101
|
Möhle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Müller A, Lavrik IN, Buguliskis JS, Schott BH, Schlüter D, Gundelfinger ED, Montag D, Seifert U, Pahnke J, Dunay IR. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun 2016; 4:25. [PMID: 26984535 PMCID: PMC4793516 DOI: 10.1186/s40478-016-0293-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is associated with the accumulation of β-amyloid (Aβ) as senile plaques in the brain, thus leading to neurodegeneration and cognitive impairment. Plaque formation depends not merely on the amount of generated Aβ peptides, but more importantly on their effective removal. Chronic infections with neurotropic pathogens, most prominently the parasite Toxoplasma (T.) gondii, are frequent in the elderly, and it has been suggested that the resulting neuroinflammation may influence the course of AD. In the present study, we investigated how chronic T. gondii infection and resulting neuroinflammation affect plaque deposition and removal in a mouse model of AD. RESULTS Chronic infection with T. gondii was associated with reduced Aβ and plaque load in 5xFAD mice. Upon infection, myeloid-derived CCR2(hi) Ly6C(hi) monocytes, CCR2(+) Ly6C(int), and CCR2(+) Ly6C(low) mononuclear cells were recruited to the brain of mice. Compared to microglia, these recruited mononuclear cells showed highly increased phagocytic capacity of Aβ ex vivo. The F4/80(+) Ly6C(low) macrophages expressed high levels of Triggering Receptor Expressed on Myeloid cells 2 (TREM2), CD36, and Scavenger Receptor A1 (SCARA1), indicating phagocytic activity. Importantly, selective ablation of CCR2(+) Ly6C(hi) monocytes resulted in an increased amount of Aβ in infected mice. Elevated insulin-degrading enzyme (IDE), matrix metalloproteinase 9 (MMP9), as well as immunoproteasome subunits β1i/LMP2, β2i/MECL-1, and β5i/LMP7 mRNA levels in the infected brains indicated increased proteolytic Aβ degradation. Particularly, LMP7 was highly expressed by the recruited mononuclear cells in the brain, suggesting a novel mechanism of Aβ clearance. CONCLUSIONS Our results indicate that chronic Toxoplasma infection ameliorates β-amyloidosis in a murine model of AD by activation of the immune system, specifically by recruitment of Ly6C(hi) monocytes and by enhancement of phagocytosis and degradation of soluble Aβ. Our findings provide evidence for a modulatory role of inflammation-induced Aβ phagocytosis and degradation by newly recruited peripheral immune cells in the pathophysiology of AD.
Collapse
Affiliation(s)
- Luisa Möhle
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nicole Israel
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Kristin Paarmann
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Krohn
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Sabine Pietkiewicz
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, University of Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Inna N Lavrik
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, University of Magdeburg, Magdeburg, Germany
| | | | - Björn H Schott
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Dirk Schlüter
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Medical Faculty, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Jens Pahnke
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck (UzL), LIED, Lübeck, Germany
- Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Ildiko Rita Dunay
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany.
| |
Collapse
|
102
|
Tomasik J, Schultz TL, Kluge W, Yolken RH, Bahn S, Carruthers VB. Shared Immune and Repair Markers During Experimental Toxoplasma Chronic Brain Infection and Schizophrenia. Schizophr Bull 2016; 42:386-95. [PMID: 26392628 PMCID: PMC4753603 DOI: 10.1093/schbul/sbv134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic neurologic infection with Toxoplasma gondii is relatively common in humans and is one of the strongest known risk factors for schizophrenia. Nevertheless, the exact neuropathological mechanisms linking T gondii infection and schizophrenia remain unclear. Here we utilize a mouse model of chronic T gondii infection to identify protein biomarkers that are altered in serum and brain samples at 2 time points during chronic infection. Furthermore, we compare the identified biomarkers to those differing between "postmortem" brain samples from 35 schizophrenia patients and 33 healthy controls. Our findings suggest that T gondii infection causes substantial and widespread immune activation indicative of neural damage and reactive tissue repair in the animal model that partly overlaps with changes observed in the brains of schizophrenia patients. The overlapping changes include increases in C-reactive protein (CRP), interleukin-1 beta (IL-1β), interferon gamma (IFNγ), plasminogen activator inhibitor 1 (PAI-1), tissue inhibitor of metalloproteinases 1 (TIMP-1), and vascular cell adhesion molecule 1 (VCAM-1). Potential roles of these factors in the pathogenesis of schizophrenia and toxoplasmosis are discussed. Identifying a defined set of markers shared within the pathophysiological landscape of these diseases could be a key step towards understanding their specific contributions to pathogenesis.
Collapse
Affiliation(s)
- Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK;,Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Wolfgang Kluge
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Robert H. Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK;,Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands;, Joint last authors/ these authors contributed equally to the study
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI;, Joint last authors/ these authors contributed equally to the study
| |
Collapse
|
103
|
Oliveira CBS, Meurer YSR, Medeiros TL, Pohlit AM, Silva MV, Mineo TWP, Andrade-Neto VF. Anti-Toxoplasma Activity of Estragole and Thymol in Murine Models of Congenital and Noncongenital Toxoplasmosis. J Parasitol 2016; 102:369-76. [PMID: 26836848 DOI: 10.1645/15-848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Toxoplasmosis is caused by Toxoplasma gondii , an obligatory intracellular protozoan. Normally benign, T. gondii infections can cause devastating disease in immunosuppressed patients and through congenital infection of newborn babies. Few prophylactic and therapeutic drugs are available to treat these infections. The goal of the present study was to assess the anti-Toxoplasma effects in a congenital and noncongenital model of toxoplasmosis (using ME49 strain), besides assessing immunological changes, in vitro cytotoxicity, and in vivo acute toxicity of commercial estragole and thymol. The congenital experimental model was used with intermediate stages of maternal infection. The serum levels of immunoglobulin (Ig)M, IgG, interleukin (IL)-10, IL-12, and interferon-gamma (IFN-γ) were quantified from infected and treated C57Bl/6 mice. Estragole and thymol respectively exhibited low to moderate in vivo toxicity and cytotoxicity. Animals treated with estragole showed high IFN-γ and strong type 1 helper T cell response. Both compounds were active against T. gondii ME49 strain. Furthermore, orally administered estragole in infected pregnant mice improved the weight of offspring compared with untreated controls. Subcutaneous administration of both compounds also increased the weight of mouse offspring born to infected mothers, compared with untreated controls. Estragole and thymol display important anti-Toxoplasma activity. Further studies are needed to elucidate the mechanism of action of these compounds.
Collapse
Affiliation(s)
- Claudio B S Oliveira
- * Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Ywlliane S R Meurer
- * Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Thales L Medeiros
- * Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | | | | | | | - Valter F Andrade-Neto
- * Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| |
Collapse
|
104
|
Zhou CX, Zhou DH, Elsheikha HM, Liu GX, Suo X, Zhu XQ. Global Metabolomic Profiling of Mice Brains following Experimental Infection with the Cyst-Forming Toxoplasma gondii. PLoS One 2015; 10:e0139635. [PMID: 26431205 PMCID: PMC4592003 DOI: 10.1371/journal.pone.0139635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
The interplay between the Apicomplexan parasite Toxoplasma gondii and its host has been largely studied. However, molecular changes at the metabolic level in the host central nervous system and pathogenesis-associated metabolites during brain infection are largely unexplored. We used a global metabolomics strategy to identify differentially regulated metabolites and affected metabolic pathways in BALB/c mice during infection with T. gondii Pru strain at 7, 14 and 21 days post-infection (DPI). The non-targeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics analysis detected approximately 2,755 retention time-exact mass pairs, of which more than 60 had significantly differential profiles at different stages of infection. These include amino acids, organic acids, carbohydrates, fatty acids, and vitamins. The biological significance of these metabolites is discussed. Principal Component Analysis and Orthogonal Partial Least Square-Discriminant Analysis showed the metabolites' profile to change over time with the most significant changes occurring at 14 DPI. Correlated metabolic pathway imbalances were observed in carbohydrate metabolism, lipid metabolism, energetic metabolism and fatty acid oxidation. Eight metabolites correlated with the physical recovery from infection-caused illness were identified. These findings indicate that global metabolomics adopted in this study is a sensitive approach for detecting metabolic alterations in T. gondii-infected mice and generated a comparative metabolic profile of brain tissue distinguishing infected from non-infected host.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Guang-Xue Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
- * E-mail: (XS); (XQZ)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
- * E-mail: (XS); (XQZ)
| |
Collapse
|
105
|
Flegr J. Neurological and Neuropsychiatric Consequences of Chronic Toxoplasma Infection. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0024-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
106
|
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 2015; 37:159-70. [PMID: 25376390 DOI: 10.1111/pim.12157] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
The zoonotic pathogen Toxoplasma gondii infects over 30% of the human population. The intracellular parasite can persist lifelong in the CNS within neurons modifying their function and structure, thus leading to specific behavioural changes of the host. In recent years, several in vitro studies and murine models have focused on the elucidation of these modifications. Furthermore, investigations of the human population have correlated Toxoplasma seropositivity with changes in neurological functions; however, the complex underlying mechanisms of the subtle behavioural alteration are still not fully understood. The parasites are able to induce direct modifications in the infected cells, for example by altering dopamine metabolism, by functionally silencing neurons as well as by hindering apoptosis. Moreover, indirect effects of the peripheral immune system and alterations of the immune status of the CNS, observed during chronic infection, might also contribute to changes in neuronal connectivity and synaptic plasticity. In this review, we will provide an overview and highlight recent advances, which describe changes in the neuronal function and morphology upon T. gondii infection.
Collapse
Affiliation(s)
- A Parlog
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
107
|
Landrith TA, Harris TH, Wilson EH. Characteristics and critical function of CD8+ T cells in the Toxoplasma-infected brain. Semin Immunopathol 2015; 37:261-70. [PMID: 25898888 DOI: 10.1007/s00281-015-0487-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
The rise of the AIDS epidemic made the requirement for T cells in our continuous protection from pathogens critically apparent. The striking frequency with which AIDS patients exhibited profound neurological pathologies brought attention to many chronic infections that are latent within the immune-privileged CNS. One of the most common lethal opportunistic infections of these patients was with the protozoan parasite, Toxoplasma gondii. Reactivation of Toxoplasma cysts within the brain causes massive tissue destruction evidenced as multiple ring-enhancing lesions on MRI and is called toxoplasmic encephalitis (TE). TE is not limited to AIDS patients, but rather is a risk for all severely immunocompromised patients, including recipients of chemotherapy or transplant recipients. The lessons learned from these patient populations are supported by T cell depletion studies in mice. Such experiments have demonstrated that CD4+ and CD8+ T cells are required for protection against TE. Although it is clear that these T cell subsets work synergistically to fight infection, much evidence has been generated that suggests CD8+ T cells play a dominant role in protection during chronic toxoplasmosis. In other models of CNS inflammation, such as intracerebral infection with LCMV and experimental autoimmune encephalomyelitis (EAE), infiltration of T cells into the brain is harmful and even fatal. In the brain of the immunocompetent host, the well-regulated T cell response to T. gondii is therefore an ideal model to understand a controlled inflammatory response to CNS infection. This review will examine our current understanding of CD8+ T cells in the CNS during T. gondii infection in regards to the (1) mechanisms governing entry into the brain, (2) cues that dictate behavior within the brain, and (3) the functional and phenotypic properties exhibited by these cells.
Collapse
Affiliation(s)
- Tyler A Landrith
- Division of Biomedical Sciences, University of California, Riverside, CA, 92521, USA
| | | | | |
Collapse
|
108
|
Eells JB, Varela-Stokes A, Guo-Ross SX, Kummari E, Smith HM, Cox AD, Lindsay DS. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity. PLoS One 2015; 10:e0119280. [PMID: 25855987 PMCID: PMC4391871 DOI: 10.1371/journal.pone.0119280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.
Collapse
Affiliation(s)
- Jeffrey B. Eells
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| | - Andrea Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Shirley X. Guo-Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Evangel Kummari
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Holly M. Smith
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Arin D. Cox
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - David S. Lindsay
- Department of Biomedical Sciences & Pathobiology, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
109
|
Soares AMS, Carvalho LP, Melo EJT, Costa HPS, Vasconcelos IM, Oliveira JTA. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity. Exp Parasitol 2015; 153:111-7. [PMID: 25816973 DOI: 10.1016/j.exppara.2015.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 01/21/2023]
Abstract
Toxoplasma gondii is a parasite of great medical and veterinary importance that has worldwide distribution and causes toxoplasmosis. There are few treatments available for toxoplasmosis and the search for plant extracts and compounds with anti-Toxoplasma activity is of utmost importance for the discovery of new active drugs. The objective of this study was to investigate the action of a protein extract and a protease inhibitor enriched fraction from J. curcas seed cake on developing tachyzoites of T. gondii-infected Vero cells. The protein extract (JcCE) was obtained after solubilization of the J. curcas seed cake with 100 mM sodium borate buffer, pH 10, centrifugation and dialysis of the resulting supernatant with the extracting buffer. JcCE was used for the in vitro assays of anti-Toxoplasma activity at 0.01, 0.1, 0.5, 1.5, 3.0 and 5.0 mg/ml concentration for 24 h. The results showed that JcCE reduced the percentage of infection and the number of intracellular parasites, but had no effect on the morphology of Vero cells up to 3.0 mg/mL. The cysteine protease inhibitor enriched fraction, which was obtained after chromatography of JcCE on Sephadex G-75 and presented a unique protein band following SDS-PAGE, reduced both the number of T. gondii infected cells and intracellular parasites. These results suggest that both JcCE and the cysteine protease inhibitor enriched fraction interfere with the intracellular growth of T. gondii.
Collapse
Affiliation(s)
- A M S Soares
- Laboratory of Plant Biochemistry, Centre for Agrarian and Environmental Sciences, Federal University of Maranhão, BR 222, Km 74, Chapadinha, Maranhão CEP: 65500-000, Brazil
| | - L P Carvalho
- Laboratory of Cell and Tissue Biology, Cellular Toxicology Section, Centre for Bioscience and Biotechnology, North Fluminense State University of Darcy Ribeiro, Alberto Lamego Av. 2000, Campos dos Goytacazes, Rio de Janeiro CEP: 28013-602, Brazil
| | - E J T Melo
- Laboratory of Cell and Tissue Biology, Cellular Toxicology Section, Centre for Bioscience and Biotechnology, North Fluminense State University of Darcy Ribeiro, Alberto Lamego Av. 2000, Campos dos Goytacazes, Rio de Janeiro CEP: 28013-602, Brazil
| | - H P S Costa
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza CE 60451-970, Brazil
| | - I M Vasconcelos
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza CE 60451-970, Brazil
| | - J T A Oliveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza CE 60451-970, Brazil.
| |
Collapse
|
110
|
Biswas A, Bruder D, Wolf SA, Jeron A, Mack M, Heimesaat MM, Dunay IR. Ly6Chigh Monocytes Control Cerebral Toxoplasmosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:3223-35. [DOI: 10.4049/jimmunol.1402037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
111
|
Ngoungou EB, Bhalla D, Nzoghe A, Dardé ML, Preux PM. Toxoplasmosis and epilepsy--systematic review and meta analysis. PLoS Negl Trop Dis 2015; 9:e0003525. [PMID: 25695802 PMCID: PMC4335039 DOI: 10.1371/journal.pntd.0003525] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toxoplasmosis is an important, widespread, parasitic infection caused by Toxoplasma gondii. The chronic infection in immunocompetent patients, usually considered as asymptomatic, is now suspected to be a risk factor for various neurological disorders, including epilepsy. We aimed to conduct a systematic review and meta-analysis of the available literature to estimate the risk of epilepsy due to toxoplasmosis. METHODS A systematic literature search was conducted of several databases and journals to identify studies published in English or French, without date restriction, which looked at toxoplasmosis (as exposure) and epilepsy (as disease) and met certain other inclusion criteria. The search was based on keywords and suitable combinations in English and French. Fixed and random effects models were used to determine odds ratios, and statistical significance was set at 5.0%. PRINCIPAL FINDINGS Six studies were identified, with an estimated total of 2888 subjects, of whom 1280 had epilepsy (477 positive for toxoplasmosis) and 1608 did not (503 positive for toxoplasmosis). The common odds ratio (calculated) by random effects model was 2.25 (95% CI 1.27-3.9), p = 0.005. CONCLUSIONS Despite the limited number of studies, and a lack of high-quality data, toxoplasmosis should continue to be regarded as an epilepsy risk factor. More and better studies are needed to determine the real impact of this parasite on the occurrence of epilepsy.
Collapse
Affiliation(s)
- Edgard B. Ngoungou
- INSERM, UMR1094, Neuroépidémiologie Tropicale, Limoges, France
- Université de Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, CNRS FR 3503 GEIST, Limoges, France
- Département d’Epidémiologie-Biostatistiques et Informatique Médicale (DEBIM/EA NEMIT), Faculté de Médecine, Université des Sciences de la Santé, Libreville, Gabon
| | - Devender Bhalla
- INSERM, UMR1094, Neuroépidémiologie Tropicale, Limoges, France
- Université de Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, CNRS FR 3503 GEIST, Limoges, France
| | - Amandine Nzoghe
- Département d’Epidémiologie-Biostatistiques et Informatique Médicale (DEBIM/EA NEMIT), Faculté de Médecine, Université des Sciences de la Santé, Libreville, Gabon
| | - Marie-Laure Dardé
- INSERM, UMR1094, Neuroépidémiologie Tropicale, Limoges, France
- Université de Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, CNRS FR 3503 GEIST, Limoges, France
- CHU Limoges, Laboratoire de Parasitologie-Mycologie, Limoges, France
| | - Pierre-Marie Preux
- INSERM, UMR1094, Neuroépidémiologie Tropicale, Limoges, France
- Université de Limoges, UMR 1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, CNRS FR 3503 GEIST, Limoges, France
- CHU Limoges, CEBIMER, Limoges, France
- * E-mail:
| |
Collapse
|
112
|
Guha SK, Tillu R, Sood A, Patgaonkar M, Nanavaty IN, Sengupta A, Sharma S, Vaidya VA, Pathak S. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun 2014; 42:123-37. [PMID: 24953429 DOI: 10.1016/j.bbi.2014.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022] Open
Abstract
Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rucha Tillu
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ankit Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishira N Nanavaty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
113
|
Chronic infection of Toxoplasma gondii downregulates miR-132 expression in multiple brain regions in a sex-dependent manner. Parasitology 2014; 142:623-32. [PMID: 25351997 DOI: 10.1017/s003118201400167x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNA-132 (miR-132) has been demonstrated to affect multiple neuronal functions and its dysregulation is linked to several neurological disorders. We previously showed that acute Toxoplasma gondii infection induces miR-132 expression both in vitro and in vivo. To investigate the impact of chronic infection on miR-132, we infected mice with T. gondii PRU strain and performed assessment 5 months later in six brain regions (cortex, hypothalamus, striatum, cerebellum, olfactory bulb and hippocampus) by qPCR. We found that while acute infection of T. gondii increases the expression of miR-132, chronic infection has the opposite effect. The effect varied amongst different regions of the brain and presented in a sex-dependent manner, with females exhibiting more susceptibility than males. MiR-132 and brain-derived neurotrophic factor (BDNF, an inducer of miR-132) were not co-varies in the brain areas of infected mice. T. gondii DNA/RNA was found in all tested brain regions and a selective tropism towards the hippocampus, based on bradyzoite density, was observed in both males and females. However, the expressions of miR-132 or BDNF were poorly reflected by the density of T. gondii in brain areas. Our findings highlight the importance of investigating the miR-132-mediated neuronal function in mice infected with T. gondii.
Collapse
|
114
|
Abdoli A, Dalimi A. Are There any Relationships between Latent Toxoplasma gondii Infection, Testosterone Elevation, and Risk of Autism Spectrum Disorder? Front Behav Neurosci 2014; 8:339. [PMID: 25309376 PMCID: PMC4173877 DOI: 10.3389/fnbeh.2014.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022] Open
Affiliation(s)
- Amir Abdoli
- Faculty of Medical Sciences, Department of Parasitology, Kashan University of Medical Science , Kashan , Iran ; Faculty of Medical Sciences, Department of Parasitology, Tarbiat Modares University , Tehran , Iran
| | - Abdolhossein Dalimi
- Faculty of Medical Sciences, Department of Parasitology, Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
115
|
Effects of Toxoplasma gondii infection on anxiety, depression and ghrelin level in male rats. J Parasit Dis 2014; 40:688-93. [PMID: 27605768 DOI: 10.1007/s12639-014-0561-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022] Open
Abstract
The aim of the present study was to determine the effects of Toxoplasma gondii (T. gondii) infection on anxiety, depression and ghrelin level in male rats. Twenty four male rats were assessed in two equal groups. T. gondii tachyzoite (ip) were injected in infected group and control group received (2 ml) physiological serum (ip). Elevated plus Maze and swimming tests were used to assess anxiety and depression in rats respectively. The ghrelin and T. gondii IgG serum levels were measured by enzyme immunoassay kits. The Student's t test and Pearson correlation coefficient were used. The ghrelin serum level was significantly lower in the infected rats than control (P = 0.03). There were no significant differences in the depression and anxiety behavior between two groups. However, here were no significant correlations between ghrelin level and anxiety or depression in rats. It seems that latent T. gondii infection decreases the ghrelin serum level but does not change anxiety and depression like behaviors.
Collapse
|
116
|
El Temsahy MM, El Kerdany EDH, Eissa MM, Shalaby TI, Talaat IM, Mogahed NMFH. The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice. J Parasit Dis 2014; 40:611-26. [PMID: 27605755 DOI: 10.1007/s12639-014-0546-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022] Open
Abstract
Toxoplasmosis, a zoonotic parasitic disease, is a huge challenge for which there is no effective vaccine up till now. In this study, chitosan nanospheres encapsulated with Toxoplasma lysate vaccine was evaluated for its ability to protect mice against both acute and chronic toxoplasmosis models of infection. Results showed that chitosan nanospheres were equally effective to Freund's incomplete adjuvant (FIA) in enhancing the efficacy of Toxoplasma lysate vaccine. The effectiveness was demonstrated by the delayed death of vaccinated mice following challenge either with virulent RH or avirulent Me49 strains, the significant decrease in parasite density in different organs, significant increase in the humoral and cellular immune response (IgG and IFN γ) with a marked reduction of pathological changes in the different organs. However chitosan nanospheres were superior to FIA due to their cost effective preparation and much less necrotic changes induced in the studied organs. The success of chitosan polymer as an alternative to commonly used adjuvants paves the way for the use of other newly developed polymers to be used in the field of vaccine development.
Collapse
Affiliation(s)
- Mona M El Temsahy
- Department of Medical Parasitology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman D H El Kerdany
- Department of Medical Parasitology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Thanaa I Shalaby
- Department of Biophysics and Biomedics, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Iman M Talaat
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Nermine M F H Mogahed
- Department of Medical Parasitology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
117
|
Zhang YH, Chen H, Chen Y, Wang L, Cai YH, Li M, Wen HQ, Du J, An R, Luo QL, Wang XL, Lun ZR, Xu YH, Shen JL. Activated microglia contribute to neuronal apoptosis in Toxoplasmic encephalitis. Parasit Vectors 2014; 7:372. [PMID: 25128410 PMCID: PMC4143554 DOI: 10.1186/1756-3305-7-372] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A plethora of evidence shows that activated microglia play a critical role in the pathogenesis of the central nervous system (CNS). Toxoplasmic encephalitis (TE) frequently occurs in HIV/AIDS patients. However, knowledge remains limited on the contributions of activated microglia to the pathogenesis of TE. METHODS A murine model of reactivated encephalitis was generated in a latent infection with Toxoplasma gondii induced by cyclophosphamide. The neuronal apoptosis in the CNS and the profile of pro-inflammatory cytokines were assayed in both in vitro and in vivo experiments. RESULTS Microglial cells were found to be activated in the cortex and hippocampus in the brain tissues of mice. The in vivo expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) were up-regulated in TE mice, and accordingly, the neuronal apoptosis was significantly increased. The results were positively correlated with those of the in vitro experiments. Additionally,apoptosis of the mouse neuroblastoma type Neuro2a (N2a) remarkably increased when the N2a was co-cultured in transwell with microglial cells and Toxoplasma tachyzoites. Both in vivo and in vitro experiments showed that minocycline (a microglia inhibitor) treatment notably reduced microglial activation and neuronal apoptosis. CONCLUSIONS Activated microglia contribute to neuronal apoptosis in TE and inhibition of microglia activation might represent a novel therapeutic strategy of TE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yuan-hong Xu
- The Key Laboratory of Zoonoses and Pathogen Biology Anhui, and Department of Parasitology, Anhui Medical University, Hefei, China.
| | | |
Collapse
|
118
|
|
119
|
Alvarado-Esquivel C, Pacheco-Vega SJ, Hernández-Tinoco J, Sánchez-Anguiano LF, Berumen-Segovia LO, Rodríguez-Acevedo FJI, Beristain-García I, Rábago-Sánchez E, Liesenfeld O, Campillo-Ruiz F, Güereca-García OA. Seroprevalence of Toxoplasma gondii infection and associated risk factors in Huicholes in Mexico. Parasit Vectors 2014; 7:301. [PMID: 24984845 PMCID: PMC4226977 DOI: 10.1186/1756-3305-7-301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/26/2014] [Indexed: 01/16/2023] Open
Abstract
Background Very little is known about the seroepidemiology of Toxoplasma gondii infection in ethnic groups in Mexico. Huicholes are an indigenous ethnic group living in a remote mountainous region in Mexico. We sought to determine the prevalence of anti-Toxoplasma IgG and IgM antibodies in Huicholes; and to determine the association of Toxoplasma seropositivity with socio-demographic, behavioral, and clinical characteristics of Huicholes. Methods We performed a cross sectional survey in Huicholes from September 2013 to January 2014. A convenience sampling method was used. We investigated the prevalence of anti-Toxoplasma IgG and IgM antibodies in 214 Huicholes using enzyme-linked immunoassays. A standardized questionnaire was used to obtain the characteristics of the Huicholes. Bivariate and multivariate analyses were used to assess the association of Toxoplasma exposure and Huicholes’ characteristics. Results Of the 214 Huicholes studied (mean age: 37.98 ± 15.80 years), 71 (33.2%) were positive for anti-T. gondii IgG antibodies and 47 (66.2%) of them were also positive for anti-T. gondii IgM antibodies. Seroprevalence of T. gondii infection did not vary with age, sex, or occupation. However, seroprevalence of anti-T. gondii IgM antibodies was significantly higher in female than in male Huicholes. Multivariate analysis of socio-demographic and behavioral characteristics showed that T. gondii exposure was associated with consumption of turkey meat (OR = 2.28; 95% CI: 1.16-4.46; P = 0.01). In addition, seroprevalence of T. gondii infection was significantly higher in Huicholes suffering from dizziness and memory impairment than those without such clinical characteristics. Conclusions Our results demonstrate serological evidence of T. gondii exposure among Huicholes which may be impacting their health. Results of this first study of T. gondii infection in Huicholes may be useful for the design of optimal preventive measures against infection with T. gondii.
Collapse
Affiliation(s)
- Cosme Alvarado-Esquivel
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Dgo, Mexico.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Wu H, Wang D, Shi L, Wen Z, Ming Z. Midsagittal plane extraction from brain images based on 3D SIFT. Phys Med Biol 2014; 59:1367-87. [PMID: 24583964 DOI: 10.1088/0031-9155/59/6/1367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Midsagittal plane (MSP) extraction from 3D brain images is considered as a promising technique for human brain symmetry analysis. In this paper, we present a fast and robust MSP extraction method based on 3D scale-invariant feature transform (SIFT). Unlike the existing brain MSP extraction methods, which mainly rely on the gray similarity, 3D edge registration or parameterized surface matching to determine the fissure plane, our proposed method is based on distinctive 3D SIFT features, in which the fissure plane is determined by parallel 3D SIFT matching and iterative least-median of squares plane regression. By considering the relative scales, orientations and flipped descriptors between two 3D SIFT features, we propose a novel metric to measure the symmetry magnitude for 3D SIFT features. By clustering and indexing the extracted SIFT features using a k-dimensional tree (KD-tree) implemented on graphics processing units, we can match multiple pairs of 3D SIFT features in parallel and solve the optimal MSP on-the-fly. The proposed method is evaluated by synthetic and in vivo datasets, of normal and pathological cases, and validated by comparisons with the state-of-the-art methods. Experimental results demonstrated that our method has achieved a real-time performance with better accuracy yielding an average yaw angle error below 0.91° and an average roll angle error no more than 0.89°.
Collapse
Affiliation(s)
- Huisi Wu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|
121
|
Parlog A, Harsan LA, Zagrebelsky M, Weller M, von Elverfeldt D, Mawrin C, Korte M, Dunay IR. Chronic murine toxoplasmosis is defined by subtle changes in neuronal connectivity. Dis Model Mech 2014; 7:459-69. [PMID: 24524910 PMCID: PMC3974456 DOI: 10.1242/dmm.014183] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies correlate chronic Toxoplasma gondii (T. gondii) infection with behavioral changes in rodents; additionally, seropositivity in humans is reported to be associated with behavioral and neuropsychiatric diseases. In this study we investigated whether the described behavioral changes in a murine model of chronic toxoplasmosis are associated with changes in synaptic plasticity and brain neuronal circuitry. In mice chronically infected with T. gondii, magnetic resonance imaging (MRI) data analysis displayed the presence of heterogeneous lesions scattered throughout all brain areas. However, a higher density of lesions was observed within specific regions such as the somatosensory cortex (SSC). Further histopathological examination of these brain areas indicated the presence of activated resident glia and recruited immune cells accompanied by limited alterations of neuronal viability. In vivo diffusion-tensor MRI analysis of neuronal fiber density within the infected regions revealed connectivity abnormalities in the SSC. Altered fiber density was confirmed by morphological analysis of individual, pyramidal and granule neurons, showing a reduction in dendritic arbor and spine density within the SSC, as well as in the hippocampus. Evaluation of synapse efficacy revealed diminished levels of two key synaptic proteins, PSD95 and synaptophysin, within the same brain areas, indicating deficits in functionality of the synaptic neurotransmission in infected mice. Our results demonstrate that persistent T. gondii infection in a murine model results in synaptic deficits within brain structures leading to disturbances in the morphology of noninfected neurons and modified brain connectivity, suggesting a potential explanation for the behavioral and neuropsychiatric alterations.
Collapse
Affiliation(s)
- Alexandru Parlog
- Institute of Medical Microbiology, Otto-von-Guericke University, 39120-Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Hackett C, Knight J, Mao-Draayer Y. Transplantation of Fas-deficient or wild-type neural stem/progenitor cells (NPCs) is equally efficient in treating experimental autoimmune encephalomyelitis (EAE). Am J Transl Res 2014; 6:119-128. [PMID: 24489991 PMCID: PMC3902222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Studies have shown that neural stem/progenitor cell (NPC) transplantation is beneficial in experimental autoimmune encephalomyelitis (EAE), an established animal model of multiple sclerosis (MS). It is unclear whether NPCs have the ability to integrate into the host CNS to replace lost cells or if their main mechanism of action is via bystander immunomodulation. Understanding the mechanisms by which NPCs exert their beneficial effects as well as exploring methods to increase post-transplantation survival and differentiation is critical to advancing this treatment strategy. Using the EAE model and Fas-deficient (lpr) NPCs, we investigated the effects of altering the Fas system in NPC transplantation therapy. We show that transplantation of NPCs into EAE mice ameliorates clinical symptoms with greater efficacy than sham treatments regardless of cell type (wt or lpr). NPC transplantation via retro-orbital injections significantly decreased inflammatory infiltrates at the acute time point, with a similar trend at the chronic time point. Both wt and lpr NPCs injected into mice with EAE were able to home to sites of CNS inflammation in the periventricular brain and lumbar spinal cord. Both wt and lpr NPCs have the same capacity for inducing apoptosis of Th1 and Th17 cells, and minimal numbers of NPCs entered the CNS. These cells did not express terminal differentiation markers, suggesting that NPCs exert their effects mainly via bystander peripheral immunomodulation.
Collapse
Affiliation(s)
- Charles Hackett
- Department of Neurology, University of VermontBurlington, VT, USA
| | - Julia Knight
- Department of Neurology, University of VermontBurlington, VT, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of VermontBurlington, VT, USA
- Department of Neurology, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
123
|
Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 2014; 38:72-93. [PMID: 24247023 PMCID: PMC3896922 DOI: 10.1016/j.neubiorev.2013.11.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/26/2013] [Accepted: 11/07/2013] [Indexed: 12/12/2022]
Abstract
The high societal and individual cost of schizophrenia necessitates finding better, more effective treatment, diagnosis, and prevention strategies. One of the obstacles in this endeavor is the diverse set of etiologies that comprises schizophrenia. A substantial body of evidence has grown over the last few decades to suggest that schizophrenia is a heterogeneous syndrome with overlapping symptoms and etiologies. At the same time, an increasing number of clinical, epidemiological, and experimental studies have shown links between schizophrenia and inflammatory conditions. In this review, we analyze the literature on inflammation and schizophrenia, with a particular focus on comorbidity, biomarkers, and environmental insults. We then identify several mechanisms by which inflammation could influence the development of schizophrenia via the two-hit hypothesis. Lastly, we note the relevance of these findings to clinical applications in the diagnosis, prevention, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Keith A Feigenson
- Robert Wood Johnson Medical School at Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | - Alex W Kusnecov
- Department of Psychology, Behavioral and Systems Neuroscience Program and Joint Graduate Program in Toxicology, Rutgers University, 52 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | - Steven M Silverstein
- Robert Wood Johnson Medical School at Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; University Behavioral Health Care at Rutgers, The State University of New Jersey, 671 Hoes Lane, Piscataway, NJ 08855, USA.
| |
Collapse
|
124
|
Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: implications for schizophrenia. Schizophr Res 2014; 152:261-7. [PMID: 24345671 PMCID: PMC3922412 DOI: 10.1016/j.schres.2013.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 10/25/2022]
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, is a major cause of opportunistic infectious disease affecting the brain and has been linked to an increased incidence of schizophrenia. In murine hosts, infection with T. gondii stimulates tryptophan degradation along the kynurenine pathway (KP), which contains several neuroactive metabolites, including 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN) and kynurenic acid (KYNA). As these endogenous compounds may provide a mechanistic connection between T. gondii and the pathophysiology of schizophrenia, we measured KP metabolites in both the brain and periphery of T. gondii-treated C57BL/6 mice 8 and 28 days post-infection. Infected mice showed early decreases in the levels of tryptophan in the brain and serum, but not in the liver. These reductions were associated with elevated levels of kynurenine, KYNA, 3-HK and QUIN in the brain. In quantitative terms, the most significant increases in these KP metabolites were observed in the brain at 28 days post-infection. Notably, the anti-parasitic drugs pyrimethamine and sulfadiazine, a standard treatment of toxoplasmosis, significantly reduced 3-HK and KYNA levels in the brain of infected mice when applied between 28 and 56 days post-infection. In summary, T. gondii infection, probably by activating microglia and astrocytes, enhances the production of KP metabolites in the brain. However, during the first two months after infection, the KP changes in these mice do not reliably duplicate abnormalities seen in the brain of individuals with schizophrenia.
Collapse
|
125
|
Abdoli A, Dalimi A, Arbabi M, Ghaffarifar F. Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med 2013; 27:1368-74. [PMID: 24156764 DOI: 10.3109/14767058.2013.858685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide. It is estimated that approximately one-third of the world's population is latently infected. Infection generally occurs via oral the route and maternal transmission. Damage of the central nervous system is one of the most serious consequences of congenital toxoplasmosis. Moreover, recent investigations proposed that acute and sub-acute congenital toxoplasmosis as well as latent toxoplasmosis during pregnancy; play various roles in the etiology of different neuropsychiatric disorders in mothers and their offspring. This paper reviews new findings about the role of latent toxoplasmosis in the etiology of various neuropsychiatric disorders in mothers and their offspring.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology, Faculty of Medical Sciences, Kashan University of Medical Science , Kashan , Iran and
| | | | | | | |
Collapse
|
126
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|
127
|
Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One 2013; 8:e75246. [PMID: 24058668 PMCID: PMC3776761 DOI: 10.1371/journal.pone.0075246] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/13/2013] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii chronic infection in rodent secondary hosts has been reported to lead to a loss of innate, hard-wired fear toward cats, its primary host. However the generality of this response across T. gondii strains and the underlying mechanism for this pathogen-mediated behavioral change remain unknown. To begin exploring these questions, we evaluated the effects of infection with two previously uninvestigated isolates from the three major North American clonal lineages of T. gondii, Type III and an attenuated strain of Type I. Using an hour-long open field activity assay optimized for this purpose, we measured mouse aversion toward predator and non-predator urines. We show that loss of innate aversion of cat urine is a general trait caused by infection with any of the three major clonal lineages of parasite. Surprisingly, we found that infection with the attenuated Type I parasite results in sustained loss of aversion at times post infection when neither parasite nor ongoing brain inflammation were detectable. This suggests that T. gondii-mediated interruption of mouse innate aversion toward cat urine may occur during early acute infection in a permanent manner, not requiring persistence of parasite cysts or continuing brain inflammation.
Collapse
|
128
|
Microorganisms that Manipulate Complex Animal Behaviours by Affecting the Host’s Nervous System. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40362-013-0013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
129
|
Soh LJT, Vasudevan A, Vyas A. Infection with Toxoplasma gondii does not elicit predator aversion in male mice nor increase their attractiveness in terms of mate choice. Parasitol Res 2013; 112:3373-8. [PMID: 23907633 DOI: 10.1007/s00436-013-3545-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/13/2013] [Indexed: 12/11/2022]
Abstract
Behavioral manipulation hypothesis posits that some parasites induce behavioral changes in the host to increase transmission efficiency of the parasite. Protozoan parasite Toxoplasma gondii infecting rats has been widely studied in this context. T. gondii increases attractiveness of infected male rats and reduces innate aversion of rats to cat odor, likely increasing transmission of the parasite by sexual and trophic routes respectively. It is currently unexplored if T. gondii induces gain of male attractiveness in experimental models other than rats. Here we show that laboratory infection of two strains of mice does not induce behavioral manipulation. Moreover, T. gondii infection results in reduction of male attractiveness in one of the strains. In agreement with this observation, T. gondii infection also fails to induce reduction in innate aversion to cat odors in mice. Effects of the parasite on mice mate choice are similar to effects of several other parasites in this animal model. Thus, behavioral change induced by the parasite may be specific to the rodent species.
Collapse
Affiliation(s)
- Linda Jing Ting Soh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 5637551, Singapore
| | | | | |
Collapse
|
130
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite that invades a wide range of vertebrate host cells. Chronic infections with T. gondii become established in the tissues of the central nervous system, where the parasites may directly or indirectly modulate neuronal function. However, the mechanisms underlying parasite-induced neuronal disorder in the brain remain unclear. This study evaluated host gene expression in mouse brain following infection with T. gondii. BALB/c mice were infected with the PLK strain, and after 32 days of infection, histopathological lesions in the frontal lobe were found to be more severe than in other areas of the brain. Total RNA extracted from infected and uninfected mouse brain samples was subjected to transcriptome analysis using RNA sequencing (RNA-seq). In the T. gondii-infected mice, 935 mouse brain genes were upregulated, whereas 12 genes were downregulated. GOstat analysis predicted that the upregulated genes were primarily involved in host immune responses and cell activation. Positive correlations were found between the numbers of parasites in the infected mouse brains and the expression levels of genes involved in host immune responses. In contrast, genes that had a negative correlation with parasite numbers were predicted to be involved in neurological functions, such as small-GTPase-mediated signal transduction and vesicle-mediated transport. Furthermore, differential gene expression was observed between mice exhibiting the clinical signs of toxoplasmosis and those that did not. Our findings may provide insights into the mechanisms underlying neurological changes during T. gondii infection.
Collapse
|
131
|
Zhao J, Chen Y, Xu Y, Pi G. Effect of intrauterine infection on brain development and injury. Int J Dev Neurosci 2013; 31:543-9. [DOI: 10.1016/j.ijdevneu.2013.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/23/2013] [Accepted: 06/23/2013] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jing Zhao
- Department of NeonatologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| | - Yurong Chen
- Department of NeonatologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| | - Yuxia Xu
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| | - Guanghuan Pi
- Department of PediatricsAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| |
Collapse
|
132
|
Holub D, Flegr J, Dragomirecká E, Rodriguez M, Preiss M, Novák T, Čermák J, Horáček J, Kodym P, Libiger J, Höschl C, Motlová LB. Differences in onset of disease and severity of psychopathology between toxoplasmosis-related and toxoplasmosis-unrelated schizophrenia. Acta Psychiatr Scand 2013; 127:227-38. [PMID: 23126494 DOI: 10.1111/acps.12031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Toxoplasmosis is a lifelong parasitic disease that appears to be associated to schizophrenia. However, no distinguishing attributes in Toxoplasma-infected schizophrenia patients have been described as yet. METHOD We searched for differences in symptom profile, cognitive performance and treatment response between 194 Toxoplasma-free and 57 (22.7%) Toxoplasma-infected schizophrenia patients treated in Prague Psychiatric Centre between 2000 and 2010. RESULTS Infected and non-infected patients differed in severity of symptoms (P = 0.032) measured with the Positive and Negative Symptom Scale (PANSS). Infected patients scored higher in positive subscale of PANSS, but not in the general and negative subscales. Infected men scored higher also in Total PANSS score, and negative, reality distortion, disorganisation and cognitive scores. Higher PANSS scores of positive, negative and disorganised psychopathology were associated with the lower titres of anti-Toxoplasma antibodies suggesting that psychopathology deteriorates with duration of parasitic infection. Infected patients remained about 33 days longer in hospital during their last admission than uninfected ones (P = 0.003). Schizophrenia started approximately 1 year earlier in infected men and about 3 years later in infected women, no such difference was observed in uninfected subjects. CONCLUSION Latent toxoplasmosis in schizophrenia may lead to more severe positive psychopathology and perhaps less favourable course of schizophrenia.
Collapse
Affiliation(s)
- D Holub
- Medical Faculty Charles University, Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Alibek K, Kakpenova A, Baiken Y. Role of infectious agents in the carcinogenesis of brain and head and neck cancers. Infect Agent Cancer 2013; 8:7. [PMID: 23374258 PMCID: PMC3573938 DOI: 10.1186/1750-9378-8-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/21/2013] [Indexed: 02/07/2023] Open
Abstract
This review concentrates on tumours that are anatomically localised in head and neck regions. Brain cancers and head and neck cancers together account for more than 873,000 cases annually worldwide, with an increasing incidence each year. With poor survival rates at late stages, brain and head and neck cancers represent serious conditions. Carcinogenesis is a multi-step process and the role of infectious agents in this progression has not been fully identified. A major problem with such research is that the role of many infectious agents may be underestimated due to the lack of or inconsistency in experimental data obtained globally. In the case of brain cancer, no infection has been accepted as directly oncogenic, although a number of viruses and parasites are associated with the malignancy. Our analysis of the literature showed the presence of human cytomegalovirus (HCMV) in distinct types of brain tumour, namely glioblastoma multiforme (GBM) and medulloblastoma. In particular, there are reports of viral protein in up to 100% of GBM specimens. Several epidemiological studies reported associations of brain cancer and toxoplasmosis seropositivity. In head and neck cancers, there is a distinct correlation between Epstein-Barr virus (EBV) and nasopharyngeal carcinoma (NPC). Considering that almost every undifferentiated NPC is EBV-positive, virus titer levels can be measured to screen high-risk populations. In addition there is an apparent association between human papilloma virus (HPV) and head and neck squamous cell carcinoma (HNSCC); specifically, 26% of HNSCCs are positive for HPV. HPV type 16 was the most common type detected in HNSCCs (90%) and its dominance is even greater than that reported in cervical carcinoma. Although there are many studies showing an association of infectious agents with cancer, with various levels of involvement and either a direct or indirect causative effect, there is a scarcity of articles covering the role of infection in carcinogenesis of brain and head and neck cancers. We review recent studies on the infectious origin of these cancers and present our current understanding of carcinogenic mechanisms, thereby providing possible novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Kenneth Alibek
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000, Kazakhstan.
| | | | | |
Collapse
|
134
|
McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour - location, location, location? J Exp Biol 2013; 216:113-9. [PMID: 23225873 PMCID: PMC3515035 DOI: 10.1242/jeb.074153] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022]
Abstract
Parasite location has been proposed as an important factor in the behavioural changes observed in rodents infected with the protozoan Toxoplasma gondii. During the chronic stages of infection, encysted parasites are found in the brain but it remains unclear whether the parasite has tropism for specific brain regions. Parasite tissue cysts are found in all brain areas with some, but not all, prior studies reporting higher numbers located in the amygdala and frontal cortex. A stochastic process of parasite location does not, however, seem to explain the distinct and often subtle changes observed in rodent behaviour. One factor that could contribute to the specific changes is increased dopamine production by T. gondii. Recently, it was found that cells encysted with parasites in the brains of experimentally infected rodents have high levels of dopamine and that the parasite encodes a tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of this neurotransmitter. A mechanism is proposed that could explain the behaviour changes due to parasite regulation of dopamine. This could have important implications for T. gondii infections in humans.
Collapse
Affiliation(s)
- Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
135
|
Association between IgG subclasses against Toxoplasma gondii and clinical signs in newborns with congenital toxoplasmosis. Pediatr Infect Dis J 2013; 32:13-6. [PMID: 22935868 DOI: 10.1097/inf.0b013e3182703460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the association between clinical signs of congenital toxoplasmosis and IgG subclasses found in newborns participating in the Minas Gerais State Neonatal Screening Program. METHODS Neonates with confirmed congenital toxoplasmosis underwent standardized ophthalmologic evaluation, neuroimaging studies and hearing assessment, as well as enzyme-linked immunosorbent assay testing for total IgG and its subclasses (IgG1, IgG2, IgG3 and IgG4) against soluble (STAg) and recombinant (rSAG1 and rMIC3) antigens of Toxoplasma gondii. RESULTS Newborns with congenital toxoplasmosis but without ocular lesions were more likely to present anti-rMIC3 total IgG when compared with those newborns with active or cicatricial retinochoroidal lesions. Detection of anti-rMIC3 IgG2 and IgG4 was associated with presence of retinochoroidal lesions and intracranial calcifications, with higher mean reactivity index values than unaffected newborns with congenital toxoplasmosis. Anti-STAg IgG3 was associated with newborns without neurologic damage. CONCLUSIONS Specific subclasses of IgG antibodies reacting with recombinant antigens of T. gondii may serve as biomarkers of neurologic and ocular changes in newborns with congenital toxoplasmosis.
Collapse
|
136
|
Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Exp Parasitol 2013; 133:1-7. [DOI: 10.1016/j.exppara.2012.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/17/2022]
|
137
|
Strobl JS, Goodwin DG, Rzigalinski BA, Lindsay DS. Dopamine Stimulates Propagation ofToxoplasma gondiiTachyzoites in Human Fibroblast and Primary Neonatal Rat Astrocyte Cell Cultures. J Parasitol 2012; 98:1296-9. [DOI: 10.1645/ge-2760.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
138
|
Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 2012; 9:211. [PMID: 22950459 PMCID: PMC3488569 DOI: 10.1186/1742-2094-9-211] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/18/2012] [Indexed: 12/01/2022] Open
Abstract
Background Post-ischemic microglial activation may contribute to neuronal damage through the release of large amounts of pro-inflammatory cytokines and neurotoxic factors. The involvement of microRNAs (miRNAs) in the pathogenesis of disorders related to the brain and central nervous system has been previously studied, but it remains unknown whether the production of pro-inflammatory cytokines is regulated by miRNAs. Methods BV-2 and primary rat microglial cells were activated by exposure to oxygen-glucose deprivation (OGD). Global cerebral ischemia was induced using the four-vessel occlusion (4-VO) model in rats. Induction of pro-inflammatory and neurotoxic factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide (NO), were assessed by ELISA, immunofluorescence, and the Griess assay, respectively. The miRNA expression profiles of OGD-activated BV-2 cells were subsequently compared with the profiles of resting cells in a miRNA microarray. BV-2 and primary rat microglial cells were transfected with miR-181c to evaluate its effects on TNF-α production after OGD. In addition, a luciferase reporter assay was conducted to confirm whether TNF-α is a direct target of miR-181c. Results OGD induced BV-2 microglial activation in vitro, as indicated by the overproduction of TNF-α, IL-1β, and NO. Global cerebral ischemia/reperfusion injury induced microglial activation and the release of pro-inflammatory cytokines in the hippocampus. OGD also downregulated miR-181c expression and upregulated TNF-α expression. Overproduction of TNF-α after OGD-induced microglial activation provoked neuronal apoptosis, whereas the ectopic expression of miR-181c partially protected neurons from cell death caused by OGD-activated microglia. RNAinterference-mediated knockdown of TNF-α phenocopied the effect of miR-181c-mediated neuronal protection, whereas overexpression of TNF-α blocked the miR-181c-dependent suppression of apoptosis. Further studies showed that miR-181c could directly target the 3′-untranslated region of TNF-α mRNA, suppressing its mRNA and protein expression. Conclusions Our data suggest a potential role for miR-181c in the regulation of TNF-α expression after ischemia/hypoxia and microglia-mediated neuronal injury.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China
| | | | | | | | | |
Collapse
|
139
|
Guenter W, Bieliński M, Deptuła A, Zalas-Więcek P, Piskunowicz M, Szwed K, Buciński A, Gospodarek E, Borkowska A. Does Toxoplasma gondii infection affect cognitive function? A case control study. Folia Parasitol (Praha) 2012; 59:93-8. [DOI: 10.14411/fp.2012.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
140
|
Fond G, Macgregor A, Attal J, Larue A, Brittner M, Ducasse D, Capdevielle D. Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med Hypotheses 2012; 79:38-42. [PMID: 22543071 DOI: 10.1016/j.mehy.2012.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/04/2012] [Accepted: 03/22/2012] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Important data was recently published on the potential genotoxic or carcinogenic effects of antipsychotics, as well as on their cytotoxic properties on cancer cells, that must be considered by psychiatrists in the benefit/risk ratio of their prescriptions. AIM OF THE STUDY To answer whether or not antipsychotics, as a class or only some specific molecules, may influence cancer risk among treated patients. METHODS ELIGIBILITY CRITERIA: All studies (in vitro, animal studies and human studies) concerning effects of antipsychotic drugs on cancer development were included. The search paradigm [neoplasms AND (antipsychotic agents OR neuroleptic OR phenothiazine)] was applied to Medline (1966-present) and Web of Science (1975-present). RESULTS Ninety-three studies were included in the qualitative synthesis. Results can be summarized as follows: (1) patients with schizophrenia may be less likely to develop cancer than the general population, (2) antipsychotics as a class cannot be considered at the moment as at risk for cancer, even if some antipsychotics have shown carcinogenic properties among rodents, (3) phenothiazines seem to have antiproliferative properties that may be useful in multidrug augmentation strategies in various cancer treatments, but their bad tolerance may decrease usage amongst non-psychotic patients, and (4) clozapine appears to have a separate status given that this molecule shows antiproliferative effects implied in agranulocytosis as well as a potential increased risk for leukemia. CONCLUSION Benefit/risk ratio regarding cancer risk is in favor of treating patients with schizophrenia with antipsychotic drugs. The practicing clinician should be reassuring on the subject of cancer risk due to antipsychotic drugs.
Collapse
Affiliation(s)
- G Fond
- Université Montpellier 1, Montpellier F-34000, France.
| | | | | | | | | | | | | |
Collapse
|
141
|
Haroon F, Händel U, Angenstein F, Goldschmidt J, Kreutzmann P, Lison H, Fischer KD, Scheich H, Wetzel W, Schlüter D, Budinger E. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One 2012; 7:e35516. [PMID: 22530040 PMCID: PMC3329480 DOI: 10.1371/journal.pone.0035516] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 03/18/2012] [Indexed: 12/11/2022] Open
Abstract
Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+)) imaging studies revealed that tachyzoites actively manipulated Ca(2+) signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+) uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+) stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.
Collapse
Affiliation(s)
- Fahad Haroon
- Institut für Medizinische Mikrobiologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Ulrike Händel
- Institut für Medizinische Mikrobiologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Frank Angenstein
- Leibniz-Institut für Neurobiologie, Speziallabor Nicht-Invasive Bildgebung, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Leibniz-Institut für Neurobiologie, Abteilung Akustik, Lernen und Sprache, Magdeburg, Germany
| | - Peter Kreutzmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Holger Lison
- Leibniz-Institut für Neurobiologie, Abteilung Akustik, Lernen und Sprache, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Henning Scheich
- Leibniz-Institut für Neurobiologie, Abteilung Akustik, Lernen und Sprache, Magdeburg, Germany
| | - Wolfram Wetzel
- Leibniz-Institut für Neurobiologie, Speziallabor Verhaltenspharmakologie, Magdeburg, Germany
| | - Dirk Schlüter
- Institut für Medizinische Mikrobiologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- * E-mail:
| | - Eike Budinger
- Leibniz-Institut für Neurobiologie, Abteilung Akustik, Lernen und Sprache, Magdeburg, Germany
| |
Collapse
|
142
|
Xiao J, Kannan G, Jones-Brando L, Brannock C, Krasnova I, Cadet J, Pletnikov M, Yolken R. Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience 2012; 206:39-48. [DOI: 10.1016/j.neuroscience.2011.12.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
|
143
|
Behavioral changes in mice caused by Toxoplasma gondii invasion of brain. Parasitol Res 2012; 111:53-8. [PMID: 22223035 PMCID: PMC3378833 DOI: 10.1007/s00436-011-2800-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/19/2011] [Indexed: 01/14/2023]
Abstract
Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls.
Collapse
|
144
|
Dalimi A, Abdoli A. Latent toxoplasmosis and human. IRANIAN JOURNAL OF PARASITOLOGY 2012; 7:1-17. [PMID: 23133466 PMCID: PMC3488815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/24/2012] [Indexed: 11/06/2022]
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide. Although estimated that one third of the world's population are infected with Toxoplasma gondii, but the most common form of the disease is latent (asymptomatic). On the other hand, recent findings indicated that latent toxoplasmosis is not only unsafe for human, but also may play various roles in the etiology of different mental disorders. This paper reviews new findings about importance of latent toxoplasmosis (except in immunocompromised patients) in alterations of behavioral parameters and also its role in the etiology of schizophrenia and depressive disorders, obsessive-compulsive disorder, Alzheimer's diseases and Parkinson's disease, epilepsy, headache and or migraine, mental retardation and intelligence quotients, suicide attempt, risk of traffic accidents, sex ratio and some possible mechanisms of T. gondii that could contribute in the etiology of these alterations.
Collapse
Affiliation(s)
- A Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
145
|
Berenreiterová M, Flegr J, Kuběna AA, Němec P. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS One 2011; 6:e28925. [PMID: 22194951 PMCID: PMC3237564 DOI: 10.1371/journal.pone.0028925] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/17/2011] [Indexed: 12/04/2022] Open
Abstract
Background The highly prevalent parasite Toxoplasma gondii reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. Methodology/Principal Findings The distributions of T. gondii cysts and histopathological lesions in the brains of CD1 mice with latent toxoplasmosis were analyzed using standard histological techniques. Mice were infected per orally with 10 tissue cysts of the avirulent HIF strain of T. gondii at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. Conclusion/Significance The observed pattern of T. gondii distribution stems from uneven brain colonization during acute infection and explains numerous behavioral abnormalities observed in the chronically infected rodents. Thus, the parasite can effectively change behavioral phenotype of infected hosts despite the absence of well targeted tropism.
Collapse
|
146
|
Thomas F, Lafferty KD, Brodeur J, Elguero E, Gauthier-Clerc M, Missé D. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common. Biol Lett 2011; 8:101-3. [PMID: 21795265 DOI: 10.1098/rsbl.2011.0588] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product because wealth probably increases the ability to detect cancer. We also included gender, cell phone use and latitude as variables in our initial models. Prevalence of T. gondii explained 19 per cent of the residual variance in brain cancer incidence after controlling for the positive effects of gross domestic product and latitude among nations. Infection with T. gondii was associated with a 1.8-fold increase in the risk of brain cancers across the range of T. gondii prevalence in our dataset (4-67%). These results, though correlational, suggest that T. gondii should be investigated further as a possible oncogenic pathogen of humans.
Collapse
|
147
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite. Following oral infection the parasite crosses the intestinal epithelial barrier to disseminate throughout the body and establish latent infection in central nervous tissues. The clinical presentation ranges from asymptomatic to severe neurological disorders in immunocompromised individuals. Since the clinical presentation is diverse and depends, among other factors, on the immune status of the host, in the present review, we introduce parasitological, epidemiological, clinical, and molecular biological aspects of infection with T. gondii to set the stage for an in-depth discussion of host immune responses. Since immune responses in humans have not been investigated in detail the present review is exclusively referring to immune responses in experimental models of infection. Systemic and local immune responses in different models of infection are discussed, and a separate chapter introduces commonly used animal models of infection.
Collapse
Affiliation(s)
- Melba Munoz
- Charite Medical School Berlin - Microbiology and Hygiene, Berlin, Germany
| | | | | |
Collapse
|
148
|
Migratory activation of primary cortical microglia upon infection with Toxoplasma gondii. Infect Immun 2011; 79:3046-52. [PMID: 21628522 DOI: 10.1128/iai.01042-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disseminated toxoplasmosis in the central nervous system (CNS) is often accompanied by a lethal outcome. Studies with murine models of infection have focused on the role of systemic immunity in control of toxoplasmic encephalitis, while knowledge remains limited on the contributions of resident cells with immune functions in the CNS. In this study, the role of glial cells was addressed in the setting of recrudescent Toxoplasma infection in mice. Activated astrocytes and microglia were observed in the close vicinity of foci with replicating parasites in situ in the brain parenchyma. Toxoplasma gondii tachyzoites were allowed to infect primary microglia and astrocytes in vitro. Microglia were permissive to parasite replication, and infected microglia readily transmigrated across transwell membranes and cell monolayers. Thus, infected microglia, but not astrocytes, exhibited a hypermotility phenotype reminiscent of that recently described for infected dendritic cells. In contrast to gamma interferon-activated microglia, Toxoplasma-infected microglia did not upregulate major histocompatibility complex (MHC) class II molecules and the costimulatory molecule CD86. Yet Toxoplasma-infected microglia and astrocytes exhibited increased sensitivity to T cell-mediated killing, leading to rapid parasite transfer to effector T cells in vitro. We hypothesize that glial cells and T cells, besides their role in triggering antiparasite immunity, may also act as "Trojan horses," paradoxically facilitating dissemination of Toxoplasma within the CNS. To our knowledge, this constitutes the first report of migratory activation of a resident CNS cell by an intracellular parasite.
Collapse
|
149
|
T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain. ASN Neuro 2011; 3:e00049. [PMID: 21434872 PMCID: PMC3024837 DOI: 10.1042/an20100027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chronic infection with the intracellular protozoan parasite Toxoplasma gondii leads to tissue remodelling in the brain and a continuous requirement for peripheral leucocyte migration within the CNS (central nervous system). In the present study, we investigate the role of MMPs (matrix metalloproteinases) and their inhibitors in T-cell migration into the infected brain. Increased expression of two key molecules, MMP-8 and MMP-10, along with their inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases-1), was observed in the CNS following infection. Analysis of infiltrating lymphocytes demonstrated MMP-8 and -10 production by CD4+ and CD8+ T-cells. In addition, infiltrating T-cells and CNS resident astrocytes increased their expression of TIMP-1 following infection. TIMP-1-deficient mice had a decrease in perivascular accumulation of lymphocyte populations, yet an increase in the proportion of CD4+ T-cells that had trafficked into the CNS. This was accompanied by a reduction in parasite burden in the brain. Taken together, these findings demonstrate a role for MMPs and TIMP-1 in the trafficking of lymphocytes into the CNS during chronic infection in the brain.
Collapse
|
150
|
Henriquez FL, Woods S, Cong H, McLeod R, Roberts CW. Immunogenetics of Toxoplasma gondii informs vaccine design. Trends Parasitol 2010; 26:550-5. [DOI: 10.1016/j.pt.2010.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/27/2022]
|