrast, ASC-J9 could regulate pSTAT3-CCL2 signaling using two pathways: an AR-dependent pathway via inhibiting PIAS3 expression and an AR-independent pathway via direct inhibition of the STAT3 phosphorylation/activation. These findings were confirmed in the in vivo mouse model with orthotopically injected TRAMP-C1 cells. Together, these results may raise the potential concern about the currently used ADT with anti-androgens that promotes PCa metastasis and may provide some new and better therapeutic strategies using ASC-J9 alone or a combinational therapy that simultaneously targets androgens/AR signaling and PIAS3-pSTAT3-CCL2 signaling to better battle PCa growth and metastasis at castration-resistant stage.
Collapse
Affiliation(s)
- T-H Lin
- George Whipple Lab for Cancer Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
130
|
Wang H, Chen L. Tumor microenviroment and hepatocellular carcinoma metastasis. J Gastroenterol Hepatol 2013; 28 Suppl 1:43-8. [PMID: 23855295 DOI: 10.1111/jgh.12091] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
Abstract
The cross talk between tumor cells and the surrounding peritumoral stroma has been extensively studied as a dynamic system involving the processes of hepatocarcinogenesis, tumor invasion, and metastasis in recent few decades. Besides hepatocytes, liver tumor microenvironments are generally classified into cellular and noncellular components, including hepatic stellate cells, fibroblasts, immune, endothelial, mesenchymal stem cells, together with growth factors, cytokines, extracellular matrix, hormone as well as viruses et al. The noncellular components manipulate hepatocellular carcinoma invasion and metastasis by facilitating epithelial-mesenchymal transition, increasing proteolytic activity of matrix metalloproteinases, and regulating antitumor immunity, etc. Because the main cause of death in hepatocellular carcinoma patients is tumor progression with metastasis, a better understanding of the interplay between hepatocytes and their environment during tumor metastasis may be helpful for the discovery of novel molecular targets.
Collapse
Affiliation(s)
- Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
131
|
Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H, Lin WJ, Chang C. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res 2013; 73:5633-46. [PMID: 23878190 DOI: 10.1158/0008-5472.can-12-3228] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Infiltrating macrophages are a key component of inflammation during tumorigenesis, but the direct evidence of such linkage remains unclear. We report here that persistent coculturing of immortalized prostate epithelial cells with macrophages, without adding any carcinogens, induces prostate tumorigenesis and that induction involves the alteration of signaling of macrophage androgen receptor (AR)-inflammatory chemokine CCL4-STAT3 activation as well as epithelial-to-mesenchymal transition and downregulation of p53/PTEN tumor suppressors. In vivo studies further showed that PTEN(+/-) mice lacking macrophage AR developed far fewer prostatic intraepithelial neoplasia (PIN) lesions, supporting an in vivo role for macrophage AR during prostate tumorigenesis. CCL4-neutralizing antibody effectively blocked macrophage-induced prostate tumorigenic signaling and targeting AR via an AR-degradation enhancer, ASC-J9, reduced CCL4 expression, and xenografted tumor growth in vivo. Importantly, CCL4 upregulation was associated with increased Snail expression and downregulation of p53/PTEN in high-grade PIN and prostate cancer. Together, our results identify the AR-CCL4-STAT3 axis as key regulators during prostate tumor initiation and highlight the important roles of infiltrating macrophages and inflammatory cytokines for the prostate tumorigenesis.
Collapse
Affiliation(s)
- Lei-Ya Fang
- Authors' Affiliations: George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York; Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, and Sex Hormone Research Center, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Res 2013; 11:938-50. [PMID: 23859805 DOI: 10.1016/j.scr.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 11/21/2022] Open
Abstract
Gender differences have been described in osteoporosis with females having a higher risk of osteoporosis than males. The differentiation of bone marrow stromal cells (BMSCs) into bone or fat is a critical step for osteoporosis. Here we demonstrated that loss of the androgen receptor (AR) in BMSCs suppressed osteogenesis but promoted adipogenesis. The mechanism dissection studies revealed that AR deficiency suppressed osteogenesis-related genes to inhibit osteoblast differentiation from BMSCs. Knockout of AR promoted adipogenesis of BMSCs via Akt activation through IGFBP3-mediated IGF signaling, and the 5' promoter assay and chromatin immunoprecipitation assays further proved that AR could modulate IGFBP3 expression at the transcriptional level. Finally, addition of IGF inhibitors successfully masked the AR deficiency-induced Akt activation, and inhibitions of Akt, IGF1, and IGF2 pathways reversed the AR depletion effects on the adipogenesis process. These results suggested that AR-mediated changes in IGFBP3 might modulate the IGF-Akt axis to regulate adipogenesis in BMSCs.
Collapse
|
133
|
Lin TH, Lee SO, Niu Y, Xu D, Liang L, Li L, Yeh SD, Fujimoto N, Yeh S, Chang C. Differential androgen deprivation therapies with anti-androgens casodex/bicalutamide or MDV3100/Enzalutamide versus anti-androgen receptor ASC-J9(R) Lead to promotion versus suppression of prostate cancer metastasis. J Biol Chem 2013; 288:19359-69. [PMID: 23687298 DOI: 10.1074/jbc.m113.477216] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that androgen deprivation therapy (ADT) can effectively reduce prostate cancer (PCa) size, its effect on PCa metastasis remains unclear. We examined the existing data on PCa patients treated with ADT plus anti-androgens to analyze ADT effects on primary tumor size, prostate-specific antigen (PSA) values, and metastatic incidence. We found that the current ADT with anti-androgens might lead to primary tumor reduction, with PSA decreased yet metastases increased in some PCa patients. Using in vitro and in vivo metastasis models with four human PCa cell lines, we evaluated the effects of the currently used anti-androgens, Casodex/bicalutamide and MDV3100/enzalutamide, and the newly developed anti-AR compounds, ASC-J9® and cryptotanshinone, on PCa cell growth and invasion. In vitro results showed that 10 μm Casodex or MDV3100 treatments suppressed PCa cell growth and reduced PSA level yet significantly enhanced PCa cell invasion. In vivo mice studies using an orthotopic xenograft mouse model also confirmed these results. In contrast, ASC-J9® led to suppressed PCa cell growth and cell invasion in in vitro and in vivo models. Mechanism dissection indicated these Casodex/MDV3100 treatments enhanced the TGF-β1/Smad3/MMP9 pathway, but ASC-J9® and cryptotanshinone showed promising anti-invasion effects via down-regulation of MMP9 expression. These findings suggest the potential risks of using anti-androgens and provide a potential new therapy using ASC-J9® to battle PCa metastasis at the castration-resistant stage.
Collapse
Affiliation(s)
- Tzu-Hua Lin
- George Whipple Laboratory for Cancer Research, Department of Pathology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Pohl J, Luheshi GN, Woodside B. Effect of obesity on the acute inflammatory response in pregnant and cycling female rats. J Neuroendocrinol 2013; 25:433-45. [PMID: 23331909 DOI: 10.1111/jne.12023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/31/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022]
Abstract
Nonpregnant female rats have a lower inflammatory response to lipopolysaccharide (LPS) than males and, at late stages of gestation, the fever response to this immunogen is almost completely suppressed. We have shown in males that obesity exacerbates sickness responses to pathogenic stimuli. In the present study, we investigated whether obesity would have a similar effect in females and reverse some of the suppressive effects of pregnancy on the innate immune response. Lean and diet-induced obese adult Wistar rats were randomly separated into either cycling or mated groups. On day 18 of pregnancy or in the metestrous/dioestrous phase in cycling rats, a single injection of LPS (100 μg/kg) was administered and rats were sacrificed 8h or 24 h later. In pregnant females, LPS induced a higher increase in body temperature in obese rats only at the 24-h time point and lower hypothalamic interleukin (IL)-1β expression and higher circulating levels of IL-1 receptor antagonist (ra) than their cycling counterparts. Conversely, there was no suppression of inflammatory signals in the white adipose tissue of pregnant rats. At 24 h post LPS, the cell surface marker CD11c and IL-6 mRNA expression were increased in white adipose tissue from obese rats regardless of reproductive state, whereas IL-1ra was highest in the LPS-treated obese pregnant group. In cycling females, LPS induced a higher fever response in obese rats accompanied by higher circulating levels of IL-6 and IL-1ra, as well as an increase in circulating leptin only in the obese cycling group. In the hypothalamus, obese rats showed significantly higher expression of nuclear factor-IL-6 in at the 8-h time point. Collectively, these results show that diet-induced obesity in females is associated with a similar pattern of response to that previously observed in males. On the other hand, obesity had limited effects in pregnant rats, with the exception of white adipose tissue.
Collapse
Affiliation(s)
- J Pohl
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
135
|
Izumi K, Mizokami A, Lin WJ, Lai KP, Chang C. Androgen receptor roles in the development of benign prostate hyperplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1942-9. [PMID: 23570837 DOI: 10.1016/j.ajpath.2013.02.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 12/20/2022]
Abstract
Benign prostate hyperplasia (BPH) is a major cause of lower urinary tract symptoms, with an increased volume of transitional zone and associated with increased stromal cells. It is known that androgen/androgen receptor (AR) signaling plays a key role in development of BPH, and that blockade of this signaling decreases BPH volume and can relieve lower urinary tract symptoms, but the mechanisms of androgen/AR signaling in BPH development remain unclear, and the effectiveness of current drugs for treating BPH is still limited. The detailed mechanisms of androgen/AR signaling need to be clarified, and new therapies are needed for better treatment of BPH patients. This review focuses on roles of AR in epithelial and stromal cells in BPH development. In epithelial cells, AR may contribute to BPH development via epithelial cell-stromal cell interaction with alterations of epithelial-mesenchymal transition, leading to proliferation of stromal cells. Data from several mouse models with selective knockout of AR in stromal smooth-muscle cells and/or fibroblasts indicate that the AR in stromal cells can also promote BPH development. In prostatic inflammation, AR roles in infiltrating macrophages and epithelial and stromal cells have been linked to BPH development, which has led to discovery of new therapeutic targets. For example, targeting AR with the novel AR degradation enhancer, ASC-J9 offers a potential therapeutic approach against BPH development.
Collapse
Affiliation(s)
- Kouji Izumi
- George H. Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
136
|
Dong C, Zhao G, Zhong M, Yue Y, Wu L, Xiong S. RNA sequencing and transcriptomal analysis of human monocyte to macrophage differentiation. Gene 2013; 519:279-87. [PMID: 23458880 DOI: 10.1016/j.gene.2013.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 12/24/2022]
Abstract
Monocytes can be differentiated into macrophages in vivo and these cells play an important role in innate and adaptive immune responses. To reveal the global gene transcription change that occurs during monocyte to macrophage differentiation, we performed genome-wide RNA sequencing and analyses in human primary monocytes and monocyte-derived macrophages. We show that 1208 genes (with >twofold differences) were differentially expressed in macrophages compared with monocytes, including 800 upregulated and 408 downregulated genes. Gene ontology, pathway, and protein-protein interaction analyses indicated that the upregulated genes were related to macrophage functions in phagocytosis, metabolic processes, and cell cycle. The majority of downregulated genes comprised genes involved in the inflammatory response and locomotion. Genes encoding transcription regulatory factors, such as FOXO1, RUNX3, NF-κB1, and C/EBP δ, were highly expressed in monocytes and appeared to function in significant transcriptional repression, resulting in slight metabolic activity. Our transcriptome comparison between human monocytes and monocyte-derived macrophages using RNA sequencing revealed novel molecules and pathways associated with the differentiation process. These molecules and pathways may represent candidate targets involved in the pathophysiology of these important immune cells.
Collapse
Affiliation(s)
- Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | |
Collapse
|
137
|
Li L, Xie H, Liang L, Gao Y, Zhang D, Fang L, Lee SO, Luo J, Chen X, Wang X, Chang LS, Yeh S, Wang Y, He D, Chang C. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis 2013; 34:257-67. [PMID: 23104178 PMCID: PMC3564439 DOI: 10.1093/carcin/bgs337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022] Open
Abstract
Most advanced prostate cancers (PCa) will develop into the castration-resistant stage following androgen deprivation therapy, yet the molecular mechanisms remain unclear. In this study, we found PrLZ, a newly identified Prostate Leucine Zipper gene that is highly expressed in PCa could interact with the androgen receptor (AR) directly leading to enhance AR transactivation in the castration-resistant condition. PrLZ might enhance AR transactivation via a change of AR conformation that leads to promotion of AR nuclear translocation and suppression of AR degradation via modulating the proteasome pathway, which resulted in increased prostate-specific antigen expression and promoted PCa growth at the castration-resistant stage. Clinical PCa sample survey from same-patient paired specimens found increased PrLZ expression in castration-resistant PCa following the classical androgen deprivation therapy. Targeting the AR-PrLZ complex via ASC-J9® or PrLZ-siRNA resulted in suppression of PCa growth in various human PCa cells and in vivo mouse PCa models. Together, these data not only strengthen PrLZ roles in the transition from androgen dependence to androgen independence during the castration-resistant stage, but they may also provide a new potential therapy to battle PCa at the castration-resistant stage.
Collapse
Affiliation(s)
- Lei Li
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hongjun Xie
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liang Liang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ye Gao
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Dong Zhang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Leiya Fang
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
| | - Soo Ok Lee
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
| | - Jie Luo
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
| | - Xingfa Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinyang Wang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Luke S. Chang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shuyuan Yeh
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan and
| | - Yuzhuo Wang
- Department of Cancer Endocrinology, BC Cancer Agency, Research Centre, Vancouver, British Columbia, Canada
| | - Dalin He
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chawnshang Chang
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan and
| |
Collapse
|
138
|
Racioppi L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med 2013; 19:83-8. [PMID: 23332598 PMCID: PMC3565098 DOI: 10.1016/j.molmed.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 01/03/2023]
Abstract
The androgen receptor (AR) is pivotal in the biology of sex hormone-regulated malignancies, with prostate cancer (PC) the most affected tumor. AR signals control the growth, survival, and migration of cancer cells, and they regulate the activation of macrophages, a cell type pivotal to the tumor ecosystem. Intriguingly, CaMKK2 has recently been identified as both an important AR-regulated gene in the context of PC and as a critical regulator of macrophage activation. By contrast, CaMKK2 is barely detectable in normal prostate or immune cells that mediate the response against tumorigenesis. These novel findings suggest that CaMKK2 resides at a critical molecular node that shapes the cancer ecosystem, and identifies this kinase as a novel therapeutic target for sex hormone-regulated cancers.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Medicine, Duke University, Durham, NC 27707, USA.
| |
Collapse
|
139
|
Hsieh TF, Chen CC, Yu AL, Ma WL, Zhang C, Shyr CR, Chang C. Androgen receptor decreases the cytotoxic effects of chemotherapeutic drugs in upper urinary tract urothelial carcinoma cells. Oncol Lett 2013; 5:1325-1330. [PMID: 23599788 PMCID: PMC3629091 DOI: 10.3892/ol.2013.1140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/09/2013] [Indexed: 11/06/2022] Open
Abstract
Upper urinary tract urothelial carcinomas (UUTUCs) represent relatively uncommon yet devastating tumors that affect more males than females. However, the correlation between gender difference and disease progression remains unclear. Androgen and the androgen receptor (AR) were previously hypothesized to account for the gender difference in the incidence of urothelial carcinomas; however, the role of AR in the development and progression of UUTUCs is not well understood. In addition, although UUTUCs are responsive to chemotherapy, various responses are presented among patients. Therefore, the aim of the present study was to determine the role of AR in the response of UUTUC cells to chemotherapeutic drugs. In this study, AR overexpression in UUTUC cells (BFTC 909) was identified to reduce the cytotoxic effect of chemotherapeutic drugs, including doxorubicin, cisplatin and mitomycin C and protected cells from drug-induced death. The expression of ABCG2, an ATP-binding cassette half-transporter associated with multidrug resistance, was increased in AR-overexpressing BFTC cells. In addition, use of the AR degradation enhancer, ASC-J9®, repressed the AR effect on increasing cell viability under drug treatment. In summary, results of the present study indicate that the status of AR expression levels in UUTUCs may be a significant factor in affecting the efficacy of chemotherapy and classic chemotherapeutic drugs and AR targeted therapy may provide a novel potential therapeutic approach to improve treatment of UUTUCs.
Collapse
Affiliation(s)
- Teng-Fu Hsieh
- Division of Urology, Department of Surgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung 40427
| | | | | | | | | | | | | |
Collapse
|
140
|
Huang CK, Tsai MY, Luo J, Kang HY, Lee SO, Chang C. Suppression of androgen receptor enhances the self-renewal of mesenchymal stem cells through elevated expression of EGFR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1222-34. [PMID: 23333872 DOI: 10.1016/j.bbamcr.2013.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 01/07/2023]
Abstract
Bone marrow derived mesenchymal stem cells (BM-MSCs) have been widely applied in several clinical trials of diseases, such as myocardial infarction, liver cirrhosis, neurodegenerative disease, and osteogenesis imperfecta. Although most studies demonstrated that transplantation of BM-MSCs did exert a temporary relief and short-term therapeutic effects, eventually all symptoms recur, therefore it is essential to improve the therapeutic efficacy of transplantation by either elevating the self-renewal of BM-MSCs or enhancing their survival rate. Herein we demonstrated that the BM-MSCs and adipocyte derived mesenchymal stem cells (ADSCs) isolated from the androgen receptor (AR) knockout mice have higher self-renewal ability than those obtained from the wild-type mice. Knockdown of AR in MSC cell lines exhibited similar results. Mechanistic dissection studies showed that the depletion of AR resulted in activation of Erk and Akt signaling pathways through epidermal growth factor receptor (EGFR) activation or pathway to mediate higher self-renewal of BM-MSCs. Targeting AR signals using ASC-J9® (an AR degradation enhancer), hydroxyflutamide (antagonist of AR), and AR-siRNA all led to enhanced self-renewal of MSCs, suggesting the future possibility of using these anti-AR agents in therapeutic approaches.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
141
|
Lai KP, Lai JJ, Chang P, Altuwaijri S, Hsu JW, Chuang KH, Shyr CR, Yeh S, Chang C. Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol Endocrinol 2012; 27:25-37. [PMID: 23250486 DOI: 10.1210/me.2012-1244] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although thymic involution has been linked to the increased testosterone in males after puberty, its detailed mechanism and clinical application related to T-cell reconstitution in bone marrow transplantation (BMT) remain unclear. By performing studies with reciprocal BMT and cell-specific androgen receptor (AR) knockout mice, we found that AR in thymic epithelial cells, but not thymocytes or fibroblasts, played a more critical role to determine thymic cellularity. Further dissecting the mechanism using cell-specific thymic epithelial cell-AR knockout mice bearing T-cell receptor transgene revealed that elevating thymocyte survival was due to the enhancement of positive selection resulting in increased positively selected T-cells in both male and female mice. Targeting AR, instead of androgens, either via genetic knockout of thymic epithelial AR or using an AR-degradation enhancer (ASC-J9®), led to increased BMT grafting efficacy, which may provide a new therapeutic approach to boost T-cell reconstitution in the future.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- George H Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Rodero MP, Hodgson SS, Hollier B, Combadiere C, Khosrotehrani K. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J Invest Dermatol 2012; 133:783-792. [PMID: 23235530 DOI: 10.1038/jid.2012.368] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macrophages are the main components of inflammation during skin wound healing. They are critical in wound closure and in excessive inflammation, resulting in defective healing observed in chronic wounds. Given the heterogeneity of macrophage phenotypes and functions, we here hypothesized that different subpopulations of macrophages would have different and sometimes opposing effects on wound healing. Using multimarker flow cytometry and RNA expression array analyses on macrophage subpopulations from wound granulation tissue, we identified a Ly6c(lo)MHCII(hi) "noninflammatory" subset that increased both in absolute number and proportion during normal wound healing and was missing in Ob/Ob and MYD88-/- models of delayed healing. We also identified IL17 as the main cytokine distinguishing this population from proinflammatory macrophages and demonstrated that inhibition of IL17 by blocking Ab or in IL17A-/- mice accelerated normal and delayed healing. These findings dissect the complexity of the role and activity of the macrophages during wound inflammation and may contribute to the development of therapeutic approaches to restore healing in chronic wounds.
Collapse
Affiliation(s)
- Mathieu P Rodero
- University of Queensland Centre for Clinical Research, Experimental Dermatology Group, Brisbane, Queensland, Australia
| | - Samantha S Hodgson
- University of Queensland Centre for Clinical Research, Experimental Dermatology Group, Brisbane, Queensland, Australia
| | - Brett Hollier
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christophe Combadiere
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S 945, Paris, France; Service d'Immunologie, Groupe Hospitalier Pitié-Salpétrière, Assistance Public-Hôpitaux de Paris, Paris, France; Laboratory of Immunity and Infection, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
| | - Kiarash Khosrotehrani
- University of Queensland Centre for Clinical Research, Experimental Dermatology Group, Brisbane, Queensland, Australia.
| |
Collapse
|
143
|
Lai JJ, Lai KP, Zeng W, Chuang KH, Altuwaijri S, Chang C. Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1504-12. [PMID: 22959669 DOI: 10.1016/j.ajpath.2012.07.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/09/2012] [Accepted: 07/18/2012] [Indexed: 12/18/2022]
Abstract
Upon insult, such as infection or tissue injury, the innate and adaptive immune systems initiate a series of responses to defend the body. Recent studies from immune cell-specific androgen receptor (AR) knockout mice demonstrated that androgen and its receptor (androgen/AR) play significant roles in both immune regulations. In the innate immunity, androgen/AR is required for generation and proper function of neutrophils; androgen/AR also regulates wound healing processes through macrophage recruitment and proinflammatory cytokine production. In adaptive immunity, androgen/AR exerts suppressive effects on development and activation of T and B cells. Removal of such suppression causes thymic enlargement and excessive export of immature B cells. Altogether, androgen/AR plays distinct roles in individual immune cells, and targeting androgen/AR may help in treatment and management of immune-related diseases.
Collapse
Affiliation(s)
- Jiann-Jyh Lai
- George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
144
|
Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm 2012; 9:2801-11. [PMID: 22946786 DOI: 10.1021/mp300075u] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wound healing is an intricate multistage process that includes inflammation, cell proliferation, matrix deposition and remodeling phases. It is often associated with oxidative stress and consequent prolonged inflammation, resulting in impaired wound healing. Curcumin has been reported to improve wound healing in different animal models. In order to increase the efficacy of curcumin in the healing arena a curcumin loaded oleic acid based polymeric (COP) bandage was formulated. The in vivo wound healing potency was compared with void bandage and control (cotton gauze treatment) in a rat model. Biochemical parameters and histological analysis revealed increased wound reduction and enhanced cell proliferation in COP bandage treated groups due to its efficient free radical scavenging properties. Comparative acceleration in wound healing was due to early implementation of fibroblasts and its differentiation (increased level of α-smooth muscle actin). Western blotting and semiquantitative PCR analysis clearly indicate that COP bandage can efficiently quench free radicals leading to reduced antioxidative enzyme activity. Further evidence at mRNA and protein level indicates that our system is potent enough to reduce the inflammatory response mediated by the NFκB pathway during wound healing. With this background, we anticipate that such a versatile approach may seed new arena for topical wound healing in the near future.
Collapse
|
145
|
Lai JJ, Chang P, Lai KP, Chen L, Chang C. The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res 2012; 304:499-510. [PMID: 22829074 DOI: 10.1007/s00403-012-1265-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/15/2012] [Accepted: 07/06/2012] [Indexed: 02/05/2023]
Abstract
Androgen and androgen receptor (AR) may play important roles in several skin-related diseases, such as androgenetic alopecia and acne vulgaris. Current treatments for these androgen/AR-involved diseases, which target the synthesis of androgens or prevent its binding to AR, can cause significant adverse side effects. Based on the recent studies using AR knockout mice, it has been suggested that AR and androgens play distinct roles in the skin pathogenesis, and AR seems to be a better target than androgens for the treatment of these skin diseases. Here, we review recent studies of androgen/AR roles in several skin-related disorders, including acne vulgaris, androgenetic alopecia and hirsutism, as well as cutaneous wound healing.
Collapse
Affiliation(s)
- Jiann-Jyh Lai
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Box 626, URMC, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
146
|
Lee SO, Ma Z, Yeh CR, Luo J, Lin TH, Lai KP, Yamashita S, Liang L, Tian J, Li L, Jiang Q, Huang CK, Niu Y, Yeh S, Chang C. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol 2012; 5:14-26. [PMID: 22831834 DOI: 10.1093/jmcb/mjs042] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The androgen deprivation therapy (ADT) to systematically suppress/reduce androgens binding to the androgen receptor (AR) has been the standard therapy for prostate cancer (PCa); yet, most of ADT eventually fails leading to the recurrence of castration resistant PCa. Here, we found that the PCa patients who received ADT had increased PCa stem/progenitor cell population. The addition of the anti-androgen, Casodex, or AR-siRNA in various PCa cells led to increased stem/progenitor cells, whereas, in contrast, the addition of functional AR led to decreased stem/progenitor cell population but increased non-stem/progenitor cell population, suggesting that AR functions differentially in PCa stem/progenitor vs. non-stem/progenitor cells. Therefore, the current ADT might result in an undesired expansion of PCa stem/progenitor cell population, which explains why this therapy fails. Using various human PCa cell lines and three different mouse models, we concluded that targeting PCa non-stem/progenitor cells with AR degradation enhancer ASC-J9 and targeting PCa stem/progenitor cells with 5-azathioprine and γ-tocotrienol resulted in a significant suppression of the tumors at the castration resistant stage. This suggests that a combinational therapy that simultaneously targets both stem/progenitor and non-stem/progenitor cells will lead to better therapeutic efficacy and may become a new therapy to battle the PCa before and after castration resistant stages.
Collapse
Affiliation(s)
- Soo Ok Lee
- George Whipple Lab for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Ma WL, Hsu CL, Yeh CC, Wu MH, Huang CK, Jeng LB, Hung YC, Lin TY, Yeh S, Chang C. Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis. Hepatology 2012; 56:176-85. [PMID: 22318717 PMCID: PMC3673306 DOI: 10.1002/hep.25644] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/24/2012] [Indexed: 12/27/2022]
Abstract
UNLABELLED Early reports suggested androgen/androgen receptor (AR) signals promote hepatocarcinogenesis. However, all antiandrogen clinical trials failed in advanced hepatocellular carcinoma (HCC) without reasonable explanations. We examined AR functions in HCC cancer metastasis in this study. We examined hepatic AR roles in HCC metastasis by comparing liver hepatocyte AR knockout and wildtype in a carcinogen-induced HCC mouse model. We examined tumor histology, cancer metastatic risks, and cancer survival in vivo, as well as cell anoikis and migration using primary hepatic tumor culture in vitro. We also examined therapeutic potentials of AR expression combined with the molecular targeting agent sorafenib in an HCC metastasis mouse model. We found a novel cancer phenotype in which mice lacking hepatic AR developed more undifferentiated tumors and larger tumor size at the metastatic stage. These mice also died earlier with increased lung metastasis, suggesting that hepatic AR may play dual yet opposite roles to promote HCC initiation but suppress HCC metastasis. Mechanistic dissection found that hepatic AR could enhance anoikis and suppress migration of HCC cells by way of suppression of p38 phosphorylation/activation and the nuclear factor kappa B (NF-κB)/matrix metallopeptidase 9 (MMP9) pathway, respectively. In addition, the in vivo preclinical trials concluded that a combination therapy of increased AR expression and reduced multiple-kinase inhibitor (sorafenib) exhibited better therapeutic efficacy. CONCLUSION Our study demonstrates that AR could orchestrate intrahepatic signaling hierarchies and cellular behaviors, consequently affect HCC progression. Results from combination therapy shed light on developing new therapeutic paradigms for battling HCC at later metastatic stages.
Collapse
Affiliation(s)
- Wen-Lung Ma
- Sex Hormone Research Centre and Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, 404 Taiwan,George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cheng-Lung Hsu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chun-Chieh Yeh
- Sex Hormone Research Centre and Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, 404 Taiwan
| | - Ming-Heng Wu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chiung-Kuei Huang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Long-Bin Jeng
- Sex Hormone Research Centre and Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, 404 Taiwan
| | - Yao-Ching Hung
- Sex Hormone Research Centre and Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, 404 Taiwan
| | - Tze-Yi Lin
- Sex Hormone Research Centre and Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, 404 Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chawnshang Chang
- Sex Hormone Research Centre and Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, 404 Taiwan,George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Contact information: Corresponding author:
| |
Collapse
|
148
|
Lai KP, Yamashita S, Huang CK, Yeh S, Chang C. Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med 2012; 4:791-807. [PMID: 22745041 PMCID: PMC3494077 DOI: 10.1002/emmm.201101140] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 03/05/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022] Open
Abstract
Stromal-epithelial interaction is crucial to mediate normal prostate and prostate cancer (PCa) development. The indispensable roles of mesenchymal/stromal androgen receptor (AR) for the prostate organogenesis have been demonstrated by using tissue recombination from wild-type and testicular feminized mice. However, the stromal AR functions in the tumour microenvironment and the underlying mechanisms governing the interactions between the epithelium and stroma are not completely understood. Here, we have established the first animal model with AR deletion in stromal fibromuscular cells (dARKO, AR knockout in fibroblasts and smooth muscle cells) in the Pten(+/-) mouse model that can spontaneously develop prostatic intraepithelial neoplasia (PIN). We found that loss of stromal fibromuscular AR led to suppression of PIN lesion development with alleviation of epithelium proliferation and tumour-promoting microenvironments, including extracellular matrix (ECM) remodelling, immune cell infiltration and neovasculature formation due, in part, to the modulation of pro-inflammatory cytokines/chemokines. Finally, targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, resulted in the reduction of PIN development/progression, which might provide a new approach to suppress PIN development.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- Departments of Pathology, Urology, and Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
149
|
Lee SO, Tian J, Huang CK, Ma Z, Lai KP, Hsiao H, Jiang M, Yeh S, Chang C. Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. J Endocrinol 2012; 213:173-82. [PMID: 22393245 DOI: 10.1530/joe-11-0474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Early studies have reported the differential roles of androgen receptor (AR) in different types (luminal, basal intermediate, and stromal) of prostate cancer cells. In vivo mouse model tumor studies using the total prostate epithelial knockout mice (pes-ARKO) also revealed that AR played a suppressive role in proliferation of the CK5(+)/CK8(+) progenitor/intermediate cells but a positive role in the CK5(-)/CK8(+) luminal epithelial cells. Using three different resources (one human basal epithelial cell line, one mouse basal epithelial originated progenitor cell line, and a basal epithelium-specific ARKO mouse model), we here demonstrated that the AR in basal epithelial cells of normal prostate plays a suppressive role in their proliferation but a positive role in differentiation into luminal epithelial cells. These results led us to conclude that ARs may play a negative role to suppress CK5(+) basal epithelial and progenitor cell proliferation, yet play an essential role to drive basal epithelial cells into more differentiated states. These results may explain why differential AR expression in different cell types within normal prostate is needed and suggest that ARs in prostate basal epithelial cells, although expressed at a very low level, are necessary to maintain the balance between progenitor cells and differentiated luminal epithelial cells.
Collapse
Affiliation(s)
- Soo Ok Lee
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
De Gendt K, Verhoeven G. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol 2012; 352:13-25. [PMID: 21871526 DOI: 10.1016/j.mce.2011.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 12/28/2022]
Abstract
This review aims to evaluate the contribution of individual cell-selective knockout models to our current understanding of androgen action. Cre/loxP technology has allowed the generation of cell-selective knockout models targeting the androgen receptor (AR) in distinct putative target cells in a wide variety of organs and tissues including: testis, ovary, accessory sex tissues, muscle, bone, fat, liver, skin and myeloid tissue. In some androgen-regulated processes such as spermatogenesis and folliculogenesis this approach has lead to the identification of a key cellular mediator of androgen action (Sertoli and granulosa cells, respectively). In many target tissues, however, the final response to androgens appears to be more complex. Here, cell-selective knockout technology offers a platform upon which we can begin to unravel the more complex interplay and signaling pathways of androgens. A prototypic example is the analysis of mesenchymal-epithelial interactions in many accessory sex glands. Furthermore, for some actions of testosterone, in which part of the effect is mediated by the active metabolite 17β-estradiol, conditional knockout technology offers a novel strategy to study the relative contribution of AR and estrogen receptor-mediated signaling. The latter approach has already resulted in a better understanding of androgen action in brain and bone. Finally, cell-selective knockout technology has generated valuable models to search for AR-controlled molecular mediators of androgen action, a strategy that has successfully been applied to the study of androgen action in the testis and in the epididymis. Although some conditional knockout models have provided clear answers to physiologic questions, it should be noted that others have pointed to unexpected complexities or technical limitations confounding interpretation of the results.
Collapse
Affiliation(s)
- Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium
| | | |
Collapse
|