101
|
Fukuhara S, Masaoka T, Nishimura S, Nakamura M, Matsuzaki J, Tsugawa H, Miyoshi S, Mori H, Kawase S, Shibata S, Okano H, Kanai T, Suzuki H. Enteric Glial Dysfunction Evoked by Apolipoprotein E Deficiency Contributes to Delayed Gastric Emptying. Dig Dis Sci 2017; 62:3359-3369. [PMID: 29098550 DOI: 10.1007/s10620-017-4820-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Diabetes is the main cause of gastroparesis accompanying decreased neuronal nitric oxide synthase (nNOS) in myenteric ganglia of the stomach. Decreased nNOS expression in the stomach also results from defects in apolipoprotein E (ApoE), which is secreted by astrocytes and has neuroprotective effects on the central nervous system. However, the roles of ApoE and enteric glial cells on gastric motility are uncertain. In this study, ApoE and enteric glial cell alterations in gastroparesis were investigated. METHODS Type 2 diabetic (db/db) mice and ApoE-knockout mice were analyzed. Gastric emptying was measured using the 13C acetic acid breath test. Expression levels of the pan-neuronal marker, protein gene product 9.5 (PGP 9.5), and glial marker, glial fibrillary acidic protein (GFAP) were examined by immunohistochemistry. Neural stem cells (NSCs) were injected into the gastric antral wall of ApoE-knockout mice. RESULTS Delayed gastric emptying was observed in 27% of db/db mice with significant decreases in serum ApoE levels and GFAP expression in the gastric antrum. Gastric emptying was also delayed in ApoE-knockout mice, with a significant decrease in GFAP expression, but no change in PGP 9.5 expression. Transplantation of NSCs improved gastric emptying in ApoE-knockout mice through supplementation of GFAP-positive cells. CONCLUSIONS Our results suggest that decreased enteric glial cells in ApoE-knockout mice are crucial for development of delayed gastric emptying, and NSC transplantation is effective in restoring myenteric ganglia and gastric motility.
Collapse
Affiliation(s)
- Seiichiro Fukuhara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiro Masaoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Soraya Nishimura
- Department of Orthopedics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Tsugawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Sawako Miyoshi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideki Mori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Satoshi Kawase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hidekazu Suzuki
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
102
|
Sundaresan S, Meininger CA, Kang AJ, Photenhauer AL, Hayes MM, Sahoo N, Grembecka J, Cierpicki T, Ding L, Giordano TJ, Else T, Madrigal DJ, Low MJ, Campbell F, Baker AM, Xu H, Wright NA, Merchant JL. Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology 2017; 153:1555-1567.e15. [PMID: 28859856 PMCID: PMC5705278 DOI: 10.1053/j.gastro.2017.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. METHODS Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. RESULTS Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. CONCLUSIONS MEN1-associated gastrinomas, which develop in the submucosa, might arise from enteric glial cells through hormone-dependent PKA signaling. This pathway disrupts nuclear menin function, leading to hypergastrinemia and associated sequelae.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Cameron A Meininger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Anthony J Kang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amanda L Photenhauer
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lin Ding
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - David J Madrigal
- Endocrine Oncology Program, University of Michigan, Ann Arbor, Michigan
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Fiona Campbell
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Ann-Marie Baker
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas A Wright
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Juanita L Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
103
|
Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, Loane DJ, Shea-Donohue T, Faden AI. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun 2017; 66:56-69. [PMID: 28676351 PMCID: PMC5909811 DOI: 10.1016/j.bbi.2017.06.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. METHODS Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. RESULTS Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. CONCLUSION These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury.
Collapse
Affiliation(s)
- Elise L Ma
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen D Smith
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Neemesh Desai
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lumei Cheung
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez Shea-Donohue
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
104
|
Lerner A, Neidhöfer S, Matthias T. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms 2017; 5:E66. [PMID: 29023380 PMCID: PMC5748575 DOI: 10.3390/microorganisms5040066] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives: To comprehensively review the scientific knowledge on the gut-brain axis. Methods: Various publications on the gut-brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: "gut-brain axis", "gut-microbiota-brain axis", "nutrition microbiome/microbiota", "enteric nervous system", "enteric glial cells/network", "gut-brain pathways", "microbiome immune system", "microbiome neuroendocrine system" and "intestinal/gut/enteric neuropeptides". Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium-enteric nervous, endocrine and immune systems and the brain. The basis of the gut-brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine-hypothalamic-pituitary-adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches, microbiome manipulations, enteric and brain barrier reinforcement and sensing and trafficking modulation might improve physical and mental health outcomes.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 3200003, Israel.
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Sandra Neidhöfer
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
105
|
HIV-1 Tat-induced diarrhea evokes an enteric glia-dependent neuroinflammatory response in the central nervous system. Sci Rep 2017; 7:7735. [PMID: 28798420 PMCID: PMC5552820 DOI: 10.1038/s41598-017-05245-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the effectiveness of combined anti-retroviral therapy, human immunodeficiency virus (HIV) infected-patients frequently report diarrhea and neuropsychological deficits. It is claimed that the viral HIV-1 Trans activating factor (HIV-1 Tat) protein is responsible for both diarrhea and neurotoxic effects, but the underlying mechanisms are not known. We hypothesize that colonic application of HIV-1 Tat activates glial cells of the enteric nervous system (EGCs), leading to a neuroinflammatory response able to propagate to the central nervous system. We demonstrated that HIV-1 Tat-induced diarrhea was associated with a significant activation of glial cells within the colonic wall, the spinal cord and the frontal cortex, and caused a consistent impairment of the cognitive performances. The inhibition of glial cells activity by lidocaine, completely abolished the above-described effects. These observations point out the role of glial cells as putative effectors in HIV-1 Tat-associated gastrointestinal and neurological manifestations and key regulators of gut-brain signaling.
Collapse
|
106
|
Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques. Gene Ther 2017; 24:640-648. [PMID: 28771235 PMCID: PMC5658254 DOI: 10.1038/gt.2017.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or PBS. Piglets were euthanized three weeks post-injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9 treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.
Collapse
|
107
|
Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: The good, the bad, and the inflammatory. Cytokine 2017; 100:1-10. [PMID: 28687373 DOI: 10.1016/j.cyto.2017.06.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family that has been widely studied since its discovery in 2005 for its dichotomous functions in homeostasis and inflammation. IL-33, along with its receptor suppression of tumorigenicity 2 (ST2), has been shown to modulate both the innate and adaptive immune system. Originally, the IL-33/ST2 signaling axis was studied in the context of inducing type 2 immune responses with the expression of ST2 by T helper 2 (TH2) cells. However, the role of IL-33 is not limited to TH2 responses. Rather, IL-33 is a potent activator of TH1 cells, group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, and CD8+ T cells. The intestine is uniquely important in this discussion, as the intestinal epithelium is distinctively positioned to interact with both pathogens and the immune cells housed in the mucosa. In the intestine, IL-33 is expressed by the pericryptal fibroblasts and its expression is increased particularly in disease states. Moreover, IL-33/ST2 signaling aberrancy is implicated in the pathogenesis of inflammatory bowel disease (IBD). Accordingly, for this review, we will focus on the role of IL-33 in the regulation of intestinal immunity, involvement in intestinal disease, and implication in potential therapeutics.
Collapse
Affiliation(s)
- Zerina Hodzic
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexa M Bolock
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
108
|
Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA. α-Synuclein in gut endocrine cells and its implications for Parkinson's disease. JCI Insight 2017; 2:92295. [PMID: 28614796 DOI: 10.1172/jci.insight.92295] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with devastating clinical manifestations. In PD, neuronal death is associated with intracellular aggregates of the neuronal protein α-synuclein known as Lewy bodies. Although the cause of sporadic PD is not well understood, abundant clinical and pathological evidence show that misfolded α-synuclein is found in enteric nerves before it appears in the brain. This suggests a model in which PD pathology originates in the gut and spreads to the central nervous system via cell-to-cell prion-like propagation, such that transfer of misfolded α-synuclein initiates misfolding of native α-synuclein in recipient cells. We recently discovered that enteroendocrine cells (EECs), which are part of the gut epithelium and directly face the gut lumen, also possess many neuron-like properties and connect to enteric nerves. In this report, we demonstrate that α-synuclein is expressed in the EEC line, STC-1, and native EECs of mouse and human intestine. Furthermore, α-synuclein-containing EECs directly connect to α-synuclein-containing nerves, forming a neural circuit between the gut and the nervous system in which toxins or other environmental influences in the gut lumen could affect α-synuclein folding in the EECs, thereby beginning a process by which misfolded α-synuclein could propagate from the gut epithelium to the brain.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | | | - Yien-Ming Kuo
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Robert L Nussbaum
- Department of Medicine, UCSF, San Francisco, California, USA.,Invitae Corporation, San Francisco, California, USA
| | - Rodger A Liddle
- Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
109
|
Bhave S, Gade A, Kang M, Hauser KF, Dewey WL, Akbarali HI. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation. FASEB J 2017; 31:2649-2660. [PMID: 28280004 DOI: 10.1096/fj.201601068r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
Morphine is one of the most widely used drugs for the treatment of pain. However, side effects, including persistent constipation and antinociceptive tolerance, limit its clinical efficacy. Prolonged morphine treatment results in a "leaky" gut, predisposing to colonic inflammation that is facilitated by microbial dysbiosis and associated bacterial translocation. In this study, we examined the role of enteric glia in mediating this secondary inflammatory response to prolonged treatment with morphine. We found that purinergic P2X receptor activity was significantly enhanced in enteric glia that were isolated from mice with long-term morphine treatment (in vivo) but not upon direct exposure of glia to morphine (in vitro). LPS, a major bacterial product, also increased ATP-induced currents, as well as expression of P2X4, P2X7, IL6, IL-1β mRNA in enteric glia. LPS increased connexin43 (Cx43) expression and enhanced ATP release from enteric glia cells. LPS-induced P2X currents and proinflammatory cytokine mRNA expression were blocked by the Cx43 blockers Gap26 and carbenoxolone. Likewise, colonic inflammation related to prolonged exposure to morphine was significantly attenuated by carbenoxolone (25 mg/kg). Carbenoxolone also prevented gut wall disruption and significantly reduced morphine-induced constipation. These findings imply that enteric glia activation is a significant modulator of morphine-related inflammation and constipation.-Bhave, S., Gade, A., Kang, M., Hauser, K. F., Dewey, W. L., Akbarali, H. I. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Aravind Gade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
110
|
Charrier B, Pilon N. Toward a better understanding of enteric gliogenesis. NEUROGENESIS 2017; 4:e1293958. [PMID: 28352645 DOI: 10.1080/23262133.2017.1293958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
Abstract
Most of gastrointestinal functions are controlled by the enteric nervous system (ENS), which contains a vast diversity of neurons and glial cells. In accordance with its key role, defective ENS formation is the cause of several diseases that affect quality of life and can even be life-threatening. Treatment of these diseases would greatly benefit from a better understanding of the molecular mechanisms underlying ENS formation. In this regard, although several important discoveries have been made over the years, how the full spectrum of enteric neuronal and glial cell subtypes is generated from neural crest cells during development still remains enigmatic. Because they also have stem cell properties, such knowledge would be especially important for the enteric glial cell lineage. In a recent study, we identified the NR2F1 transcription factor as a new key regulator of enteric gliogenesis. Here we discuss our recent findings and briefly review what is already known about the mechanisms and signaling pathways involved in enteric gliogenesis, with an emphasis on Hedgehog and Notch signaling.
Collapse
Affiliation(s)
- Baptiste Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada; Molecular Biology Program, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal , Montreal, Quebec, Canada
| |
Collapse
|
111
|
den Braber-Ymker M, Lammens M, van Putten MJAM, Nagtegaal ID. The enteric nervous system and the musculature of the colon are altered in patients with spina bifida and spinal cord injury. Virchows Arch 2017; 470:175-184. [PMID: 28062917 PMCID: PMC5306076 DOI: 10.1007/s00428-016-2060-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
Abstract
Neurogenic bowel dysfunction occurs in a large percentage of adult patients with spina bifida (SB) and spinal cord injury (SCI), significantly affecting their quality of life. Although bowel motility is autonomously regulated by the enteric nervous system (ENS), disruption of the modulation of the ENS by extrinsic innervation as present in many patients with SB and SCI might lead to motility disorders. In order to gain insight in the pathophysiology, we studied histological changes of the neuromuscular structures in the colon of SB and SCI patients. Archival colon tissue blocks from SB (n = 13) and SCI (n = 34) patients were collected nationwide in The Netherlands and compared with control samples (n = 16). Histological (semiquantitative) evaluation of the ENS, the network of interstitial cells of Cajal (ICC), and the muscularis propria was performed using hematoxylin and eosin, periodic acid Schiff, and elastic von Gieson staining, and immunohistochemistry with antibodies against HuC/D, calretinin, S100, CD117, α-smooth muscle actin, and desmin. Compared to controls, SB and SCI patients showed neuronal loss and decreased nerve fiber density in the myenteric plexus. Lower nerve fiber density was significantly more often found in patients with severe bowel dysfunction. Other major findings were loss of ICCs around the myenteric plexus and fibrosis in the longitudinal muscle layer. Altered histology of the ENS may explain abnormal intestinal motility in SB and SCI patients. Furthermore, loss of myenteric nerve fibers (including enteric glial cells) may play a major role in the development of severe motility complaints.
Collapse
Affiliation(s)
- Marjanne den Braber-Ymker
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Martin Lammens
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- MIPRO, University of Antwerp, Antwerp, Belgium
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, MIRA, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
112
|
Veiga-Fernandes H, Pachnis V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 2017; 18:116-122. [DOI: 10.1038/ni.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
113
|
Grubišić V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol 2017; 595:557-570. [PMID: 27106597 PMCID: PMC5233670 DOI: 10.1113/jp271021] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Glia (from Greek γλοία meaning 'glue') pertains to non-neuronal cells in the central (CNS) and peripheral nervous system (PNS) that nourish neurons and maintain homeostasis. In addition, glia are now increasingly appreciated as active regulators of numerous physiological processes initially considered exclusively under neuronal regulation. For instance, enteric glia, a collection of glial cells residing within the walls of the intestinal tract, regulate intestinal motility, a well-characterized reflex controlled by enteric neurons. Enteric glia also interact with various non-neuronal cell types in the gut wall such as enterocytes, enteroendocrine and immune cells and are therefore emerging as important local regulators of diverse gut functions. The intricate molecular mechanisms that govern glia-mediated regulation are beginning to be discovered, but much remains unknown about the functions of enteric glia in health and disease. Here we present a current view of the enteric glia and their regulatory roles in gastrointestinal (GI) (patho)physiology; from GI motility and epithelial barrier function to enteric neuroinflammation.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Neuroscience Program, Department of PhysiologyMichigan State University567 Wilson RoadEast LansingMI48824USA
| | - Brian D. Gulbransen
- Neuroscience Program, Department of PhysiologyMichigan State University567 Wilson RoadEast LansingMI48824USA
| |
Collapse
|
114
|
Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell 2017; 165:801-11. [PMID: 27153494 DOI: 10.1016/j.cell.2016.04.041] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
115
|
|
116
|
Peterlik D, Stangl C, Bauer A, Bludau A, Keller J, Grabski D, Killian T, Schmidt D, Zajicek F, Jaeschke G, Lindemann L, Reber SO, Flor PJ, Uschold-Schmidt N. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences. Brain Behav Immun 2017; 59:79-92. [PMID: 27524668 DOI: 10.1016/j.bbi.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Etiology and pharmacotherapy of stress-related psychiatric conditions and somatoform disorders are areas of high unmet medical need. Stressors holding chronic plus psychosocial components thereby bear the highest health risk. Although the metabotropic glutamate receptor subtype 5 (mGlu5) is well studied in the context of acute stress-induced behaviors and physiology, virtually nothing is known about its potential involvement in chronic psychosocial stress. Using the mGlu5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4yl]ethynyl]pyridine), a close analogue of the clinically active drug basimglurant - but optimized for rodent studies, as well as mGlu5-deficient mice in combination with a mouse model of male subordination (termed CSC, chronic subordinate colony housing), we demonstrate that mGlu5 mediates multiple physiological, immunological, and behavioral consequences of chronic psychosocial stressor exposure. For instance, CTEP dose-dependently relieved hypothalamo-pituitary-adrenal axis dysfunctions, colonic inflammation as well as the CSC-induced increase in innate anxiety; genetic ablation of mGlu5 in mice largely reproduced the stress-protective effects of CTEP and additionally ameliorated CSC-induced physiological anxiety. Interestingly, CSC also induced an upregulation of mGlu5 in the hippocampus, a stress-regulating brain area. Taken together, our findings provide evidence that mGlu5 is an important mediator for a wide range of chronic psychosocial stress-induced alterations and a potentially valuable drug target for the treatment of chronic stress-related pathologies in man.
Collapse
Affiliation(s)
- Daniel Peterlik
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Christina Stangl
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Amelie Bauer
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Anna Bludau
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Jana Keller
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominik Grabski
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Tobias Killian
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominic Schmidt
- Institute of Immunology, University of Regensburg, D-93042 Regensburg, Germany
| | - Franziska Zajicek
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Georg Jaeschke
- Roche Pharmaceutical Research and Early Development, Discovery Chemistry, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081 Ulm, Germany
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
117
|
Yamamoto M, Nishiyama M, Iizuka S, Suzuki S, Suzuki N, Aiso S, Nakahara J. Transient receptor potential vanilloid 1-immunoreactive signals in murine enteric glial cells. World J Gastroenterol 2016; 22:9752-9764. [PMID: 27956799 PMCID: PMC5124980 DOI: 10.3748/wjg.v22.i44.9752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/19/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the possible involvement of transient receptor potential vanilloid 1 (TRPV1) in maturation of enteric glial cells (EGCs).
METHODS Immunohistochemical and immunocytochemical techniques were used to analyze EGC markers in myenteric plexus (MP) as well as cultured MP cells and EGCs using TRPV1 knockout (KO) mice.
RESULTS We detected TRPV1-immunoreactive signals in EGC in the MP of wild-type (WT) but not KO mice. Expression of glial fibrillary acidic protein (GFAP) immunoreactive signals was lower at postnatal day (PD) 6 in KO mice, though the difference was not clear at PD 13 and PD 21. When MP cells were isolated and cultured from isolated longitudinal muscle-MP preparation from WT and KO mice, the yield of KO EGC was lower than that of WT EGC, while the yield of KO and WT smooth muscle cells showed no difference. Addition of BCTC, a TRPV1 antagonist, to enriched EGC culture resulted in a decrease in the protein ratio of GFAP to S100B, another EGC/astrocyte-specific marker.
CONCLUSION These results address the possibility that TRPV1 may be involved in the maturation of EGC, though further studies are necessary to validate this possibility.
Collapse
|
118
|
Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 2016; 417:188-97. [PMID: 26997034 PMCID: PMC5026873 DOI: 10.1016/j.ydbio.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome.
Collapse
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, USA; The Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
119
|
Xiao WD, Peng K, Yang H. Enteric glial cells: An emerging key player in intestinal homeostasis modulation under physiological and pathological conditions. Shijie Huaren Xiaohua Zazhi 2016; 24:3657-3665. [DOI: 10.11569/wcjd.v24.i25.3657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestine contains multiple components including epithelial cells, microbiome as well as various neuroendocrine pathways, all of which are essential for maintaining dynamic mucosal homeostasis through complex interactions among different components in the gastrointestinal tract. Beyond the basic neurosupportive and neurotrophic effects, growing evidence reveals the key role of enteric glial cells (EGCs) in the modulation of bowel movement, nutrient absorption and secretion, intestinal immunity as well as barrier function. As well, abnormally activated EGCs are believed to be a vital player in the pathogenesis of a variety of diseases including inflammatory bowel disease, intestinal barrier dysfunction and infections. Here we provide a brief overview of recent research progress about the precise role and the molecule mechanisms of EGCs in modulating intestinal homeostasis, and highlight the critical role of EGC in various intestinal diseases.
Collapse
|
120
|
Nikiforou M, Willburger C, de Jong AE, Kloosterboer N, Jellema RK, Ophelders DRMG, Steinbusch HWM, Kramer BW, Wolfs TGAM. Global hypoxia-ischemia induced inflammation and structural changes in the preterm ovine gut which were not ameliorated by mesenchymal stem cell treatment. Mol Med 2016; 22:244-257. [PMID: 27257938 PMCID: PMC5023518 DOI: 10.2119/molmed.2015.00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis (NEC). Evidence from adult animal models of transient, locally-induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and sacrificed 7 days after UCO. Global HI increased the number of myeloperoxidase positive cells in the mucosa, upregulated mRNA levels of interleukin (IL)-1β and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities which are clinically associated with postnatal complications including feeding intolerance, altered gastrointestinal transit and NEC. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored.
Collapse
Affiliation(s)
- Maria Nikiforou
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carolin Willburger
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anja E de Jong
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nico Kloosterboer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daan RMG Ophelders
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Harry WM Steinbusch
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim GAM Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
121
|
Million M, Larauche M. Stress, sex, and the enteric nervous system. Neurogastroenterol Motil 2016; 28:1283-9. [PMID: 27561694 PMCID: PMC5003424 DOI: 10.1111/nmo.12937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Made up of millions of enteric neurons and glial cells, the enteric nervous system (ENS) is in a key position to modulate the secretomotor function and visceral pain of the gastrointestinal tract. The early life developmental period, through which most of the ENS development occurs, is highly susceptible to microenvironmental perturbation. Over the past decade, accumulating evidence has shown the impact of stress and early life adversity (ELA) on host gastrointestinal pathophysiology. While most of the focus has been on alterations in brain structure and function, limited experimental work in rodents suggest that the enteric nervous system can also be directly affected, as shown by changes in the number, phenotype, and reactivity of enteric nerves. The work of Medland et al. in the current issue of this journal demonstrates that such alterations also occur in pigs, a larger mammalian species with high translational value to human. This work also highlights a sex-differential susceptibility of the ENS to the effect of ELA, which could contribute to the higher prevalence of GI disorders in women. In this mini-review, we will discuss the development and composition of the ENS and related gastrointestinal sensory motor and secretory functions. We will then focus on the influence of stress on the enteric nervous system, with a particular emphasis on neurodevelopmental changes. Finally, we will discuss the influence of sex on those parameters.
Collapse
Affiliation(s)
- Mulugeta Million
- CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress and Resilience, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Muriel Larauche
- CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress and Resilience, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
122
|
Molecular Signaling and Dysfunction of the Human Reactive Enteric Glial Cell Phenotype: Implications for GI Infection, IBD, POI, Neurological, Motility, and GI Disorders. Inflamm Bowel Dis 2016; 22:1812-34. [PMID: 27416040 PMCID: PMC4993196 DOI: 10.1097/mib.0000000000000854] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Clinical observations or animal studies implicate enteric glial cells in motility disorders, irritable bowel syndrome, inflammatory bowel disease, gastrointestinal (GI) infections, postoperative ileus, and slow transit constipation. Mechanisms underlying glial responses to inflammation in human GI tract are not understood. Our goal was to identify the "reactive human enteric glial cell (rhEGC) phenotype" induced by inflammation, and probe its functional relevance. METHODS Human enteric glial cells in culture from 15 GI-surgical specimens were used to study gene expression, Ca, and purinergic signaling by Ca/fluo-4 imaging and mechanosensitivity. A nanostring panel of 107 genes was designed as a read out of inflammation, transcription, purinergic signaling, vesicular transport protein, channel, antioxidant, and other pathways. A 24-hour treatment with lipopolysaccharide (200 μg/mL) and interferon-γ (10 μg/mL) was used to induce inflammation and study molecular signaling, flow-dependent Ca responses from 3 mL/min to 10 mL/min, adenosine triphosphate (ATP) release, and ATP responses. RESULTS Treatment induced a "rhEGC phenotype" and caused up-regulation in messenger RNA transcripts of 58% of 107 genes analyzed. Regulated genes included inflammatory genes (54%/IP10; IFN-γ; CxCl2; CCL3; CCL2; C3; s100B; IL-1β; IL-2R; TNF-α; IL-4; IL-6; IL-8; IL-10; IL-12A; IL-17A; IL-22; and IL-33), purine-genes (52%/AdoR2A; AdoR2B; P2RY1; P2RY2; P2RY6; P2RX3; P2RX7; AMPD3; ENTPD2; ENTPD3; and NADSYN1), channels (40%/Panx1; CHRNA7; TRPV1; and TRPA1), vesicular transporters (SYT1, SYT2, SNAP25, and SYP), transcription factors (relA/relB, SOCS3, STAT3, GATA_3, and FOXP3), growth factors (IGFBP5 and GMCSF), antioxidant genes (SOD2 and HMOX1), and enzymes (NOS2; TPH2; and CASP3) (P < 0.0001). Treatment disrupted Ca signaling, ATP, and mechanical/flow-dependent Ca responses in human enteric glial cells. ATP release increased 5-fold and s100B decreased 33%. CONCLUSIONS The "rhEGC phenotype" is identified by a complex cascade of pro-inflammatory pathways leading to alterations of important molecular and functional signaling pathways (Ca, purinergic, and mechanosensory) that could disrupt GI motility. Inflammation induced a "purinergic switch" from ATP to adenosine diphosphate/adenosine/uridine triphosphate signaling. Findings have implications for GI infection, inflammatory bowel disease, postoperative ileus, motility, and GI disorders.
Collapse
|
123
|
Margolis KG, Gershon MD. Enteric Neuronal Regulation of Intestinal Inflammation. Trends Neurosci 2016; 39:614-624. [PMID: 27450201 DOI: 10.1016/j.tins.2016.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
Recent research has highlighted the importance of the two-way interaction between the nervous and immune systems. This interaction is particularly important in the bowel because of the unique properties of this organ. The lumen of the gut is lined by a very large but remarkably thin surface that separates the body from the enteric microbiome. Immune defenses against microbial invasion are thus well developed and neuroimmune interactions are important in regulating and integrating these defenses. Important concepts in the phylogeny of neuroimmunity, enteric neuronal and glial regulation of immunity, changes that occur in the enteric nervous system during inflammation, the fundamental role of serotonin (5-HT) in enteric neuroimmune mechanisms, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, 620 West 168th Street, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
124
|
Neuroimmunomodulation in the Gut: Focus on Inflammatory Bowel Disease. Mediators Inflamm 2016; 2016:1363818. [PMID: 27471349 PMCID: PMC4947661 DOI: 10.1155/2016/1363818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
Intestinal immunity is finely regulated by several concomitant and overlapping mechanisms, in order to efficiently sense external stimuli and mount an adequate response of either tolerance or defense. In this context, a complex interplay between immune and nonimmune cells is responsible for the maintenance of normal homeostasis. However, in certain conditions, the disruption of such an intricate network may result in intestinal inflammation, including inflammatory bowel disease (IBD). IBD is believed to result from a combination of genetic and environmental factors acting in concert with an inappropriate immune response, which in turn interacts with nonimmune cells, including nervous system components. Currently, evidence shows that the interaction between the immune and the nervous system is bidirectional and plays a critical role in the regulation of intestinal inflammation. Recently, the maintenance of intestinal homeostasis has been shown to be under the reciprocal control of the microbiota by immune mechanisms, whereas intestinal microorganisms can modulate mucosal immunity. Therefore, in addition to presenting the mechanisms underlying the interaction between immune and nervous systems in the gut, here we discuss the role of the microbiota also in the regulation of neuroimmune crosstalk involved in intestinal homeostasis and inflammation, with potential implications to IBD pathogenesis.
Collapse
|
125
|
Abstract
A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.
Collapse
|
126
|
Corbillé AG, Clairembault T, Coron E, Leclair-Visonneau L, Preterre C, Neunlist M, Derkinderen P. What a gastrointestinal biopsy can tell us about Parkinson's disease? Neurogastroenterol Motil 2016; 28:966-74. [PMID: 26914487 DOI: 10.1111/nmo.12797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND The intraneuronal inclusions called Lewy bodies and neurites, which represent the characteristic pathological changes in Parkinson's disease, are found in the enteric neurons in the great majority of parkinsonian patients. This observation led to a substantial amount of research over the last few years in order to develop a minimally invasive diagnostic procedure in living patients based on gastrointestinal (GI) biopsies. PURPOSE In this review, we will begin by discussing the studies that focused on the detection of Lewy bodies and neurites in GI biopsies, then broaden the discussion to the pathological changes that also occur in the enteric glial cells and intestinal epithelial cells. We conclude by proposing that a GI biopsy could represent a unique window to assess the whole pathological process of the brain in Parkinson's disease.
Collapse
Affiliation(s)
- A-G Corbillé
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - T Clairembault
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France
| | - E Coron
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Nantes, France
| | | | - C Preterre
- Inserm, U913, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - M Neunlist
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Institut des Maladies de l'Appareil Digestif, CHU Nantes, Nantes, France
| | - P Derkinderen
- Inserm, U913, Nantes, France.,Nantes University, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| |
Collapse
|
127
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
128
|
Coquenlorge S, Van Landeghem L, Jaulin J, Cenac N, Vergnolle N, Duchalais E, Neunlist M, Rolli-Derkinderen M. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. Sci Rep 2016; 6:25203. [PMID: 27140063 PMCID: PMC4853710 DOI: 10.1038/srep25203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
In healthy gut enteric glial cells (EGC) are essential to intestinal epithelial barrier (IEB) functions. In Crohn's Disease (CD), both EGC phenotype and IEB functions are altered, but putative involvement of EGC in CD pathogenesis remains unknown and study of human EGC are lacking. EGC isolated from CD and control patients showed similar expression of glial markers and EGC-derived soluble factors (IL6, TGF-β, proEGF, GSH) but CD EGC failed to increase IEB resistance and healing. Lipid profiling showed that CD EGC produced decreased amounts of 15-HETE, 18-HEPE, 15dPGJ2 and 11βPGF2α as compared to healthy EGC. They also had reduced expression of the L-PGDS and AKR1C3 enzymes. Produced by healthy EGC, the 11βPGF2 activated PPARγ receptor of intestinal epithelial cells to induce cell spreading and IEB wound repair. In addition to this novel healing mechanism our data show that CD EGC presented impaired ability to promote IEB functions through defect in L-PGDS-AKR1C3-11βPGF2α dependent pathway.
Collapse
Affiliation(s)
- Sabrina Coquenlorge
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Laurianne Van Landeghem
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Julie Jaulin
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Nicolas Cenac
- Centre de Pathophysiologie, CHU Purpan, Toulouse, France
- INSERM UMR-1043 CNRS UMR-5282, Toulouse, France
| | - Nathalie Vergnolle
- Centre de Pathophysiologie, CHU Purpan, Toulouse, France
- INSERM UMR-1043 CNRS UMR-5282, Toulouse, France
| | - Emilie Duchalais
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Michel Neunlist
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Malvyne Rolli-Derkinderen
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| |
Collapse
|
129
|
Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract. Methods Cell Biol 2016; 134:139-64. [PMID: 27312493 DOI: 10.1016/bs.mcb.2016.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enteric nervous system (ENS) forms intimate connections with many other intestinal cell types, including immune cells and bacterial consortia resident in the intestinal lumen. In this review, we highlight contributions of the zebrafish model to understanding interactions among these cells. Zebrafish is a powerful model for forward genetic screens, several of which have uncovered genes previously unknown to be important for ENS development. More recently, zebrafish has emerged as a model for testing functions of genes identified in human patients or large-scale human susceptibility screens. In several cases, zebrafish studies have revealed mechanisms connecting intestinal symptoms with other, seemingly unrelated disease phenotypes. Importantly, chemical library screens in zebrafish have provided startling new insights into potential effects of common drugs on ENS development. A key feature of the zebrafish model is the ability to rear large numbers of animals germ free or in association with only specific bacterial species. Studies utilizing these approaches have demonstrated the importance of bacterial signals for normal intestinal development. These types of studies also show how luminal bacteria and the immune system can contribute to inflammatory processes that can feedback to influence ENS development. The excellent optical properties of zebrafish embryos and larvae, coupled with the ease of generating genetically marked cells of both the host and its resident bacteria, allow visualization of multiple intestinal cell types in living larvae and should promote a more in-depth understanding of intestinal cell interactions, especially interactions between other intestinal cell types and the ENS.
Collapse
|
130
|
Weber HC. Overview of gastrointestinal regulatory peptides. Curr Opin Endocrinol Diabetes Obes 2016; 23:1-2. [PMID: 26702844 DOI: 10.1097/med.0000000000000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- H Christian Weber
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
131
|
Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, Cuomo R, Christofi FL. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2016; 22:433-49. [PMID: 26689598 PMCID: PMC4718179 DOI: 10.1097/mib.0000000000000667] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 12/12/2022]
Abstract
The word "glia" is derived from the Greek word "γλoια," glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the "reactive glial phenotype" is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor-α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential.
Collapse
Affiliation(s)
| | - Fabio Turco
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, “Federico II” University of Naples, Naples, Italy; and
| | | | - Suren Soghomonyan
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
| | - Emmett Whitaker
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Rosario Cuomo
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, “Federico II” University of Naples, Naples, Italy; and
| | | |
Collapse
|
132
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
133
|
Capoccia E, Cirillo C, Gigli S, Pesce M, D’Alessandro A, Cuomo R, Sarnelli G, Steardo L, Esposito G. Enteric glia: A new player in inflammatory bowel diseases. Int J Immunopathol Pharmacol 2015; 28:443-51. [DOI: 10.1177/0394632015599707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to the well-known involvement of macrophages and neutrophils, other cell types have been recently reported to substantially contribute to the onset and progression of inflammatory bowel diseases (IBD). Enteric glial cells (EGC) are the equivalent cell type of astrocyte in the central nervous system (CNS) and share with them many neurotrophic and neuro-immunomodulatory properties. This short review highlights the role of EGC in IBD, describing the role played by these cells in the maintenance of gut homeostasis, and their modulation of enteric neuronal activities. In pathological conditions, EGC have been reported to trigger and support bowel inflammation through the specific over-secretion of S100B protein, a pivotal neurotrophic factor able to induce chronic inflammatory changes in gut mucosa. New pharmacological tools that may improve the current therapeutic strategies for inflammatory bowel diseases (IBD), lowering side effects (i.e. corticosteroids) and costs (i.e. anti-TNFα monoclonal antibodies) represent a very important challenge for gastroenterologists and pharmacologists. Novel drugs capable to modulate enteric glia reactivity, limiting the pro-inflammatory release of S100B, may thus represent a significant innovation in the field of pharmacological interventions for inflammatory bowel diseases.
Collapse
Affiliation(s)
- E Capoccia
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - C Cirillo
- Laboratory for Enteric NeuroScience (LENS), TARGID, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - S Gigli
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M Pesce
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - A D’Alessandro
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - R Cuomo
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - G Sarnelli
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - L Steardo
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Esposito
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
134
|
Grubišić V, Parpura V. The second brain in autism spectrum disorder: could connexin 43 expressed in enteric glial cells play a role? Front Cell Neurosci 2015; 9:242. [PMID: 26190971 PMCID: PMC4490256 DOI: 10.3389/fncel.2015.00242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Neuroscience Program, Department of Physiology, Michigan State University East Lansing, MI, USA
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
135
|
Langness S, Coimbra R, Eliceiri BP, Costantini TW. Vagus Nerve Mediates the Neural Stem Cell Response to Intestinal Injury. J Am Coll Surg 2015. [PMID: 26209457 DOI: 10.1016/j.jamcollsurg.2015.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal ischemia and reperfusion injury results in damage to elements critical to maintaining intestinal barrier function, including neurons and glia cells, which are part of the enteric nervous system (ENS). To limit inflammation, the ENS must be restored or replaced, yet the process by which this occurs is poorly understood. Multipotent progenitor cells called enteric nervous stem cells (ENSC) can differentiate into neurons or glia when stimulated. The ability of this cell population to respond to intestinal injury is unknown. In this study, we hypothesized that resolution of intestinal barrier injury would be associated with vagus nerve-mediated expansion of ENSCs. STUDY DESIGN Ischemia and reperfusion injury was reproduced in male mice by occluding the superior mesenteric artery for 30 minutes. Abdominal vagotomy was performed in a separate cohort to study the effects of the vagus nerve. Terminal ileum was harvested at various time points after reperfusion and analyzed with histology, flow cytometry, and immunohistochemistry. RESULTS Enteric nervous stem cell expansion occurs at 2, 4, and 8 hours after injury compared with sham (4.6% vs 2.1%; p < 0.001) and correlated with increased glial fibrillary acidic protein on immunohistochemistry. Vagotomy prevented both ENSC expansion and increased glial fibrillary acidic protein staining after injury. Intestinal permeability was restored to baseline by 48 hours after injury, but remained elevated in the vagotomy group compared with sham and injury alone at 48 hours (3.25 mg/mL vs 0.57 mg/mL and 0.26 mg/mL, respectively; p < 0.05). CONCLUSIONS Vagal-mediated expansion of ENSCs occurs after ischemia and reperfusion injury and results in improved kinetics of injury resolution.
Collapse
Affiliation(s)
- Simone Langness
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA
| | - Todd W Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, CA.
| |
Collapse
|
136
|
Willemze RA, Luyer MD, Buurman WA, de Jonge WJ. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nat Rev Gastroenterol Hepatol 2015; 12:353-62. [PMID: 25963513 DOI: 10.1038/nrgastro.2015.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies.
Collapse
Affiliation(s)
- Rose A Willemze
- Department of Gastroenterology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, Meibergdreef 69, 1105BK Amsterdam, Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, Netherlands
| | - Wim A Buurman
- School for Mental Health and Neuroscience, Health and Nutrition, 6200 MD, Maastricht University, Netherlands
| | - Wouter J de Jonge
- Department of Gastroenterology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, Meibergdreef 69, 1105BK Amsterdam, Netherlands
| |
Collapse
|
137
|
Abstract
The enteric nervous system has been studied thus far as an isolated unit. As researchers probe deeper into the function of this system, it is evident that the neural network stretches beyond enteric neurons. It is formed by both intrinsic and extrinsic neurons innervating the gut, enteric glia, and innervated sensory epithelial cells, such as enteroendocrine cells. This Review series summarizes recent knowledge on function and disease of nerves, glia, and sensory epithelial cells of the gut in eight distinctive articles. The timing and growing knowledge for each individual field calls for an appropriate term encompassing the entire system. We call this neuronal ensemble the "gut connectome" and summarize the work from a food sensory perspective.
Collapse
|