101
|
Kaur M, Mehta V, Arora S, Munshi A, Singh S, Kumar R. Design, Synthesis and Biological Evaluation of New 5‐(2‐Nitrophenyl)‐1‐aryl‐1
H
‐pyrazoles as Topoisomerase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Vikrant Mehta
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
102
|
Alcon C, Zañudo JGT, Albert R, Wagle N, Scaltriti M, Letai A, Samitier J, Montero J. ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins. Cells 2021; 10:1659. [PMID: 34359829 PMCID: PMC8304651 DOI: 10.3390/cells10071659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most frequent type of cancer and the major cause of mortality in women. The rapid development of various therapeutic options has led to the improvement of treatment outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer. We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition, we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option for refractory and relapsed ER+ breast cancer tumors.
Collapse
Affiliation(s)
- Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
| | | | - Reka Albert
- Department of Biology, The Pennsylvania State University, University Park, PA 16802-6300, USA;
| | - Nikhil Wagle
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (J.G.T.Z.); (N.W.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
| |
Collapse
|
103
|
Wang L, Zhao X, Fu J, Xu W, Yuan J. The Role of Tumour Metabolism in Cisplatin Resistance. Front Mol Biosci 2021; 8:691795. [PMID: 34250022 PMCID: PMC8261055 DOI: 10.3389/fmolb.2021.691795] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is a chemotherapy drug commonly used in cancer treatment. Tumour cells are more sensitive to cisplatin than normal cells. Cisplatin exerts an antitumour effect by interfering with DNA replication and transcription processes. However, the drug-resistance properties of tumour cells often cause loss of cisplatin efficacy and failure of chemotherapy, leading to tumour progression. Owing to the large amounts of energy and compounds required by tumour cells, metabolic reprogramming plays an important part in the occurrence and development of tumours. The interplay between DNA damage repair and metabolism also has an effect on cisplatin resistance; the molecular changes to glucose metabolism, amino acid metabolism, lipid metabolism, and other metabolic pathways affect the cisplatin resistance of tumour cells. Here, we review the mechanism of action of cisplatin, the mechanism of resistance to cisplatin, the role of metabolic remodelling in tumorigenesis and development, and the effects of common metabolic pathways on cisplatin resistance.
Collapse
Affiliation(s)
- Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoya Zhao
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianlie Yuan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
104
|
Quah SY, Wong CC, Wong HC, Ho KL, Abdul Manan N, Deb PK, Sagineedu SR, Stanslas J. Microarray-based identification of differentially expressed genes associated with andrographolide derivatives-induced resistance in colon and prostate cancer cell lines. Toxicol Appl Pharmacol 2021; 425:115605. [PMID: 34087331 DOI: 10.1016/j.taap.2021.115605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/30/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Chemoresistance poses a major hurdle to cancer treatments. Andrographolide-derived SRJ09 and SRJ23 were reported to exhibit potent, selective inhibitory activities against colon and prostate cancer cells, respectively. In this study, previously developed resistant colon (HCT-116rst09) and prostate (PC-3rst23) cancer cell lines were used to elucidate the molecular mechanisms contributing to chemoresistance. Cytotoxic effects of SRJ09 and SRJ23 on both parental and resistant cells were investigated. Cell cycle distributions in HCT-116rst09 cells following SRJ09 treatment were analysed using flow cytometry. Whole-genome microarray analysis was performed on both parental and resistant cells to obtain differential gene expression profiles. Microarray data were subjected to protein-protein interaction network, functional enrichment, and pathway analyses. Reverse transcription-polymerase chain reaction (RT-PCR) was used to validate the changes in expression levels of selected genes. Besides morphological changes, HCT-116rst09 cells showed 7.0-fold resistance to SRJ09 while PC-3rst23 cells displayed a 5.5-fold resistance to SRJ23, as compared with their respective parental cells. G0/G1-phase cell cycle arrest was observed in HCT-116rst09 cells upon SRJ09 treatment. Collectively, 77 and 21 genes were found differentially modulated in HCT-116rst09 and PC-3rst23 cells, respectively. Subsequent bioinformatics analysis revealed several genes associated with FGFR4 and PI3K pathways, and cancer stemness, were chemoresistance mediators in HCT-116rst09 cells. RT-PCR confirmed the HMOX1 upregulation and ATG12 downregulation protected the PC-3rst23 cells from SRJ23 cytotoxicity. In conclusion, acquired chemoresistance to SRJ09 and SRJ23 in colon and prostate cancer cells, respectively, could be attributed to the alterations in the expression of genes such as those related to PI3K and autophagy pathways.
Collapse
Affiliation(s)
- Shun Ying Quah
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Charng Choon Wong
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hui Chyn Wong
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nizar Abdul Manan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Pran Kishore Deb
- Faculty of Pharmacy, P.O.BOX (1), Philadelphia University, 19392 Amman, Jordan
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
105
|
Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed Pharmacother 2021; 140:111704. [PMID: 34082400 DOI: 10.1016/j.biopha.2021.111704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer treatment is improving widely over time, but finding a proper defender to beat them seems like a distant dream. The quest for identification and discovery of drugs with an effective action is still a vital work. The role of a membrane protein called P-glycoprotein, which functions as garbage chute that efflux the waste, xenobiotics, and toxins out of the cancer cells acts as a major reason behind the therapeutic failure of most chemotherapeutic drugs. In this review, we mainly focused on a multiple strategies by employing 5-Fluorouracil, curcumin, and lipids in Nano formulation for the possible treatment of colorectal cancer and its metastasis. Eventually, multidrug resistance and angiogenesis can be altered and it would be helpful in colorectal cancer targeting.We have depicted the possible way for the depletion of colorectal cancer cells without disturbing the normal cells. The concept of focusing on multiple pathways for marking the colorectal cancer cells could help in activating one among the pathways if the other one fails. The activity of the 5-Fluorouracil can be enhanced with the help of curcumin which acts as a chemosensitizer, chemotherapeutic agent, and even for altering the resistance. As we eat to survive, so do the cancer cells. The cancer cells utilize the energy source to stay alive and survive. Fatty acids can be used as the energy source and this concept can be employed for targeting the colorectal cancer cells and also for altering the resistant part.
Collapse
|
106
|
Han JH, Kim M, Kim HJ, Jang SB, Bae SJ, Lee IK, Ryu D, Ha KT. Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int J Mol Sci 2021; 22:ijms22105406. [PMID: 34065602 PMCID: PMC8161398 DOI: 10.3390/ijms22105406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Resistance to anticancer therapeutics occurs in virtually every type of cancer and becomes a major difficulty in cancer treatment. Although 5-fluorouracil (5FU) is the first-line choice of anticancer therapy for gastric cancer, its effectiveness is limited owing to drug resistance. Recently, altered cancer metabolism, including the Warburg effect, a preference for glycolysis rather than oxidative phosphorylation for energy production, has been accepted as a pivotal mechanism regulating resistance to chemotherapy. Thus, we investigated the detailed mechanism and possible usefulness of antiglycolytic agents in ameliorating 5FU resistance using established gastric cancer cell lines, SNU620 and SNU620/5FU. SNU620/5FU, a gastric cancer cell harboring resistance to 5FU, showed much higher lactate production and expression of glycolysis-related enzymes, such as lactate dehydrogenase A (LDHA), than those of the parent SNU620 cells. To limit glycolysis, we examined catechin and its derivatives, which are known anti-inflammatory and anticancer natural products because epigallocatechin gallate has been previously reported as a suppressor of LDHA expression. Catechin, the simplest compound among them, had the highest inhibitory effect on lactate production and LDHA activity. In addition, the combination of 5FU and catechin showed additional cytotoxicity and induced reactive oxygen species (ROS)-mediated apoptosis in SNU620/5FU cells. Thus, based on these results, we suggest catechin as a candidate for the development of a novel adjuvant drug that reduces chemoresistance to 5FU by restricting LDHA.
Collapse
Affiliation(s)
- Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
| | - MinJeong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hyeon Jin Kim
- Department of Molecular Biology, College of Natural Science, Busan 46241, Korea; (H.J.K.); (S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Science, Busan 46241, Korea; (H.J.K.); (S.B.J.)
| | - Sung-Jin Bae
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine Kyungpook National University, Daegu 41566, Korea;
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: (D.R.); (K.-T.H.)
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (D.R.); (K.-T.H.)
| |
Collapse
|
107
|
Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021; 26:2601. [PMID: 33946916 PMCID: PMC8124695 DOI: 10.3390/molecules26092601] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite enormous progress in the treatment of many malignancies, the development of cancer resistance is still an important reason for cancer chemotherapy failure. Increasing knowledge of cancers' molecular complexity and mechanisms of their resistance to anticancer drugs, as well as extensive clinical experience, indicate that an effective fight against cancer requires a multidimensional approach. Multi-target chemotherapy may be achieved using drugs combination, co-delivery of medicines, or designing hybrid drugs. Hybrid drugs simultaneously targeting many points of signaling networks and various structures within a cancer cell have been extensively explored in recent years. The single hybrid agent can modulate multiple targets involved in cancer cell proliferation, possesses a simpler pharmacokinetic profile to reduce the possibility of drug interactions occurrence, and facilitates the process of drug development. Moreover, a single medication is expected to enhance patient compliance due to a less complicated treatment regimen, as well as a diminished number of adverse reactions and toxicity in comparison to a combination of drugs. As a consequence, many efforts have been made to design hybrid molecules of different chemical structures and functions as a means to circumvent drug resistance. The enormous number of studies in this field encouraged us to review the available literature and present selected research results highlighting the possible role of hybrid drugs in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Andrzej Stanczak
- Department of Community Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland;
| |
Collapse
|
108
|
Wang J, Hu Y, Escamilla-Rivera V, Gonzalez CL, Tang L, Wang B, El-Naggar AK, Myers JN, Caulin C. Epithelial Mutant p53 Promotes Resistance to Anti-PD-1-Mediated Oral Cancer Immunoprevention in Carcinogen-Induced Mouse Models. Cancers (Basel) 2021; 13:1471. [PMID: 33806894 PMCID: PMC8005156 DOI: 10.3390/cancers13061471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops through the multistep malignant progression of squamous epithelium. This process can be prevented by PD-1 blockade in a mouse model for oral carcinogenesis. OSCCs exhibit a high incidence of p53 mutations that confer oncogenic gain-of-function (GOF) activities that promote resistance to standard therapies and poor clinical outcomes. To determine whether epithelial p53 mutations modulate anti-PD-1-mediated oral cancer immunoprevention, we generated mouse models for oral carcinogenesis by exposing mice carrying epithelial-specific p53 mutations to the carcinogen 4NQO. Consistent with the oncogenic functions of mutant p53, mice with OSCCs expressing the p53R172H GOF mutation developed higher metastasis rates than mice with loss-of-function (LOF) p53 deletion or with wild-type p53. Throughout oral cancer progression, pre-invasive and invasive lesions showed a gradual increase in T-cell infiltration, recruitment of immunosuppressive regulatory T-cells (Tregs), and induction of PD-1/PD-L1 immune checkpoint proteins. Notably, while PD-1 blockade prevented the development of OSCCs in mice with wild-type p53 or p53 deletion, GOF p53R172H abrogated the immunopreventive effects of anti-PD-1, associated with upregulation of IL17 signaling and depletion of exhausted CD8 cells in the microenvironment of the p53R172H tumors. These findings sustain a potential role for p53 profiling in personalized oral cancer immunoprevention.
Collapse
Affiliation(s)
- Jin Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
- Department of E.N.T., Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuan Hu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Otolaryngology—Head & Neck Surgery, University of Arizona, Tucson, AZ 85724, USA;
| | | | - Cassandra L. Gonzalez
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
| | - Lin Tang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Bingbing Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.W.); (Y.H.); (C.L.G.); (L.T.); (B.W.); (J.N.M.)
- Department of Otolaryngology—Head & Neck Surgery, University of Arizona, Tucson, AZ 85724, USA;
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
109
|
Steketee AM, Harden SM. Mom Expo: Bridging the Gap Between Local Women and Perinatal Resources. J Perinat Educ 2021; 30:108-117. [PMID: 33897235 DOI: 10.1891/j-pe-d-20-00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The purpose of this project was to describe the implementation of a perinatal health fair intended to connect local women to holistic resources. Researchers used participatory strategies to develop the health fair with local women and perinatal educators. Researchers evaluated the health fair using pragmatic measures based on the (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework. Forty-two attendees were reached and 23 educators hosted booths and educational sessions. Feedback indicated strong enthusiasm for future similar events. Nearly three quarters of the time spent implementing the health fair was devoted to building relationships within the community. Overall, this project provides practical and empirical information to inform the planning, implementation, and evaluation of perinatal health fairs that establish meaningful connection between local women, perinatal educators, and health researchers.
Collapse
|
110
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
111
|
Emrani S, Lamar M, Price CC, Baliga S, Wasserman V, Matusz E, Swenson R, Baliga G, Libon DJ. Assessing the capacity for mental manipulation in patients with statically-determined mild cognitive impairment using digital technology. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims: Prior research employing a standard backward digit span test has been successful in operationally defining neurocognitive constructs associated with the Fuster’s model of executive attention. The current research sought to test if similar behavior could be obtained using a cross-modal mental manipulation test.
Methods: Memory clinic patients were studied. Using Jak-Bondi criteria, 24 patients were classified with mild cognitive impairment (MCI), and 33 memory clinic patients did not meet criteria for MCI (i.e. non-MCI). All patients were assessed with the digital version of the WRAML-2 Symbolic Working Memory Test-Part 1, a cross-modal mental manipulation task where patients hear digits, but respond by touching digits from lowest to highest on an answer key. Only 4 and 5-span trials were analyzed. Using an iPad, all test stimuli were played; and, all responses were obtained with a touch key. Only correct trials were analyzed. Average time to complete trials and latency for each digit was recorded.
Results: Groups did not differ when average time to complete 4-span trials was calculated. MCI patients displayed slower latency, or required more time to re-order the 1st and 3rd digits. Regression analyses, primarily involving initial and latter response latencies, were associated with better, but different underlying neuropsychological abilities. Almost no 5-span analyses were significant.
Conclusions: This cross-modal test paradigm found no difference for total average time. MCI patients generated slower 1st and 3rd response latency, suggesting differences in time allocation to achieve correct serial order recall. Moreover, different neuropsychological abilities were associated with different time-based test components. These data extend prior findings using a standard backward digit span test. Differences in time epochs are consistent with constructs underlying the model of executive attention and help explain mental manipulation deficits in MCI. These latency measures could constitute neurocognitive biomarkers that track emergent disease.
Collapse
Affiliation(s)
- Sheina Emrani
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Melissa Lamar
- Department of Behavioral Sciences and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA
| | - Satya Baliga
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Victor Wasserman
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Emily Matusz
- 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Rod Swenson
- Department Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Grand Fork, Fargo, ND 58103, USA
| | - Ganesh Baliga
- Department of Computer Science, Rowan University, Glassboro, NJ 08028, USA
| | - David J. Libon
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
112
|
Agnello L, Camorani S, Fedele M, Cerchia L. Aptamers and antibodies: rivals or allies in cancer targeted therapy? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:107-121. [PMID: 36046085 PMCID: PMC9400792 DOI: 10.37349/etat.2021.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
The goal of an efficacious cancer therapy is to specifically target diseased cells at high accuracy while sparing normal, healthy cells. Over the past three decades, immunotherapy, based on the use of monoclonal antibodies (mAbs) directed against tumor-associated antigens, to inhibit their oncogenic function, or against immune checkpoints, to modulate specific T cell responses against cancer, has proven to be an important strategy for cancer therapy. Nevertheless, the number of mAbs approved for clinical use is still limited because of significant drawbacks to their applicability. Oligonucleotide aptamers, similarly to antibodies, form high-affinity bonds with their specific protein targets, thus representing an effective tool for active cancer targeting. Compared to antibodies, aptamers’ use as therapeutic agents benefits from their low size, low/no immunogenicity, simple synthesis and design flexibility for improving efficacy and stability. This review intends to highlight recently emerged applications of aptamers as recognition elements, from biomarker discovery to targeted drug delivery and targeted treatment, showing aptamers’ potential to work in conjunction with antibodies for attacking cancer from multiple flanks.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
113
|
Selective Cytotoxicity of Piperine Over Multidrug Resistance Leukemic Cells. Molecules 2021; 26:molecules26040934. [PMID: 33578817 PMCID: PMC7916575 DOI: 10.3390/molecules26040934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multidrug resistance (MDR) is the main challenge in the treatment of chronic myeloid leukemia (CML), and P-glycoprotein (P-gp) overexpression is an important mechanism involved in this resistance process. However, some compounds can selectively affect MDR cells, inducing collateral sensitivity (CS), which may be dependent on P-gp. The aim of this study was to investigate the effect of piperine, a phytochemical from black pepper, on CS induction in CML MDR cells, and the mechanisms involved. The results indicate that piperine induced CS, being more cytotoxic to K562-derived MDR cells (Lucena-1 and FEPS) than to K562, the parental CML cell. CS was confirmed by analysis of cell metabolic activity and viability, cell morphology and apoptosis. P-gp was partially required for CS induction. To investigate a P-gp independent mechanism, we analyzed the possibility that poly (ADP-ribose) polymerase-1 (PARP-1) could be involved in piperine cytotoxic effects. It was previously shown that only MDR FEPS cells present a high level of 24 kDa fragment of PARP-1, which could protect these cells against cell death. In the present study, piperine was able to decrease the 24 kDa fragment of PARP-1 in MDR FEPS cells. We conclude that piperine targets selectively MDR cells, inducing CS, through a mechanism that might be dependent or not on P-gp.
Collapse
|
114
|
Huang S, Zhang QY, He AE, Li HB, Zhang ZX. Sex determining region Y-box 9 induced microtubule formation and epithelial⁃mesenchymal transition in human oral squamous cell carcinoma CAL27 cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:74-80. [PMID: 33723940 DOI: 10.7518/hxkq.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aimed to explore the effect of sex determining region Y-box 9 (SOX9) on the microtubule formation and epithelial-mesenchymal transition (EMT) of human oral squamous cell carcinoma (OSCC) CAL27 and the underlying mechanism. METHODS SOX9-shRNA1 and SOX9-shRNA2 were designed and synthesized and then transfected into CAL27 cells. The expression of SOX9 was detected by quantitative real-time polymerase chain reaction. Microtubule formation assay was used to detect the change in the number of microtubule nodules after interfering with SOX9. Immunofluorescence was used to detect the Vimentin content. Western blot was used to detect the protein expression of EMT marker molecules and Wnt/β-catenin pathway-related proteins, such as E-cadherin, N-cadherin, Fibronectin, Wnt, β-catenin, T-cell factor-4 (TCF-4). RESULTS The expression level of SOX9 significantly decreased after transfection with SOX9-shRNA1 and SOX9-shRNA2 in CAL27 cells (F=578.000, P=0.000; F=96.850, P=0.000). Interference with SOX9 inhibited the EMT of OSCC. After interference with SOX9, the number of tubules and Vimentin positive cells decreased significantly (F=169.700, P=0.000). The expression level of E-cadherin significantly increased (F=181.400, P=0.000). The expression levels of N-cadherin, Fibronectin, Wnt, β-catenin, and TCF-4 proteins significantly decreased (N-cadherin: F=101.400, P=0.000; Fibronectin: F=122.300, P=0.000; Wnt: F=70.290, P=0.000; β-catenin: F=81.740, P=0.000; TCF-4: F=37.020, P=0.000). CONCLUSIONS Interference with SOX9 decreased Vimentin content and inhibited the microtubule formation and protein expression of EMT marker molecules, as well as the expression of proteins related to the Wnt/β-catenin pathway. Thus, SOX9 can induce microtubule formation and EMT in CAL27, which was related to the inhibition of the Wnt/β-catenin pathway activation.
Collapse
Affiliation(s)
- Sheng Huang
- Dept. of Stomatology, East Hospital, Mafangshan Campus, Wuhan University of Science and Technology, Wuhan 430000, China
| | - Qi-Yuan Zhang
- Dept. of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Ai-E He
- Dept. of Stomatology, The Fifth Hospital of Wuhan, Wuhan 430000, China
| | - Hong-Bo Li
- Dept. of Prosthodontics, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Zhi-Xing Zhang
- Dept. of Stomatology, Affiliated Hospital of Tongji Medical University, Wuhan 430000, China
| |
Collapse
|
115
|
Cortesi M, Liverani C, Mercatali L, Ibrahim T, Giordano E. Development and validation of an in-silico tool for the study of therapeutic agents in 3D cell cultures. Comput Biol Med 2021; 130:104211. [PMID: 33476993 DOI: 10.1016/j.compbiomed.2021.104211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
Computational models constitute a fundamental asset for cancer research and drug R&D, as they provide controlled environments for testing of hypotheses and are characterized by the total knowledge of the system. These features are particularly useful for 3D cell culture models where a complex interaction among cells and their environments ensues. In this work, we present a programmable simulator capable of reproducing the behavior of cells cultured in 3D scaffolds and their response to pharmacological treatment. This system will be shown to be able to accurately describe the temporal evolution of the density of a population of MDA-MB-231 cells following their treatment with different concentrations of doxorubicin, together with a newly described drug-resistance mechanism and potential re-sensitization strategy. An extensive technical description of this model will be coupled to its experimental validation and to an analysis aimed at identifying which variables and behaviors account for differences in the response to treatment. Comprehensively, this work contributes to the growing field of integrated in-silico/in-vitro analysis of biological processes which has great potential for both the increase of our scientific knowledge and the development of novel, more effective treatments.
Collapse
Affiliation(s)
- M Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Italy.
| | - C Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - L Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - T Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - E Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Italy; Laboratory of Cellular and Molecular Engineering "S.Cavalcanti", Department of Electrical, Electronic and Information Engineering "G.Marconi" (DEI), Alma Mater Studiorum - University of Bologna, Cesena, Italy; Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum - University of Bologna, Italy.
| |
Collapse
|
116
|
Majera D, Mistrik M. Effect of Sepatronium Bromide (YM-155) on DNA Double-Strand Breaks Repair in Cancer Cells. Int J Mol Sci 2020; 21:ijms21249431. [PMID: 33322336 PMCID: PMC7763167 DOI: 10.3390/ijms21249431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Survivin, as an antiapoptotic protein often overexpressed in cancer cells, is a logical target for potential cancer treatment. By overexpressing survivin, cancer cells can avoid apoptotic cell death and often become resistant to treatments, representing a significant obstacle in modern oncology. A survivin suppressor, an imidazolium-based compound known as YM-155, is nowadays studied as an attractive anticancer agent. Although survivin suppression by YM-155 is evident, researchers started to report that YM-155 is also an inducer of DNA damage introducing yet another anticancer mechanism of this drug. Moreover, the concentrations of YM-155 for DNA damage induction seems to be far lower than those needed for survivin inhibition. Understanding the molecular mechanism of action of YM-155 is of vital importance for modern personalized medicine involving the selection of responsive patients and possible treatment combinations. This review focuses mainly on the documented effects of YM-155 on DNA damage signaling pathways. It summarizes up to date literature, and it outlines the molecular mechanism of YM-155 action in the context of the DNA damage field.
Collapse
|
117
|
Singh A, Patel SK, Kumar P, Das KC, Verma D, Sharma R, Tripathi T, Giri R, Martins N, Garg N. Quercetin acts as a P-gp modulator via impeding signal transduction from nucleotide-binding domain to transmembrane domain. J Biomol Struct Dyn 2020; 40:4507-4515. [PMID: 33306006 DOI: 10.1080/07391102.2020.1858966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inherent ability of the cancer cells to resist chemotherapeutic agents is a major challenge in drug discovery. Chemotherapy is one of the most widely used treatment methods for cancer, but due to multidrug resistance (MDR) development in cancer cells, the healing procedure often fails. Various factors impart cancer resistance to cells; among them, P-glycoprotein (P-gp) overexpression is directly linked to MDR in cancer cells. P-gp leads to the efflux of drug molecules to the extracellular space. Several molecules have been reported to inhibit the P-gp activity. Among them, quercetin has revealed a great potential to modulate P-gp activity. However, the mechanistic understanding of quercetin induced modulation is not entirely elucidated. In the present work, we showed that quercetin binds in the interacting region between the transmembrane domain and nucleotide-binding domain out of the three plausible binding sites of P-gp and restrict the conformational change from inward- to outward-facing conformation of P-gp. Due to the absence of the inward-facing structure of human P-gp, we first modeled an inward-facing P-gp structure. Using molecular docking, the interacting residues of P-gp were identified, and the stability and interaction dynamics of the complex were studied using molecular dynamics simulation. Our work reveals the mechanistic understanding of quercetin induced modulation of P-gp and indicates its importance in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences and BioX Center, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Sandesh Kumar Patel
- School of Basic Sciences and BioX Center, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences and BioX Center, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Kanhu Charan Das
- Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong, Meghalaya, India
| | - Deepanshu Verma
- School of Basic Sciences and BioX Center, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong, Meghalaya, India
| | - Rajanish Giri
- School of Basic Sciences and BioX Center, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
118
|
Guo Q, Li X, Cui MN, Sun JL, Ji HY, Ni BB, Yan MX. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol Res 2020; 28:533-540. [PMID: 32532363 PMCID: PMC7751223 DOI: 10.3727/096504020x15919605976853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Meng-Na Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Jia-Lin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Hong-Yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Bei-Bei Ni
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Mei-Xing Yan
- Department of Pharmacy, Qingdao Women and Childrens HospitalQingdao, ShandongP.R. China
| |
Collapse
|
119
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
120
|
Ilan Y, Spigelman Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat Res Commun 2020; 25:100240. [PMID: 33246316 DOI: 10.1016/j.ctarc.2020.100240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Drug resistance is a major obstacle for successful therapy of many malignancies and is affecting the loss of response to chemotherapy and immunotherapy. Tumor-related compensatory adaptation mechanisms contribute to the development of drug resistance. Variability is inherent to biological systems and altered patterns of variability are associated with disease conditions. The marked intra and inter patient tumor heterogeneity, and the diverse mechanism contributing to drug resistance in different subjects, which may change over time even in the same patient, necessitate the development of personalized dynamic approaches for overcoming drug resistance. Altered dosing regimens, the potential role of chronotherapy, and drug holidays are effective in cancer therapy and immunotherapy. In the present review we describe the difficulty of overcoming drug resistance in a dynamic system and present the use of the inherent trajectories which underlie cancer development for building therapeutic regimens which can overcome resistance. The establishment of a platform wherein patient-tailored variability signatures are used for overcoming resistance for ensuing long term sustainable improved responses is presented.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Zachary Spigelman
- Department of Hematology and Oncology, Lahey Hospital and Beth Israel Medical Center, MA, USA
| |
Collapse
|
121
|
Zhang Z, Ha SH, Moon YJ, Hussein UK, Song Y, Kim KM, Park SH, Park HS, Park BH, Ahn AR, Lee SA, Ahn SJ, Kim JR, Jang KY. Inhibition of SIRT6 potentiates the anti-tumor effect of doxorubicin through suppression of the DNA damage repair pathway in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:247. [PMID: 33198792 PMCID: PMC7670730 DOI: 10.1186/s13046-020-01759-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
Background SIRT6 has diverse roles in cells, and the role of SIRT6 in tumorigenesis is controversial. Considering the role of SIRT6 as an inducer of DNA damage repair, it might be involved in resistance to anti-cancer therapy. Methods We evaluated the prognostic significance of SIRT6 in 37 osteosarcomas and investigated the therapeutic efficacy of SIRT6 on the anticancer effects of doxorubicin, olaparib, and ATM inhibitor. Results Immunohistochemical expression of SIRT6 was significantly associated with shorter overall survival and relapse-free survival of osteosarcoma patients, especially in patients who received adjuvant chemotherapy. In U2OS and KHOS/NP osteosarcoma cells, knock-down of SIRT6 significantly potentiated apoptotic effects of doxorubicin and SIRT6 overexpression induced resistance to doxorubicin. Moreover, SIRT6 induced the DNA damage repair pathway and SIRT6-mediated resistance to doxorubicin was attenuated by blocking the DNA damage repair pathway with olaparib and ATM inhibitor. Conclusions This study suggests that suppression of SIRT6 in combination with doxorubicin might be an effective modality in the treatment of osteosarcoma patients, especially for osteosarcomas with shorter survival with high expression of SIRT6.
Collapse
Affiliation(s)
- Zhongkai Zhang
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Usama Khamis Hussein
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Yiping Song
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyoung Min Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ae-Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-A Lee
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Su Jin Ahn
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jung Ryul Kim
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| | - Kyu Yun Jang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea. .,Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
122
|
Lal S, Snape TJ. A therapeutic update on PARP inhibitors: implications in the treatment of glioma. Drug Discov Today 2020; 26:532-541. [PMID: 33157194 DOI: 10.1016/j.drudis.2020.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
Central nervous system (CNS) cancers are among the most aggressive and devastating. Further, due to unavailability of neuro-oncologists and neurosurgeons, the specialized treatment options of CNS cancers are still not completely available in most parts of the world. Among various strategies of inducing death in cancer cells, inhibition of poly(ADP-ribose) polymerase (PARP) has emerged as a beneficial therapy when combined with other anticancer agents. In this review, we provide a detailed therapeutic update of PARP inhibitors that have shown clinical activity against glioma.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram, 122413, Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
123
|
Lu N, Yin Y, Yao Y, Zhang P. SNHG3/miR-2682-5p/HOXB8 promotes cell proliferation and migration in oral squamous cell carcinoma. Oral Dis 2020; 27:1161-1170. [PMID: 32989886 DOI: 10.1111/odi.13656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The potential molecular mechanism underlying the disease progression of oral squamous cell carcinoma (OSCC) remains largely elusive. The purpose of the study is to figure out the role and molecular mechanism of homeobox B8 (HOXB8) in OSCC. MATERIALS AND METHODS The expression level of HOXB8 in OSCC was validated by RT-qPCR. The functions of HOXB8 in OSCC cells were identified through loss-of-function assays, including CCK-8 assay, colony formation assay, transwell assay, and immunofluorescence (IF). The upstream miRNA that could directly target HOXB8 was searched out through bioinformatics analysis and luciferase reporter assay. Mechanism experiments were further conducted to predict the long non-coding RNA (lncRNA) that could positively regulate HOXB8 and compete for miR-2682-5p with HOXB8. RESULTS HOXB8 was markedly upregulated in OSCC tissues and cell lines. Furthermore, cell proliferation and migration were inhibited due to the shortage of HOXB8. HOXB8 was targeted by miR-2682-5p that negatively regulated cell proliferation and migration. Small nucleolar RNA host gene 3 (SNHG3) acted as a sponge for miR-2682-5p. Inhibition of miR-2682-5p or the overexpression of HOXB8 rescued the effects of SNHG3 silencing on the proliferation and migration. CONCLUSION HOXB8 is regulated by SNHG3/miR-2682-5p axis to promote OSCC cell proliferation and migration.
Collapse
Affiliation(s)
- Na Lu
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yue Yin
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yuan Yao
- Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Peng Zhang
- Department of Stomatology, Taixing People's Hospital, Taizhou, China
| |
Collapse
|
124
|
Lim JH, Choi KH, Kim SY, Park CS, Kim SM, Park KC. Patient-Derived, Drug-Resistant Colon Cancer Cells Evade Chemotherapeutic Drug Effects via the Induction of Epithelial-Mesenchymal Transition-Mediated Angiogenesis. Int J Mol Sci 2020; 21:ijms21207469. [PMID: 33050525 PMCID: PMC7589077 DOI: 10.3390/ijms21207469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells can exhibit resistance to different anticancer drugs by acquiring enhanced anti-apoptotic potential, improved DNA injury resistance, diminished enzymatic inactivation, and enhanced permeability, allowing for cell survival. However, the genetic mechanisms for these effects are unknown. Therefore, in this study, we obtained drug-sensitive HT-29 cells (commercially) and drug-resistant cancer cells (derived from biochemically and histologically confirmed colon cancer patients) and performed microarray analysis to identify genetic differences. Cellular proliferation and other properties were determined after treatment with oxaliplatin, lenvatinib, or their combination. In vivo, tumor volume and other properties were examined using a mouse xenograft model. The oxaliplatin and lenvatinib cotreatment group showed more significant cell cycle arrest than the control group and groups treated with either agent alone. Oxaliplatin and lenvatinib cotreatment induced the most significant tumor shrinkage in the xenograft model. Drug-resistant and metastatic colon cancer cells evaded the anticancer drug effects via angiogenesis. These findings present a breakthrough strategy for treating drug-resistant cancer.
Collapse
Affiliation(s)
- Jin Hong Lim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712, Korea;
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soo Young Kim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Cheong Soo Park
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seok-Mo Kim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
- Correspondence: (S.-M.K.); (K.C.P.)
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
- Correspondence: (S.-M.K.); (K.C.P.)
| |
Collapse
|
125
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
126
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
127
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
128
|
Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathol Res Pract 2020; 216:153158. [PMID: 32829107 DOI: 10.1016/j.prp.2020.153158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Ovarian cancer, as one of the most common types of gynecological malignancies, has an increasing rate of incidence worldwide. Despite huge amounts of recent efforts in designing novel therapeutic strategies for complete removal of tumors and increasing overall survival of patients, chemotherapy is still the preferred therapy for ovarian cancer. However, chemotherapy is also challenged by development of drug resistance. Therefore, elucidating the underlying mechanisms of drug reissuance is an urgent need in ovarian cancer. Numerous studies have shown the implication of the Notch signaling pathway in the development of various human malignancies. Therefore, this study will provide a brief overview of the published evidence in support of Notch targeting in reverting multidrug resistance as a safer and novel approach for the improvement of ovarian cancer treatment.
Collapse
|
129
|
Pienta KJ, Hammarlund EU, Axelrod R, Brown JS, Amend SR. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol Appl 2020; 13:1626-1634. [PMID: 32952609 PMCID: PMC7484876 DOI: 10.1111/eva.12929] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer cells utilize the forces of natural selection to evolve evolvability allowing a constant supply of heritable variation that permits a cancer species to evolutionary track changing hazards and opportunities. Over time, the dynamic tumor ecosystem is exposed to extreme, catastrophic changes in the conditions of the tumor-natural (e.g., loss of blood supply) or imposed (therapeutic). While the nature of these catastrophes may be varied or unique, their common property may be to doom the current cancer phenotype unless it evolves rapidly. Poly-aneuploid cancer cells (PACCs) may serve as efficient sources of heritable variation that allows cancer cells to evolve rapidly, speciate, evolutionarily track their environment, and most critically for patient outcome and survival, permit evolutionary rescue, therapy resistance, and metastasis. As a conditional evolutionary strategy, they permit the cancer cells to accelerate evolution under stress and slow down the generation of heritable variation when conditions are more favorable or when the cancer cells are closer to an evolutionary optimum. We hypothesize that they play a critical and outsized role in lethality by their increased capacity for invasion and motility, for enduring novel and stressful environments, and for generating heritable variation that can be dispensed to their 2N+ aneuploid progeny that make up the bulk of cancer cells within a tumor, providing population rescue in response to therapeutic stress. Targeting PACCs is essential to cancer therapy and patient cure-without the eradication of the resilient PACCs, cancer will recur in treated patients.
Collapse
Affiliation(s)
- Kenneth J. Pienta
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Emma U. Hammarlund
- Nordic Center for Earth EvolutionUniversity of Southern DenmarkOdenseDenmark
- Translational Cancer ResearchDepartment of Laboratory MedicineLund UniversityLundSweden
| | - Robert Axelrod
- Gerald R. Ford School of Public PolicyUniversity of MichiganAnn ArborMIUSA
| | - Joel S. Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical OncologyMoffitt Cancer CenterTampaFLUSA
| | - Sarah R. Amend
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
130
|
Wang W, Hao Y, Liu Y, Li R, Huang DB, Pan YY. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1654. [PMID: 32700465 DOI: 10.1002/wnan.1654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Lung cancer is considered to cause the most cancer-related deaths worldwide. Due to the deficiency in early-stage diagnostics and local invasion or distant metastasis, the first line of treatment for most patients unsuitable for surgery is chemotherapy, targeted therapy or immunotherapy. Nanocarriers with the function of improving drug solubility, in vivo stability, drug distribution in the body, and sustained and targeted delivery, can effectively improve the effect of drug treatment and reduce toxic and side effects, and have been used in clinical treatment for lung cancer and many types of cancers. Here, we review nanoparticle (NP) formulation for lung cancer treatment including liposomes, polymers, and inorganic NPs via systemic and inhaled administration, and highlight the works of overcoming drug resistance and improving cancer immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuhao Hao
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yusheng Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Da-Bing Huang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue-Yin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
131
|
Qi FL, Wang MF, Li BZ, Lu ZF, Nie GJ, Li SP. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Acta Pharmacol Sin 2020; 41:895-901. [PMID: 32467568 PMCID: PMC7470798 DOI: 10.1038/s41401-020-0423-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy that activates the host immune system to reverse immunosuppression has emerged as a new generation of cancer treatment in both preclinical studies and clinical trials. Although immunotherapy has shown significant achievements in the treatment of various cancers, it faces challenges that limit its further evolution such as poor permeation and modest responsiveness. The development of nanoparticle drug delivery system has provided an opportunity to overcome these drawbacks and to achieve optimized immunotherapy. Based on the research of our group, we here introduce the new strategies being employed using nanoscale intelligent drug delivery systems to enhance the effects of cancer immunotherapy. We also provide a perspective on the further possible application of nanoparticles in more effective antitumor immunotherapy.
Collapse
Affiliation(s)
- Fei-Long Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Fang Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Bo-Zhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Ze-Fang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Jun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Su-Ping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
132
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
133
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
134
|
El-Benhawy SA, El-Sheredy HG, Ghanem HB, Abo El-Soud AA. Berberine can amplify cytotoxic effect of radiotherapy by targeting cancer stem cells. BREAST CANCER MANAGEMENT 2020. [DOI: 10.2217/bmt-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Our objective was to investigate the effect of ionizing radiation (IR) and berberine on the expression of stem cell markers OCT4 and SOX2. Materials & methods: The study involved the following groups: Group I: MCF-7 spheroids as untreated control; Group II: MCF-7 spheroids treated with IR; Group III: MCF-7 spheroids treated with berberine; and Group IV: MCF-7 spheroids treated with berberine + IR. MCF-7 spheroids’ metabolic activity and viability was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. OCT4 and SOX2 genes expression were assayed by real time-plymerase chain reaction (RT-PCR). Results: IR and berberine treatment decreased the viability of MCF-7 spheroids and reduced OCT4 and SOX2 genes expression. Combining berberine with IR leads to a significant reduction in cell viability and OCT4 and SOX2 genes expression when compared with radiation alone treated group. Conclusion: Berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of breast cancer. Berberine has a radiosensitizing effect through targeting cancer stem cells.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Heba G El-Sheredy
- Cancer Management & Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Heba B Ghanem
- Clinical laboratory sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A Abo El-Soud
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
135
|
Pienta KJ, Hammarlund EU, Axelrod R, Amend SR, Brown JS. Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer. Mol Cancer Res 2020; 18:801-810. [PMID: 32234827 PMCID: PMC7272288 DOI: 10.1158/1541-7786.mcr-19-1158] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 03/26/2020] [Indexed: 01/20/2023]
Abstract
Advances in curative treatment to remove the primary tumor have increased survival of localized cancers for most solid tumor types, yet cancers that have spread are typically incurable and account for >90% of cancer-related deaths. Metastatic disease remains incurable because, somehow, tumors evolve resistance to all known compounds, including therapies. In all of these incurable patients, de novo lethal cancer evolves capacities for both metastasis and resistance. Therefore, cancers in different patients appear to follow the same eco-evolutionary path that independently manifests in affected patients. This convergent outcome, that always includes the ability to metastasize and exhibit resistance, demands an explanation beyond the slow and steady accrual of stochastic mutations. The common denominator may be that cancer starts as a speciation event when a unicellular protist breaks away from its multicellular host and initiates a cancer clade within the patient. As the cancer cells speciate and diversify further, some evolve the capacity to evolve: evolvability. Evolvability becomes a heritable trait that influences the available variation of other phenotypes that can then be acted upon by natural selection. Evolving evolvability may be an adaptation for cancer cells. By generating and maintaining considerable heritable variation, the cancer clade can, with high certainty, serendipitously produce cells resistant to therapy and cells capable of metastasizing. Understanding that cancer cells can swiftly evolve responses to novel and varied stressors create opportunities for adaptive therapy, double-bind therapies, and extinction therapies; all involving strategic decision making that steers and anticipates the convergent coevolutionary responses of the cancers.
Collapse
Affiliation(s)
- Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Robert Axelrod
- Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, Michigan
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
136
|
Alves C, Serrano E, Silva J, Rodrigues C, Pinteus S, Gaspar H, Botana LM, Alpoim MC, Pedrosa R. Sphaerococcus coronopifolius bromoterpenes as potential cancer stem cell-targeting agents. Biomed Pharmacother 2020; 128:110275. [PMID: 32480221 DOI: 10.1016/j.biopha.2020.110275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer is one of the major threats to human health and, due to distinct factors, it is expected that its incidence will increase in the next decades leading to an urgent need of new anticancer drugs development. Ongoing experimental and clinical observations propose that cancer cells with stem-like properties (CSCs) are involved on the development of lung cancer chemoresistance. As tumour growth and metastasis can be controlled by tumour-associated stromal cells, the main goal of this study was to access the antitumor potential of five bromoterpenes isolated from Sphaerococcus coronopifolius red alga to target CSCs originated in a co-culture system of fibroblast and lung malignant cells. Cytotoxicity of compounds (10-500 μM; 72 h) was evaluated on monocultures of several malignant and non-malignant cells lines (HBF, BEAS-2B, RenG2, SC-DRenG2) and the effects estimated by MTT assay. Co-cultures of non-malignant human bronchial fibroblasts (HBF) and malignant human bronchial epithelial cells (RenG2) were implemented and the compounds ability to selectively kill CSCs was evaluated by sphere forming assay. The interleucine-6 (IL-6) levels were also determined as cytokine is crucial for CSCs. Regarding the monocultures results bromosphaerol selectively eliminated the malignant cells. Both 12S-hydroxy-bromosphaerol and 12R-hydroxy-bromosphaerol steroisomers were cytotoxic towards non-malignant bronchial BEAS-2B cell line, IC50 of 4.29 and 4.30 μM respectively. However, none of the steroisomers induced damage in the HBFs. As to the co-cultures, 12R-hydroxy-bromosphaerol revealed the highest cytotoxicity and ability to abrogate the malignant stem cells; however its effects were IL-6 independent. The results presented here are the first evidence of the potential of these bromoterpenes to abrogate CSCs opening new research opportunities. The 12R-hydroxy-bromosphaerol revealed to be the most promising compound to be test in more complex living models.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Eurico Serrano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Carlos Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal; Department of Internal Medicine, Hospital of Aveiro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal; University of Lisbon, Faculty of Science, BioISI - Biosystems and Integrative Sciences Institute, 1749-016 Lisbon, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Maria C Alpoim
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal.
| |
Collapse
|
137
|
Gomes BC, Honrado M, Armada A, Viveiros M, Rueff J, Rodrigues AS. ABC Efflux Transporters and the Circuitry of miRNAs: Kinetics of Expression in Cancer Drug Resistance. Int J Mol Sci 2020; 21:E2985. [PMID: 32340269 PMCID: PMC7215654 DOI: 10.3390/ijms21082985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer drug resistance (CDR) is a major problem in therapeutic failure. Over 90% of patients with metastatic cancer present CDR. Several mechanisms underlie CDR, including the increased expression of efflux ABC transporters and epigenetic phenomena. Nevertheless, a topic that is not usually addressed is the mechanism underlying the loss of CDR once the challenge to these cells is withdrawn. A KCR cell line (doxorubicin-resistant, expressing ABCB1) was used to induce loss of resistance by withdrawing doxorubicin in culture medium. ABCB1 activity was analysed by fluorescence microscopy and flow cytometry through substrate (DiOC2) retention assays. The expression of 1008 microRNAs was assessed before and after doxorubicin withdrawal. After 16 weeks of doxorubicin withdrawal, a decrease of ABCB1 activity and expression occurred. Moreover, we determined a signature of 23 microRNAs, 13 underexpressed and 10 overexpressed, as a tool to assess loss of resistance. Through pathway enrichment analysis, "Pathways in cancer", "Proteoglycans in cancer" and "ECM-receptor interaction" were identified as relevant in the loss of CDR. Taken together, the data reinforce the assumption that ABCB1 plays a major role in the kinetics of CDR, and their levels of expression are in the dependence of the circuitry of cell miRNAs.
Collapse
Affiliation(s)
- Bruno C. Gomes
- Centre for Toxicogenomics and Human Health; Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-008 Lisbon, Portugal; (B.C.G.); (M.H.); (J.R.)
| | - Mónica Honrado
- Centre for Toxicogenomics and Human Health; Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-008 Lisbon, Portugal; (B.C.G.); (M.H.); (J.R.)
| | - Ana Armada
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (A.A.); (M.V.)
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (A.A.); (M.V.)
| | - José Rueff
- Centre for Toxicogenomics and Human Health; Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-008 Lisbon, Portugal; (B.C.G.); (M.H.); (J.R.)
| | - António S. Rodrigues
- Centre for Toxicogenomics and Human Health; Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade NOVA de Lisboa, Rua Câmara Pestana 6, 1150-008 Lisbon, Portugal; (B.C.G.); (M.H.); (J.R.)
| |
Collapse
|
138
|
Lai X, Hao W, Friedman A. TNF-α inhibitor reduces drug-resistance to anti-PD-1: A mathematical model. PLoS One 2020; 15:e0231499. [PMID: 32310956 PMCID: PMC7170257 DOI: 10.1371/journal.pone.0231499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Drug resistance is a primary obstacle in cancer treatment. In many patients who at first respond well to treatment, relapse occurs later on. Various mechanisms have been explored to explain drug resistance in specific cancers and for specific drugs. In this paper, we consider resistance to anti-PD-1, a drug that enhances the activity of anti-cancer T cells. Based on results in experimental melanoma, it is shown, by a mathematical model, that resistances to anti-PD-1 can be significantly reduced by combining it with anti-TNF-α. The model is used to simulate the efficacy of the combined therapy with different range of doses, different initial tumor volume, and different schedules. In particular, it is shown that under a course of treatment with 3-week cycles where each drug is injected in the first day of either week 1 or week 2, injecting anti-TNF-α one week after anti-PD-1 is the most effective schedule in reducing tumor volume.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, P. R. China
| | - Wenrui Hao
- Department of Mathematics, Pennsylvania State University, State College, PA, United States of America
| | - Avner Friedman
- Mathematical Bioscience Institute & Department of Mathematics, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
139
|
Pérez-Velázquez J, Rejniak KA. Drug-Induced Resistance in Micrometastases: Analysis of Spatio-Temporal Cell Lineages. Front Physiol 2020; 11:319. [PMID: 32362836 PMCID: PMC7180185 DOI: 10.3389/fphys.2020.00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance to anti-cancer drugs is a major cause of treatment failure. While several intracellular mechanisms of resistance have been postulated, the role of extrinsic factors in the development of resistance in individual tumor cells is still not fully understood. Here we used a hybrid agent-based model to investigate how sensitive tumor cells develop drug resistance in the heterogeneous tumor microenvironment. We characterized the spatio-temporal evolution of lineages of the resistant cells and examined how resistance at the single-cell level contributes to the overall tumor resistance. We also developed new methods to track tumor cell adaptation, to trace cell viability trajectories and to examine the three-dimensional spatio-temporal lineage trees. Our findings indicate that drug-induced resistance can result from cells adaptation to the changes in drug distribution. Two modes of cell adaptation were identified that coincide with microenvironmental niches—areas sheltered by cell micro-communities (protectorates) or regions with limited drug penetration (refuga or sanctuaries). We also recognized that certain cells gave rise to lineages of resistant cells (precursors of resistance) and pinpointed three temporal periods and spatial locations at which such cells emerged. This supports the hypothesis that tumor micrometastases do not need to harbor cell populations with pre-existing resistance, but that individual tumor cells can adapt and develop resistance induced by the drug during the treatment.
Collapse
Affiliation(s)
- Judith Pérez-Velázquez
- Mathematical Modeling of Biological Systems, Centre for Mathematical Science, Technical University of Munich, Garching, Germany
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Tampa, FL, United States
| |
Collapse
|
140
|
Yu T, Cheng H, Ding Z, Wang Z, Zhou L, Zhao P, Tan S, Xu X, Huang X, Liu M, Peng M, Qiu YA. GPER mediates decreased chemosensitivity via regulation of ABCG2 expression and localization in tamoxifen-resistant breast cancer cells. Mol Cell Endocrinol 2020; 506:110762. [PMID: 32087276 DOI: 10.1016/j.mce.2020.110762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Rescue chemotherapy is usually the preferred treatment for patients with advanced estrogen receptor-positive (ER+) breast cancer with endocrinotherapy resistance. However, these patients often simultaneously show a poor response to cytotoxic drugs, and thus the detailed mechanism of this resistance needs to be further investigated. Our previous research indicated that the G-protein-coupled estrogen receptor (GPER) is a novel mediator of the development of multidrug resistance, including resistance to both endocrinotherapy and chemotherapy, and ATP binding cassette subfamily G member 2 (ABCG2) has been identified as an engine that confers cancer cells with chemoresistance by expelling xenobiotics and chemotherapeutics. Here, we are the first to show that the expression levels of GPER and ABCG2 are markedly increased in tamoxifen-resistant ER + metastases compared to the corresponding primary tumors. A plasma membrane expression pattern of GPER and ABCG2 was observed in patients with metastases. Furthermore, both ER modulator tamoxifen, GPER-specific agonist G1 and pure ER antagonist ICI 182,780 significantly enhanced ABCG2 expression in tamoxifen-resistant breast cancer cells (MCF-7R) but not in tamoxifen-sensitive cells (MCF-7). The activated downstream GPER/EGFR/ERK and GPER/EGFR/AKT signaling pathways were responsible for regulating the expression and cell membrane localization of ABCG2, respectively, in MCF-7R cells. Interestingly, the above phenomenon could be alleviated by inhibitors of both the indicated signaling pathways and by knockdown of GPER in MCF-7R cells. More importantly, the tamoxifen-induced GPER/ABCG2 signaling axis was shown to play a pivotal role in the development of chemotherapy (doxorubicin) resistance both in vitro and in vivo. The clinical data further revealed that tamoxifen-resistant patients with high GPER/ABCG2 signaling activation had poor progression-free survival (PFS) when given rescue anthracycline chemotherapy. Therefore, our data provide novel insights into GPER-mediated chemoresistance and provide a rationale for the GPER/ABCG2 signaling axis being a promising target for reversing chemoresistance in patients with advanced ER + tamoxifen-resistant breast cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MCF-7 Cells
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Transport/drug effects
- Protein Transport/genetics
- Receptors, Estrogen/physiology
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/therapeutic use
- Tissue Distribution/drug effects
- Tissue Distribution/genetics
Collapse
Affiliation(s)
- Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Hong Cheng
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Zhijuan Ding
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Zhiliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lixia Zhou
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Peng Zhao
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Shengxing Tan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xue Xu
- Department of Ultrasonography, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Xianming Huang
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, Nanchang, 330029, China.
| |
Collapse
|
141
|
Madden EC, Gorman AM, Logue SE, Samali A. Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends Cancer 2020; 6:489-505. [PMID: 32460003 DOI: 10.1016/j.trecan.2020.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Chemoresistance is a major factor driving tumour relapse and the high rates of cancer-related deaths. Understanding how cancer cells overcome chemotherapy-induced cell death is critical in promoting patient survival. One emerging mechanism of chemoresistance is the tumour cell secretome (TCS), an array of protumorigenic factors released by tumour cells. Chemotherapy exposure can also alter the composition of the TCS, known as therapy-induced TCS, and can promote tumour relapse and the formation of an immunosuppressive tumour microenvironment (TME). Here, we outline how the TCS can protect cancer cells from chemotherapy-induced cell death. We also highlight recent evidence describing how therapy-induced TCS can impact cancer stem cell (CSC) expansion and tumour-associated immune cells to enable tumour regrowth and antitumour immunity.
Collapse
Affiliation(s)
- Emma C Madden
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Afshin Samali
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland.
| |
Collapse
|
142
|
Resistance of melanoma cells to anticancer treatment: a role of vascular endothelial growth factor. Postepy Dermatol Alergol 2020; 37:11-18. [PMID: 32467677 PMCID: PMC7247075 DOI: 10.5114/ada.2020.93378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most aggressive and resistant to treatment neoplasms. There are still many challenges despite many promising advances in anticancer treatment. Currently, the main problem for all types of treatment is associated with heterogeneity. Due to heterogeneity of cancer cells, "precise" targeting of a medicine against a single phenotype limits the efficacy of treatment and affects resistance to applied therapy. Therefore it is important to understand aetiology and reasons for heterogeneity in order to develop effective and long-lasting treatment. This review summarises roles of vascular endothelial growth factor (VEGF) that may stimulate growth of a melanoma tumour irrespective of its proangiogenic effects, contributing to cancer heterogeneity. VEGF triggers processes associated with extracellular matrix remodelling, cell migration, invasion, angiogenesis, inhibition of immune responses and favours phenotypic plasticity and epithelial-mesenchymal transition. Consequently, it participates in mechanisms of interactions between melanoma cancer cells and microenvironment and it can modify sensitivity to therapeutic factors.
Collapse
|
143
|
A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs. BIOLOGY 2020; 9:biology9030047. [PMID: 32150875 PMCID: PMC7150871 DOI: 10.3390/biology9030047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes or oncosomes, often carry oncogenic molecules derived from tumor cells. In addition, accumulating evidence indicates that tumor cells can eject anti-cancer drugs such as chemotherapeutics and targeted drugs within EVs, a novel mechanism of drug resistance. The EV-releasing drug resistance phenotype is often coupled with cellular dedifferentiation and transformation in cells undergoing epithelial-mesenchymal transition (EMT), and the adoption of a cancer stem cell phenotype. The release of EVs is also involved in immunosuppression. Herein, we address different aspects by which EVs modulate the tumor microenvironment to become resistant to anticancer and antibody-based drugs, as well as the concept of the resistance-associated secretory phenotype (RASP).
Collapse
|
144
|
Kong X, Hu S, Yuan Y, Du Y, Zhu Z, Song Z, Lu S, Zhao C, Yan D. Analysis of lncRNA, miRNA and mRNA-associated ceRNA networks and identification of potential drug targets for drug-resistant non-small cell lung cancer. J Cancer 2020; 11:3357-3368. [PMID: 32231742 PMCID: PMC7097957 DOI: 10.7150/jca.40729] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Drug resistance to chemotherapeutic drugs or targeted medicines is an obstacle encountered in the treatment of non-small-cell lung cancer (NSCLC). However, the mechanisms of competing endogenous RNA (ceRNA) on the drug resistance in NSCLC are rarely reported. In this paper, the comprehensive expression profiles of lncRNAs and mRNAs in drug-resistant NSCLC cells were obtained by RNA sequencing. Methods: The dysregulated lncRNAs, miRNAs and mRNAs in drug-resistant NSCLC cell lines were identified by RNA-sequencing and bioinformatics methods. Results: A total of 39 dysregulated lncRNAs and 650 dysregulated mRNAs were identified between drug-resistant NSCLC cell lines and their parental cell lines. Additionally, 33 lncRNA-miRNA-mRNA pathways in the ceRNA network in drug-resistant NSCLC were constructed through bioinformatics methods and ceRNA regulatory rules. These comprised 12 dysregulated lncRNAs, five dysregulated miRNAs, and eight dysregulated mRNAs. In addition, lncRNA ATP2B1/miR-222-5p/TAB2 and lncRNA HUWE1/miR-222-5p/TAB2 were identified as potential ceRNA networks involved in drug resistance to NSCLC. Conclusions: The current study provides a promising therapeutic strategy against the lncRNA-miRNA-mRNA ceRNA regulatory network for NSCLC treatment and deepens our comprehension of the ceRNA regulatory mechanisms related to drug resistance to NSCLC.
Collapse
Affiliation(s)
- Xiangzhen Kong
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongliang Yuan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yue Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zijia Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhizhen Song
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shanshan Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Chang Zhao
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Yan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
145
|
Kania EE, Carvajal-Moreno J, Hernandez VA, English A, Papa JL, Shkolnikov N, Ozer HG, Yilmaz AS, Yalowich JC, Elton TS. hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase II α in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Mol Pharmacol 2020; 97:159-170. [PMID: 31836624 PMCID: PMC6978698 DOI: 10.1124/mol.119.118315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
DNA topoisomerase IIα protein (TOP2α) 170 kDa (TOP2α/170) is an important target for anticancer agents whose efficacy is often attenuated by chemoresistance. Our laboratory has characterized acquired resistance to etoposide in human leukemia K562 cells. The clonal resistant subline K/VP.5 contains reduced TOP2α/170 mRNA and protein levels compared with parental K562 cells. The aim of this study was to determine whether microRNA (miRNA)-mediated mechanisms play a role in drug resistance via decreased expression of TOP2α/170. miRNA-sequencing revealed that human miR-9-3p and miR-9-5p were among the top six of those overexpressed in K/VP.5 compared with K562 cells; validation by quantitative polymerase chain reaction demonstrated overexpression of both miRNAs. miRNA recognition elements (MREs) for both miRNAs are present in the 3'-untranslated region (UTR) of TOP2α/170. Transfecting K562 cells with a reporter plasmid harboring the TOP2α/170 3'-UTR together with either miR-9-3p or miR-9-5p mimics resulted in a statistically significant decrease in luciferase expression. Mutating the miR-9-3p or miR-9-5p MREs prevented this decrease, demonstrating direct interaction between these miRNAs and TOP2α/170 mRNA. Transfection of K562 cells with miR-9-3p or miR-9-5p mimics led to decreased TOP2α/170 protein levels without a change in TOP2α/170 mRNA and resulted in attenuated etoposide-induced DNA damage (gain-of-miRNA-inhibitory function). Conversely, transfection of miR-9-3p or miR-9-5p inhibitors in K/VP.5 cells (overexpressed miR-9 and low TOP2α/170) led to increased TOP2α/170 protein expression without a change in TOP2α/170 mRNA levels and resulted in enhancement of etoposide-induced DNA damage (loss-of-miRNA-inhibitory function). Taken together, these results strongly suggest that these miRNAs play a role in and are potential targets for circumvention of acquired resistance to etoposide. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p decrease DNA topoisomerase IIα protein 170 kDa expression levels in acquired resistance to etoposide. These findings contribute new information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. Furthermore, increased expression of miR-9-3p and miR-9-5p in chemoresistant cancer cells may support their validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Evan E Kania
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Anthony English
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Ayse Selen Yilmaz
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| |
Collapse
|
146
|
Whitaker RH, Placzek WJ. MCL1 binding to the reverse BH3 motif of P18INK4C couples cell survival to cell proliferation. Cell Death Dis 2020; 11:156. [PMID: 32111816 PMCID: PMC7048787 DOI: 10.1038/s41419-020-2351-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Commitment to cell cycle entry and cellular duplication is a tightly coordinated and regulated process. Once initiated, a series of multiple checkpoints ensure both accurate genomic replication and chromosomal separation. In the event of unsuccessful cell division, parallel pathways exist that induce the cell to undergo programmed cell death, or apoptosis. At the center of such stress-induced, intrinsic apoptotic regulation lies the BCL2 family of pro- and anti-apoptotic regulatory proteins. In a proliferative state the balance of pro- and anti-apoptotic signaling proteins would be expected to favor an excess population of anti-apoptotic members. While the anti-apoptotic BCL2 family member, MCL1, has been identified to oversee mitotic progression, direct communication between the BCL2 family and cell proliferation has not been observed. In this study, we demonstrate a direct protein–protein interaction between MCL1 and the G1/S checkpoint protein, P18INK4C. This interaction is mediated by a reverse BH3 (rBH3) motif located in P18INK4C’s C-terminal ankyrin repeat. MCL1 is further shown to decrease P18INK4C expression and thereby regulate cell cycle entry in a retinoblastoma (RB1)-dependent manner. Our findings establish a mechanism for translation independent and direct communication between the BCL2 family regulation of apoptosis and CDK4/6-RB regulation of early G1/S transition during cellular division/growth.
Collapse
Affiliation(s)
- Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
147
|
Liu K, Luo J, Shao C, Ren Z, Sun S, Zhu Y, Zhou H, Jiang Z, Li X, Gu W, Xu Y, Qiang Y, Ren B, Xu L, Wu H, Shen Y. Synaptotagmin 12 (SYT12) Gene Expression Promotes Cell Proliferation and Progression of Lung Adenocarcinoma and Involves the Phosphoinositide 3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit 2020; 26:e920351. [PMID: 32108133 PMCID: PMC7063850 DOI: 10.12659/msm.920351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background This study aimed to use bioinformatics analysis to compare data from tissue microarrays from patients with lung adenocarcinoma (LUAD) and normal lung tissue, and human lung adenocarcinoma cells with normal lung epithelial cells in vitro to investigate the role of synaptotagmin 12 (SYT12) gene expression in LUAD. Material/Methods Human lung adenocarcinoma cell lines (A549, SPC-A-1, H1299, H1975, and PC9) and the normal HBE cell line were compared, and tumor xenografts were developed in mice. The Cancer Genome Atlas (TCGA) tissue microarray data were used to compare SYT12 expression and overall survival (OS). The in vivo and in vitro effects of down-regulation and upregulation of SYT12 were studied using short-interfering RNA (si-RNA) and overexpression plasmids, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and Western blot investigated the molecular mechanisms of SYT12 expression in LUAD. Results SYT12 expression was increased in tissues from patients with LUAD from TCGA and was associated with advanced tumor stage and reduced prognosis. Knockdown of SYT12 suppressed the proliferation and migration of LUAD cells, and upregulation of SYT12 increased the proliferation and migration of LUAD cells in vitro. Phosphorylation of PIK3R3 activated the PI3K/AKT/mTOR pathway. In the mouse xenograft model, expression of SYT12 increased the volume and weight of the xenograft tumors. Conclusions Bioinformatics analysis, human LUAD cells, and mouse xenograft studies showed that SYT12 acted as a possible oncogene by phosphorylation of PIK3R3 to activate the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Kaichao Liu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Chenye Shao
- Department of Cardiothoracic Surgery, Jingling Hospital, Jingling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhijian Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Sai Sun
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Yihao Zhu
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Hai Zhou
- Department of Cardiothoracic Surgery, Jingling Hospital, Jingling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Zhisheng Jiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Xiaokun Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Jinling Hospital, China (mainland)
| | - Wenfeng Gu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Youtao Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland).,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Yong Qiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Binhui Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland).,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland).,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Haiwei Wu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
148
|
Elton TS, Ozer HG, Yalowich JC. Effects of DNA topoisomerase IIα splice variants on acquired drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:161-170. [PMID: 32566920 PMCID: PMC7304410 DOI: 10.20517/cdr.2019.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
149
|
Dhiman N, Shagaghi N, Bhave M, Sumer H, Kingshott P, Rath SN. Selective Cytotoxicity of a Novel Trp-Rich Peptide against Lung Tumor Spheroids Encapsulated inside a 3D Microfluidic Device. ACTA ACUST UNITED AC 2020; 4:e1900285. [PMID: 32293162 DOI: 10.1002/adbi.201900285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Indexed: 01/10/2023]
Abstract
There is a globally rising healthcare need to develop new anticancer therapies as well as to test them on biologically relevant in vitro cancer models instead of overly simplistic 2D models. To address both these needs, a 3D lung cancer spheroid model is developed using human A549 cells trapped inside a collagen gel in a compartmentalized microfluidic device and homogenously sized (35-45 µm) multicellular tumor spheroids are obtained in 5 days. The novel tryptophan-rich peptide P1, identified earlier as a potential anticancer peptide (ACP), shows enhanced cytotoxic efficacy against A549 tumor spheroids (>75%) in clinically relevant low concentrations, while it does not affect human amniotic membrane mesenchymal stem cells at the same concentrations (<15%). The peptide also inhibits the formation of tumor spheroids by reducing cell viability as well as lowering the proliferative capacity, which is confirmed by the expression of cell proliferation marker Ki-67. The ACP offers a novel therapeutic strategy against lung cancer cells without affecting healthy cells. The microfluidic device used is likely to be useful in helping develop models for several other cancer types to test new anticancer agents.
Collapse
Affiliation(s)
- Nandini Dhiman
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia.,Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak, 502 285, Telangana, India
| | - Nadin Shagaghi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia.,ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology Hawthorn, Victoria, 3122, Australia
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak, 502 285, Telangana, India
| |
Collapse
|
150
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|