101
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
102
|
Lin K, Kong X, Tao X, Zhai X, Lv L, Dong D, Yang S, Zhu Y. Research Methods and New Advances in Drug-Drug Interactions Mediated by Renal Transporters. Molecules 2023; 28:5252. [PMID: 37446913 DOI: 10.3390/molecules28135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
103
|
Zingales V, Esposito MR, Torriero N, Taroncher M, Cimetta E, Ruiz MJ. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins (Basel) 2023; 15:422. [PMID: 37505691 PMCID: PMC10467068 DOI: 10.3390/toxins15070422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Current investigations in the field of toxicology mostly rely on 2D cell cultures and animal models. Although well-accepted, the traditional 2D cell-culture approach has evident drawbacks and is distant from the in vivo microenvironment. To overcome these limitations, increasing efforts have been made in the development of alternative models that can better recapitulate the in vivo architecture of tissues and organs. Even though the use of 3D cultures is gaining popularity, there are still open questions on their robustness and standardization. In this review, we discuss the current spheroid culture and organ-on-a-chip techniques as well as the main conceptual and technical considerations for the correct establishment of such models. For each system, the toxicological functional assays are then discussed, highlighting their major advantages, disadvantages, and limitations. Finally, a focus on the applications of 3D cell culture for mycotoxin toxicity assessments is provided. Given the known difficulties in defining the safety ranges of exposure for regulatory agency policies, we are confident that the application of alternative methods may greatly improve the overall risk assessment.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| |
Collapse
|
104
|
Manikandan C, Jaiswal AK. Scaffold-based spheroid models of glioblastoma multiforme and its use in drug screening. Biotechnol Bioeng 2023. [PMID: 37366303 DOI: 10.1002/bit.28481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Among several types of brain cancers, glioblastoma multiforme (GBM) is a terminal and aggressive disease with a median survival of 15 months despite the most intensive surgery and chemotherapy. Preclinical models that accurately reproduce the tumor microenvironment are vital for developing new therapeutic alternatives. Understanding the complicated interactions between cells and their surroundings is essential to comprehend the tumor's microenvironment, however the monolayer cell culture approach falls short. Numerous approaches are used to develop GBM cells into tumor spheroids, while scaffold-based spheroids provides the opportunity to investigate the synergies between cells as well as cells and the matrix. This review summarizes the development of various scaffold-based GBM spheroid models and the prospective for their use as drug testing systems.
Collapse
Affiliation(s)
- Ceera Manikandan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
105
|
Diane A, Mohammed LI, Al-Siddiqi HH. Islets in the body are never flat: transitioning from two-dimensional (2D) monolayer culture to three-dimensional (3D) spheroid for better efficiency in the generation of functional hPSC-derived pancreatic β cells in vitro. Cell Commun Signal 2023; 21:151. [PMID: 37349801 PMCID: PMC10286450 DOI: 10.1186/s12964-023-01171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetes mellitus (DM), currently affecting more than 537 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from a defect in insulin secretion, action, or both due to the loss or dysfunction of pancreatic β cells. Since cadaveric islet transplantation using Edmonton protocol has served as an effective intervention to restore normoglycaemia in T1D patients for months, stem cell-derived β cells have been explored for cell replacement therapy for diabetes. Thus, great effort has been concentrated by scientists on developing in vitro differentiation protocols to realize the therapeutic potential of hPSC-derived β cells. However, most of the 2D traditional monolayer culture could mainly generate insulin-producing β cells with immature phenotype. In the body, pancreatic islets are 3D cell arrangements with complex cell-cell and cell-ECM interactions. Therefore, it is important to consider the spatial organization of the cell in the culture environment. More recently, 3D cell culture platforms have emerged as powerful tools with huge translational potential, particularly for stem cell research. 3D protocols provide a better model to recapitulate not only the in vivo morphology, but also the cell connectivity, polarity, and gene expression mimicking more physiologically the in vivo cell niche. Therefore, the 3D culture constitutes a more relevant model that may help to fill the gap between in vitro and in vivo models. Interestingly, most of the 2D planar methodologies that successfully generated functional hPSC-derived β cells have switched to a 3D arrangement of cells from pancreatic progenitor stage either as suspension clusters or as aggregates, suggesting the effect of 3D on β cell functionality. In this review we highlight the role of dimensionality (2D vs 3D) on the differentiation efficiency for generation of hPSC-derived insulin-producing β cells in vitro. Consequently, how transitioning from 2D monolayer culture to 3D spheroid would provide a better model for an efficient generation of fully functional hPSC-derived β cells mimicking in vivo islet niche for diabetes therapy or drug screening. Video Abstract.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| | - Layla Ibrahim Mohammed
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
106
|
Corzo Parada L, Urueña C, Leal-García E, Barreto A, Ballesteros-Ramírez R, Rodríguez-Pardo V, Fiorentino S. Doxorubicin Activity Is Modulated by Traditional Herbal Extracts in a 2D and 3D Multicellular Sphere Model of Leukemia. Pharmaceutics 2023; 15:1690. [PMID: 37376139 DOI: 10.3390/pharmaceutics15061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The modulation of the tumor microenvironment by natural products may play a significant role in the response of tumor cells to chemotherapy. In this study, we evaluated the effect of extracts derived from P2Et (Caesalpinia spinosa) and Anamú-SC (Petiveria alliacea) plants, previously studied by our group, on the viability and ROS levels in the K562 cell line (Pgp- and Pgp+), endothelial cells (ECs, Eahy.926 cell line) and mesenchymal stem cells (MSC) cultured in 2D and 3D. The results show that: (a) the two botanical extracts are selective on tumor cells compared to doxorubicin (DX), (b) cytotoxicity is independent of the modulation of intracellular ROS for plant extracts, unlike DX, (c) the interaction with DX can be influenced by chemical complexity and the expression of Pgp, (d) the 3D culture shows a greater sensitivity of the tumor cells to chemotherapy, in co-treatment with the extracts. In conclusion, the effect of the extracts on the viability of leukemia cells was modified in multicellular spheroids with MSC and EC, suggesting that the in vitro evaluation of these interactions can contribute to the comprehension of the pharmacodynamics of the botanical drugs.
Collapse
Affiliation(s)
- Laura Corzo Parada
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Efraín Leal-García
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Viviana Rodríguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Science Faculty, Department of Microbiology, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| |
Collapse
|
107
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
108
|
Wierzbicki M, Zawadzka K, Wójcik B, Jaworski S, Strojny B, Ostrowska A, Małolepszy A, Mazurkiewicz-Pawlicka M, Sawosz E. Differences in the Cell Type-Specific Toxicity of Diamond Nanoparticles to Endothelial Cells Depending on the Exposure of the Cells to Nanoparticles. Int J Nanomedicine 2023; 18:2821-2838. [PMID: 37273285 PMCID: PMC10237202 DOI: 10.2147/ijn.s411424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Diamond nanoparticles are considered to be one of the most cytocompatible carbon nanomaterials; however, their toxicity varies significantly depending on the analysed cell types. The aim was to investigate the specific sensitivity of endothelial cells to diamond nanoparticles dependent on exposure to nanoparticles. Methods Diamond nanoparticles were characterized with Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Toxicity of diamond nanoparticles was assessed for endothelial cells (HUVEC), human mammary epithelial cells (HMEC) and HS-5 cell line. The effect of diamond nanoparticles on the level of ROS, NO, NADPH and protein synthesis of angiogenesis-related proteins of endothelial cells was evaluated. Results and Discussion Our studies demonstrated severe cell type-specific toxicity of diamond nanoparticles to endothelial cells (HUVEC) depending on nanoparticle surface interaction with cells. Furthermore, we have assessed the effect on cytotoxicity of the bioconjugation of nanoparticles with a peptide containing the RGD motive and a serum protein corona. Our study suggests that the mechanical interaction of diamond nanoparticles with the endothelial cell membranes and the endocytosis of nanoparticles lead to the depletion of NADPH, resulting in an intensive synthesis of ROS and a decrease in the availability of NO. This leads to severe endothelial toxicity and a change in the protein profile, with changes in major angiogenesis-related proteins, including VEGF, bFGF, ANPT2/TIE-2, and MMP, and the production of stress-related proteins, such as IL-6 and IL-8. Conclusion We confirmed the presence of a relationship between the toxicity of diamond nanoparticles and the level of cell exposure to nanoparticles and the nanoparticle surface. The results of the study give new insights into the conditioned toxicity of nanomaterials and their use in biomedical applications.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, 00-654, Poland
| | | | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
109
|
Gallo K, Srinageshwar B, Ward A, Diola C, Dunbar G, Rossignol J, Bakke J. Inducible Knockout of 14-3-3β Attenuates Proliferation and Spheroid Formation in a Human Glioblastoma Cell Line U87MG. Brain Sci 2023; 13:868. [PMID: 37371348 DOI: 10.3390/brainsci13060868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastomas (GBs) are the most common and malignant brain tumors in adults. A protein encoded by the gene YWHAB, 14-3-3β, is commonly found to be upregulated throughout the initiation and progression of GB. The 14-3-3β has oncogenic roles in several different types of cancer cells through interactions with proteins such as Bad, FBI1, Raf-1, Cdc25b, and others. Previous RNA interference studies have shown that 14-3-3β promotes proliferation, cell cycle progression, and migration and invasion of GB cells. However, despite the many oncogenic functions of 14-3-3β, a CRISPR/Cas9 knockout model of 14-3-3β has not been investigated. This study confirmed previous findings and showed that siRNA inhibition of 14-3-3β results in reduced cellular proliferation in a human glioblastoma cell line, U87MG. We also used a YWHAB Tet-On CRISPR/Cas9 U87MG cell line that, upon doxycycline induction, leads to robust Cas9 expression and subsequent knockout of 14-3-3β. Using this model, we show that loss of 14-3-3β significantly reduces cellular proliferation and spheroid formation of U87MG cells.
Collapse
Affiliation(s)
- Kellie Gallo
- Biochemistry, Cellular, and Molecular Biology, College of Science and Engineering, Central Michigan University, Mount Pleasant, MI 48559, USA
| | - Bhairavi Srinageshwar
- Program of Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Foundational Sciences Department, College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Avery Ward
- Foundational Sciences Department, College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Carlos Diola
- Foundational Sciences Department, College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Gary Dunbar
- Program of Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Julien Rossignol
- Biochemistry, Cellular, and Molecular Biology, College of Science and Engineering, Central Michigan University, Mount Pleasant, MI 48559, USA
- Program of Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Foundational Sciences Department, College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Jesse Bakke
- Biochemistry, Cellular, and Molecular Biology, College of Science and Engineering, Central Michigan University, Mount Pleasant, MI 48559, USA
- Program of Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
110
|
González-Lana S, Randelovic T, Ciriza J, López-Valdeolivas M, Monge R, Sánchez-Somolinos C, Ochoa I. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. LAB ON A CHIP 2023; 23:2434-2446. [PMID: 37013698 DOI: 10.1039/d3lc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices.
Collapse
Affiliation(s)
- Sandra González-Lana
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
| | - María López-Valdeolivas
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rosa Monge
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
111
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
112
|
Nguyen HT, Peirsman A, Tirpakova Z, Mandal K, Vanlauwe F, Maity S, Kawakita S, Khorsandi D, Herculano R, Umemura C, Yilgor C, Bell R, Hanson A, Li S, Nanda HS, Zhu Y, Najafabadi AH, Jucaud V, Barros N, Dokmeci MR, Khademhosseini A. Engineered Vasculature for Cancer Research and Regenerative Medicine. MICROMACHINES 2023; 14:978. [PMID: 37241602 PMCID: PMC10221678 DOI: 10.3390/mi14050978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Engineered human tissues created by three-dimensional cell culture of human cells in a hydrogel are becoming emerging model systems for cancer drug discovery and regenerative medicine. Complex functional engineered tissues can also assist in the regeneration, repair, or replacement of human tissues. However, one of the main hurdles for tissue engineering, three-dimensional cell culture, and regenerative medicine is the capability of delivering nutrients and oxygen to cells through the vasculatures. Several studies have investigated different strategies to create a functional vascular system in engineered tissues and organ-on-a-chips. Engineered vasculatures have been used for the studies of angiogenesis, vasculogenesis, as well as drug and cell transports across the endothelium. Moreover, vascular engineering allows the creation of large functional vascular conduits for regenerative medicine purposes. However, there are still many challenges in the creation of vascularized tissue constructs and their biological applications. This review will summarize the latest efforts to create vasculatures and vascularized tissues for cancer research and regenerative medicine.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Zuzana Tirpakova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Florian Vanlauwe
- Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Christian Umemura
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Remy Bell
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Adrian Hanson
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Himansu Sekhar Nanda
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Biomedical Engineering and Technology Laboratory, PDPM—Indian Institute of Information Technology Design Manufacturing, Jabalpur 482005, Madhya Pradesh, India
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natan Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
113
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
114
|
Gunatilaka A, Zhang S, Tan WSD, G Stewart A. Anti-fibrotic strategies and pulmonary fibrosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:179-224. [PMID: 37524487 DOI: 10.1016/bs.apha.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) results from the dysregulated process of injury and repair, which promotes scarring of the lung tissue and deposition of collagen-rich extracellular matrix (ECM) components, that make the lung unphysiologically stiff. IPF presents a serious concern as its pathogenesis remains elusive, and current anti-fibrotic treatments are only effective in slowing rather than halting disease progression. The IPF disease pathogenesis is incompletely defined, complex and incorporates interplay between different fibrogenesis signaling pathways. Preclinical IPF experimental models used to validate drug candidates present significant limitations in modeling IPF pathobiology, with their limited time frame, simplicity and inaccurate representation of the disease and the mechanical influences of IPF. Potentially more accurate mimetic disease models that capture the cell-cell and cell-matrix interaction, such as 3D cultures, organoids and precision-cut lung slices (PCLS), may yield more meaningful clinical predictions for drug candidates. Recent advances in developing anti-fibrotic compounds have positioned drug towards targeting components of the fibrogenesis signaling pathway of IPF or the extracellular microenvironment. The major goals in this area of research focus on finding ways to reverse or halt the disease progression by utilizing more disease-relevant experimental models to improve the qualification of potential drug targets for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Avanka Gunatilaka
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Wan Shun Daniel Tan
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
115
|
Mitrakas AG, Tsolou A, Didaskalou S, Karkaletsou L, Efstathiou C, Eftalitsidis E, Marmanis K, Koffa M. Applications and Advances of Multicellular Tumor Spheroids: Challenges in Their Development and Analysis. Int J Mol Sci 2023; 24:ijms24086949. [PMID: 37108113 PMCID: PMC10138394 DOI: 10.3390/ijms24086949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Biomedical research requires both in vitro and in vivo studies in order to explore disease processes or drug interactions. Foundational investigations have been performed at the cellular level using two-dimensional cultures as the gold-standard method since the early 20th century. However, three-dimensional (3D) cultures have emerged as a new tool for tissue modeling over the last few years, bridging the gap between in vitro and animal model studies. Cancer has been a worldwide challenge for the biomedical community due to its high morbidity and mortality rates. Various methods have been developed to produce multicellular tumor spheroids (MCTSs), including scaffold-free and scaffold-based structures, which usually depend on the demands of the cells used and the related biological question. MCTSs are increasingly utilized in studies involving cancer cell metabolism and cell cycle defects. These studies produce massive amounts of data, which demand elaborate and complex tools for thorough analysis. In this review, we discuss the advantages and disadvantages of several up-to-date methods used to construct MCTSs. In addition, we also present advanced methods for analyzing MCTS features. As MCTSs more closely mimic the in vivo tumor environment, compared to 2D monolayers, they can evolve to be an appealing model for in vitro tumor biology studies.
Collapse
Affiliation(s)
- Achilleas G Mitrakas
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Avgi Tsolou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stylianos Didaskalou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Lito Karkaletsou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Christos Efstathiou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Evgenios Eftalitsidis
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Marmanis
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
116
|
Taheri S, Ghazali HS, Ghazali ZS, Bhattacharyya A, Noh I. Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration. Biomater Res 2023; 27:22. [PMID: 36935512 PMCID: PMC10026525 DOI: 10.1186/s40824-023-00358-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury. MAIN BODY Functional tissue engineering has recently attracted attention for the repair of cartilage damage using a combination of cells, scaffolds (constructs), biochemical factors, and biomechanical stimuli. As cyclic biomechanical loading is the key factor in maintaining the chondrocyte phenotype, many studies have evaluated the effect of biomechanical stimulation on chondrogenesis. The characteristics of hydrogels, such as their mechanical properties, water content, and cell encapsulation, make them ideal for tissue-engineered scaffolds. Induced cell signaling (biochemical and biomechanical factors) and encapsulation of cells in hydrogels as a construct are discussed for biomechanical stimulation-based tissue regeneration, and several notable studies on the effect of biomechanical stimulation on encapsulated cells within hydrogels are discussed for cartilage regeneration. CONCLUSION Induction of biochemical and biomechanical signaling on the encapsulated cells in hydrogels are important factors for biomechanical stimulation-based cartilage regeneration.
Collapse
Affiliation(s)
- Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hanieh Sadat Ghazali
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Functional, Innovative, and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
117
|
Cadena IA, Buchanan MR, Harris CG, Jenne MA, Rochefort WE, Nelson D, Fogg KC. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res A 2023; 111:747-764. [PMID: 36861788 DOI: 10.1002/jbm.a.37522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Cervical cancer is the second leading cause of cancer-related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5-year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population. However, the development of new anticancer drugs remains a challenge, as only 7% of novel anticancer drugs are approved for clinical use. To facilitate identification of novel and effective anticancer drugs for cervical cancer, we developed a multilayer multicellular platform of human cervical cancer cell lines and primary human microvascular endothelial cells that interfaces with high throughput drug screening methods to evaluate the anti-metastatic and anti-angiogenic drug efficacy simultaneously. Through the use of design of experiments statistical optimization, we identified the specific concentrations of collagen I, fibrinogen, fibronectin, GelMA, and PEGDA in each hydrogel layer that maximized both cervical cancer invasion and endothelial microvessel length. We then validated the optimized platform and assessed its viscoelastic properties. Finally, using this optimized platform, we conducted a targeted drug screen of four clinically relevant drugs on two cervical cancer cell lines. Overall, this work provides a valuable platform that can be used to screen large compound libraries for mechanistic studies, drug discovery, and precision oncology for cervical cancer patients.
Collapse
Affiliation(s)
- Ines A Cadena
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Mina R Buchanan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Molly A Jenne
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dylan Nelson
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
118
|
Hwang KS, Seo EU, Choi N, Kim J, Kim HN. 3D engineered tissue models for studying human-specific infectious viral diseases. Bioact Mater 2023; 21:576-594. [PMID: 36204281 PMCID: PMC9519398 DOI: 10.1016/j.bioactmat.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell–cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented. 3D in vitro models are different from the traditional model in the infection process. Human-specific infection research requires a 3D microenvironment and human cells. 3D in vitro infectious models can be useful for basic research on infectious disease. 3D in vitro infectious models recapitulate the complex cell-virus-immune interaction.
Collapse
Affiliation(s)
- Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
119
|
Tjong J, Pendlmayr S, Barter J, Chen J, Maksym GN, Quinn TA, Frampton JP. Cell-contact-mediated assembly of contractile airway smooth muscle rings. Biomed Mater 2023; 18. [PMID: 36801856 DOI: 10.1088/1748-605x/acbd09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Microtissues in the shape of toroidal rings provide an ideal geometry to better represent the structure and function of the airway smooth muscle present in the small airways, and to better understand diseases such as asthma. Here, polydimethylsiloxane devices consisting of a series of circular channels surrounding central mandrels are used to form microtissues in the shape of toroidal rings by way of the self-aggregation and -assembly of airway smooth muscle cell (ASMC) suspensions. Over time, the ASMCs present in the rings become spindle-shaped and axially align along the ring circumference. Ring strength and elastic modulus increase over 14 d in culture, without significant changes in ring size. Gene expression analysis indicates stable expression of mRNA for extracellular matrix-associated proteins, including collagen I and lamininsα1 andα4 over 21 d in culture. Cells within the rings respond to TGF-β1 treatment, leading to dramatic decreases in ring circumference, with increases in mRNA and protein levels for extracellular matrix and contraction-associated markers. These data demonstrate the utility of ASMC rings as a platform for modeling diseases of the small airways such as asthma.
Collapse
Affiliation(s)
- Jonathan Tjong
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Stefan Pendlmayr
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Jena Barter
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julie Chen
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| | - T Alexander Quinn
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Physiology & Biophysics, Dalhousie University, Halifax, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
120
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
121
|
Nikonorova VG, Chrishtop VV, Mironov VA, Prilepskii AY. Advantages and Potential Benefits of Using Organoids in Nanotoxicology. Cells 2023; 12:cells12040610. [PMID: 36831277 PMCID: PMC9954166 DOI: 10.3390/cells12040610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications. We demonstrate how the quantitative assessment of toxic changes in the structure of organoids and the state of their cell collections provide more valuable results for toxicological research and provide examples of research methods. The impact of the tested materials on organoids and their differences are also discussed. In conclusion, we highlight the main challenges, the solution of which will allow researchers to approach the replacement of in vivo research with in vitro research: biobanking and standardization of the structural characterization of organoids, and the development of effective screening imaging techniques for 3D organoid cell organization.
Collapse
|
122
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
123
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
124
|
The Use of Biomaterials in Three-Dimensional Culturing of Cancer Cells. Curr Issues Mol Biol 2023; 45:1100-1112. [PMID: 36826018 PMCID: PMC9954970 DOI: 10.3390/cimb45020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Cell culture is an important tool in biological research. Most studies use 2D cell culture, but cells grown in 2D cell culture have drawbacks, including limited cell and cell-extracellular matrix interactions, which make it inaccurate to model conditions in vivo. Anticancer drug screening is an important research and development process for developing new drugs. As an experiment to mimic the cancer environment in vivo, several studies have been carried out on 3-dimensional (3D) cell cultures with added biomaterials. The use of hydrogel in 3D culture cells is currently developing. The type of hydrogel used might influence cell morphology, viability, and drug screening outcome. Therefore, this review discusses 3D cell culture research regarding the addition of biomaterials.
Collapse
|
125
|
Gonçalves AM, Leal F, Moreira A, Schellhorn T, Blahnová VH, Zeiringer S, Vocetková K, Tetyczka C, Simaite A, Buzgo M, Roblegg E, Costa PF, Ertl P, Filová E, Kohl Y. Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
| | - Filipa Leal
- BIOFABICS Rua Alfredo Allen 455 4200-135 Porto Portugal
| | | | - Tobias Schellhorn
- Institute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna Austria
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czechia
| | - Scarlett Zeiringer
- Institute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz Austria
| | - Karolina Vocetková
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czechia
| | - Carolin Tetyczka
- Institute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz Austria
| | - Aiva Simaite
- InoCure s.r.o. Politických vězňů 935/13 11000 Praha 1 Prague Czech Republic
| | - Matej Buzgo
- BIOFABICS Rua Alfredo Allen 455 4200-135 Porto Portugal
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz Austria
| | | | - Peter Ertl
- Institute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna Austria
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czechia
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT Joseph-von-Fraunhofer-Weg 1 66280 Sulzbach/Saar Germany
| |
Collapse
|
126
|
Wang H, Xu T, Yin D. Emerging trends in the methodology of environmental toxicology: 3D cell culture and its applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159501. [PMID: 36265616 DOI: 10.1016/j.scitotenv.2022.159501] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Human diseases and health concerns caused by environmental pollutants are globally emerging. Therefore, rapid and efficient evaluation of the effects of environmental pollutants on human health is essential. Due to the significant differences between humans and animals and the lack of physiologically related environments, animal models and two-dimensional (2D) culture cannot accurately describe toxicological effects and predict actual in vivo responses. To make up for the limitations of traditional environmental toxicology screening, three-dimensional (3D) culture has been developed. The 3D culture could provide a good organizational structure comparable to the complex internal environment of humans and produce a more realistic response to environmental pollutants, which has been used in drug development, toxicity evaluation, personalized therapy and biological mechanism research. The goal of environmental toxicology is to provide clues and support for the risk assessment and management of environmental pollutants. With the development of 3D culture that can reproduce specific physiological aspects loaded with specific cells that reflect human biology, interactions between pollutants and target tissues and organs can be explored to assess the acute and chronic adverse health effects of exposure to various environmental toxins. The 3D culture with great potential shows broad prospects in toxicology research and is expected to bridge the gap between 2D culture and animal models eventually. In this sense, we strongly recommend that 3D culture be used to identify and understand environmental toxins, which will greatly facilitate the public's comprehensive understanding of environmental toxins.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
127
|
Snapper DM, Reginauld B, Liaudanskaya V, Fitzpatrick V, Kim Y, Georgakoudi I, Kaplan DL, Symes AJ. Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J Neurosci Res 2023; 101:3-19. [PMID: 36200530 DOI: 10.1002/jnr.25123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
Primary blast injury is caused by the direct impact of an overpressurization wave on the body. Due to limitations of current models, we have developed a novel approach to study primary blast-induced traumatic brain injury. Specifically, we employ a bioengineered 3D brain-like human tissue culture system composed of collagen-infused silk protein donut-like hydrogels embedded with human IPSC-derived neurons, human astrocytes, and a human microglial cell line. We have utilized this system within an advanced blast simulator (ABS) to expose the 3D brain cultures to a blast wave that can be precisely controlled. These 3D cultures are enclosed in a 3D-printed surrogate skull-like material containing media which are then placed in a holder apparatus inside the ABS. This allows for exposure to the blast wave alone without any secondary injury occurring. We show that blast induces an increase in lactate dehydrogenase activity and glutamate release from the cultures, indicating cellular injury. Additionally, we observe a significant increase in axonal varicosities after blast. These varicosities can be stained with antibodies recognizing amyloid precursor protein. The presence of amyloid precursor protein deposits may indicate a blast-induced axonal transport deficit. After blast injury, we find a transient release of the known TBI biomarkers, UCHL1 and NF-H at 6 h and a delayed increase in S100B at 24 and 48 h. This in vitro model will enable us to gain a better understanding of clinically relevant pathological changes that occur following primary blast and can also be utilized for discovery and characterization of biomarkers.
Collapse
Affiliation(s)
- Dustin M Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bianca Reginauld
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yeonho Kim
- Preclinical Behavior and Modeling Core, Uniformed Services University, Bethesda, Maryland, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
128
|
Hwang M, Lee SJ, Lim CH, Shim EB, Lee HA. The three-dimensionality of the hiPSC-CM spheroid contributes to the variability of the field potential. Front Physiol 2023; 14:1123190. [PMID: 37025386 PMCID: PMC10070703 DOI: 10.3389/fphys.2023.1123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Field potential (FP) signals from human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) spheroid which are used for drug safety tests in the preclinical stage are different from action potential (AP) signals and require working knowledge of the multi-electrode array (MEA) system. In this study, we developed in silico three-dimensional (3-D) models of hiPSC-CM spheroids for the simulation of field potential measurement. We compared our model simulation results against in vitro experimental data under the effect of drugs E-4031 and nifedipine. Methods: In silico 3-D models of hiPSC-CM spheroids were constructed in spherical and discoidal shapes. Tetrahedral meshes were generated inside the models, and the propagation of the action potential in the model was obtained by numerically solving the monodomain reaction-diffusion equation. An electrical model of electrode was constructed and FPs were calculated using the extracellular potentials from the AP propagations. The effects of drugs were simulated by matching the simulation results with in vitro experimental data. Results: The simulated FPs from the 3-D models of hiPSC-CM spheroids exhibited highly variable shapes depending on the stimulation and measurement locations. The values of the IC50 of E-4031 and nifedipine calculated by matching the simulated FP durations with in vitro experimental data were in line with the experimentally measured ones reported in the literature. Conclusion: The 3-D in silico models of hiPSC-CM spheroids generated highly variable FPs similar to those observed in in vitro experiments. The in silico model has the potential to complement the interpretation of the FP signals obtained from in vitro experiments.
Collapse
Affiliation(s)
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | | | - Eun Bo Shim
- AI Medic, Inc., Seoul, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- *Correspondence: Eun Bo Shim, ; Hyang-Ae Lee,
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- *Correspondence: Eun Bo Shim, ; Hyang-Ae Lee,
| |
Collapse
|
129
|
Torrents S, Grau-Vorster M, Vives J. Potency Assays: The 'Bugaboo' of Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:29-38. [PMID: 37258782 DOI: 10.1007/978-3-031-30040-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Substantially manipulated cell-based products for human use are considered medicines and therefore regulatory authorities require extensive characterisation in terms of identity, purity and potency. The latter critical quality attribute is probably the most challenging to identify and measure, requiring provision that potency assays should reflect the intended mechanism of action and demonstrate the drugs' biological effect. However, in most cases, the mechanisms involved are not fully understood, making the definition and validation of suitable potency tests difficult, a 'bugaboo' quest to be feared. Although it is evident that much work is still needed in the scientific arena, the present chapter focuses on strategies currently used by developers of cell- and gene-based therapies to demonstrate potency of innovative medicines, the regulatory framework and need for standardisation seeking to demystify critical factors to consider when designing a potency assay.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
130
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
131
|
Zhou S, Lu J, Liu S, Shao J, Liu Z, Li J, Xiao W. Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Front Cell Dev Biol 2023; 11:1166916. [PMID: 37152280 PMCID: PMC10154581 DOI: 10.3389/fcell.2023.1166916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Malignant melanoma (MM) is the most metastatic and aggressive form of skin cancer, and carries a high risk of death. Immune-checkpoint inhibitor therapy and molecular-targeted therapy can prolong the survival of patients with advanced MM significantly. However, the low response rate and inevitable drug resistance prevent further improvements in efficacy, which is closely related to the tumor microenvironment (TME). The TME refers to the tumor stroma, including fibroblasts, keratinocytes, immune cells, soluble molecules, and extracellular matrix (ECM). The dynamic interaction between the TME and tumor cells is very important for the growth, local invasion, and metastatic spread of tumor cells. A patient-derived organoid (PDO) model involves isolation of tumor tissue from patients with MM and culturing it in vitro in a three-dimensional pattern. Compared with traditional cultivation methods, the PDO model preserves the heterogeneity of the tissue structure of MM and demonstrates the interaction between MM cells and the TME. It can reproduce the characteristics of proliferation, migration, and invasion of MM cells, and better simulate the structural function of MM in vivo. This review explores the role of each TME component in development of the PDO model. This review will provide a reference for research on the drug screening and targeted treatment using PDOs, particularly for the immunotherapy of MM.
Collapse
|
132
|
A Survey of Naturally Occurring Molecules as New Endoplasmic Reticulum Stress Activators with Selective Anticancer Activity. Cancers (Basel) 2022; 15:cancers15010293. [PMID: 36612288 PMCID: PMC9818656 DOI: 10.3390/cancers15010293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The last century has witnessed the establishment of neoplastic disease as the second cause of death in the world. Nonetheless, the road toward desirable success rates of cancer treatments is still long and paved with uncertainty. This work aims to select natural products that act via endoplasmic reticulum (ER) stress, a known vulnerability of malignant cells, and display selective toxicity against cancer cell lines. Among an in-house chemical library, nontoxic molecules towards noncancer cells were assessed for toxicity towards cancer cells, namely the human gastric adenocarcinoma cell line AGS and the lung adenocarcinoma cell line A549. Active molecules towards at least one of these cell lines were studied in a battery of ensuing assays to clarify the involvement of ER stress and unfolded protein response (UPR) in the cytotoxic effect. Several natural products are selectively cytotoxic against malignant cells, and the effect often relies on ER stress induction. Berberine was the most promising molecule, being active against both cell models by disrupting Ca2+ homeostasis, inducing UPR target gene expression and ER-resident caspase-4 activation. Our results indicate that berberine and emodin are potential leads for the development of more potent ER stressors to be used as selective anticancer agents.
Collapse
|
133
|
Yun C, Kim SH, Jung YS. Current Research Trends in the Application of In Vitro Three-Dimensional Models of Liver Cells. Pharmaceutics 2022; 15:pharmaceutics15010054. [PMID: 36678683 PMCID: PMC9866911 DOI: 10.3390/pharmaceutics15010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The liver produces and stores various nutrients that are necessary for the body and serves as a chemical plant, metabolizing carbohydrates, fats, hormones, vitamins, and minerals. It is also a vital organ for detoxifying drugs and exogenous harmful substances. Culturing liver cells in vitro under three-dimensional (3D) conditions is considered a primary mechanism for liver tissue engineering. The 3D cell culture system is designed to allow cells to interact in an artificially created environment and has the advantage of mimicking the physiological characteristics of cells in vivo. This system facilitates contact between the cells and the extracellular matrix. Several technically different approaches have been proposed, including bioreactors, chips, and plate-based systems in fluid or static media composed of chemically diverse materials. Compared to conventional two-dimensional monolayer culture in vitro models, the ability to predict the function of the tissues, including the drug metabolism and chemical toxicity, has been enhanced by developing three-dimensional liver culture models. This review discussed the methodology of 3D cell cultures and summarized the advantages of an in vitro liver platform using 3D culture technology.
Collapse
|
134
|
Papakonstantinou A, Koumarianou P, Rigakou A, Diamantakos P, Frakolaki E, Vassilaki N, Chavdoula E, Melliou E, Magiatis P, Boleti H. New Affordable Methods for Large-Scale Isolation of Major Olive Secoiridoids and Systematic Comparative Study of Their Antiproliferative/Cytotoxic Effect on Multiple Cancer Cell Lines of Different Cancer Origins. Int J Mol Sci 2022; 24:ijms24010003. [PMID: 36613449 PMCID: PMC9820430 DOI: 10.3390/ijms24010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 μM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 μM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.
Collapse
Affiliation(s)
- Aikaterini Papakonstantinou
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Petrina Koumarianou
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
- Light Microscopy Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Aimilia Rigakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelia Chavdoula
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- World Olive Center for Health, Imittou 76, 11634 Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (P.M.); (H.B.); Tel.: +30-210-7274052 (P.M.); +30-210-6478879 (H.B.)
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
- Light Microscopy Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: (P.M.); (H.B.); Tel.: +30-210-7274052 (P.M.); +30-210-6478879 (H.B.)
| |
Collapse
|
135
|
Merivaara A, Koivunotko E, Manninen K, Kaseva T, Monola J, Salli E, Koivuniemi R, Savolainen S, Valkonen S, Yliperttula M. Stiffness-Controlled Hydrogels for 3D Cell Culture Models. Polymers (Basel) 2022; 14:polym14245530. [PMID: 36559897 PMCID: PMC9786583 DOI: 10.3390/polym14245530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Nanofibrillated cellulose (NFC) hydrogel is a versatile biomaterial suitable, for example, for three-dimensional (3D) cell spheroid culturing, drug delivery, and wound treatment. By freeze-drying NFC hydrogel, highly porous NFC structures can be manufactured. We freeze-dried NFC hydrogel and subsequently reconstituted the samples into a variety of concentrations of NFC fibers, which resulted in different stiffness of the material, i.e., different mechanical cues. After the successful freeze-drying and reconstitution, we showed that freeze-dried NFC hydrogel can be used for one-step 3D cell spheroid culturing of primary mesenchymal stem/stromal cells, prostate cancer cells (PC3), and hepatocellular carcinoma cells (HepG2). No difference was observed in the viability or morphology between the 3D cell spheroids cultured in the freeze-dried and reconstituted NFC hydrogel and fresh NFC hydrogel. Furthermore, the 3D cultured spheroids showed stable metabolic activity and nearly 100% viability. Finally, we applied a convolutional neural network (CNN)-based automatic nuclei segmentation approach to automatically segment individual cells of 3D cultured PC3 and HepG2 spheroids. These results provide an application to culture 3D cell spheroids more readily with the NFC hydrogel and a step towards automatization of 3D cell culturing and analysis.
Collapse
Affiliation(s)
- Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (A.M.); (M.Y.); Tel.:+358-294-159-577 (A.M.); +358-294-159-141 (M.Y.)
| | - Elle Koivunotko
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Kalle Manninen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Kaseva
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Julia Monola
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Eero Salli
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Sauli Savolainen
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Sami Valkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (A.M.); (M.Y.); Tel.:+358-294-159-577 (A.M.); +358-294-159-141 (M.Y.)
| |
Collapse
|
136
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
137
|
Griffin KH, Fok SW, Kent Leach J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen Med 2022; 7:70. [PMID: 36494368 PMCID: PMC9734656 DOI: 10.1038/s41536-022-00266-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Cell therapies offer a tailorable, personalized treatment for use in tissue engineering to address defects arising from trauma, inefficient wound repair, or congenital malformation. However, most cell therapies have achieved limited success to date. Typically injected in solution as monodispersed cells, transplanted cells exhibit rapid cell death or insufficient retention at the site, thereby limiting their intended effects to only a few days. Spheroids, which are dense, three-dimensional (3D) aggregates of cells, enhance the beneficial effects of cell therapies by increasing and prolonging cell-cell and cell-matrix signaling. The use of spheroids is currently under investigation for many cell types. Among cells under evaluation, spheroids formed of mesenchymal stromal cells (MSCs) are particularly promising. MSC spheroids not only exhibit increased cell survival and retained differentiation, but they also secrete a potent secretome that promotes angiogenesis, reduces inflammation, and attracts endogenous host cells to promote tissue regeneration and repair. However, the clinical translation of spheroids has lagged behind promising preclinical outcomes due to hurdles in their formation, instruction, and use that have yet to be overcome. This review will describe the current state of preclinical spheroid research and highlight two key examples of spheroid use in clinically relevant disease modeling. It will highlight techniques used to instruct the phenotype and function of spheroids, describe current limitations to their use, and offer suggestions for the effective translation of cell spheroids for therapeutic treatments.
Collapse
Affiliation(s)
- Katherine H Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Shierly W Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA.
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
138
|
Xie D, Jia S, Ping D, Wang D, Cao L. Scaffold-based three-dimensional cell model of pancreatic cancer is more suitable than scaffold-free three-dimensional cell model of pancreatic cancer for drug discovery. Cytotechnology 2022; 74:657-667. [PMID: 36389286 PMCID: PMC9652184 DOI: 10.1007/s10616-022-00553-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/03/2022] [Indexed: 11/03/2022] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies. Three-dimensional (3D) pancreatic cancer cell models for drug screening have been established to improve treatment for pancreatic cancer. However, few studies focus on different drug responses and drug-related molecular mechanisms in various types of 3D cell models. In this study, we constructed 3D scaffold-free cell models and 3D scaffold-based cell models of pancreatic cancer, evaluated chemotherapeutic drug responses in different 3D models, assessed clinical relevance of the models, and investigated molecular mechanisms of chemoresistance and drug pathways in different 3D models. Both types of 3D models showed resistance to chemotherapeutic drugs, and scaffold-based pancreatic cancer models could better reflect in vivo drug efficacy than 2D and scaffold-free pancreatic cancer models did. Increased cell adhesion, extracellular matrix (ECM) synthesis and drug transport were essential for drug resistance in 3D models, and anti-apoptosis might contribute to extreme chemoresistance in scaffold-free models. Moreover, scaffold-based pancreatic cancer models were more suitable than scaffold-free models for drug pathway research.
Collapse
Affiliation(s)
- Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
- Department of General Surgery, Zhejiang Hospital, Hangzhou, 310000 China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Dongnan Ping
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Dong Wang
- Department of General Surgery, Zhejiang Hospital, Hangzhou, 310000 China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| |
Collapse
|
139
|
Karshieva SS, Glinskaya EG, Dalina AA, Akhlyustina EV, Makarova EA, Khesuani YD, Chmelyuk NS, Abakumov MA, Khochenkov DA, Mironov VA, Meerovich GA, Kogan EA, Koudan EV. Antitumor activity of photodynamic therapy with tetracationic derivative of synthetic bacteriochlorin in spheroid culture of liver and colon cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103202. [PMID: 36400167 DOI: 10.1016/j.pdpdt.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.
Collapse
Affiliation(s)
- Saida Sh Karshieva
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia
| | - Elizaveta G Glinskaya
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Alexandra A Dalina
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov st. 32, Moscow 119991, Russia
| | | | - Elena A Makarova
- Organic Intermediates and Dyes Institute, B. Sadovaya st. 1/4, Moscow 123001, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe shosse 68, Moscow 115409, Russia
| | - Nelly S Chmelyuk
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Maxim A Abakumov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Dmitriy A Khochenkov
- N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia; Togliatti State University, Belorusskaya st. 14, Togliatti 445667, Russia
| | - Vladimir A Mironov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia
| | - Gennady A Meerovich
- National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Vavilov st. 38, Moscow 119991, Russia
| | - Evgeniya A Kogan
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia.
| |
Collapse
|
140
|
Gomez-Cruz C, Laguna S, Bachiller-Pulido A, Quilez C, Cañadas-Ortega M, Albert-Smet I, Ripoll J, Muñoz-Barrutia A. Single Plane Illumination Microscopy for Microfluidic Device Imaging. BIOSENSORS 2022; 12:1110. [PMID: 36551076 PMCID: PMC9775991 DOI: 10.3390/bios12121110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional imaging of live processes at a cellular level is a challenging task. It requires high-speed acquisition capabilities, low phototoxicity, and low mechanical disturbances. Three-dimensional imaging in microfluidic devices poses additional challenges as a deep penetration of the light source is required, along with a stationary setting, so the flows are not perturbed. Different types of fluorescence microscopy techniques have been used to address these limitations; particularly, confocal microscopy and light sheet fluorescence microscopy (LSFM). This manuscript proposes a novel architecture of a type of LSFM, single-plane illumination microscopy (SPIM). This custom-made microscope includes two mirror galvanometers to scan the sample vertically and reduce shadowing artifacts while avoiding unnecessary movement. In addition, two electro-tunable lenses fine-tune the focus position and reduce the scattering caused by the microfluidic devices. The microscope has been fully set up and characterized, achieving a resolution of 1.50 μm in the x-y plane and 7.93 μm in the z-direction. The proposed architecture has risen to the challenges posed when imaging microfluidic devices and live processes, as it can successfully acquire 3D volumetric images together with time-lapse recordings, and it is thus a suitable microscopic technique for live tracking miniaturized tissue and disease models.
Collapse
Affiliation(s)
- Clara Gomez-Cruz
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sonia Laguna
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Ariadna Bachiller-Pulido
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Cristina Quilez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Marina Cañadas-Ortega
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Ignacio Albert-Smet
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Jorge Ripoll
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28009 Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
141
|
A Novel 3D Culture Scaffold to Shorten Development Time for Multicellular Tumor Spheroids. Int J Mol Sci 2022; 23:ijms232213962. [PMID: 36430445 PMCID: PMC9699299 DOI: 10.3390/ijms232213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multicellular tumor spheroids and tumoroids are considered ideal in vitro models that reflect the features of the tumor microenvironment. Biomimetic components resembling the extracellular matrix form scaffolds to provide structure to 3-dimensional (3D) culture systems, supporting the growth of both spheroids and tumoroids. Although Matrigel has long been used to support 3D culture systems, batch variations, component complexity, and the use of components derived from tumors are complicating factors. To address these issues, we developed the ACD 3D culture system to provide better control and consistency. We evaluated spheroid and tumoroid formation using the ACD 3D culture system, including the assessment of cell viability and cancer marker expression. Under ACD 3D culture conditions, spheroids derived from cancer cell lines exhibited cancer stem cell characteristics, including a sphere-forming size and the expression of stem cell marker genes. The ACD 3D culture system was also able to support patient-derived primary cells and organoid cell cultures, displaying adequate cell growth, appropriate morphology, and resistance to oxaliplatin treatment. These spheroids could also be used for drug screening purposes. In conclusion, the ACD 3D culture system represents an efficient tool for basic cancer research and therapeutic development.
Collapse
|
142
|
Shahrivari S, Aminoroaya N, Ghods R, Latifi H, Afjei SA, Saraygord-Afshari N, Bagheri Z. Toxicity of trastuzumab for breast cancer spheroids: Application of a novel on-a-chip concentration gradient generator. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
143
|
Yang X, Wang B, Peng D, Nie X, Wang J, Yu CY, Wei H. Hyaluronic Acid‐Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xu Yang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Bin Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Dongdong Peng
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Xiaobo Nie
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Jun Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| |
Collapse
|
144
|
Ma N, Lu J, Pei Y, Robertson ES. Transcriptome reprogramming of Epstein-Barr virus infected epithelial and B cells reveals distinct host-virus interaction profiles. Cell Death Dis 2022; 13:894. [PMID: 36272970 PMCID: PMC9588026 DOI: 10.1038/s41419-022-05327-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Epstein-Barr virus (EBV) is an opportunistic pathogen that can manifest itself as a potential contributor to human diseases years after primary infection, specifically in lymphoid and epithelial cell malignancies in immune-competent and immune-compromised hosts. The virus shuttles between B cells and epithelial cells during its infection cycle, facilitating its persistence and transmission in humans. While EBV efficiently infects and transforms B-lymphocytes, epithelial cells are not as susceptible to transformation in vitro. We utilized a 3D platform for culturing normal oral keratinocyte cells (NOKs) using Matrigel for greater insights into the molecular interactions between EBV and infected cells. We determined the transcriptome of EBV infected NOKs and peripheral blood mononuclear cells (PBMCs) for 7 and 15 days. LMPs (-1, -2A, and -2B) and EBNAs (-1, -2, -3A, -3B and -3C) were detected in all samples, and lytic gene expression was significantly higher in NOKs than PBMCs. We identified over 2000 cellular genes that were differentially expressed (P-value<0.05). Gene ontology (GO) and pathway analyses significantly identified pathways related to collagen-activation, chemokine signaling, immune response, metabolism, and antiviral responses. We also identified significant changes in metalloproteases and genes encoding chemotactic ligands and cell surface molecules. C-X-C chemokine receptor type 4 (CXCR4) was dramatically downregulated in PBMCs and upregulated in NOKs. However, MMP1 was significantly downregulated in NOKs and upregulated in PBMCs. Therefore, multiple pathways contribute to distinct pathologies associated with EBV infection in epithelial and B cells, and MMP1 and CXCR4 are critical molecules involved in regulation of latent and lytic states linked to viral associated diseases.
Collapse
Affiliation(s)
- Nian Ma
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
145
|
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:3331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
Affiliation(s)
- María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
146
|
Azimian Zavareh V, Rafiee L, Sheikholeslam M, Shariati L, Vaseghi G, Savoji H, Haghjooy Javanmard S. Three-Dimensional in Vitro Models: A Promising Tool To Scale-Up Breast Cancer Research. ACS Biomater Sci Eng 2022; 8:4648-4672. [PMID: 36260561 DOI: 10.1021/acsbiomaterials.2c00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Common models used in breast cancer studies, including two-dimensional (2D) cultures and animal models, do not precisely model all aspects of breast tumors. These models do not well simulate the cell-cell and cell-stromal interactions required for normal tumor growth in the body and lake tumor like microenvironment. Three-dimensional (3D) cell culture models are novel approaches to studying breast cancer. They do not have the restrictions of these conventional models and are able to recapitulate the structural architecture, complexity, and specific function of breast tumors and provide similar in vivo responses to therapeutic regimens. These models can be a link between former traditional 2D culture and in vivo models and are necessary for further studies in cancer. This review attempts to summarize the most common 3D in vitro models used in breast cancer studies, including scaffold-free (spheroid and organoid), scaffold-based, and chip-based models, particularly focused on the basic and translational application of these 3D models in drug screening and the tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada.,Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
147
|
Desai N, Spangler M, Nanavaty V, Gishto A, Brown A. New hyaluronan-based biomatrix for 3-D follicle culture yields functionally competent oocytes. Reprod Biol Endocrinol 2022; 20:148. [PMID: 36217168 PMCID: PMC9549656 DOI: 10.1186/s12958-022-01019-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Encapsulation of follicles within a biomatrix is one approach to maintaining 3-D follicle architecture during culture. Hyaluronan is one component of the natural extracellular matrix (ECM) that provides support to cells in vivo. This report describes the application of a novel tyramine-linked hyaluronan for 3-D in vitro follicle culture and the production of developmentally competent metaphase II oocytes. MATERIALS AND METHODS Enzymatically isolated mouse preantral follicles or follicle clusters (FL-C) from fresh or vitrified ovaries were encapsulated in 3 mg/ml of hyaluronan gel (HA). Follicle growth, antrum formation and meiotic maturation to metaphase II oocytes was monitored. Chromatin staining was used to assess GV oocyte progression towards meiotic competence. Functional competence of in vitro matured (IVM) oocytes was evaluated by in vitro fertilization and ability to develop to blastocyst. Modifying the HA gel by inclusion of laminin (HA-LM), mouse sarcoma extracellular matrix (Matrigel;HA-MG) or placental extracellular matrix (HA-PM) was also tested to see if this might further enhance IVM outcomes. RESULTS A total of 402 preantral follicles were cultured in HA gel. After hCG trigger, 314 oocyte-cumulus complexes ovulated from the embedded follicles. Meiotic maturation rate to the metaphase II stage was 73% (228/314). After insemination 83% (188/228) of IVM oocytes fertilized with a subsequent blastulation rate of 46% (87/188). A pilot transfer study with 3 recipient mice resulted in the birth of a single pup. HA gel supported individually isolated follicles as well ovarian tissue fragments containing clusters of 6-8 preantral follicles. Meiotic maturation was lower with FL-clusters from vitrified versus fresh ovaries (34% and 55%, respectively; p < 0.007). Modification of the HA gel with ECMs or laminin affected antrum formation and follicle retention. Maturation rates to the metaphase II stage were however not significantly different: 74% for HA gel alone as compared to HA-LM (67%), HA-MG (56%) and HA-PM (58%). CONCLUSION Hyaluronan gel is an effective and versatile extracellular matrix based biomaterial for 3-D culture of ovarian follicles. This culture model allowed ovulation of functionally competent metaphase II oocytes, capable of fertilization, genomic activation and blastulation. Future testing with human follicles that require longer in vitro culture times should be considered.
Collapse
Affiliation(s)
- Nina Desai
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Maribeth Spangler
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Vaani Nanavaty
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Arsela Gishto
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| | - Alyssa Brown
- grid.239578.20000 0001 0675 4725Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Fertility Center, Cleveland Clinic Foundation, Beachwood, OH USA
| |
Collapse
|
148
|
Temple J, Velliou E, Shehata M, Lévy R, Gupta P. Current strategies with implementation of three-dimensional cell culture: the challenge of quantification. Interface Focus 2022; 12:20220019. [PMID: 35992772 PMCID: PMC9372643 DOI: 10.1098/rsfs.2022.0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
From growing cells in spheroids to arranging them on complex engineered scaffolds, three-dimensional cell culture protocols are rapidly expanding and diversifying. While these systems may often improve the physiological relevance of cell culture models, they come with technical challenges, as many of the analytical methods used to characterize traditional two-dimensional (2D) cells must be modified or replaced to be effective. Here we review the advantages and limitations of quantification methods based either on biochemical measurements or microscopy imaging. We focus on the most basic of parameters that one may want to measure, the number of cells. Precise determination of this number is essential for many analytical techniques where measured quantities are only meaningful when normalized to the number of cells (e.g. cytochrome p450 enzyme activity). Thus, accurate measurement of cell number is often a prerequisite to allowing comparisons across different conditions (culturing conditions or drug and treatment screening) or between cells in different spatial states. We note that this issue is often neglected in the literature with little or no information given regarding how normalization was performed, we highlight the pitfalls and complications of quantification and call for more accurate reporting to improve reproducibility.
Collapse
Affiliation(s)
- Jonathan Temple
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Mona Shehata
- Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Raphaël Lévy
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
- Laboratoire for Vascular Translational Science, Université Sorbonne Paris Nord, Bobigny, France
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, University College London, London, UK
| |
Collapse
|
149
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
150
|
In Vitro Mimicking of Obesity-Induced Biochemical Environment to Study Obesity Impacts on Cells and Tissues. Diseases 2022; 10:diseases10040076. [PMID: 36278576 PMCID: PMC9590073 DOI: 10.3390/diseases10040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity represents a heavy burden for modern healthcare. The main challenge facing obesity research progress is the unknown underlying pathways, which limits our understanding of the pathogenesis and developing therapies. Obesity induces specific biochemical environments that impact the different cells and tissues. In this piece of writing, we suggest mimicking obesity-induced in vivo biochemical environments including pH, lipids, hormones, cytokines, and glucose within an in vitro environment. The concept is to reproduce such biochemical environments and use them to treat the tissue cultures, explant cultures, and cell cultures of different biological organs. This will allow us to clarify how the obesity-induced biochemistry impacts such biological entities. It would also be important to try different environments, in terms of the compositions and concentrations of the constitutive elements, in order to establish links between the effects (impaired regeneration, cellular inflammation, etc.) and the factors constituting the environment (hormones, cytokines, etc.) as well as to reveal dose-dependent effects. We believe that such approaches will allow us to elucidate obesity mechanisms, optimize animal models, and develop therapies as well as novel tissue engineering applications.
Collapse
|