101
|
Hayden S, Teeling EC. The molecular biology of vertebrate olfaction. Anat Rec (Hoboken) 2015; 297:2216-26. [PMID: 25312375 DOI: 10.1002/ar.23031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/16/2023]
Abstract
The importance of chemosensation for vertebrates is reflected in the vast and variable nature of their chemosensory tissues, neurons, and genes, which we explore in this review. Immense progress has been made in elucidating the molecular biology of olfaction since the discovery of the olfactory receptor genes by Buck and Axel, which eventually won the authors the Nobel Prize. In particular, research linking odor ligands to olfactory receptors (ORs) is truly revolutionizing our understanding of how a large but limited number of chemosensory receptors can allow us to perceive the massive diversity of odors in our habitat. This research is providing insight into the evolution of genomes and providing the raw data needed to explore links between genotype and phenotype, still a grand challenge in biology. Research into olfaction is still developing and will no doubt continue until we have a clear understanding of how all odors are detected and the evolutionary forces that have molded the chemosensory subgenome in vertebrates. This knowledge will not only be a huge step in elucidating olfactory function, advancing scientific knowledge and techniques, but there are also commercial applications for this research. This review focuses on the molecular basis of chemosensation, particularly olfaction, its evolution across vertebrates and the recent molecular advances linking odors to their cognate receptors.
Collapse
Affiliation(s)
- Sara Hayden
- Department of Biochemistry, University of Washington, Seattle, Washington
| | | |
Collapse
|
102
|
Individual olfactory perception reveals meaningful nonolfactory genetic information. Proc Natl Acad Sci U S A 2015; 112:8750-5. [PMID: 26100865 DOI: 10.1073/pnas.1424826112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Each person expresses a potentially unique subset of ∼ 400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the "olfactory fingerprint." Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10(-10)), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10(-4)), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10(-6)). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information.
Collapse
|
103
|
Priori D, Colombo M, Clavenzani P, Jansman AJM, Lallès JP, Trevisi P, Bosi P. The Olfactory Receptor OR51E1 Is Present along the Gastrointestinal Tract of Pigs, Co-Localizes with Enteroendocrine Cells and Is Modulated by Intestinal Microbiota. PLoS One 2015; 10:e0129501. [PMID: 26076344 PMCID: PMC4468170 DOI: 10.1371/journal.pone.0129501] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED The relevance of the butyrate-sensing olfactory receptor OR51E1 for gastrointestinal (GIT) functioning has not been considered so far. We investigated in young pigs the distribution of OR51E1 along the GIT, its relation with some endocrine markers, its variation with age and after interventions affecting the gut environment and intestinal microbiota. Immuno-reactive cells for OR51E1 and chromogranin A (CgA) were counted in cardial (CA), fundic (FU), pyloric (PL) duodenal (DU), jejunal (JE), ileal (IL), cecal (CE), colonic (CO) and rectal (RE) mucosae. OR51E1 co-localization with serotonin (5HT) and peptide YY (PYY) were evaluated in PL and CO respectively. FU and PL tissues were also sampled from 84 piglets reared from sows receiving either or not oral antibiotics (amoxicillin) around parturition, and sacrificed at days 14, 21, 28 (weaning) and 42 of age. JE samples were also obtained from 12 caesarean-derived piglets that were orally associated with simple (SA) or complex (CA) microbiota in the postnatal phase, and of which on days 26-37 of age jejunal loops were perfused for 8 h with enterotoxigenic Escherichia coli F4 (ETEC), Lactobacillus amylovorus or saline (CTRL). Tissue densities of OR51E1+ cells were in decreasing order: PL=DU>FU=CA>JE=IL=CE=CO=RE. OR51E1+ cells showed an enteroendocrine nature containing gastrointestinal hormones such as PYY or 5HT. OR51E1 gene expression in PL and FU increased during and after the suckling period (p<0.05). It was marginally reduced in offspring from antibiotic-treated sows (tendency, p=0.073), vs. CONTROL Jejunal OR51E1 gene expression was reduced in piglets early associated with SA, compared with CA, and in ETEC-perfused loops vs. CTRL (p<0.01). Our results indicate that OR51E1 is related to GIT enteroendocrine activity. Moreover age, pathogen challenge and dietary manipulations influencing the gastrointestinal luminal microenvironment significantly affect the OR51E1 gene expression in GIT tissues presumably in association with the release of microbial metabolites.
Collapse
Affiliation(s)
| | | | - Paolo Clavenzani
- Department of Veterinary Sciences, University of Bologna, Ozzano nell’Emilia (BO), Italy
| | | | | | | | - Paolo Bosi
- DISTAL, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
104
|
Flegel C, Schöbel N, Altmüller J, Becker C, Tannapfel A, Hatt H, Gisselmann G. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors. PLoS One 2015; 10:e0128951. [PMID: 26070209 PMCID: PMC4466559 DOI: 10.1371/journal.pone.0128951] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues.
Collapse
Affiliation(s)
- Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Nicole Schöbel
- Department of Animal Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
105
|
Lee DY, Moon J, Lee ST, Jung KH, Park DK, Yoo JS, Sunwoo JS, Byun JI, Lim JA, Kim TJ, Jung KY, Kim M, Jeon D, Chu K, Lee SK. Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochem Biophys Res Commun 2015; 462:433-40. [PMID: 25976677 DOI: 10.1016/j.bbrc.2015.04.149] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
Genome-wide profiling has revealed that eukaryotic genomes are transcribed into numerous non-coding RNAs. In particular, long non-coding RNAs (lncRNAs) have been implicated in various human diseases due to their biochemical and functional diversity. Epileptic disorders have been characterized by dysregulation of epigenetic regulatory mechanisms, and recent studies have identified several lncRNAs involved in neural development and network function. However, comprehensive profiling of lncRNAs implicated in chronic epilepsy has been lacking. In this study, microarray analysis was performed to obtain the expression profile of lncRNAs dysregulated in pilocarpine and kainate models, two models of temporal lobe epilepsy commonly used for studying epileptic mechanisms. Total of 4622 lncRNAs were analyzed: 384 lncRNAs were significantly dysregulated in pilocarpine model, and 279 lncRNAs were significantly dysregulated in kainate model compared with control mice (≥3.0-fold, p < 0.05). Among these, 54 and 14 lncRNAs, respectively, had adjacent protein-coding genes whose expressions were also significantly dysregulated (≥2.0-fold, p < 0.05). Majority of these pairs of lncRNAs and adjacent genes shared the same direction of dysregulation. For the selected adjacent gene-lncRNA pairs, significant Gene Ontology terms were embryonic appendage morphogenesis and neuron differentiation. This was the first study to comprehensively identify dysregulated lncRNAs in two different models of chronic epilepsy and will likely provide a novel insight into developing lncRNA therapeutics.
Collapse
Affiliation(s)
- Doo Young Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea
| | - Dong-Kyu Park
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Seok Yoo
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung-Ah Lim
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea; Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul, South Korea
| | - Daejong Jeon
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea.
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, South Korea; Program in Neuroscience, Neuroscience Research Institute of Seoul National University Medical Research Council, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
106
|
Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets. Biochem Biophys Res Commun 2015; 460:616-21. [DOI: 10.1016/j.bbrc.2015.03.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/29/2022]
|
107
|
Ho J, Perez-Aguilar JM, Gao L, Saven JG, Matsunami H, Eckenhoff RG. Molecular recognition of ketamine by a subset of olfactory G protein-coupled receptors. Sci Signal 2015; 8:ra33. [PMID: 25829447 DOI: 10.1126/scisignal.2005912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered nonresponding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug.
Collapse
Affiliation(s)
- Jianghai Ho
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | - Lu Gao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, Duke University, Durham, NC 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
108
|
Fleischer J, Bumbalo R, Bautze V, Strotmann J, Breer H. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 2015; 361:697-710. [DOI: 10.1007/s00441-015-2165-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
109
|
Wu C, Jia Y, Lee JH, Kim Y, Sekharan S, Batista VS, Lee SJ. Activation of OR1A1 suppresses PPAR-γ expression by inducing HES-1 in cultured hepatocytes. Int J Biochem Cell Biol 2015; 64:75-80. [PMID: 25817041 DOI: 10.1016/j.biocel.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022]
Abstract
Olfactory receptors (ORs) comprise the largest G protein-coupled receptor gene superfamily. Recent studies indicate that ORs are also expressed in non-olfactory organs, including metabolically active tissues, although their biological functions in these tissues are largely unknown. In this study, OR1A1 expression was detected in HepG2 liver cells. OR1A1 activation by (-)-carvone, a known OR1A1 ligand, increased the cyclic adenosine monophosphate (cAMP), but not intracellular Ca(2+) concentration, thereby inducing protein kinase A (PKA) activity with subsequent phosphorylation of cAMP response element-binding protein (CREB) and upregulation of the CREB-responsive gene hairy and enhancer of split (HES)-1, a corepressor of peroxisome proliferator-activated receptor-γ (PPAR-γ) in hepatocytes. In (-)-carvone-stimulated cells, the repression of PPAR-γ reduced the expression of the target gene, mitochondrial glycerol-3-phosphate acyltransferase, which encodes a key enzyme involved in triglyceride synthesis. Intracellular triglyceride level and lipid accumulation were reduced in cells stimulated with (-)-carvone, effects that were diminished following the loss of OR1A1 function. These results indicate that OR1A1 may function as a non-redundant receptor in hepatocytes that regulates the PKA-CREB-HES-1 signaling axis and thereby modulates hepatic triglyceride metabolism.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Yaoyao Jia
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Ji Hae Lee
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Yeonji Kim
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, BK21-PLUS, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
110
|
Ma X, Guan L, Wu W, Zhang Y, Zheng W, Gao YT, Long J, Wu N, Wu L, Xiang Y, Xu B, Shen M, Chen Y, Wang Y, Yin Y, Li Y, Xu H, Xu X, Li Y. Whole-exome sequencing identifies OR2W3 mutation as a cause of autosomal dominant retinitis pigmentosa. Sci Rep 2015; 5:9236. [PMID: 25783483 PMCID: PMC4363838 DOI: 10.1038/srep09236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/24/2015] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa (RP), a heterogeneous group of inherited ocular diseases, is a genetic condition that causes retinal degeneration and eventual vision loss. Though some genes have been identified to be associated with RP, still a large part of the clinical cases could not be explained. Here we reported a four-generation Chinese family with RP, during which 6 from 9 members of the second generation affected the disease. To identify the genetic defect in this family, whole-exome sequencing together with validation analysis by Sanger sequencing were performed to find possible pathogenic mutations. After a pipeline of database filtering, including public databases and in-house databases, a novel missense mutation, c. 424 C > T transition (p.R142W) in OR2W3 gene, was identified as a potentially causative mutation for autosomal dominant RP. The mutation co-segregated with the disease phenotype over four generations. This mutation was validated in another independent three-generation family. RT-PCR analysis also identified that OR2W3 gene was expressed in HESC-RPE cell line. The results will not only enhance our current understanding of the genetic basis of RP, but also provide helpful clues for designing future studies to further investigate genetic factors for familial RP.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Liping Guan
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Wei Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Bin Xu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | | | - Yanhua Chen
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yuewen Wang
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yingrui Li
- 1] BGI-Shenzhen, Shenzhen, People's Republic of China [2] BGI-Tech, Shenzhen, People's Republic of China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
111
|
Kim SH, Yoon YC, Lee AS, Kang N, Koo J, Rhyu MR, Park JH. Expression of human olfactory receptor 10J5 in heart aorta, coronary artery, and endothelial cells and its functional role in angiogenesis. Biochem Biophys Res Commun 2015; 460:404-8. [PMID: 25791473 DOI: 10.1016/j.bbrc.2015.03.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 12/01/2022]
Abstract
ORs are ectopically expressed in non-chemosensory tissues including muscle, kidney, and keratinocytes; however, their physiological roles are largely unknown. We found that human olfactory receptor 10J5 (OR10J5) is expressed in the human aorta, coronary artery, and umbilical vein endothelial cells (HUVEC). Lyral induces Ca(2+) and phosphorylation of AKT in HUVEC. A knockdown study showed the inhibition of the lyral-induced Ca(2+) and the phosphorylation AKT and implied that these processes are mediated by OR10J5. In addition, lyral enhanced migration of HUVEC, which were also inhibited by RNAi in a migration assay. In addition, matrigel plug assay showed that lyral enhanced angiogenesis in vivo. Together these data demonstrate the physiological role of OR10J5 in angiogenesis and represent roles of ORs in HUVEC cells.
Collapse
Affiliation(s)
- Sung-Hee Kim
- Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | - Yeo Cho Yoon
- Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | - Ae Sin Lee
- Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | - NaNa Kang
- Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-Gun, Daegu 711-873, Republic of Korea
| | - JaeHyung Koo
- Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-Gun, Daegu 711-873, Republic of Korea
| | - Mee-Ra Rhyu
- Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | - Jae-Ho Park
- Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea; Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
112
|
Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C. Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 2015; 15:3163-8. [PMID: 25656970 PMCID: PMC6680238 DOI: 10.1002/pmic.201400441] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 01/17/2023]
Abstract
Protein quantification at proteome‐wide scale is an important aim, enabling insights into fundamental cellular biology and serving to constrain experiments and theoretical models. While proteome‐wide quantification is not yet fully routine, many datasets approaching proteome‐wide coverage are becoming available through biophysical and MS techniques. Data of this type can be accessed via a variety of sources, including publication supplements and online data repositories. However, access to the data is still fragmentary, and comparisons across experiments and organisms are not straightforward. Here, we describe recent updates to our database resource “PaxDb” (Protein Abundances Across Organisms). PaxDb focuses on protein abundance information at proteome‐wide scope, irrespective of the underlying measurement technique. Quantification data is reprocessed, unified, and quality‐scored, and then integrated to build a meta‐resource. PaxDb also allows evolutionary comparisons through precomputed gene orthology relations. Recently, we have expanded the scope of the database to include cell‐line samples, and more systematically scan the literature for suitable datasets. We report that a significant fraction of published experiments cannot readily be accessed and/or parsed for quantitative information, requiring additional steps and efforts. The current update brings PaxDb to 414 datasets in 53 organisms, with (semi‐) quantitative abundance information covering more than 300 000 proteins.
Collapse
Affiliation(s)
- Mingcong Wang
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Christina J Herrmann
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Milan Simonovic
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| |
Collapse
|
113
|
Kang N, Kim H, Jae Y, Lee N, Ku CR, Margolis F, Lee EJ, Bahk YY, Kim MS, Koo J. Olfactory marker protein expression is an indicator of olfactory receptor-associated events in non-olfactory tissues. PLoS One 2015; 10:e0116097. [PMID: 25635859 PMCID: PMC4311928 DOI: 10.1371/journal.pone.0116097] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/20/2014] [Indexed: 01/03/2023] Open
Abstract
Olfactory receptor (OR)-associated events are mediated by well-conserved components in the olfactory epithelium, including olfactory G-protein (Golf), adenylate cyclase III (ACIII), and olfactory marker protein (OMP). The expression of ORs has recently been observed in non-olfactory tissues where they are involved in monitoring extracellular chemical cues. The large number of OR genes and their sequence similarities illustrate the need to find an effective and simple way to detect non-olfactory OR-associated events. In addition, expression profiles and physiological functions of ORs in non-olfactory tissues are largely unknown. To overcome limitations associated with using OR as a target protein, this study used OMP with Golf and ACIII as targets to screen for potential OR-mediated sensing systems in non-olfactory tissues. Here, we show using western blotting, real-time PCR, and single as well as double immunoassays that ORs and OR-associated proteins are co-expressed in diverse tissues. The results of immunohistochemical analyses showed OMP (+) cells in mouse heart and in the following cells using the corresponding marker proteins c-kit, keratin 14, calcitonin, and GFAP in mouse tissues: interstitial cells of Cajal of the bladder, medullary thymic epithelial cells of the thymus, parafollicular cells of the thyroid, and Leydig cells of the testis. The expression of ORs in OMP (+) tissues was analyzed using a refined microarray analysis and validated with RT-PCR and real-time PCR. Three ORs (olfr544, olfr558, and olfr1386) were expressed in the OMP (+) cells of the bladder and thyroid as shown using a co-immunostaining method. Together, these results suggest that OMP is involved in the OR-mediated signal transduction cascade with olfactory canonical signaling components between the nervous and endocrine systems. The results further demonstrate that OMP immunohistochemical analysis is a useful tool for identifying expression of ORs, suggesting OMP expression is an indicator of potential OR-mediated chemoreception in non-olfactory systems.
Collapse
Affiliation(s)
- NaNa Kang
- Department of Brain Science, DGIST, Daegu, Korea
| | - Hyerin Kim
- Department of Information and Communication Engineering, DGIST, Daegu, Korea
| | - YoonGyu Jae
- Department of Brain Science, DGIST, Daegu, Korea
| | - NaHye Lee
- Department of Brain Science, DGIST, Daegu, Korea
| | | | - Frank Margolis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, United States of America
| | - Eun Jig Lee
- College of Medicine, Yonsei University, Seoul, Korea
| | - Young Yil Bahk
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Min-Soo Kim
- Department of Information and Communication Engineering, DGIST, Daegu, Korea
- * E-mail: (JK); (M-SK)
| | - JaeHyung Koo
- Department of Brain Science, DGIST, Daegu, Korea
- * E-mail: (JK); (M-SK)
| |
Collapse
|
114
|
Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 2015; 97:533-45. [PMID: 25624459 DOI: 10.1189/jlb.2a0714-331rr] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40-60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes.
Collapse
Affiliation(s)
- Agne Malki
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Julia Fiedler
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Kristina Fricke
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Ines Ballweg
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Michael W Pfaffl
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Dietmar Krautwurst
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| |
Collapse
|
115
|
Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 2015; 60:109-16. [PMID: 25282281 DOI: 10.1016/j.jpsychires.2014.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.
Collapse
|
116
|
Maßberg D, Simon A, Häussinger D, Keitel V, Gisselmann G, Conrad H, Hatt H. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor. Arch Biochem Biophys 2014; 566:100-9. [PMID: 25513961 DOI: 10.1016/j.abb.2014.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Terpenes are the major constituents of essential oils in plants. In recent years, terpenes have become of clinical relevance due to their ability to suppress cancer development. Their effect on cellular proliferation has made them promising agents in the prevention or treatment of many types of cancer. In the present study, a subset of different monoterpenes was investigated for their molecular effects on the hepatocellular carcinoma cell line Huh7. Using fluorometric calcium imaging, acyclic monoterpene (-)-citronellal was found to induce transient Ca(2+) signals in Huh7 cells by activating a cAMP-dependent signaling pathway. Moreover, we detected the (-)-citronellal-activated human olfactory receptor OR1A2 at the mRNA and protein levels and demonstrated its potential involvement in (-)-citronellal-induced calcium signaling in Huh7 cells. Furthermore, activation of OR1A2 results in phosphorylation of p38 MAPK and reduced cell proliferation, indicating an effect on hepatocellular carcinoma progression. Here, we provide for the first time data on the molecular mechanism evoked by (-)-citronellal in human hepatocellular carcinoma cells. The identified olfactory receptor could serve as a potential therapeutic target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Désirée Maßberg
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Annika Simon
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Verena Keitel
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Heike Conrad
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
117
|
Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. Identification and characterization of novel renal sensory receptors. PLoS One 2014; 9:e111053. [PMID: 25340336 PMCID: PMC4207771 DOI: 10.1371/journal.pone.0111053] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 01/15/2023] Open
Abstract
Recent studies have highlighted the important roles that “sensory” receptors (olfactory receptors, taste receptors, and orphan “GPR” receptors) play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n = 76), olfactory receptor (n = 6), and taste receptor (n = 11) gene families. A variety of reverse transcriptase (RT)- PCR screening strategies were used to identify novel renal sensory receptors, which were subsequently confirmed using gene-specific primers. The tissue-specific distribution of these receptors was determined, and the novel renal ORs were cloned from whole mouse kidney. Renal ORs that trafficked properly in vitro were screened for potential ligands using a dual-luciferase ligand screen, and novel ligands were identified for Olfr691. These studies demonstrate that multiple sensory receptors are expressed in the kidney beyond those previously identified. These results greatly expand the known repertoire of renal sensory receptors. Importantly, the mRNA of many of the receptors identified in this study are expressed highly in the kidney (comparable to well-known and extensively studied renal GPCRs), and in future studies it will be important to elucidate the roles that these novel renal receptors play in renal physiology.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William H. Aisenberg
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Omar W. Acres
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan J. Protzko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
118
|
Khusal KG, Tonelli RR, Mattos EC, Soares CO, Di Genova BM, Juliano MA, Urias U, Colli W, Alves MJM. Prokineticin receptor identified by phage display is an entry receptor for Trypanosoma cruzi into mammalian cells. Parasitol Res 2014; 114:155-65. [DOI: 10.1007/s00436-014-4172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/06/2014] [Indexed: 01/06/2023]
|
119
|
Abstract
The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. The sense of smell in mice involves the detection of odors and pheromones by many hundreds of olfactory and vomeronasal receptors. The genes that encode these receptors account for around 5% of the whole gene catalog, but they are poorly understood because they are very similar to each other, and are thought to be turned on randomly in only a small number of cells. Here we use multiple gene expression technologies to curate and measure the activity of all the genes involved in the detection of odors and find evidence of many new ones. We show that most genes encoding olfactory and vomeronasal receptors have complex, multi-exonic structures that generate different isoforms. We find that some receptors are consistently more abundant in the nose than others, which suggests they are not turned on randomly. This may explain why mice are particularly sensitive to some odors, but less attuned to others. We find that overall males and females differ very little in gene expression, despite having altered behavioral responses to the same odors. Thus diversity in receptor expression can explain differences in odor sensitivity, but does not appear to dictate whether sex pheromones are differentially detected by males or females.
Collapse
|
120
|
Grison A, Zucchelli S, Urzì A, Zamparo I, Lazarevic D, Pascarella G, Roncaglia P, Giorgetti A, Garcia-Esparcia P, Vlachouli C, Simone R, Persichetti F, Forrest ARR, Hayashizaki Y, Carloni P, Ferrer I, Lodovichi C, Plessy C, Carninci P, Gustincich S. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics 2014; 15:729. [PMID: 25164183 PMCID: PMC4161876 DOI: 10.1186/1471-2164-15-729] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/18/2014] [Indexed: 01/15/2023] Open
Abstract
Background The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson’s disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. Results By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Conclusions Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-729) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Piero Carninci
- SISSA, Area of Neuroscience, via Bonomea 265, 34136 Trieste, Italy.
| | | |
Collapse
|
121
|
Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Luger T, Jacobsen F, Steinsträßer L, Paus R, Gkogkolou P, Böhm M, Hatt H, Benecke H. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Invest Dermatol 2014; 134:2823-2832. [PMID: 24999593 DOI: 10.1038/jid.2014.273] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 12/23/2022]
Abstract
As the outermost barrier of the body, the skin is exposed to multiple environmental factors, including temperature, humidity, mechanical stress, and chemical stimuli such as odorants that are often used in cosmetic articles. Keratinocytes, the major cell type of the epidermal layer, express a variety of different sensory receptors that enable them to react to various environmental stimuli and process information in the skin. Here we report the identification of a novel type of chemoreceptors in human keratinocytes, the olfactory receptors (ORs). We cloned and functionally expressed the cutaneous OR, OR2AT4, and identified Sandalore, a synthetic sandalwood odorant, as an agonist of this receptor. Sandalore induces strong Ca(2+) signals in cultured human keratinocytes, which are mediated by OR2AT4, as demonstrated by receptor knockdown experiments using RNA interference. The activation of OR2AT4 induces a cAMP-dependent pathway and phosphorylation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinases (p38 MAPK). Moreover, the long-term stimulation of keratinocytes with Sandalore positively affected cell proliferation and migration, and regeneration of keratinocyte monolayers in an in vitro wound scratch assay. These findings combined with our studies on human skin organ cultures strongly indicate that the OR 2AT4 is involved in human keratinocyte re-epithelialization during wound-healing processes.
Collapse
Affiliation(s)
- Daniela Busse
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Philipp Kudella
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Günter Gisselmann
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Sonja Ständer
- Department of Dermatology, Competence Centre Chronic Pruritus, University Hospital Münster, Münster, Germany
| | | | - Frank Jacobsen
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Lars Steinsträßer
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Paus
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Paraskevi Gkogkolou
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Markus Böhm
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Hanns Hatt
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany.
| | - Heike Benecke
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
122
|
Boi S, Tebaldi T, Re A, Cantaloni C, Adami V, Barbareschi M, Cristofolini M, Pasini L, Quattrone A. Increased frequency of minimal homozygous deletions is associated with poor prognosis in primary malignant melanoma patients. Genes Chromosomes Cancer 2014; 53:487-96. [PMID: 24615732 DOI: 10.1002/gcc.22160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/09/2014] [Indexed: 12/30/2022] Open
Abstract
Identification of prognostic melanoma-associated copy number alterations (CNAs) is still an area of active research. Here, we investigated by high-resolution array comparative genomic hybridization (aCGH) a cohort of 31 paraffin-preserved primary malignant melanomas (MMs), whose prognosis was not predictable on the basis of conventional histopathological parameters. Although we identified a variety of highly recurrent sites of genomic lesions, the total number of CNAs per patient was not a discriminator of MM outcome. Furthermore, validation of aCGH by quantitative PCR on an extended population of 65 MM samples confirmed the absence of predictive value for the most recurrent CNA loci. Instead, our analysis revealed specific prognostic potential of the frequency of homozygous deletions (representing less than 3% of the total CNAs on average per sample), which was strongly associated with sentinel lymph node (SLN) invasion (P = 0.003), and distant metastasis (P = 0.003). Increased number of homozygous deletions was also indicative of poor patient survival (P = 0.01), both in our samples and in an independent validation of public dataset of primary and metastatic MMs. Moreover, we identified 77 hotspots of minimal common homozygous deletions, enriched in genes involved in cell adhesion processes and cell-communication functions, which preferentially accumulated in primary MMs showing the most severe outcome. Therefore, specific loss of gene loci in regions of minimal homozygous deletion may represent a pivotal type of genomic alteration accumulating during MM progression with potential prognostic implication.
Collapse
Affiliation(s)
- Sebastiana Boi
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Verbeurgt C, Wilkin F, Tarabichi M, Gregoire F, Dumont JE, Chatelain P. Profiling of olfactory receptor gene expression in whole human olfactory mucosa. PLoS One 2014; 9:e96333. [PMID: 24800820 PMCID: PMC4011832 DOI: 10.1371/journal.pone.0096333] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the expressed olfactory receptors gene set.
Collapse
Affiliation(s)
- Christophe Verbeurgt
- Department of Otorhinolaryngology, Erasme University Hospital, Brussels, Belgium
| | | | - Maxime Tarabichi
- Institute of Interdisciplinary Research in human and molecular Biology, Free University of Brussels, Brussels, Belgium
| | - Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Department of Biochemistry, Free University of Brussels, Brussels, Belgium
| | - Jacques E. Dumont
- Institute of Interdisciplinary Research in human and molecular Biology, Free University of Brussels, Brussels, Belgium
| | | |
Collapse
|
124
|
Secundo L, Snitz K, Sobel N. The perceptual logic of smell. Curr Opin Neurobiol 2014; 25:107-15. [DOI: 10.1016/j.conb.2013.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 12/01/2022]
|
125
|
Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ, Ben-Shahar Y. Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 2014; 50:637-46. [PMID: 24134460 PMCID: PMC4068934 DOI: 10.1165/rcmb.2013-0199oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/04/2013] [Indexed: 12/28/2022] Open
Abstract
The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary pulmonary neuroendocrine cells (PNECs), which are morphologically distinct and physiologically undefined, might serve as chemosensory cells in human airways. This conclusion is based on our finding that some human PNECs expressed members of the olfactory receptor (OR) family in vivo and in primary cell culture, and are anatomically positioned in the airway epithelium to respond to inhaled volatile chemicals. Furthermore, apical exposure of primary-culture human airway epithelial cells to volatile chemicals decreased levels of serotonin in PNECs, and the led to the release of the neuropeptide calcitonin gene-related peptide (CGRP) to the basal medium. These data suggest that volatile stimulation of PNECs can lead to the secretion of factors that are capable of stimulating the corresponding receptors in the lung epithelium. We also found that the distribution of serotonin and neuropeptide receptors may change in chronic obstructive pulmonary disease, suggesting that increased PNEC-dependent chemoresponsiveness might contribute to the altered sensitivity to volatile stimuli in this disease. Together, these data indicate that human airway epithelia harbor specialized cells that respond to volatile chemical stimuli, and may help to explain clinical observations of odorant-induced airway reactions.
Collapse
Affiliation(s)
- Xiaoling Gu
- Department of Biology, Washington University in St. Louis, Missouri
| | - Philip H. Karp
- Howard Hughes Medical Institute, Departments of Internal Medicine, and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Richard A. Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Michael J. Welsh
- Howard Hughes Medical Institute, Departments of Internal Medicine, and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, Missouri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
126
|
Lund B, Wesolowska-Andersen A, Lausen B, Borst L, Rasmussen KK, Müller K, Klungland H, Gupta R, Schmiegelow K. Host genome variations and risk of infections during induction treatment for childhood acute lymphoblastic leukaemia. Eur J Haematol 2014; 92:321-30. [DOI: 10.1111/ejh.12243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Bendik Lund
- Department of Paediatrics; St. Olavs Hospital; Trondheim Norway
- Department of Laboratory Medicine, Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | | | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Louise Borst
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Kirsten Kørup Rasmussen
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Helge Klungland
- Department of Laboratory Medicine, Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Ramneek Gupta
- Center for Biological Sequence Analysis; Technical University of Denmark; Lyngby Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
- The Institute of Gynaecology, Obstetrics and Paediatrics; The Faculty of Health Sciences; The University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
127
|
Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 2013; 142:41-61. [PMID: 24280065 DOI: 10.1016/j.pharmthera.2013.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are prime therapeutic targets. The odorant and taste receptors account for over half of the GPCR repertoire, yet they are generally excluded from large-scale, drug candidate analyses. Accumulating molecular evidence indicates that the odorant and taste receptors are widely expressed throughout the body and functional beyond the oronasal cavity - with roles including nutrient sensing, autophagy, muscle regeneration, regulation of gut motility, protective airway reflexes, bronchodilation, and respiratory disease. Given this expanding array of actions, the restricted perception of these GPCRs as mere mediators of smell and taste is outdated. Moreover, delineation of the precise actions of odorant and taste GPCRs continues to be hampered by the relative paucity of selective and specific experimental tools, as well as the lack of defined receptor pharmacology. In this review, we summarize the evidence for expression and function of odorant and taste receptors in tissues beyond the nose and mouth, and we highlight their broad potential in physiology and pathophysiology.
Collapse
|
128
|
Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production. PLoS One 2013; 8:e80148. [PMID: 24278251 PMCID: PMC3836993 DOI: 10.1371/journal.pone.0080148] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/29/2013] [Indexed: 12/31/2022] Open
Abstract
Background Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs), however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ) and lipopolysaccharide (LPS) drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS) stimulation, and further explored the effect of odorant stimulation on macrophage function. Methodology/Principal Findings OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622) on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant) exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. Conclusions/Significance Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1 production and the motility of macrophages. Our results suggest that ORs may mediate macrophage function by regulating MCP-1 production and cell migration.
Collapse
|
129
|
Bando SY, Silva FN, Costa LDF, Silva AV, Pimentel-Silva LR, Castro LHM, Wen HT, Amaro E, Moreira-Filho CA. Complex network analysis of CA3 transcriptome reveals pathogenic and compensatory pathways in refractory temporal lobe epilepsy. PLoS One 2013; 8:e79913. [PMID: 24278214 PMCID: PMC3836787 DOI: 10.1371/journal.pone.0079913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022] Open
Abstract
We previously described - studying transcriptional signatures of hippocampal CA3 explants - that febrile (FS) and afebrile (NFS) forms of refractory mesial temporal lobe epilepsy constitute two distinct genomic phenotypes. That network analysis was based on a limited number (hundreds) of differentially expressed genes (DE networks) among a large set of valid transcripts (close to two tens of thousands). Here we developed a methodology for complex network visualization (3D) and analysis that allows the categorization of network nodes according to distinct hierarchical levels of gene-gene connections (node degree) and of interconnection between node neighbors (concentric node degree). Hubs are highly connected nodes, VIPs have low node degree but connect only with hubs, and high-hubs have VIP status and high overall number of connections. Studying the whole set of CA3 valid transcripts we: i) obtained complete transcriptional networks (CO) for FS and NFS phenotypic groups; ii) examined how CO and DE networks are related; iii) characterized genomic and molecular mechanisms underlying FS and NFS phenotypes, identifying potential novel targets for therapeutic interventions. We found that: i) DE hubs and VIPs are evenly distributed inside the CO networks; ii) most DE hubs and VIPs are related to synaptic transmission and neuronal excitability whereas most CO hubs, VIPs and high hubs are related to neuronal differentiation, homeostasis and neuroprotection, indicating compensatory mechanisms. Complex network visualization and analysis is a useful tool for systems biology approaches to multifactorial diseases. Network centrality observed for hubs, VIPs and high hubs of CO networks, is consistent with the network disease model, where a group of nodes whose perturbation leads to a disease phenotype occupies a central position in the network. Conceivably, the chance for exerting therapeutic effects through the modulation of particular genes will be higher if these genes are highly interconnected in transcriptional networks.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | | | | | - Alexandre V. Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Luiz HM. Castro
- Clinical Neurology Division, Hospital das Clínicas da FMUSP, São Paulo, São Paulo, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da FMUSP, São Paulo, São Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| |
Collapse
|
130
|
Zhao W, Ho L, Varghese M, Yemul S, Dams-O'Connor K, Gordon W, Knable L, Freire D, Haroutunian V, Pasinetti GM. Decreased level of olfactory receptors in blood cells following traumatic brain injury and potential association with tauopathy. J Alzheimers Dis 2013; 34:417-429. [PMID: 23241557 DOI: 10.3233/jad-121894] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States. In this study, we explored whether changes in the gene expression profile of peripheral blood mononuclear cells (PBMC) may provide a clinically assessable "window" into the brain, reflecting molecular alterations following TBI that might contribute to the onset and progression of TBI clinical complications. We identified three olfactory receptor (OR) TBI biomarkers that are aberrantly down-regulated in PBMC specimens from TBI subjects. Down-regulation of these OR biomarkers in PBMC was correlated with the severity of brain injury and TBI-specific symptoms. A two- biomarker panel comprised of OR11H1 and OR4M1 provided the best criterion for segregating the TBI and control cases with 90% accuracy, 83.3% sensitivity, and 100% specificity. We found that the OR biomarkers are ectopically expressed in multiple brain regions, including the entorhinal-hippocampus system known to play an important role in memory formation and consolidation. Activation of OR4M1 led to attenuation of abnormal tau phosphorylation, possibly through JNK signaling pathway. Our results suggested that addition of the two-OR biomarker model to current diagnostic criteria may lead to improved TBI detection for clinical trials, and decreased expression of OR TBI biomarkers might be associated with TBI-induced tauopathy. Future studies exploring the physiological relevance of OR TBI biomarkers in the normal brain and in the brain following TBI will provide a better understanding of the biological mechanisms underlying TBI and insights into novel therapeutic targets for TBI.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Merina Varghese
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Shrishailam Yemul
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.,GRECC, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | | | - Wayne Gordon
- Department of Rehabilitation, Mount Sinai School of Medicine, New York, NY, USA
| | - Lindsay Knable
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Daniel Freire
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.,GRECC, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
131
|
Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I. Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. Neuroscience 2013; 248:369-82. [DOI: 10.1016/j.neuroscience.2013.06.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/17/2023]
|
132
|
Abstract
Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions. [BMB Reports 2012; 45(11): 612-622]
Collapse
Affiliation(s)
- NaNa Kang
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | | |
Collapse
|
133
|
Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J Neuropathol Exp Neurol 2013; 72:524-39. [PMID: 23656994 DOI: 10.1097/nen.0b013e318294fd76] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Parkinson disease (PD) is no longer considered a complex motor disorder but rather a systemic disease with variable nonmotor deficits that may include impaired olfaction, depression, mood and sleep disorders, and altered cortical function. Increasing evidence indicates that multiple metabolic defects occur in regions outside the substantia nigra, including the cerebral cortex, even at premotor stages of the disease. We investigated changes in gene expression in the frontal cortex in PD patient brains using a transcriptomics approach. Functional genomics analysis indicated that cortical olfactory receptors (ORs) and taste receptors (TASRs) are altered in PD patients. Olfactory receptors OR2L13, OR1E1, OR2J3, OR52L1, and OR11H1 and taste receptors TAS2R5 and TAS2R50 were downregulated, but TAS2R10 and TAS2R13 were upregulated at premotor and parkinsonian stages in the frontal cortex area 8 in PD patient brains. Furthermore, we present novel evidence that, in addition to the ORs, obligate downstream components of OR function adenylyl cyclase 3 and olfactory G protein (Gαolf), OR transporters, receptor transporter proteins 1 and 2 and receptor expression enhancing protein 1, and OR xenobiotic removing UDP-glucuronosyltransferase 1 family polypeptide A6 are widely expressed in neurons of the cerebral cortex and other regions of the adult human brain. Together, these findings support the concept that ORs and TASRs in the cerebral cortex may have novel physiologic functions that are affected in PD patients.
Collapse
|
134
|
Abstract
Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas "ancestral" v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates.
Collapse
|
135
|
Olender T, Safran M, Edgar R, Stelzer G, Nativ N, Rosen N, Shtrichman R, Mazor Y, West MD, Keydar I, Rappaport N, Belinky F, Warshawsky D, Lancet D. An Overview of Synergistic Data Tools for Biological Scrutiny. Isr J Chem 2013. [DOI: 10.1002/ijch.201200094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
136
|
Quintela T, Gonçalves I, Carreto LC, Santos MAS, Marcelino H, Patriarca FM, Santos CRA. Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays. PLoS One 2013; 8:e60199. [PMID: 23585832 PMCID: PMC3622009 DOI: 10.1371/journal.pone.0060199] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 01/20/2023] Open
Abstract
The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis.
Collapse
Affiliation(s)
- Telma Quintela
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Laura C. Carreto
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Helena Marcelino
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Filipa M. Patriarca
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- * E-mail:
| |
Collapse
|
137
|
Zhang X, Eggert US. Non-traditional roles of G protein-coupled receptors in basic cell biology. MOLECULAR BIOSYSTEMS 2013; 9:586-95. [PMID: 23247090 PMCID: PMC3628546 DOI: 10.1039/c2mb25429h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are key signaling proteins that regulate how cells interact with their environment. Traditional signaling cascades involving GPCRs have been well described and are well established and very important clinical targets. With the development of more recent technologies, hints about the involvement of GPCRs in fundamental cell biological processes are beginning to emerge. In this review, we give a basic introduction to GPCR signaling and highlight some less well described roles of GPCRs, including in cell division and membrane trafficking, which may occur through canonical and non-canonical signaling pathways.
Collapse
Affiliation(s)
- Xin Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, P.R. China
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| |
Collapse
|
138
|
Decreased Perception of Bourgeonal May Be Linked to Male Idiopathic Infertility. Chem Senses 2013; 38:439-45. [DOI: 10.1093/chemse/bjt009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
139
|
Ottaviano G, Zuccarello D, Menegazzo M, Perilli L, Marioni G, Frigo AC, Staffieri A, Foresta C. Human olfactory sensitivity for bourgeonal and male infertility: a preliminary investigation. Eur Arch Otorhinolaryngol 2013; 270:3079-86. [PMID: 23525651 DOI: 10.1007/s00405-013-2441-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
Abstract
Olfactory receptor (OR) expression is also present in the sperm cells and could mediate sperm chemotaxis. OR1D2 was the first OR expressed in the testis demonstrated to be involved in chemotaxis and to be expressed also in the nose with a similar behavior. Bourgeonal is the OR1D2 most potent known agonist. Infertility affects ~15 % of couples in western countries and sometimes it is unexplained. This pilot study compared the bourgeonal olfactory thresholds, the ability of sperm to sense the bourgeonal and the frequency of 13 single nucleotide polymorphisms (SNPs) of OR1D2 gene in nine males suffering of unexplained infertility with a control group of 15 healthy males. The mean olfactory threshold for bourgeonal was statistically different between the study group (10.5 ± 3.7; median 12.3) and the control group (14.0 ± 2.8; median 15.5) (p = 0.006). Statistical analysis showed a significantly higher percentage of spermatozoa that migrated toward the capillaries filled with bourgeonal in the control group compared to the study group (p < 0.0001). Sperm migration was equally inhibited in both groups of subjects when, together with bourgeonal, capillaries were filled with undecanal, a strong bourgeonal inhibitor (p = 0.42). The 13 SNPs of OR1D2 revealed a statistically significant difference for allele and genotype frequency of rs769423 in study group versus control group (p = 0.02). The present preliminary study seems to confirm the important role of OR1D2 both in nose and spermatozoa and may explain the idiopathic infertility of the study group. Further studies on larger series are mandatory to confirm our preliminary evidence.
Collapse
Affiliation(s)
- G Ottaviano
- Department of Neurosciences, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128, Padua, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Shadravan F. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity. Front Genet 2013; 4:32. [PMID: 23503716 PMCID: PMC3596775 DOI: 10.3389/fgene.2013.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/26/2013] [Indexed: 12/22/2022] Open
Abstract
Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV), known to cause genetic disorders was explored. As the olfactory receptor (OR) repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CNVs detected among 791 OR loci, in which 307 loci showed CNV, revealed the following novel findings: Sex bias in CNV was significantly more prevalent in uncommon than common CNV variants of OR pseudogenes, in which the male genome showed more CNVs; and in one-copy number loss compared to complete deletion of OR pseudogenes; both findings implying a more recent evolutionary role for gender. Sex bias in copy number gain was also detected. Another novel finding was that the observed sex bias was largely dependent on ethnicity and was in general absent in East Asians. Using a CNV public database for sick children (International Standard Cytogenomic Array Consortium) the application of these findings for improving clinical molecular diagnostics is discussed by showing an example of sex bias in CNV among kids with autism. Additional clinical relevance is discussed, as the most polymorphic CNV-enriched OR cluster in the human genome, located on chr 15q11.2, is found near the Prader–Willi syndrome/Angelman syndrome bi-directionally imprinted region associated with two well-known mental retardation syndromes. As olfaction represents the primitive cognition in most mammals, arguably in competition with the development of a larger brain, the extensive retention of OR pseudogenes in females of this study, might point to a parent-of-origin indirect regulatory role for OR pseudogenes in the embryonic development of human brain. Thus any perturbation in the temporal regulation of olfactory system could lead to developmental delay disorders including mental retardation.
Collapse
Affiliation(s)
- Farideh Shadravan
- *Correspondence: Farideh Shadravan, 2584 San Jose Ave, San Francisco, CA 94112, USA. e-mail:
| |
Collapse
|
141
|
Flegel C, Manteniotis S, Osthold S, Hatt H, Gisselmann G. Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS One 2013; 8:e55368. [PMID: 23405139 PMCID: PMC3566163 DOI: 10.1371/journal.pone.0055368] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/21/2012] [Indexed: 02/03/2023] Open
Abstract
Olfactory receptors (ORs) provide the molecular basis for the detection of volatile odorant molecules by olfactory sensory neurons. The OR supergene family encodes G-protein coupled proteins that belong to the seven-transmembrane-domain receptor family. It was initially postulated that ORs are exclusively expressed in the olfactory epithelium. However, recent studies have demonstrated ectopic expression of some ORs in a variety of other tissues. In the present study, we conducted a comprehensive expression analysis of ORs using an extended panel of human tissues. This analysis made use of recent dramatic technical developments of the so-called Next Generation Sequencing (NGS) technique, which encouraged us to use open access data for the first comprehensive RNA-Seq expression analysis of ectopically expressed ORs in multiple human tissues. We analyzed mRNA-Seq data obtained by Illumina sequencing of 16 human tissues available from Illumina Body Map project 2.0 and from an additional study of OR expression in testis. At least some ORs were expressed in all the tissues analyzed. In several tissues, we could detect broadly expressed ORs such as OR2W3 and OR51E1. We also identified ORs that showed exclusive expression in one investigated tissue, such as OR4N4 in testis. For some ORs, the coding exon was found to be part of a transcript of upstream genes. In total, 111 of 400 OR genes were expressed with an FPKM (fragments per kilobase of exon per million fragments mapped) higher than 0.1 in at least one tissue. For several ORs, mRNA expression was verified by RT-PCR. Our results support the idea that ORs are broadly expressed in a variety of tissues and provide the basis for further functional studies.
Collapse
Affiliation(s)
- Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Sandra Osthold
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
142
|
Spielman SJ, Wilke CO. Membrane environment imposes unique selection pressures on transmembrane domains of G protein-coupled receptors. J Mol Evol 2013; 76:172-82. [PMID: 23355009 DOI: 10.1007/s00239-012-9538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/25/2022]
Abstract
We have investigated the influence of the plasma membrane environment on the molecular evolution of G protein-coupled receptors (GPCRs), the largest receptor family in Metazoa. In particular, we have analyzed the site-specific rate variation across the two primary structural partitions, transmembrane (TM) and extramembrane (EM), of these membrane proteins. We find that TM domains evolve more slowly than do EM domains, though TM domains display increased rate heterogeneity relative to their EM counterparts. Although the majority of residues across GPCRs experience strong to weak purifying selection, many GPCRs experience positive selection at both TM and EM residues, albeit with a slight bias towards the EM. Further, a subset of GPCRs, chemosensory receptors (including olfactory and taste receptors), exhibit increased rates of evolution relative to other GPCRs, an effect which is more pronounced in their TM spans. Although it has been previously suggested that the TM's low evolutionary rate is caused by their high percentage of buried residues, we show that their attenuated rate seems to stem from the strong biophysical constraints of the membrane itself, or by functional requirements. In spite of the strong evolutionary constraints acting on the TM spans of GPCRs, positive selection and high levels of evolutionary rate variability are common. Thus, biophysical constraints should not be presumed to preclude a protein's ability to evolve.
Collapse
|
143
|
Abstract
Olfactory receptors (ORs) constitute the largest gene family in the mammalian genome. The existence of these proteins underlies the nature of, and variability in, odorant perception. The Human Olfactory Receptor Data Explorer (HORDE, http://genome.weizmann.ac.il/horde/ ) is a free online resource, which presents a complete compendium of all OR genes and pseudogenes in the genome of human and four other vertebrates. HORDE includes three parts: (1) an automated pipeline, which mines OR gene and pseudogene sequences out of complete genomes, and generates gene symbols based on sequence similarity; (2) a card generator that obtains and displays annotative information on individual ORs retrieved from external databases and relevant studies; and (3) a search engine that allows user retrieval of OR information. For human ORs, HORDE specifically addresses the universe of interindividual variation, as obtained from several sources, including whole genome sequences made possible by next-generation sequencing. This encompasses single nucleotide polymorphisms (SNP) and copy number variation (CNV), including deleterious mutational events. HORDE also hosts a number of tools designed specifically to assist in the study of OR evolution and function. In this chapter, we describe the status of HORDE (build #43). We also discuss plans for future enhancements and a road map for HORDE to become a better community-based bioinformatics tool. We highlight HORDE's role as a major research tool in the study of an expanding cohort of OR repertoires.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
144
|
Wei P, Tang H, Li D. Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data. PLoS One 2012; 7:e46887. [PMID: 23056513 PMCID: PMC3464266 DOI: 10.1371/journal.pone.0046887] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreatic cancer is the fourth leading cause of cancer death in the U.S. and the etiology of this highly lethal disease has not been well defined. To identify genetic susceptibility factors for pancreatic cancer, we conducted pathway analysis of genome-wide association study (GWAS) data in 3,141 pancreatic cancer patients and 3,367 controls with European ancestry. METHODS Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways identified from the Kyoto Encyclopedia of Genes and Genomes database. We used the logistic kernel machine (LKM) test to identify major contributing genes to each pathway. We conducted functional enrichment analysis of the most significant genes (P<0.01) using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS Two pathways were significantly associated with risk of pancreatic cancer after adjusting for multiple comparisons (P<0.00025) and in replication testing: neuroactive ligand-receptor interaction, (Ps<0.00002), and the olfactory transduction pathway (P = 0.0001). LKM test identified four genes that were significantly associated with risk of pancreatic cancer after Bonferroni correction (P<1×10(-5)): ABO, HNF1A, OR13C4, and SHH. Functional enrichment analysis using DAVID consistently found the G protein-coupled receptor signaling pathway (including both neuroactive ligand-receptor interaction and olfactory transduction pathways) to be the most significant pathway for pancreatic cancer risk in this study population. CONCLUSION These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Wei
- Division of Biostatistics and Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
145
|
Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 2012; 13:103-14. [PMID: 23024602 PMCID: PMC3308321 DOI: 10.2174/138920212799860706] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/12/2011] [Accepted: 09/29/2011] [Indexed: 01/17/2023] Open
Abstract
Olfaction is essential for the survival of animals. Diverse odor molecules in the environment are detected by the olfactory receptors (ORs) in the olfactory epithelium of the nasal cavity. There are ~400 and ~1,000 OR genes in the human and mouse genomes, respectively, forming the largest multigene family in mammals. The relationships between ORs and odorants are multiple-to-multiple, which allows for discriminating almost unlimited number of different odorants by a combination of ORs. However, the OR-ligand relationships are still largely unknown, and predicting the quality of odor from its molecular structure is unsuccessful.Extensive bioinformatic analyses using the whole genomes of various organisms revealed a great variation in number of OR genes among species, reflecting the diversity of their living environments. For example, higher primates equipped with a well-developed vision system and dolphins that are secondarily adapted to the aquatic life have considerably smaller numbers of OR genes than most of other mammals do. OR genes are characterized by extremely frequent gene duplications and losses. The OR gene repertories are also diverse among human individuals, explaining the diversity of odor perception such as the specific anosmia.OR genes are present in all vertebrates. The number of OR genes is smaller in teleost fishes than in mammals, while the diversity is higher in the former than the latter. Because the genome of amphioxus, the most basal chordate species, harbors vertebrate-like OR genes, the origin of OR genes can be traced back to the common ancestor of the phylum Chordata.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
146
|
Launay G, Sanz G, Pajot-Augy E, Gibrat JF. Modeling of mammalian olfactory receptors and docking of odorants. Biophys Rev 2012; 4:255-269. [PMID: 28510073 DOI: 10.1007/s12551-012-0080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022] Open
Abstract
Olfactory receptors (ORs) belong to the superfamily of G protein-coupled receptors (GPCRs), the second largest class of genes after those related to immunity, and account for about 3 % of mammalian genomes. ORs are present in all multicellular organisms and represent more than half the GPCRs in mammalian species (e.g., the mouse OR repertoire contains >1,000 functional genes). ORs are mainly expressed in the olfactory epithelium where they detect odorant molecules, but they are also expressed in a number of other cells, such as sperm cells, although their functions in these cells remain mostly unknown. It has recently been reported that ORs are present in tumoral tissues where they are expressed at different levels than in healthy tissues. A specific OR is over-expressed in prostate cancer cells, and activation of this OR has been shown to inhibit the proliferation of these cells. Odorant stimulation of some of these receptors results in inhibition of cell proliferation. Even though their biological role has not yet been elucidated, these receptors might constitute new targets for diagnosis and therapeutics. It is important to understand the activation mechanism of these receptors at the molecular level, in particular to be able to predict which ligands are likely to activate a particular receptor ('deorphanization') or to design antagonists for a given receptor. In this review, we describe the in silico methodologies used to model the three-dimensional (3D) structure of ORs (in the more general framework of GPCR modeling) and to dock ligands into these 3D structures.
Collapse
Affiliation(s)
- Guillaume Launay
- Equipe interactions hôte-pathogène, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon1, 7 Passage du Vercors, Lyon cedex 07, France
| | - Guenhaël Sanz
- Neurobiologie de l'Olfaction et Modélisation en Imagerie UR1197, INRA, 78350, Jouy-en-Josas, France
| | - Edith Pajot-Augy
- Neurobiologie de l'Olfaction et Modélisation en Imagerie UR1197, INRA, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
147
|
Abstract
The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain). In this work, I show that a greater number of C2H2-ZFgenes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB) genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes). The evolutionary turnover of C2H2-ZF(-KRAB) genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB) genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues), whereas a lower amount - in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend). These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.
Collapse
|
148
|
Abstract
Ancestral environmental exposures have previously been shown to promote epigenetic transgenerational inheritance and influence all aspects of an individual's life history. In addition, proximate life events such as chronic stress have documented effects on the development of physiological, neural, and behavioral phenotypes in adulthood. We used a systems biology approach to investigate in male rats the interaction of the ancestral modifications carried transgenerationally in the germ line and the proximate modifications involving chronic restraint stress during adolescence. We find that a single exposure to a common-use fungicide (vinclozolin) three generations removed alters the physiology, behavior, metabolic activity, and transcriptome in discrete brain nuclei in descendant males, causing them to respond differently to chronic restraint stress. This alteration of baseline brain development promotes a change in neural genomic activity that correlates with changes in physiology and behavior, revealing the interaction of genetics, environment, and epigenetic transgenerational inheritance in the shaping of the adult phenotype. This is an important demonstration in an animal that ancestral exposure to an environmental compound modifies how descendants of these progenitor individuals perceive and respond to a stress challenge experienced during their own life history.
Collapse
|
149
|
Amano T, Gascuel J. Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis. PLoS One 2012; 7:e33922. [PMID: 22509266 PMCID: PMC3324471 DOI: 10.1371/journal.pone.0033922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 02/23/2012] [Indexed: 01/30/2023] Open
Abstract
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.
Collapse
Affiliation(s)
- Tosikazu Amano
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Jean Gascuel
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| |
Collapse
|
150
|
Genetics of canine olfaction and receptor diversity. Mamm Genome 2011; 23:132-43. [PMID: 22080304 DOI: 10.1007/s00335-011-9371-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/23/2011] [Indexed: 01/06/2023]
Abstract
Olfaction is a particularly important sense in the dog. Humans selected for this capacity during the domestication process, and selection has continued to be employed to enhance this ability. In this review we first describe the different olfactory systems that exist and the different odorant receptors that are expressed in those systems. We then focus on the dog olfactory receptors by describing the olfactory receptor gene repertoire and its polymorphisms. Finally, we discuss the different uses of dog olfaction and the questions that still need to be studied.
Collapse
|