101
|
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders. Recent major advances have been made in the understanding of the neurobiology and functions of fragile X mental retardation protein, the FMR1 gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to pathways dysregulated in the absence of fragile X mental retardation protein. CONCLUSION These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model, and clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess disease-modifying changes that might be associated with treatment. Genes known to be causes of autistic spectrum disorders interact with the translational pathway defective in FXS and it is likely that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction. Thus targeted treatment and clinical trial strategies in FXS may serve as a model for ASD and other cognitive disorders.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois; Department of Biochemistry, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
102
|
Wong CT, Ahmad E, Li H, Crawford DA. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun Signal 2014; 12:19. [PMID: 24656144 PMCID: PMC4233645 DOI: 10.1186/1478-811x-12-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/13/2014] [Indexed: 01/30/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
103
|
Abstract
Autism spectrum disorder (ASD) represents a heterogeneous group of disorders, which presents a substantial challenge to diagnosis and treatment. Over the past decade, considerable progress has been made in the identification of genetic risk factors for ASD that define specific mechanisms and pathways underlying the associated behavioural deficits. In this Review, we discuss how some of the latest advances in the genetics of ASD have facilitated parsing of the phenotypic heterogeneity of this disorder. We argue that only through such advances will we begin to define endophenotypes that can benefit from targeted, hypothesis-driven treatments. We review the latest technologies used to identify and characterize the genetics underlying ASD and then consider three themes-single-gene disorders, the gender bias in ASD, and the genetics of neurological comorbidities-that highlight ways in which we can use genetics to define the many phenotypes within the autism spectrum. We also present current clinical guidelines for genetic testing in ASD and their implications for prognosis and treatment.
Collapse
|
104
|
The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci 2014; 33:18234-41. [PMID: 24227732 DOI: 10.1523/jneurosci.2207-13.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent protein synthesis at synapses is dysregulated in the Fragile X syndrome (FXS). This process contributes to dendritic spine dysmorphogenesis and synaptic dysfunction in FXS. Matrix Metalloproteinase 9 (MMP-9) is an enzyme involved in activity-dependent reorganization of dendritic spine architecture and was shown to regulate spine morphology in a mouse model of FXS, the Fmr1 knock-out mice. Here we show that MMP-9 mRNA is part of the FMRP complex and colocalizes in dendrites. In the absence of FMRP MMP-9 mRNA translation is increased at synapses, suggesting that this mechanism contributes to the increased metalloproteinase level at synapses of Fmr1 knock-out mice. We propose that such a local effect can contribute to the aberrant dendritic spine morphology observed in the Fmr1 knock-out mice and in patients with FXS.
Collapse
|
105
|
Russo-Ponsaran NM, Yesensky J, Hessl D, Berry-Kravis E. Feasibility, reproducibility, and clinical validity of the pediatric anxiety rating scale-revised for fragile X syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2014; 119:1-16. [PMID: 24450318 PMCID: PMC6916720 DOI: 10.1352/1944-7558-119.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and the most common known genetic cause of autism. FXS is associated with psychiatric impairments, including anxiety disorders. There is a paucity of well-developed measures to characterize anxiety in FXS. However, such scales are needed to measure therapeutic responses to interventions. The Pediatric Anxiety Rating Scale-Revised (PARS-R) was evaluated in 49 individuals with FXS. Feasibility, reproducibility, and clinical validity were assessed. High inter-rater, test-retest, and cross-site reliability were achieved. PARS-R scores were correlated with parent-report and physician ratings of anxiety, suggesting good clinical validity. Results were similar within gender and age subgroups. The PARS-R is a promising tool for measuring the efficacy of interventions targeting anxiety in FXS.
Collapse
|
106
|
Jacquemont S, Berry-Kravis E, Hagerman R, von Raison F, Gasparini F, Apostol G, Ufer M, Des Portes V, Gomez-Mancilla B. The challenges of clinical trials in fragile X syndrome. Psychopharmacology (Berl) 2014; 231:1237-50. [PMID: 24173622 PMCID: PMC3932172 DOI: 10.1007/s00213-013-3289-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/05/2013] [Indexed: 11/28/2022]
Abstract
RATIONALE Advances in understanding the underlying mechanisms of conditions such as fragile X syndrome (FXS) and autism spectrum disorders have revealed heterogeneous populations. Recent trials of novel FXS therapies have highlighted several challenges including subpopulations with possibly differential therapeutic responses, the lack of specific outcome measures capturing the full range of improvements of patients with FXS, and a lack of biomarkers that can track whether a specific mechanism is responsive to a new drug and whether the response correlates with clinical improvement. OBJECTIVES We review the phenotypic heterogeneity of FXS and the implications for clinical research in FXS and other neurodevelopmental disorders. RESULTS Residual levels of fragile X mental retardation protein (FMRP) expression explain in part the heterogeneity in the FXS phenotype; studies indicate a correlation with both cognitive and behavioral deficits. However, this does not fully explain the extent of phenotypic variance observed or the variability of drug response. Post hoc analyses of studies involving the selective mGluR5 antagonist mavoglurant and the GABAB agonist arbaclofen have uncovered significant therapeutic responses following patient stratification according to FMR1 promoter methylation patterns or baseline severity of social withdrawal, respectively. Future studies designed to quantify disease modification will need to develop new strategies to track changes effectively over time and in multiple symptom domains. CONCLUSION Appropriate selection of patients and outcome measures is central to optimizing future clinical investigations of these complex disorders.
Collapse
Affiliation(s)
- Sébastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| | - Randi Hagerman
- MIND Institute and Department of Pediatrics, UC Davis Health System, Sacramento, CA 95817 USA
| | | | - Fabrizio Gasparini
- Novartis Institutes for BioMedical Research Basel, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - George Apostol
- Neuroscience Development, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Mike Ufer
- Novartis Institutes for BioMedical Research Basel, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Vincent Des Portes
- National Reference Center for Fragile X and Other XLMR, Hospices Civils de Lyon, Université de Lyon and CNRS UMR 5304 (L2C2), Bron, France
| | - Baltazar Gomez-Mancilla
- Novartis Institutes for BioMedical Research Basel, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
107
|
Sethna F, Moon C, Wang H. From FMRP function to potential therapies for fragile X syndrome. Neurochem Res 2013; 39:1016-31. [PMID: 24346713 DOI: 10.1007/s11064-013-1229-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5' un-translated region of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
108
|
Drug discovery for autism spectrum disorder: challenges and opportunities. Nat Rev Drug Discov 2013; 12:777-90. [PMID: 24080699 DOI: 10.1038/nrd4102] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The rising rates of autism spectrum disorder (ASD) and the lack of effective medications to treat its core symptoms have led to an increased sense of urgency to identify therapies for this group of neurodevelopmental conditions. Developing drugs for ASD, however, has been challenging because of a limited understanding of its pathophysiology, difficulties in modelling the disease in vitro and in vivo, the heterogeneity of symptoms, and the dearth of prior experience in clinical development. In the past few years these challenges have been mitigated by considerable advances in our understanding of forms of ASD caused by single-gene alterations, such as fragile X syndrome and tuberous sclerosis. In these cases we have gained insights into the pathophysiological mechanisms underlying these conditions. In addition, they have aided in the development of animal models and compounds with the potential for disease modification in clinical development. Moreover, genetic studies are illuminating the molecular pathophysiology of ASD, and new tools such as induced pluripotent stem cells offer novel possibilities for drug screening and disease diagnostics. Finally, large-scale collaborations between academia and industry are starting to address some of the key barriers to developing drugs for ASD. Here, we propose a conceptual framework for drug discovery in ASD encompassing target identification, drug profiling and considerations for clinical trials in this novel area.
Collapse
|
109
|
Wheeler A, Raspa M, Bann C, Bishop E, Hessl D, Sacco P, Bailey DB. Anxiety, attention problems, hyperactivity, and the Aberrant Behavior Checklist in fragile X syndrome. Am J Med Genet A 2013; 164A:141-55. [PMID: 24352914 DOI: 10.1002/ajmg.a.36232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 07/28/2013] [Indexed: 11/07/2022]
Abstract
Behavior problems are a common challenge for individuals with fragile X syndrome (FXS) and constitute the primary clinical outcome domain in trials testing new FXS medications. However, little is known about the relationship between caregiver-reported behavior problems and co-occurring conditions such as anxiety and attention problems. In this study, 350 caregivers, each with at least one son or daughter with full-mutation FXS, rated one of their children with FXS using the Aberrant Behavior Checklist-Community Version (ABC-C); the Anxiety subscale of the Anxiety, Depression, and Mood Scale; and the Attention/Hyperactivity Items from the Symptom Inventories. In addition to examining family consequences of these behaviors, this study also sought to replicate psychometric findings for the ABC-C in FXS, to provide greater confidence for its use in clinical trials with this population. Psychometric properties and baseline ratings of problem behavior were consistent with other recent studies, further establishing the profile of problem behavior in FXS. Cross-sectional analyses suggest that selected dimensions of problem behavior, anxiety, and hyperactivity are age related; thus, age should serve as an important control in any studies of problem behavior in FXS. Measures of anxiety, attention, and hyperactivity were highly associated with behavior problems, suggesting that these factors at least coincide with problem behavior. However, these problems generally did not add substantially to variance in caregiver burden predicted by elevated behavior problems. The results provide further evidence of the incidence of problem behaviors and co-occurring conditions in FXS and the impact of these behaviors on the family.
Collapse
Affiliation(s)
- Anne Wheeler
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | |
Collapse
|
110
|
Gomez-Mancilla B, Berry-Kravis E, Hagerman R, von Raison F, Apostol G, Ufer M, Gasparini F, Jacquemont S. Development of mavoglurant and its potential for the treatment of fragile X syndrome. Expert Opin Investig Drugs 2013; 23:125-34. [PMID: 24251408 DOI: 10.1517/13543784.2014.857400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. With no curative treatment available, current therapeutic approaches are aimed at symptom management. FXS is caused by silencing the FMR1 gene, which encodes FMRP; as loss of FMRP leads to the development of symptoms associated with FXS. AREAS COVERED In this evaluation, the authors examine the role of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of FXS, and its suitability as a target for rescuing the disease state. Furthermore, the authors review the evidence from preclinical studies of pharmacological interventions targeting mGluR5 in FXS. Lastly, the authors assess the findings from clinical studies in FXS, in particular the use of the Aberrant Behavior Checklist-Community Edition (ABC-C) and the recently developed ABC-C for FXS scale, as clinical endpoints to assess disease modification in this patient population. EXPERT OPINION There is cautious optimism for the successful treatment of the core behavioral and cognitive symptoms of FXS based on preclinical data in animal models and early studies in humans. However, the association between mGluR5-heightened responsiveness and the clinical phenotype in humans remains to be demonstrated. Many questions regarding the optimal treatment and outcome measures of FXS remain unanswered.
Collapse
Affiliation(s)
- Baltazar Gomez-Mancilla
- Novartis Institutes for BioMedical Research Basel, Forum 1 , Novartis Campus, CH-4056 Basel , Switzerland +41 61 324 0164 ; +41 61 324 8913 ;
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Andrea S, Jacena LM, Patrick A, Rawi N, Tasleem C, John O, Randi H, David H. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol 2013; 27:956-63. [PMID: 23981511 PMCID: PMC4962861 DOI: 10.1177/0269881113494105] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Minocycline normalizes synaptic connections and behavior in the knockout mouse model of fragile X syndrome (FXS). Human-targeted treatment trials with minocycline have shown benefits in behavioral measures and parent reports. Event-related potentials (ERPs) may provide a sensitive method of monitoring treatment response and changes in coordinated brain activity. Measurement of electrocortical changes due to minocycline was done in a double-blind, placebo-controlled crossover treatment trial in children with FXS. Children with FXS (Meanage 10.5 years) were randomized to minocycline or placebo treatment for 3 months then changed to the other treatment for 3 months. The minocycline dosage ranged from 25-100 mg daily, based on weight. Twelve individuals with FXS (eight male, four female) completed ERP studies using a passive auditory oddball paradigm. Current source density (CSD) and ERP analysis at baseline showed high-amplitude, long-latency components over temporal regions. After 3 months of treatment with minocycline, the temporal N1 and P2 amplitudes were significantly reduced compared with placebo. There was a significant amplitude increase of the central P2 component on minocycline. Electrocortical habituation to auditory stimuli improved with minocycline treatment. Our study demonstrated improvements of the ERP in children with FXS treated with minocycline, and the potential feasibility and sensitivity of ERPs as a cognitive biomarker in FXS treatment trials.
Collapse
Affiliation(s)
- Schneider Andrea
- MIND Institute, University of California at Davis Medical Center, Sacramento, California, USA,Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California, USA
| | - Leigh Mary Jacena
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California, USA
| | - Adams Patrick
- MIND Institute, University of California at Davis Medical Center, Sacramento, California, USA,Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California, USA
| | | | - Chechi Tasleem
- MIND Institute, University of California at Davis Medical Center, Sacramento, California, USA,Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California, USA
| | - Olichney John
- Department of Neurology, University of California at Davis Medical Center, Sacramento, California, USA
| | - Hagerman Randi
- MIND Institute, University of California at Davis Medical Center, Sacramento, California, USA,Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California, USA
| | - Hessl David
- MIND Institute, University of California at Davis Medical Center, Sacramento, California, USA,Department of Psychiatry and Behavioral Sciences, University of California at Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
112
|
Bagni C, Oostra BA. Fragile X syndrome: From protein function to therapy. Am J Med Genet A 2013; 161A:2809-21. [PMID: 24115651 DOI: 10.1002/ajmg.a.36241] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.
Collapse
Affiliation(s)
- Claudia Bagni
- VIB Center for the Biology of Disease, Catholic University of Leuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
113
|
Abdallah MW, Michel TM. Matrix metalloproteinases in autism spectrum disorders. J Mol Psychiatry 2013; 1:16. [PMID: 25408909 PMCID: PMC4223892 DOI: 10.1186/2049-9256-1-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are group of developmental disabilities with a complex neurobiological basis including putative changes in the immune system. They are characterized by pervasive qualitative abnormalities in social interactions, communication, and stereotyped behaviour. Matrix metalloproteinases (MMPs) represent a group of proteases which play an important role in neuroinflammation and neurodevelopment. Therefore, they possibly have a crucial function in the etiopathology of ASD. In this review, we summarize the plausibility of the hypothesis that MMPs are involved in the neuropathology of ASD. Possible pathways through which MMPs can contribute to the pathogenesis of ASD are discussed including neuroinflammatory mechanisms inclusive of mediating neuropathological effects of infections, the associations between MMPs and other biomarkers such as cytokines, chemokines and neurotrophic factors. Despite sufficient evidence for such an involvement of MMPs in the neuropathology of ASD, they have not yet been extensively studied in this context. Thus, further research in this field is not only urgently needed but also very promising and may also lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Morsi W Abdallah
- Department of Psychiatry and Psychotherapy, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147 Germany ; Department of Child and Adolescent Neuropsychiatry, Rostock University Medical Center, Gehlsheimer Str. 20, Rostock, 18147 Germany
| | - Tanja M Michel
- Department of Psychiatry and Psychotherapy, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147 Germany
| |
Collapse
|
114
|
Martyn M, Anderson V, Archibald A, Carter R, Cohen J, Delatycki M, Donath S, Emery J, Halliday J, Hill M, Sheffield L, Slater H, Tassone F, Younie S, Metcalfe S. Offering fragile X syndrome carrier screening: a prospective mixed-methods observational study comparing carrier screening of pregnant and non-pregnant women in the general population. BMJ Open 2013; 3:e003660. [PMID: 24022395 PMCID: PMC3773647 DOI: 10.1136/bmjopen-2013-003660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Fragile X syndrome (FXS) is the leading cause of inherited intellectual and developmental disability. Policy development relating to carrier screening programmes for FXS requires input from large studies examining not only test uptake but also psychosocial aspects. This study will compare carrier screening in pregnant and non-pregnant populations, examining informed decision-making, psychosocial issues and health economics. METHODS AND ANALYSIS Pregnant and non-pregnant women are being recruited from general practices and obstetric services. Women receive study information either in person or through clinic mail outs. Women are provided pretest counselling by a genetic counsellor and make a decision about testing in their own time. Data are being collected from two questionnaires: one completed at the time of making the decision about testing and the second 1 month later. Additional data are gathered through qualitative interviews conducted at several time points with a subset of participating women, including all women with a positive test result, and with staff from recruiting clinics. A minimum sample size of 500 women/group has been calculated to give us 88% power to detect a 10% difference in test uptake and 87% power to detect a 10% difference in informed choice between the pregnant and non-pregnant groups. Questionnaire data will be analysed using descriptive statistics and multivariate logistic regression models. Interview data will be thematically analysed. Willingness-to-pay and cost effectiveness analyses will also be performed. Recruitment started in July 2009 and data collection will be completed by December 2013. ETHICS AND DISSEMINATION Ethics approval has been granted by the Universities of Melbourne and Western Australia and by recruiting clinics, where required. Results will be reported in peer-reviewed publications, conference presentations and through a website http://www.fragilexscreening.net.au. The results of this study will make a significant contribution to discussions about the wider introduction of population carrier screening for FXS.
Collapse
Affiliation(s)
- M Martyn
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Berry-Kravis E, Hessl D, Abbeduto L, Reiss AL, Beckel-Mitchener A, Urv TK. Outcome measures for clinical trials in fragile X syndrome. J Dev Behav Pediatr 2013; 34:508-22. [PMID: 24042082 PMCID: PMC3784007 DOI: 10.1097/dbp.0b013e31829d1f20] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Progress in basic neuroscience has led to identification of molecular targets for treatment in fragile X syndrome (FXS) and other neurodevelopmental disorders; however, there is a gap in translation to targeted therapies in humans. One major obstacle to the demonstration of efficacy in human trials has been the lack of generally accepted endpoints to assess improvement in function in individuals with FXS. To address this problem, the National Institutes of Health convened a meeting of leading scientists and clinicians with the goal of identifying and standardizing outcome measures for use as potential endpoints in clinical trials in FXS. METHODS Participants in the meeting included FXS experts, experts in the design and implementation of clinical trials and measure development, and representatives from advocacy groups, industry, and federal agencies. RESULTS The group generated recommendations for optimal outcome measures in cognitive, behavioral, and biomarker/medical domains, including additional testing and validation of existing measures and development of new measures in areas of need. Although no one endpoint or set of endpoints could be identified that met all criteria as an optimal measure, recommendations are presented in this report. CONCLUSION The report is expected to guide the selection of measures in clinical trials and lead to the use of a more consistent battery of measures across trials. Furthermore, this will help to direct research toward gaps in the development of validated FXS-specific outcome measures and to assist with interpretation of clinical trial data by creating templates for measurement of treatment efficacy.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry Rush University Medical Center, Chicago, IL
| | - David Hessl
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research and Departments of Psychiatry and Behavioral Sciences, Radiology and Pediatrics Stanford University School of Medicine, Stanford, CA
| | | | - Tiina K. Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
116
|
Kato TA, Hayakawa K, Monji A, Kanba S. Missing and Possible Link between Neuroendocrine Factors, Neuropsychiatric Disorders, and Microglia. Front Integr Neurosci 2013; 7:53. [PMID: 23874274 PMCID: PMC3711058 DOI: 10.3389/fnint.2013.00053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/02/2013] [Indexed: 12/27/2022] Open
Abstract
Endocrine systems have long been suggested to be one of the important factors in neuropsychiatric disorders, while the underlying mechanisms have not been well understood. Traditionally, neuropsychiatric disorders have been mainly considered the consequence of abnormal conditions in neural circuitry. Beyond the neuronal doctrine, microglia, one of the glial cells with inflammatory/immunological functions in the central nervous system (CNS), have recently been suggested to play important roles in neuropsychiatric disorders. However, the crosstalk between neuroendocrine factors, neuropsychiatric disorders, and microglia has been unsolved. Therefore, we herein introduce and discuss a missing and possible link between these three factors; especially highlighting the following hormones; (1) Hypothalamic-Pituitary-Adrenal (HPA) axis-related hormones such as corticotropin-releasing hormone (CRH) and glucocorticoids, (2) sex-related hormones such as estrogen and progesterone, and (3) oxytocin. A growing body of evidence has suggested that these hormones have a direct effect on microglia. We hypothesize that hormone-induced microglial activation and the following microglia-derived mediators may lead to maladaptive neuronal networks including synaptic dysfunctions, causing neuropsychiatric disorders. Future investigations to clarify the correlation between neuroendocrine factors and microglia may contribute to a novel understanding of the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan ; Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka , Japan
| | | | | | | |
Collapse
|
117
|
Dziembowska M, Pretto DI, Janusz A, Kaczmarek L, Leigh MJ, Gabriel N, Durbin-Johnson B, Hagerman RJ, Tassone F. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet A 2013; 161A:1897-903. [DOI: 10.1002/ajmg.a.36023] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Affiliation(s)
| | - Dalyir I. Pretto
- Department of Biochemistry and Molecular Medicine, School of Medicine; University of California at Davis; Davis; California
| | | | | | | | - Nielsen Gabriel
- Department of Biochemistry and Molecular Medicine, School of Medicine; University of California at Davis; Davis; California
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences; School of Medicine, University of California; Davis; California
| | | | | |
Collapse
|
118
|
Progress toward treatments for synaptic defects in autism. Nat Med 2013; 19:685-94. [PMID: 23744158 DOI: 10.1038/nm.3193] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/11/2013] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) encompasses a range of disorders that are characterized by social and communication deficits and repetitive behaviors. For the majority of affected individuals, the cause of ASD remains unknown, but in at least 20% of the cases, a genetic cause can be identified. There is currently no cure for ASD; however, results from mouse models indicate that some forms of the disorder could be alleviated even at the adult stage. Genes involved in ASD seem to converge on common pathways altering synaptic homeostasis. We propose, given the clinical heterogeneity of ASD, that specific 'synaptic clinical trials' should be designed and launched with the aim of establishing whether phenotype 'reversals' could also occur in humans.
Collapse
|
119
|
Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience 2013; 246:186-98. [PMID: 23660195 DOI: 10.1016/j.neuroscience.2013.04.058] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/18/2022]
Abstract
Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder. Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in "fragile X mental retardation gene" knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4- and 8-week-long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model.
Collapse
|
120
|
The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 2013; 16:1530-6. [PMID: 23584741 DOI: 10.1038/nn.3379] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022]
Abstract
De novo protein synthesis is necessary for long-lasting modifications in synaptic strength and dendritic spine dynamics that underlie cognition. Fragile X syndrome (FXS), characterized by intellectual disability and autistic behaviors, holds promise for revealing the molecular basis for these long-term changes in neuronal function. Loss of function of the fragile X mental retardation protein (FMRP) results in defects in synaptic plasticity and cognition in many models of the disease. FMRP is a polyribosome-associated RNA-binding protein that regulates the synthesis of a set of plasticity-reated proteins by stalling ribosomal translocation on target mRNAs. The recent identification of mRNA targets of FMRP and its upstream regulators, and the use of small molecules to stall ribosomes in the absence of FMRP, have the potential to be translated into new therapeutic avenues for the treatment of FXS.
Collapse
|
121
|
A pilot open-label trial of minocycline in patients with autism and regressive features. J Neurodev Disord 2013; 5:9. [PMID: 23566357 PMCID: PMC3663771 DOI: 10.1186/1866-1955-5-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/20/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Minocycline is a tetracycline derivative that readily crosses the blood brain barrier and appears to have beneficial effects on neuroinflammation, microglial activation and neuroprotection in a variety of neurological disorders. Both microglial activation and neuroinflammation have been reported to be associated with autism. The study was designed to evaluate the effects of minocycline treatment on markers of neuroinflammation and autism symptomatology in children with autism and a history of developmental regression. METHODS Eleven children were enrolled in an open-label trial of six months of minocycline (1.4 mg/kg). Ten children completed the trial. Behavioral measures were collected and cerebrospinal fluid (CSF), serum and plasma were obtained before and at the end of minocycline treatment and were analyzed for markers of neuroinflammation. RESULTS Clinical improvements were negligible. The laboratory assays demonstrated significant changes in the expression profile of the truncated form of brain derived neurotrophic factor (BDNF) (P = 0.042) and hepatic growth factor (HGF) (P = 0.028) in CSF. In serum, the ratio of the truncated BDNF form and α-2 macroglobulin (α-2 M), was also significantly lower (P = 0.028) while the mature BDNF/α-2 M ratio revealed no difference following treatment. Only the chemokine CXCL8 (IL-8) was significantly different (P = 0.047) in serum while no significant changes were observed in CSF or serum in chemokines such as CCL2 (MCP-1) or cytokines such as TNF-α, CD40L, IL-6, IFN-γ and IL-1β when pre- and post-treatment levels of these proteins were compared. No significant pre- and post-treatment changes were seen in the profiles of plasma metalloproteinases, putative targets of the effects of minocycline. CONCLUSIONS Changes in the pre- and post-treatment profiles of BDNF in CSF and blood, HGF in CSF and CXCL8 (IL-8) in serum, suggest that minocycline may have effects in the CNS by modulating the production of neurotrophic growth factors. However, in this small group of children, no clinical improvements were observed during or after the six months of minocycline administration. TRIAL REGISTRATION NCT00409747.
Collapse
|
122
|
A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. J Dev Behav Pediatr 2013; 34:147-55. [PMID: 23572165 PMCID: PMC3706260 DOI: 10.1097/dbp.0b013e318287cd17] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Minocycline rescued synaptic abnormalities and improved behavior in the fragile X mouse model. Previous open-label human studies demonstrated benefits in individuals with fragile X syndrome (FXS); however, its efficacy in patients with FXS has not been assessed in a controlled trial. METHOD Randomized, double-blind, placebo-controlled, crossover trial in individuals with FXS, aged 3.5 years to 16 years (n = 55, mean age 9.2 [SD, 3.6] years). Participants were randomized to minocycline or placebo for 3 months and then switched to the other treatment. RESULTS Sixty-nine subjects were screened and 66 were randomized. Fifty-five subjects (83.3%) completed at least the first period and 48 (72.7%) completed the full trial. Intention-to-treat analysis demonstrated significantly greater improvements in one primary outcome, Clinical Global Impression Scale-Improvement after minocycline compared with placebo (2.49 ± 0.13 and 2.97 ± 0.13, respectively, p = .0173) and greater improvement in ad hoc analysis of anxiety and mood-related behaviors on the Visual Analog Scale (minocycline: 5.26 cm ± 0.46 cm, placebo: 4.05 cm ± 0.46 cm; p = .0488). Side effects were not significantly different during the minocycline and placebo treatments. No serious adverse events occurred on minocycline. Results may be potentially biased by study design weaknesses, including unblinding of subjects when they completed the study, drug-related side effects unblinding, and preliminary efficacy analysis results known to investigators. CONCLUSIONS Minocycline treatment for 3 months in children with FXS resulted in greater global improvement than placebo. Treatment for 3 months appears safe; however, longer trials are indicated to further assess benefits, side effects, and factors associated with a clinical response to minocycline.
Collapse
|
123
|
Depino AM. Peripheral and central inflammation in autism spectrum disorders. Mol Cell Neurosci 2013; 53:69-76. [PMID: 23069728 DOI: 10.1016/j.mcn.2012.10.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/23/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Amaicha Mara Depino
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
124
|
Wadell PM, Hagerman RJ, Hessl DR. FRAGILE X SYNDROME: PSYCHIATRIC MANIFESTATIONS, ASSESSMENT AND EMERGING THERAPIES. CURRENT PSYCHIATRY REVIEWS 2013; 9:53-58. [PMID: 25632275 PMCID: PMC4306413 DOI: 10.2174/157340013805289644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fragile X Syndrome (FXS), the most common inherited cause of intellectual disabilities, is an X-linked dominant disorder caused by the amplification of a CGG repeat in the 5' untranslated region of the fragile X mental retardation gene 1 (FMR1). Prevalence estimates of the disorder are approximately 1/3600. Psychiatric manifestations of the disorder include anxiety, attention deficit hyperactivity disorder, autism, mood instability and aggression. In this article we review the above psychiatric manifestations and challenges to accurate assessment. We also discuss how the neurobiological underpinnings of these symptoms are beginning to be understood and can help guide treatment.
Collapse
Affiliation(s)
- Paula M. Wadell
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| | - David R. Hessl
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
125
|
Affiliation(s)
- RANDI J HAGERMAN
- Medical Investigation of Neurodevelopmental Disorders (MIND)
Institute and Department of Pediatrics, University of California Davis
Health System, Sacramento,CA, USA
| |
Collapse
|
126
|
Abstract
Brain development in neurodevelopmental disorders has been considered to comprise a sequence of critical periods, and abnormalities occurring during early development have been considered irreversible in adulthood. However, findings in mouse models of neurodevelopmental disorders, including fragile X, Rett syndrome, Down syndrome, and neurofibromatosis type I suggest that it is possible to reverse certain molecular, electrophysiological, and behavioral deficits associated with these disorders in adults by genetic or pharmacological manipulations. Furthermore, recent studies have suggested that critical period-like plasticity can be reactivated in the adult brain by environmental manipulations or by pharmacotherapy. These studies open up a tantalizing possibility that targeted pharmacological treatments in combination with regimes of training or rehabilitation might alleviate or reverse the symptoms of neurodevelopmental disorders even after the end of critical developmental periods. Even though translation from animal experimentation to clinical practice is challenging, these results suggest a rational basis for treatment of neurodevelopmental disorders in adulthood.
Collapse
|
127
|
Tassone F, Iong KP, Tong TH, Lo J, Gane LW, Berry-Kravis E, Nguyen D, Mu LY, Laffin J, Bailey DB, Hagerman RJ. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med 2012; 4:100. [PMID: 23259642 PMCID: PMC4064316 DOI: 10.1186/gm401] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/19/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Population screening for FMR1 mutations has been a topic of considerable discussion since the FMR1 gene was identified in 1991. Advances in understanding the molecular basis of fragile X syndrome (FXS) and in genetic testing methods have led to new, less expensive methodology to use for large screening endeavors. A core criterion for newborn screening is an accurate understanding of the public health burden of a disease, considering both disease severity and prevalence rate. This article addresses this need by reporting prevalence rates observed in a pilot newborn screening study for FXS in the US. METHODS Blood spot screening of 14,207 newborns (7,312 males and 6,895 females) was conducted in three birthing hospitals across the United States beginning in November 2008, using a PCR-based approach. RESULTS The prevalence of gray zone alleles was 1:66 females and 1:112 males, while the prevalence of a premutation was 1:209 females and 1:430 males. Differences in prevalence rates were observed among the various ethnic groups; specifically higher frequency for gray zone alleles in males was observed in the White group compared to the Hispanic and African-American groups. One full mutation male was identified (>200 CGG repeats). CONCLUSIONS The presented pilot study shows that newborn screening in fragile X is technically feasible and provides overall prevalence of the premutation and gray zone alleles in the USA, suggesting that the prevalence of the premutation, particularly in males, is higher than has been previously reported.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Ka Pou Iong
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Tzu-Han Tong
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Joyce Lo
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Louise W Gane
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Danh Nguyen
- Division of Biostatistics, UC Davis, Davis, CA 95616, USA
| | - Lisa Y Mu
- Division of Biostatistics, UC Davis, Davis, CA 95616, USA
| | - Jennifer Laffin
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Don B Bailey
- RTI International, Research Triangle Park, NC 27709, USA
| | - Randi J Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
- Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
128
|
Wijetunge LS, Chattarji S, Wyllie DJA, Kind PC. Fragile X syndrome: from targets to treatments. Neuropharmacology 2012; 68:83-96. [PMID: 23257237 DOI: 10.1016/j.neuropharm.2012.11.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is one of the most prevalent and well-studied monogenetic causes of intellectual disability and autism and, although rare, its high penetrance makes it a desirable model for the study of neurodevelopmental disorders more generally. Indeed recent studies suggest that there is functional convergence of a number of genes that are implicated in intellectual disability and autism indicating that an understanding of the cellular and biochemical dysfunction that occurs in monogenic forms of these disorders are likely to reveal common targets for therapeutic intervention. Fundamental research into FXS has provided a wealth of information about how the loss of function of the fragile X mental retardation protein results in biochemical, anatomical and physiological dysfunction leading to the discovery of interventions that correct many of the core pathological phenotypes associated with animal models of FXS. Most promisingly such strategies have led to development of drugs that are now in clinical trials. This review highlights how progress in understanding disorders such as FXS has led to a new era in which targeted molecular treatment towards neurodevelopmental disorders is becoming a reality. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Lasani S Wijetunge
- Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, UK
| | | | | | | |
Collapse
|
129
|
Politte LC, McDougle CJ. Phase II and III drugs for the treatment of fragile X syndrome. Expert Opin Orphan Drugs 2012. [DOI: 10.1517/21678707.2013.750240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
130
|
Sorensen PL, Gane LW, Yarborough M, Hagerman RJ, Tassone F. Newborn screening and cascade testing for FMR1 mutations. Am J Med Genet A 2012; 161A:59-69. [PMID: 23239591 DOI: 10.1002/ajmg.a.35680] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/20/2012] [Indexed: 12/12/2022]
Abstract
We describe an ongoing pilot project in which newborn screening (NBS) for FMR1 mutations and subsequent cascade testing are performed by the MIND Institute at the University of California, Davis Medical Center (UCDMC). To date, out of 3,042 newborns initially screened, 44 extended family members have been screened by cascade testing of extended family members once a newborn is identified. Fourteen newborns (7 males and 7 females) and 27 extended family members (5 males and 22 females) have been identified with FMR1 mutations. Three family histories are discussed in detail, each demonstrating some benefits and risks of NBS and cascade testing for FMR1 mutations in extended family members. While we acknowledge inherent risks, we propose that with genetic counseling, clinical follow-up of identified individuals and cascade testing, NBS has significant benefits. Treatment for individuals in the extended family who would otherwise not have received treatment can be beneficial. In addition, knowledge of carrier status can lead to lifestyle changes and prophylactic interventions that are likely to reduce the risk of late onset neurological or psychiatric problems in carriers. Also with identification of carrier family members through NBS, reproductive choices become available to those who would not have known that they were at risk to have offspring with fragile X syndrome.
Collapse
Affiliation(s)
- Page L Sorensen
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | |
Collapse
|
131
|
Abstract
Tetracyclines are a class of antibiotics which could act as neuroprotective molecules in several neurological disorders, such as Huntington disease, Parkinson disease, stroke and multiple sclerosis. The main biological effects of tetracyclines are the inhibition of microglial activation, the attenuation of apoptosis and the suppression of reactive oxygen species production. The anti-apoptotic effect of tetracyclines involves the mitochondrion, and the major target for neuroprotective effects of tetracyclines lies within the complex network that links mitochondria, oxidative stress and apoptosis. Neuromuscular disorders are due to dysfunction of motor neurons, peripheral nerves, neuromuscular junction, or skeletal muscle itself. Animal studies have shown that minocycline could play neuroprotective effects in amyotrophic lateral sclerosis, but these positive findings have not been replicated in patients. Other neuromuscular disorders which tetracyclines may benefit are Guillain-Barré syndrome and other neuropathies, muscular dystrophies and mitochondrial disorders. However, well-designed double-blind controlled trials are still needed. Further studies are strongly needed to establish the most appropriate timing and dosage, as well as the indications for which tetracyclines could be effective and safe. Here, we review the neuroprotective effects of tetracyclines in animal models, the clinical studies in humans, and we focus on their potential application in patients with neuromuscular disorders.
Collapse
Affiliation(s)
- Daniele Orsucci
- Department of Neuroscience, Neurological Clinic, University of Pisa, Italy, Via Roma
| | | | | | | |
Collapse
|
132
|
Bagni C, Tassone F, Neri G, Hagerman R. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 2012. [PMID: 23202739 DOI: 10.1172/jci63141] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and is also linked to other neurologic and psychiatric disorders. FXS is caused by a triplet expansion that inhibits expression of the FMR1 gene; the gene product, FMRP, regulates mRNA metabolism in the brain and thus controls the expression of key molecules involved in receptor signaling and spine morphology. While there is no definitive cure for FXS, the understanding of FMRP function has paved the way for rational treatment designs that could potentially reverse many of the neurobiological changes observed in FXS. Additionally, behavioral, pharmacological, and cognitive interventions can raise the quality of life for both patients and their families.
Collapse
Affiliation(s)
- Claudia Bagni
- Katholieke Universiteit Leuven, Center for Human Genetics, Leuven, Belgium.
| | | | | | | |
Collapse
|
133
|
Sansone SM, Widaman KF, Hall SS, Reiss AL, Lightbody A, Kaufmann WE, Berry-Kravis E, Lachiewicz A, Brown EC, Hessl D. Psychometric study of the Aberrant Behavior Checklist in Fragile X Syndrome and implications for targeted treatment. J Autism Dev Disord 2012; 42:1377-92. [PMID: 21972117 DOI: 10.1007/s10803-011-1370-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Animal studies elucidating the neurobiology of fragile X syndrome (FXS) have led to multiple controlled trials in humans, with the Aberrant Behavior Checklist-Community (ABC-C) commonly adopted as a primary outcome measure. A multi-site collaboration examined the psychometric properties of the ABC-C in 630 individuals (ages 3-25) with FXS using exploratory and confirmatory factor analysis. Results support a six-factor structure, with one factor unchanged (Inappropriate Speech), four modified (Irritability, Hyperactivity, Lethargy/Withdrawal, and Stereotypy), and a new Social Avoidance factor. A comparison with ABC-C data from individuals with general intellectual disability and a list of commonly endorsed items are also reported. Reformulated ABC-C scores based on this FXS-specific factor structure may provide added outcome measure specificity and sensitivity in FXS clinical trials.
Collapse
Affiliation(s)
- Stephanie M Sansone
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Gürkan CK, Hagerman RJ. TARGETED TREATMENTS IN AUTISM AND FRAGILE X SYNDROME. RESEARCH IN AUTISM SPECTRUM DISORDERS 2012; 6:1311-1320. [PMID: 23162607 PMCID: PMC3498468 DOI: 10.1016/j.rasd.2012.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that sometimes occur as part of a complex disorder characterized by impairments in social interaction, communication and behavioral domains. It is a highly disabling disorder and there is a need for treatment targeting the core symptoms. Although autism is accepted as highly heritable, there is no genetic cure at this time. Autism is shown to be linked to several genes and is a feature of some complex genetic disorders, including fragile X syndrome (FXS), fragile X premutation involvement, tuberous sclerosis and Rett syndrome. The term autism spectrum disorders (ASDs) covers autism, Asperger syndrome and pervasive developmental disorders (PDD-NOS) and the etiologies are heterogeneous. In recent years, targeted treatments have been developed for several disorders that have a known specific genetic cause leading to autism. Since there are significant molecular and neurobiological overlaps among disorders, targeted treatments developed for a specific disorder may be helpful in ASD of unknown etiology. Examples of this are two drug classes developed to treat FXS, Arbaclofen, a GABA(B) agonist, and mGluR5 antagonists, and both may be helpful in autism without FXS. The mGluR5 antagonists are also likely to have a benefit in the aging problems of fragile X premutation carriers, the fragile X -associated tremor ataxia syndrome (FXTAS) and the Parkinsonism that can occur in aging patients with fragile X syndrome. Targeted treatments in FXS which has a well known genetic etiology may lead to new targeted treatments in autism.
Collapse
Affiliation(s)
- C. Kağan Gürkan
- Department of Pediatrics and the MIND Institute, UC Davis Medical Center, Adress: MIND Institute at UC Davis Medical Center, 2825 50th Street, Sacramento, California 95817
| | - Randi J. Hagerman
- Department of Pediatrics and the MIND Institute, UC Davis Medical Center, Adress: MIND Institute at UC Davis Medical Center, 2825 50th Street, Sacramento, California 95817
| |
Collapse
|
135
|
Hall SS, Hammond JL, Hirt M, Reiss AL. A 'learning platform' approach to outcome measurement in fragile X syndrome: a preliminary psychometric study. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2012; 56:947-60. [PMID: 22533667 PMCID: PMC3417081 DOI: 10.1111/j.1365-2788.2012.01560.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Clinical trials of medications to alleviate the cognitive and behavioural symptoms of individuals with fragile X syndrome (FXS) are now underway. However, there are few reliable, valid and/or sensitive outcome measures available that can be directly administered to individuals with FXS. The majority of assessments employed in clinical trials may be suboptimal for individuals with intellectual disability (ID) because they require face-to-face interaction with an examiner, taxing administration periods, and do not provide reinforcement and/or feedback during the test. We therefore examined the psychometric properties of a new computerised 'learning platform' approach to outcome measurement in FXS. METHOD A brief computerised test, incorporated into the Discrete Trial Trainer©- a commercially available software program designed for children with ID - was administered to 13 girls with FXS, 12 boys with FXS and 15 matched ID controls aged 10 to 23 years (mental age = 4 to 12 years). The software delivered automated contingent access to reinforcement, feedback, token delivery and prompting procedures (if necessary) on each trial to facilitate responding. The primary outcome measure was the participant's learning rate, derived from the participant's cumulative record of correct responses. RESULTS All participants were able to complete the test and floor effects appeared to be minimal. Learning rates averaged approximately five correct responses per minute, ranging from one to eight correct responses per minute in each group. Test-retest reliability of the learning rates was 0.77 for girls with FXS, 0.90 for boys with FXS and 0.90 for matched ID controls. Concurrent validity with raw scores obtained on the Arithmetic subtest of the Wechsler Intelligence Scale for Children-III was 0.35 for girls with FXS, 0.80 for boys with FXS and 0.56 for matched ID controls. The learning rates were also highly sensitive to change, with effect sizes of 1.21, 0.89 and 1.47 in each group respectively following 15 to 20, 15-min sessions of intensive discrete trial training conducted over 1.5 days. CONCLUSIONS These results suggest that a learning platform approach to outcome measurement could provide investigators with a reliable, valid and highly sensitive measure to evaluate treatment efficacy, not only for individuals with FXS but also for individuals with other ID.
Collapse
Affiliation(s)
- S S Hall
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
136
|
Abdallah MW, Pearce BD, Larsen N, Greaves-Lord K, Nørgaard-Pedersen B, Hougaard DM, Mortensen EL, Grove J. Amniotic fluid MMP-9 and neurotrophins in autism spectrum disorders: an exploratory study. Autism Res 2012; 5:428-33. [PMID: 23008271 DOI: 10.1002/aur.1254] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022]
Abstract
Evidence suggests that some developmental disorders, such as autism spectrum disorders (ASDs), are caused by errors in brain plasticity. Given the important role of matrix metalloproteinases (MMPs) and neurotrophins (NTs) in neuroplasticity, amniotic fluid samples for 331 ASD cases and 698 frequency-matched controls were analyzed for levels of MMP-9, brain-derived neurotrophic factor, NT-4 and transforming growth factor-β utilizing a Danish historic birth cohort and Danish nationwide health registers. Laboratory measurements were performed using an in-house multiplex sandwich immunoassay Luminex xMAP method, and measurements were analyzed using tobit and logistic regression. Results showed elevated levels of MMP-9 in ASD cases compared with controls (crude and adjusted tobit regression P-values: 0.01 and 0.06). Our results highlight the importance of exploring the biologic impact of MMP-9 and potential therapeutic roles of its inhibitors in ASD and may indicate that neuroplastic impairments in ASD may present during pregnancy.
Collapse
Affiliation(s)
- Morsi W Abdallah
- Section for Epidemiology, Health, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, Powell AM, Manierka MS, McIntyre RS. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 2012; 235:302-17. [PMID: 22963995 DOI: 10.1016/j.bbr.2012.07.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Mood disorders are marked by high rates of non-recovery, recurrence, and chronicity, which are insufficiently addressed by current therapies. Several patho-etiological models have been proposed that are not mutually exclusive and include but are not limited to the monoamine, inflammatory, neurotrophic, gliotrophic, excitatory, and oxidative stress systems. A derivative of these observations is that treatment(s) which target one or more of these mechanistic steps may be capable of mitigating, or preventing, disparate psychopathological features. Minocycline is an agent with pleiotropic properties that targets multiple proteins and cellular processes implicated in the patho-etiology of mood disorders. Moreover, preclinical and preliminary clinical evidence suggests that minocycline possesses antidepressant properties. Herein, we provide the rationale for conducting a randomized, controlled trial to test the antidepressant properties of minocycline.
Collapse
|
138
|
Obregon D, Parker-Athill EC, Tan J, Murphy T. Psychotropic effects of antimicrobials and immune modulation by psychotropics: implications for neuroimmune disorders. ACTA ACUST UNITED AC 2012; 2:331-343. [PMID: 23148142 DOI: 10.2217/npy.12.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimicrobial compounds and psychotropic medications often share overlapping mechanisms of actions and pharmacological effects. The immune system appears to be an important site of interaction as several antimicrobials display neurological and, at times, direct psychotropic effects, while psychotropics have shown significant immunomodulatory properties. The isoniazid class of antibiotics for example has been shown to possess monoamine oxidase activity, while selective serotonin reuptake inhibitors have shown significant effects on leukocyte populations. As the importance of the immune system's role in CNS homeostasis and disease continues to move to the forefront of neuropsychiatric research, these shared pharmacological effects may provide an important insight, elucidating the complexities in neuroimmune pathophysiology and guiding the development of potential treatments.
Collapse
Affiliation(s)
- Demian Obregon
- Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA ; Silver Child Development Center, Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | | | | | | |
Collapse
|
139
|
Clinic-based retrospective analysis of psychopharmacology for behavior in fragile x syndrome. Int J Pediatr 2012; 2012:843016. [PMID: 22899942 PMCID: PMC3413981 DOI: 10.1155/2012/843016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/10/2012] [Accepted: 04/16/2012] [Indexed: 11/28/2022] Open
Abstract
Fragile X syndrome (FXS) is associated with behavior that limits functioning, including distractibility, hyperactivity, impulsivity, hyperarousal, anxiety, mood dysregulation, and aggression. Medication response and side effect data were reviewed retrospectively for 257 patients (age 14 ± 11 years, range 4–60 years, 203 M, 54 F) attending an FXS clinic. Treatment success rates were defined as the percentage of positive response in the form of documented clinical report of improvement in the behavior(s) being targeted over at least a 6-month period on the medication, without side effects requiring medication discontinuance, while failures were defined as discontinuance of medication due to lack of clinical effectiveness or side effects. Success rate for treatment of targeted behaviors with trials of individual medications was 55% for stimulants, 53% for antidepressants, 62% for alpha2-agonists, and 54% for antipsychotics. With sequential trials of different medications in the same class, success rate improved to 73–77%. Side effect-related failures were highest for antipsychotics. Systematic psychopharmacologic intervention targeted to behavioral symptoms appears helpful in the majority of patients with FXS.
Collapse
|
140
|
Sumracki NM, Hutchinson MR, Gentgall M, Briggs N, Williams DB, Rolan P. The effects of pregabalin and the glial attenuator minocycline on the response to intradermal capsaicin in patients with unilateral sciatica. PLoS One 2012; 7:e38525. [PMID: 22685578 PMCID: PMC3369912 DOI: 10.1371/journal.pone.0038525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/05/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes. AIM This study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg. METHODS/RESULTS Eighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (-38% in affected leg, 95% CI for difference -19% to -52%). Both hand dominance and sex were significant covariates of response to capsaicin. CONCLUSIONS It cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may represent a useful biomarker to further investigate neuropathic pain. Inclusion of a positive control is imperative for the assessment of novel therapies for neuropathic pain.
Collapse
Affiliation(s)
- Nicole M Sumracki
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | |
Collapse
|
141
|
Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural Plast 2012; 2012:124548. [PMID: 22685676 PMCID: PMC3364018 DOI: 10.1155/2012/124548] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/24/2012] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor.
Collapse
|
142
|
Cytoprotective activity of minocycline includes improvement of mitochondrial coupling: the importance of minocycline concentration and the presence of VDAC. J Bioenerg Biomembr 2012; 44:297-307. [PMID: 22576350 DOI: 10.1007/s10863-012-9441-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 12/17/2022]
Abstract
Available data indicate that minocycline, an antibiotic of the tetracycline family, has cytoprotective properties due to a direct interaction with mitochondria. Yet, the data in the case of isolated mitochondria suggest discrepant or even detrimental effect(s) of the interaction. We have studied the cytoprotective activity displayed by minocycline in the case of the yeast Saccharomyces cerevisiae cells pretreated with H₂O₂. We demonstrated that the activity of minocycline required the presence of VDAC (voltage-dependent anion-selective channel) and provided distinct improvement of mitochondrial coupling. In the case of isolated mitochondria, we verified that minocycline exhibited uncoupler activity when applied in micromolar concentrations. However, when added in nanomolar concentrations, minocycline was able to improve the level of coupling for isolated mitochondria. The coupling improvement effect was observed in mitochondria containing VDAC but not in Δpor1 mitochondria (depleted of VDAC1, termed here VDAC) and in both types of mitoplasts. Thus, properly low concentrations of minocycline within the cell in the vicinity of VDAC-containing mitochondria enable the improvement of energy coupling of mitochondria that contributes to cytoprotective activity of minocycline.
Collapse
|
143
|
Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-related neurogenetic disorders. Neural Plast 2012; 2012:486402. [PMID: 22619737 PMCID: PMC3350854 DOI: 10.1155/2012/486402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/14/2012] [Indexed: 12/22/2022] Open
Abstract
Objective. To review the recent literature on the clinical features, genetic mutations, neurobiology associated with dysregulation of mTOR (mammalian target of rapamycin), and clinical trials for tuberous sclerosis complex (TSC), neurofibromatosis-1 (NF1) and fragile X syndrome (FXS), and phosphatase and tensin homolog hamartoma syndromes (PTHS), which are neurogenetic disorders associated with abnormalities in synaptic plasticity and mTOR signaling. Methods. Pubmed and Clinicaltrials.gov were searched using specific search strategies. Results/Conclusions. Although traditionally thought of as irreversible disorders, significant scientific progress has been made in both humans and preclinical models to understand how pathologic features of these neurogenetic disorders can be reduced or reversed. This paper revealed significant similarities among the conditions. Not only do they share features of impaired synaptic plasticity and dysregulation of mTOR, but they also share clinical features—autism, intellectual disability, cutaneous lesions, and tumors. Although scientific advances towards discovery of effective treatment in some disorders have outpaced others, progress in understanding the signaling pathways that connect the entire group indicates that the lesser known disorders will become treatable as well.
Collapse
|
144
|
Early intervention combined with targeted treatment promotes cognitive and behavioral improvements in young children with fragile x syndrome. Case Rep Genet 2012; 2012:280813. [PMID: 23074686 PMCID: PMC3447258 DOI: 10.1155/2012/280813] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/22/2012] [Indexed: 12/03/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability due to an expansion in the full mutation range (>200 CGG repeats) of the promoter region of the FMR1 gene leading to gene silencing. Lack of FMRP, a critical protein for dendritic spine formation and maturation, will cause FXS. Early environmental enrichment combined with pharmacological intervention has been proven to rescue dendritic spine abnormalities in the animal model of FXS. Here we report on 2 young children with FXS who were treated early with a combination of targeted treatment and intensive educational interventions leading to improvement in their cognition and behavior and a normal IQ.
Collapse
|
145
|
The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012; 26:383-92. [PMID: 21906670 PMCID: PMC3418145 DOI: 10.1016/j.bbi.2011.08.007] [Citation(s) in RCA: 448] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD.
Collapse
|
146
|
Medication utilization for targeted symptoms in children and adults with fragile X syndrome: US survey. J Dev Behav Pediatr 2012; 33:62-9. [PMID: 22064563 DOI: 10.1097/dbp.0b013e318236c0e1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To identify the most common neurological and behavioral symptoms treated by medications in individuals with fragile X syndrome (FXS), factors associated with treatment variability, and difficulty in swallowing a pill. METHOD A total of 1019 caregivers provided information about 1064 sons and 299 daughters with FXS in a US national survey. Caregivers reported (a) current use of medications for attention, anxiety, hyperactivity, mood swings, anger, depression, seizures, self-injury, or sleep; (b) perceived efficacy; and (c) difficulty in swallowing a pill. RESULTS Sixty-one percent of males and 38% of females were currently taking medication for at least 1 symptom. The most common symptoms were anxiety, attention, and hyperactivity. Treatments for attention and hyperactivity were common in childhood but declined substantially after the age of 18 years; anxiety treatment remained high in adults. Children perceived to be more impaired and children diagnosed or treated for autism were more likely to be taking medications. Caregivers considered most medications somewhat effective, but less than one-third rated current medication as "a lot" effective. Many children had difficulty swallowing a pill, but only 11% of adult males and 2% of adult females had a lot of difficulty. CONCLUSION Symptom-based medication use is common in FXS, although response is incomplete and there is clearly an unmet need for medications with improved efficacy. The persistent use of medications to treat anxiety, mood, and behavior problems throughout adolescence and into the adult years suggests important outcomes when evaluating the efficacy of new medications.
Collapse
|
147
|
Hagerman R, Lauterborn J, Au J, Berry-Kravis E. Fragile X syndrome and targeted treatment trials. Results Probl Cell Differ 2012; 54:297-335. [PMID: 22009360 PMCID: PMC4114775 DOI: 10.1007/978-3-642-21649-7_17] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Work in recent years has revealed an abundance of possible new treatment targets for fragile X syndrome (FXS). The use of animal models, including the fragile X knockout mouse which manifests a phenotype very similar to FXS in humans, has resulted in great strides in this direction of research. The lack of Fragile X Mental Retardation Protein (FMRP) in FXS causes dysregulation and usually overexpression of a number of its target genes, which can cause imbalances of neurotransmission and deficits in synaptic plasticity. The use of metabotropic glutamate receptor (mGluR) blockers and gamma amino-butyric acid (GABA) agonists have been shown to be efficacious in reversing cellular and behavioral phenotypes, and restoring proper brain connectivity in the mouse and fly models. Proposed new pharmacological treatments and educational interventions are discussed in this chapter. In combination, these various targeted treatments show promising preliminary results in mitigating or even reversing the neurobiological abnormalities caused by loss of FMRP, with possible translational applications to other neurodevelopmental disorders including autism.
Collapse
Affiliation(s)
- Randi Hagerman
- Department of Pediatrics, University of California, Sacramento, CA, USA.
| | | | | | | |
Collapse
|
148
|
Gross C, Berry-Kravis EM, Bassell GJ. Therapeutic strategies in fragile X syndrome: dysregulated mGluR signaling and beyond. Neuropsychopharmacology 2012; 37:178-95. [PMID: 21796106 PMCID: PMC3238060 DOI: 10.1038/npp.2011.137] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is an inherited neurodevelopmental disease caused by loss of function of the fragile X mental retardation protein (FMRP). In the absence of FMRP, signaling through group 1 metabotropic glutamate receptors is elevated and insensitive to stimulation, which may underlie many of the neurological and neuropsychiatric features of FXS. Treatment of FXS animal models with negative allosteric modulators of these receptors and preliminary clinical trials in human patients support the hypothesis that metabotropic glutamate receptor signaling is a valuable therapeutic target in FXS. However, recent research has also shown that FMRP may regulate diverse aspects of neuronal signaling downstream of several cell surface receptors, suggesting a possible new route to more direct disease-targeted therapies. Here, we summarize promising recent advances in basic research identifying and testing novel therapeutic strategies in FXS models, and evaluate their potential therapeutic benefits. We provide an overview of recent and ongoing clinical trials motivated by some of these findings, and discuss the challenges for both basic science and clinical applications in the continued development of effective disease mechanism-targeted therapies for FXS.
Collapse
Affiliation(s)
- Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurology, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
149
|
Molecular and Cellular Aspects of Mental Retardation in the Fragile X Syndrome: From Gene Mutation/s to Spine Dysmorphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:517-51. [DOI: 10.1007/978-3-7091-0932-8_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
150
|
Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res 2011; 1439:7-14. [PMID: 22265702 DOI: 10.1016/j.brainres.2011.12.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023]
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability, with behaviors characteristic of autism. Symptoms include abnormal social behavior, repetitive behavior, communication disorders, and seizures. Many symptoms of FXS have been replicated in the Fmr1 knockout (KO) mice. Whether Fmr1 KO mice exhibit vocal communication deficits is not known. By recording ultrasonic vocalizations (USV) produced by adult male mice during mating, we show that USV calling rate (number of calls/second) is reduced in Fmr1 KO mice compared to WT controls. The WT control and Fmr1 KO groups did not differ in other aspects of mating behavior such as time spent sniffing, mounting, rooting and without contact. Acoustic properties of calls such as mean frequency (in kHz), duration and dynamic range of frequencies were not different. This indicates a specific deficit in USV calling rate in Fmr1 KO mice. Previous studies have shown that treatment of Fmr1 KO mice with minocycline for 4weeks from birth can alleviate some behavioral symptoms. Here we tested if minocycline also reversed vocalization deficits in these mice. Calling rate increased and was similar to WT controls in adult Fmr1 KO mice treated with minocycline for four weeks from birth (P0-P28). All acoustic properties measured were similar in treated and untreated WT control mice indicating minocycline effects were specific to vocalizations in the Fmr1 KO mice. These data suggest that mating-related USVs are robust and relevant biomarkers of FXS, and that minocycline treatment is a promising avenue for treatment of FXS symptoms.
Collapse
Affiliation(s)
- Sarah E Rotschafer
- Neuroscience Graduate Program, University of California, Riverside, CA-92521, USA
| | | | | | | | | |
Collapse
|