101
|
Meng H, Wang S, Tang X, Guo J, Xu X, Wang D, Jin F, Zheng M, Yin S, He C, Han Y, Chen J, Han J, Ren C, Gao Y, Liu H, Wang Y, Jin R. Respiratory immune status and microbiome in recovered COVID-19 patients revealed by metatranscriptomic analyses. Front Cell Infect Microbiol 2022; 12:1011672. [PMID: 36483456 PMCID: PMC9724627 DOI: 10.3389/fcimb.2022.1011672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a severe threat to global public health, and the immune response to COVID-19 infection has been widely investigated. However, the immune status and microecological changes in the respiratory systems of patients with COVID-19 after recovery have rarely been considered. We selected 72 patients with severe COVID-19 infection, 57 recovered from COVID-19 infection, and 65 with non-COVID-19 pneumonia, for metatranscriptomic sequencing and bioinformatics analysis. Accordingly, the differentially expressed genes between the infected and other groups were enriched in the chemokine signaling pathway, NOD-like receptor signaling pathway, phagosome, TNF signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, and C-type lectin receptor signaling pathway. We speculate that IL17RD, CD74, and TNFSF15 may serve as disease biomarkers in COVID-19. Additionally, principal coordinate analysis revealed significant differences between groups. In particular, frequent co-infections with the genera Streptococcus, Veillonella, Gemella, and Neisseria, among others, were found in COVID-19 patients. Moreover, the random forest prediction model with differential genes showed a mean area under the curve (AUC) of 0.77, and KCNK12, IL17RD, LOC100507412, PTPRT, MYO15A, MPDZ, FLRT2, SPEG, SERPINB3, and KNDC1 were identified as the most important genes distinguishing the infected group from the recovered group. Agrobacterium tumefaciens, Klebsiella michiganensis, Acinetobacter pittii, Bacillus sp. FJAT.14266, Brevundimonas naejangsanensis, Pseudopropionibacterium propionicum, Priestia megaterium, Dialister pneumosintes, Veillonella rodentium, and Pseudomonas protegens were selected as candidate microbial markers for monitoring the recovery of COVID patients. These results will facilitate the diagnosis, treatment, and prognosis of COVID patients recovering from severe illness.
Collapse
Affiliation(s)
- Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuang Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Guo
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinming Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Dagang Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Jin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shangqi Yin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chaonan He
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jin Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinyu Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chaobo Ren
- Translational R&D Center, Guangzhou Vision Medicals Co. LTD, Guangzhou, China
| | - Yantao Gao
- Translational R&D Center, Guangzhou Vision Medicals Co. LTD, Guangzhou, China
| | - Huifang Liu
- Translational R&D Center, Guangzhou Vision Medicals Co. LTD, Guangzhou, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yajie Wang, ; Ronghua Jin,
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yajie Wang, ; Ronghua Jin,
| |
Collapse
|
102
|
Mutua JM, Njeru JM, Musyoki AM. Multidrug resistant bacterial infections in severely ill COVID-19 patients admitted in a national referral and teaching hospital, Kenya. BMC Infect Dis 2022; 22:877. [PMID: 36418990 PMCID: PMC9682719 DOI: 10.1186/s12879-022-07885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bacterial infections are a common complication in patients with seasonal viral respiratory tract infections and are associated with poor prognosis, increased risk of intensive care unit admission and 29-55% mortality. Yet, there is limited data on the burden of bacterial infections among COVID-19 patients in Africa, where underdeveloped healthcare systems are likely to play a pertinent role in the epidemiology of the COVID-19 pandemic. Here, we evaluated the etiologies, antimicrobial resistance profiles, risk factors, and outcomes of bacterial infections in severely ill COVID-19 patients. METHODS A descriptive cross-sectional study design was adopted in severely ill COVID-19 patients at Kenyatta National Hospital, Kenya, from October to December 2021. We used a structured questionnaire and case report forms to collect sociodemographics, clinical presentation, and hospitalization outcome data. Blood, nasal/oropharyngeal swabs and tracheal aspirate samples were collected based on the patient's clinical presentation and transported to the Kenyatta National Hospital microbiology laboratory for immediate processing following the standard bacteriological procedures. RESULTS We found at least one bacterial infection in 44.2% (53/120) of the patients sampled, with a 31.7% mortality rate. Pathogens were mainly from the upper respiratory tract (62.7%, 42/67), with gram-negative bacteria dominating (73.1%, 49/67). Males were about three times more likely to acquire bacterial infection (p = 0.015). Those aged 25 to 44 years (p = 0.009), immunized against SARS-CoV-2 (p = 0.027), and admitted to the infectious disease unit ward (p = 0.031) for a short length of stay (0-5 days, p < 0.001) were more likely to have a positive outcome. Multidrug-resistant isolates were the majority (64.3%, 46/67), mainly gram-negative bacteria (69.6%, 32/46). The predominant multidrug-resistant phenotypes were in Enterococcus cloacae (42.9%, 3/7), Klebsiella pneumonia (25%, 4/16), and Escherichia coli (40%, 2/5). CONCLUSION Our findings highlight a high prevalence of multidrug-resistant bacterial infections in severely ill COVID-19 patients, with male gender as a risk factor for bacterial infection. Elderly Patients, non-SARS-CoV-2 vaccination, intensive care unit admission, and long length of hospital stay were associated with poor outcomes. There is a need to emphasize strict adherence to infection and prevention at KNH-IDU and antimicrobial stewardship in line with local and global AMR control action plans.
Collapse
Affiliation(s)
- Jeniffer Munyiva Mutua
- grid.415162.50000 0001 0626 737XDepartment of Laboratory Medicine, Kenyatta National Hospital, P.O. Box 20723-00202, Nairobi, Kenya ,grid.9762.a0000 0000 8732 4964Department of Medical Laboratory Sciences, Kenyatta University, P.O. BOX 43844-00100, Nairobi, Kenya
| | - John Mwaniki Njeru
- grid.33058.3d0000 0001 0155 5938Centre for Medical Microbiology, Kenya Medical Research Institute, P.O. Box 19464-00200, Nairobi, Kenya
| | - Abednego Moki Musyoki
- grid.9762.a0000 0000 8732 4964Department of Medical Laboratory Sciences, Kenyatta University, P.O. BOX 43844-00100, Nairobi, Kenya
| |
Collapse
|
103
|
Dai Y, Sheng K, Hu L. Diagnostic efficacy of targeted high-throughput sequencing for lower respiratory infection in preterm infants. Am J Transl Res 2022; 14:8204-8214. [PMID: 36505277 PMCID: PMC9730095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To examine the pathogen diagnostic performance of targeted high-throughput next-gen sequencing (tNGS) in respiratory infectious diseases in preterm infants using dynamic follow-up. METHODS Clinical samples of respiratory secretions were consecutively collected from 20 preterm infants weekly for 5 weeks, during which 10 developed bronchopulmonary dysplasia. Pathogen identification from these collected specimens was performed by both conventional cultivation and tNGS. RESULTS We found that targeted next-generation sequencing shared a 90.9% full or partial consistency for lower respiratory pathogen detection with the traditional culture-based approach, and increased the detection rate by 105.9%. Moreover, most of the pathogens identified by tNGS were diminished in patients after treatment. CONCLUSION This study reveals the high sensitivity and performance of targeted high-throughput sequencing for respiratory infectious disease diagnosis and pathogen identification. The trial registry number is NCT03850457, and the trial URL is https://clinicaltrials.gov/ct2/show/NCT03850457.
Collapse
Affiliation(s)
- Yi Dai
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical CenterShanghai, China
| | - Kai Sheng
- Geriatrics Department, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lan Hu
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical CenterShanghai, China
| |
Collapse
|
104
|
Upper Respiratory Microbiome in Pregnant Women: Characterization and Influence of Parity. Microorganisms 2022; 10:microorganisms10112189. [DOI: 10.3390/microorganisms10112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
During pregnancy, the woman’s immune system changes to support fetal development. These immunological modifications can increase the risk of respiratory diseases. Because the respiratory microbiome is involved in airway homeostasis, it is important to investigate how it changes during pregnancy. Additionally, since parity is associated with immune system alterations and cohabitants shared a similar microbiome, we investigated whether having a child may influence the respiratory microbiome of pregnant women. We compared the microbiome of 55 pregnant with 26 non-pregnant women using 16S rRNA gene sequencing and analyzed taxonomy, diversity, and metabolic pathways to evaluate the differences among nulliparous, primiparous, and multiparous women. The microbiome was similar in pregnant and non-pregnant women, but pregnant women had higher alpha diversity (Chao1 p-value = 0.001; Fisher p-value = 0.005) and a lower abundance of several metabolic pathways. Multiparous pregnant women had a higher relative abundance of Moraxella (p-value = 0.003) and a lower abundance of Corynebacterium (p-value = 0.002) compared with primiparous women. Both multiparous (pregnant) and primiparous/multiparous (non-pregnant) women reported a higher abundance of Moraxella compared with primiparous (pregnant) or nulliparous ones (p-value = 0.001). In conclusion, we characterized for the first time the upper airway microbiome of pregnant women and observed the influence of parity on its composition.
Collapse
|
105
|
Maynard-Smith L, Derrick JP, Borrow R, Lucidarme J, Maiden MCJ, Heyderman RS, Harrison OB. Genome-Wide Association Studies Identify an Association of Transferrin Binding Protein B Variation and Invasive Serogroup Y Meningococcal Disease in Older Adults. J Infect Dis 2022; 226:2204-2214. [PMID: 36322504 PMCID: PMC9748998 DOI: 10.1093/infdis/jiac430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Neisseria meningitidis serogroup Y, especially ST-23 clonal complex (Y:cc23), represents a larger proportion of invasive meningococcal disease (IMD) in older adults compared to younger individuals. This study explored the meningococcal genetic variation underlying this association. METHODS Maximum-likelihood phylogenies and the pangenome were analyzed using whole-genome sequence (WGS) data from 200 Y:cc23 isolates in the Neisseria PubMLST database. Genome-wide association studies (GWAS) were performed on WGS data from 250 Y:cc23 isolates from individuals with IMD aged ≥65 years versus < 65 years. RESULTS Y:cc23 meningococcal variants did not cluster by age group or disease phenotype in phylogenetic analyses. Pangenome comparisons found no differences in presence or absence of genes in IMD isolates from the different age groups. GWAS identified differences in nucleotide polymorphisms within the transferrin-binding protein B (tbpB) gene in isolates from individuals ≥65 years of age. TbpB structure modelling suggests these may impact binding of human transferrin. CONCLUSIONS These data suggest differential iron scavenging capacity amongst Y:cc23 meningococci isolated from older compared to younger patients. Iron acquisition is essential for many bacterial pathogens including the meningococcus. These polymorphisms may facilitate colonization, thereby increasing the risk of disease in vulnerable older people with altered nasopharyngeal microbiomes and nutritional status.
Collapse
Affiliation(s)
- Laura Maynard-Smith
- Correspondence: Laura Maynard-Smith, MBBS, Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK ()
| | - Jeremy P Derrick
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | |
Collapse
|
106
|
Zeng Y, Liang JQ. Nasal Microbiome and Its Interaction with the Host in Childhood Asthma. Cells 2022; 11:cells11193155. [PMID: 36231116 PMCID: PMC9563732 DOI: 10.3390/cells11193155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood asthma is a major chronic non-communicable disease in infants and children, often triggered by respiratory tract infections. The nasal cavity is a reservoir for a broad variety of commensal microbes and potential pathogens associated with respiratory illnesses including asthma. A healthy nasal microenvironment has protective effects against respiratory tract infections. The first microbial colonisation in the nasal region is initiated immediately after birth. Subsequently, colonisation by nasal microbiota during infancy plays important roles in rapidly establishing immune homeostasis and the development and maturation of the immune system. Dysbiosis of microbiota residing in the mucosal surfaces, such as the nasopharynx and guts, triggers immune modulation, severe infection, and exacerbation events. Nasal microbiome dysbiosis is related to the onset of symptomatic infections. Dynamic interactions between viral infections and the nasal microbiota in early life affect the later development of respiratory infections. In this review, we summarise the existing findings related to nasal microbiota colonisation, dynamic variations, and host–microbiome interactions in childhood health and respiratory illness with a particular examination of asthma. We also discuss our current understanding of biases produced by environmental factors and technical concerns, the importance of standardised research methods, and microbiome modification for the prevention or treatment of childhood asthma. This review lays the groundwork for paying attention to an essential but less emphasized topic and improves the understanding of the overall composition, dynamic changes, and influence of the nasal microbiome associated with childhood asthma.
Collapse
Affiliation(s)
- Yao Zeng
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-37636124
| |
Collapse
|
107
|
Vieceli T, Tejada S, Martinez-Reviejo R, Pumarola T, Schrenzel J, Waterer GW, Rello J. Impact of air pollution on respiratory microbiome: A narrative review. Intensive Crit Care Nurs 2022. [DOI: 10.1016/j.iccn.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
108
|
Smoking-induced microbial dysbiosis in health and disease. Clin Sci (Lond) 2022; 136:1371-1387. [PMID: 36156126 PMCID: PMC9527826 DOI: 10.1042/cs20220175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Smoking is associated with an increased risk of cancer, pulmonary and cardiovascular diseases, but the precise mechanisms by which such risk is mediated remain poorly understood. Additionally, smoking can impact the oral, nasal, oropharyngeal, lung and gut microbiome composition, function, and secreted molecule repertoire. Microbiome changes induced by smoking can bear direct consequences on smoking-related illnesses. Moreover, smoking-associated dysbiosis may modulate weight gain development following smoking cessation. Here, we review the implications of cigarette smoking on microbiome community structure and function. In addition, we highlight the potential impacts of microbial dysbiosis on smoking-related diseases. We discuss challenges in studying host–microbiome interactions in the context of smoking, such as the correlations with smoking-related disease severity versus causation and mechanism. In all, understanding the microbiome’s role in the pathophysiology of smoking-related diseases may promote the development of rational therapies for smoking- and smoking cessation-related disorders, as well as assist in smoking abstinence.
Collapse
|
109
|
Sanyang B, de Silva TI, Kanteh A, Bojang A, Manneh J, de Steenhuijsen Piters WA, Peno C, Bogaert D, Sesay AK, Roca A. Effect of intra-partum azithromycin on the development of the infant nasopharyngeal microbiota: A post hoc analysis of a double-blind randomized trial. EBioMedicine 2022; 83:104227. [PMID: 35988464 PMCID: PMC9420482 DOI: 10.1016/j.ebiom.2022.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Sepsis is a leading cause of neonatal death. Intrapartum azithromycin reduces neonatal nasopharyngeal carriage of potentially pathogenic bacteria, a prerequisite for sepsis. Early antibiotic exposure has been associated with microbiota perturbations with varying effects. This study aims to understand the effect of intrapartum azithromycin intervention on the developing nasopharyngeal microbiota of the child. Methods Using 16S rRNA gene sequencing, we analysed the microbiota of 343 nasopharyngeal samples collected from birth to 12 months from 109 healthy infants selected from a double-blind randomized placebo-controlled clinical trial conducted in the Gambia (PregnAnZI-1). In the trial, 829 women were given 2g oral azithromycin or placebo (1:1) during labour with the objective of reducing bacterial carriage in mother and child during the neonatal period. The post-hoc analysis presented here assessed the effect of the intervention on the child nasopharyngeal microbiota development. Findings 55 children were from mothers given azithromycin and 54 from mothers given placebo. Comparing arms, we found an increase in alpha-diversity at day-6 (p = 0·018), and a significant effect on overall microbiota composition at days 6 and 28 (R2 = 4.4%, q = 0·007 and R2 = 2.3%, q = 0·018 respectively). At genus level, we found lower representation of Staphylococcus at day-6 (q = 0·0303) and higher representation of Moraxella at 12 months (q = 0·0443). Unsupervised clustering of samples by microbial community similarity showed different community dynamics between the intervention and placebo arms during the neonatal period. Interpretation These results indicate that intrapartum azithromycin caused short-term alterations in the nasopharyngeal microbiota with modest overall effect at 12 months of age. Further exploration of the effects of these variations on microbiome function will give more insight on the potential risks and benefits, for the child, associated with this intervention. Funding This work was jointly funded by the Medical Research Council (UK) (MC_EX_MR/J010391/1/MRC), Bill & Melinda Gates Foundation (OPP1196513), and MRCG@LSHTM Doctoral Training Program.
Collapse
|
110
|
Costantini C, Nunzi E, Romani L. From the nose to the lungs: the intricate journey of airborne pathogens amidst commensal bacteria. Am J Physiol Cell Physiol 2022; 323:C1036-C1043. [PMID: 36036448 PMCID: PMC9529274 DOI: 10.1152/ajpcell.00287.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The recent COVID-19 pandemic has dramatically brought the pitfalls of airborne pathogens to the attention of the scientific community. Not only viruses but also bacteria and fungi may exploit air transmission to colonize and infect potential hosts and be the cause of significant morbidity and mortality in susceptible populations. The efforts to decipher the mechanisms of pathogenicity of airborne microbes have brought to light the delicate equilibrium that governs the homeostasis of mucosal membranes. The microorganisms already thriving in the permissive environment of the respiratory tract represent a critical component of this equilibrium and a potent barrier to infection by means of direct competition with airborne pathogens or indirectly via modulation of the immune response. Moving down the respiratory tract, physicochemical and biological constraints promote site-specific expansion of microbes that engage in cross talk with the local immune system to maintain homeostasis and promote protection. In this review, we critically assess the site-specific microbial communities that an airborne pathogen encounters in its hypothetical travel along the respiratory tract and discuss the changes in the composition and function of the microbiome in airborne diseases by taking fungal and SARS-CoV-2 infections as examples. Finally, we discuss how technological and bioinformatics advancements may turn microbiome analysis into a valuable tool in the hands of clinicians to predict the risk of disease onset, the clinical course, and the response to treatment of individual patients in the direction of personalized medicine implementation.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
111
|
Bucharskaya AB, Yanina IY, Atsigeida SV, Genin VD, Lazareva EN, Navolokin NA, Dyachenko PA, Tuchina DK, Tuchina ES, Genina EA, Kistenev YV, Tuchin VV. Optical clearing and testing of lung tissue using inhalation aerosols: prospects for monitoring the action of viral infections. Biophys Rev 2022; 14:1005-1022. [PMID: 36042751 PMCID: PMC9415257 DOI: 10.1007/s12551-022-00991-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Optical clearing of the lung tissue aims to make it more transparent to light by minimizing light scattering, thus allowing reconstruction of the three-dimensional structure of the tissue with a much better resolution. This is of great importance for monitoring of viral infection impact on the alveolar structure of the tissue and oxygen transport. Optical clearing agents (OCAs) can provide not only lesser light scattering of tissue components but also may influence the molecular transport function of the alveolar membrane. Air-filled lungs present significant challenges for optical imaging including optical coherence tomography (OCT), confocal and two-photon microscopy, and Raman spectroscopy, because of the large refractive-index mismatch between alveoli walls and the enclosed air-filled region. During OCT imaging, the light is strongly backscattered at each air–tissue interface, such that image reconstruction is typically limited to a single alveolus. At the same time, the filling of these cavities with an OCA, to which water (physiological solution) can also be attributed since its refractive index is much higher than that of air will lead to much better tissue optical transmittance. This review presents general principles and advances in the field of tissue optical clearing (TOC) technology, OCA delivery mechanisms in lung tissue, studies of the impact of microbial and viral infections on tissue response, and antimicrobial and antiviral photodynamic therapies using methylene blue (MB) and indocyanine green (ICG) dyes as photosensitizers.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Centre of Collective Use, Saratov State Medical University n.a. V.I. Razumovsky, 112 B. Kazach’ya, Saratov, 410012 Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Irina Yu. Yanina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Sofia V. Atsigeida
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Nikita A. Navolokin
- Centre of Collective Use, Saratov State Medical University n.a. V.I. Razumovsky, 112 B. Kazach’ya, Saratov, 410012 Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
| | - Polina A. Dyachenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Daria K. Tuchina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Elena S. Tuchina
- Department of Biology, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya St, Saratov, 410012 Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Av, Tomsk, 634050 Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya St, Saratov, 410028 Russia
- A.N. Bach Institute of Biochemistry, FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 33-2 Leninsky Av, Moscow, 119991 Russia
| |
Collapse
|
112
|
Payami H. The many genomes of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:59-80. [PMID: 36427959 DOI: 10.1016/bs.irn.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetic component of Parkinson's disease, once firmly believed non-existent, involves the human genome, mitochondrial genome, and the microbiome. Understanding the genomics of PD requires identification of PD-relevant genes and learning how they interact within the hologenome and with their environment. This chapter is an evidence-based perspective of a geneticist on how far we have come in this endeavor. The contemporary scientific society started with a naive and simplistic view of PD, evolved to accept that Parkinson's disease is probably the most complex disease there is, the progress we have made in discovering the genes and elucidating their functions, and now assembling the parts to create the whole.
Collapse
Affiliation(s)
- Haydeh Payami
- Professor of Genetics and Neurology, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| |
Collapse
|
113
|
Crovetto F, Selma-Royo M, Crispi F, Carbonetto B, Pascal R, Larroya M, Casas I, Tortajada M, Escudero N, Muñoz-Almagro C, Gomez-Roig MD, González-Torres P, Collado MC, Gratacos E. Nasopharyngeal microbiota profiling of pregnant women with SARS-CoV-2 infection. Sci Rep 2022; 12:13404. [PMID: 35927569 PMCID: PMC9352760 DOI: 10.1038/s41598-022-17542-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
We aimed to analyze the nasopharyngeal microbiota profiles in pregnant women with and without SARS-CoV-2 infection, considered a vulnerable population during COVID-19 pandemic. Pregnant women were enrolled from a multicenter prospective population-based cohort during the first SARS-CoV-2 wave in Spain (March-June 2020 in Barcelona, Spain) in which the status of SARS-CoV-2 infection was determined by nasopharyngeal RT–PCR and antibodies in peripheral blood. Women were randomly selected for this cross-sectional study on microbiota. DNA was extracted from nasopharyngeal swab samples, and the V3-V4 region of the 16S rRNA of bacteria was amplified using region-specific primers. The differential abundance of taxa was tested, and alpha/beta diversity was evaluated. Among 76 women, 38 were classified as positive and 38 as negative for SARS-CoV-2 infection. All positive women were diagnosed by SARS-CoV-2 IgG and IgM/IgA antibodies, and 14 (37%) also had a positive RT–PCR. The overall composition of the nasopharyngeal microbiota differ in pregnant women with SARS-CoV-2 infection (positive SARS-CoV-2 antibodies), compared to those without the infection (negative SARS-CoV-2 antibodies) (p = 0.001), with a higher relative abundance of the Tenericutes and Bacteroidetes phyla and a higher abundance of the Prevotellaceae family. Infected women presented a different pattern of microbiota profiling due to beta diversity and higher richness (observed ASV < 0.001) and evenness (Shannon index < 0.001) at alpha diversity. These changes were also present in women after acute infection, as revealed by negative RT–PCR but positive SARS-CoV-2 antibodies, suggesting a potential association between SARS-CoV-2 infection and long-lasting shift in the nasopharyngeal microbiota. No significant differences were reported in mild vs. severe cases. This is the first study on nasopharyngeal microbiota during pregnancy. Pregnant women with SARS-CoV-2 infection had a different nasopharyngeal microbiota profile compared to negative cases.
Collapse
Affiliation(s)
- Francesca Crovetto
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain. .,Institut de Recerca Sant Joan de Deu, Barcelona, Spain. .,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Fàtima Crispi
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca August Pi Sunyer, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases, Barcelona, Spain
| | | | - Rosalia Pascal
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Larroya
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Irene Casas
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Marta Tortajada
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | | | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Ciber of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maria Dolores Gomez-Roig
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Institut de Recerca August Pi Sunyer, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases, Barcelona, Spain
| |
Collapse
|
114
|
Tseng FH, Newman M, Song CH. Chronic and Recurrent Sinusitis in Children, as Manifestation of Immune Dysfunction and Atopic Background. Adv Pediatr 2022; 69:75-93. [PMID: 35985718 DOI: 10.1016/j.yapd.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rhinosinusitis in children, as in adults, can be classified by duration (acute, recurrent, and chronic) and by cause (viral, bacterial, and inflammatory) and needs to be treated accordingly after careful investigation which include through clinical history, laboratory tests, and, if necessary, nasal endoscopy and imaging studies.
Collapse
Affiliation(s)
- Farn-Hsuan Tseng
- Harbor-University of California, Los Angeles, Torrance, CA 90509, USA
| | - Marissa Newman
- University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charles H Song
- Harbor-University of California, Los Angeles, Torrance, CA 90509, USA.
| |
Collapse
|
115
|
Baumgartner MA, Li C, Kuntz TM, Nurhussien L, Synn AJ, Sun WY, Kang JE, Lai PS, Wilkinson JE, Rice MB. Differences of the Nasal Microbiome and Mycobiome by Clinical Characteristics of COPD Patients. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:309-324. [PMID: 35487694 PMCID: PMC9448003 DOI: 10.15326/jcopdf.2021.0267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE While studies suggest that the lung microbiome may influence risk of chronic obstructive pulmonary disease (COPD) exacerbations, little is known about the relationship between the nasal biome and clinical characteristics of COPD patients. METHODS We sampled the nasal lining fluid by nasosorption of both nares of 20 people with moderate-to-severe COPD. All 40 samples, plus 4 negative controls, underwent DNA extraction, and 16SV4 ribosomal RNA (rRNA) (bacterial) and ribosomal internal transcribed spacer 2 (ITS2) (fungal) sequencing. We measured the proportion of variance (R2) in beta diversity explained by clinical factors, including age, sex, body mass index (BMI), COPD treatment, disease severity (forced expiratory volume in 1 second [FEV1], symptom/exacerbation frequency), peripheral eosinophil level (≥150 versus <150 cells/µL) and season of sampling, with the PERMANOVA test on the Bray-Curtis dissimilarities, accounting for within-person correlation of samples. We assessed the relative abundance of microbial features in the nasal community and their associations with clinical characteristics using the Microbiome Multivariable Association with Linear Models (MaAsLin2) package. RESULTS The most abundant nasal fluid bacterial taxa were Corynebacterium, Staphylococcus, Streptococcus, Moraxella, and Dolosigranulum, and fungal taxa were Malassezia, Candida, Malasseziales, Cladosporium and Aspergillus. Bacterial microbiome composition was associated with short-acting muscarinic antagonist use (R2 11.8%, p=0.002), sex (R2 8.3%, p=0.044), nasal steroid use (R2 7.7%, p=0.064), and higher eosinophil level (R2 7.6%, p=0.084). Mycobiome composition was associated with higher eosinophil level (R2 14.4%, p=0.004) and low FEV1 (R2 7.5%, p=0.071). No specific bacterium or fungus differed significantly in relative abundance by clinical characteristics in the multivariate per-feature analysis. CONCLUSION The taxonomical composition of the nasal biome is heterogeneous in COPD patients and may be explained in part by clinical characteristics.
Collapse
Affiliation(s)
| | - Chengchen Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Thomas M. Kuntz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Lina Nurhussien
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Andrew J. Synn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Wendy Y. Sun
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Jennifer E. Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Peggy S. Lai
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Jeremy E. Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Mary B. Rice
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
116
|
Fei Y, Ali A, Mohammad M, Jin T. Commensal Bacteria Augment Staphylococcus aureus septic Arthritis in a Dose-Dependent Manner. Front Cell Infect Microbiol 2022; 12:942457. [PMID: 35942056 PMCID: PMC9356218 DOI: 10.3389/fcimb.2022.942457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Septic arthritis is considered one of the most dangerous joints diseases and is mainly caused by the Gram-positive bacterium Staphylococcus aureus (S. aureus). Human skin commensals are known to augment S. aureus infections. The aim of this study was to investigate if human commensals could augment S. aureus-induced septic arthritis. Method NMRI mice were inoculated with S. aureus alone or with a mixture of S. aureus together with either of the human commensal Staphylococcus epidermidis (S. epidermidis) or Streptococcus mitis (S. mitis). The clinical, radiological and histopathological changes due to septic arthritis were observed. Furthermore, the serum levels of chemokines and cytokines were assessed. Results Mice inoculated with a mixture of S. aureus and S. epidermidis or S. mitis developed more severe and frequent clinical arthritis compared to mice inoculated with S. aureus alone. This finding was verified pathologically and radiologically. Furthermore, the ability of mice to clear invading bacteria in the joints but not in kidneys was hampered by the bacterial mixture compared to S. aureus alone. Serum levels of monocyte chemoattractant protein 1 were elevated at the early phase of disease in the mice infected with bacterial mixture compared with ones infected with S. aureus alone. Finally, the augmentation effect in septic arthritis development by S. epidermidis was bacterial dose-dependent. Conclusion The commensal bacteria dose-dependently augment S. aureus-induced septic arthritis in a mouse model of septic arthritis.
Collapse
Affiliation(s)
- Ying Fei
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, The Affiliated Hospital of GuiZhou Medical University, Guiyang, China
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Tao Jin,
| |
Collapse
|
117
|
Andrade BGN, Cuadrat RRC, Tonetti FR, Kitazawa H, Villena J. The role of respiratory microbiota in the protection against viral diseases: respiratory commensal bacteria as next-generation probiotics for COVID-19. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:94-102. [PMID: 35846832 PMCID: PMC9246420 DOI: 10.12938/bmfh.2022-009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022]
Abstract
On March 11, 2020, the World Health Organization declared a pandemic of coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and imposed the biggest public health challenge for our civilization, with unforeseen impacts in the subsequent years. Similar to other respiratory infections, COVID-19 is associated with significant changes in the composition of the upper respiratory tract microbiome. Studies have pointed to a significant reduction of diversity and richness of the respiratory microbiota in COVID-19 patients. Furthermore, it has been suggested that Prevotella, Staphylococcus, and Streptococcus are associated with severe COVID-19 cases, while Dolosigranulum and Corynebacterium are significantly more abundant in asymptomatic subjects or with mild disease. These results have stimulated the search for new microorganisms from the respiratory microbiota with probiotic properties that could alleviate symptoms and even help in the fight against COVID-19. To date, the potential positive effects of probiotics in the context of SARS-CoV-2 infection and COVID-19 pandemics have been extrapolated from studies carried out with other viral pathogens, such as influenza virus and respiratory syncytial virus. However, scientific evidence has started to emerge demonstrating the capacity of immunomodulatory bacteria to beneficially influence the resistance against SARS-CoV-2 infection. Here we review the scientific knowledge regarding the role of the respiratory microbiota in viral infections in general and in the infection caused by SARS-CoV-2 in particular. In addition, the scientific work that supports the use of immunomodulatory probiotic microorganisms as beneficial tools to reduce the severity of respiratory viral infections is also reviewed. In particular, our recent studies that evaluated the role of immunomodulatory Dolosigranulum pigrum strains in the context of SARS-CoV-2 infection are highlighted.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Adapt Centre, Munster Technological University (MTU), T12 P928 Cork, Ireland
| | - Rafael R C Cuadrat
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany.,Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000 Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000 Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| |
Collapse
|
118
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
119
|
Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging—A Review. Microorganisms 2022; 10:microorganisms10071405. [PMID: 35889124 PMCID: PMC9320618 DOI: 10.3390/microorganisms10071405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
The nasal region is one of the distinct environments for the survival of various microbiota. The human microbial niche begins to inhabit the human body right from birth, and the microbiota survive as commensals or opportunistic pathogens throughout the life of humans in their bodies in various habitats. These microbial communities help to maintain a healthy microenvironment by preventing the attack of pathogens and being involved in immune regulation. Any dysbiosis of microbiota residing in the mucosal surfaces, such as the nasal passages, guts, and genital regions, causes immune modulation and severe infections. The coexistence of microorganisms in the mucosal layers of respiratory passage, resulting in infections due to their co-abundance and interactions, and the background molecular mechanisms responsible for such interactions, need to be considered for investigation. Additional clinical evaluations can explain the interactions among the nasal microbiota, nasal dysbiosis and neurodegenerative diseases (NDs). The respiratory airways usually act as a substratum place for the microbes and can act as the base for respiratory tract infections. The microbial metabolites and the microbes can cross the blood–brain barrier and may cause NDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and multiple sclerosis (MS). The scientific investigations on the potential role of the nasal microbiota in olfactory functions and the relationship between their dysfunction and neurological diseases are limited. Recently, the consequences of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in patients with neurological diseases are under exploration. The crosstalk between the gut and the nasal microbiota is highly influential, because their mucosal regions are the prominent microbial niche and are connected to the olfaction, immune regulation, and homeostasis of the central nervous system. Diet is one of the major factors, which strongly influences the mucosal membranes of the airways, gut, and lung. Unhealthy diet practices cause dysbiosis in gut microbiota and the mucosal barrier. The current review summarizes the interrelationship between the nasal microbiota dysbiosis, resulting olfactory dysfunctions, and the progression of NDs during aging and the involvement of coronavirus disease 2019 in provoking the NDs.
Collapse
|
120
|
Sokolovs-Karijs O, Brīvība M, Saksis R, Sumeraga G, Girotto F, Erts R, Osīte J, Krūmiņa A. An Overview of Adenoid Microbiome Using 16S rRNA Gene Sequencing-Based Metagenomic Analysis. Medicina (B Aires) 2022; 58:medicina58070920. [PMID: 35888639 PMCID: PMC9318310 DOI: 10.3390/medicina58070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Objectives: the upper respiratory tract harbors the highest bacterial density in the whole respiratory system. Adenoids, which are located in the nasopharynx, are a major site of bacterial colonies in the upper airways. Our goal was to use culture-independent molecular techniques to identify the breadth of bacterial diversity in the adenoid vegetations of children suffering from chronic rhinosinusitis and obstructive sleep apnea. Materials and methods: in total, 21 adenoid samples were investigated using amplification and sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene. Results: among the most common bacterial species found were Veillonella atypica, Fusobactrium nucelatum, Shaalia odontolytica, and Moraxella catarrhalis. Veillonella atypica and Fusbacteriumnucelatum dominated the microbiome in all 21 samples, attributing to more than 60% of all detected genetic material. Conclusions: since both Veillonella atypica and Fusobacterium nucleatum are, predominantly, oral cavity and dental microorganisms, our findings may suggest oral microbiome migration deeper into the oropharynx and nasopharynx where these bacteria colonize adenoid vegetations.
Collapse
Affiliation(s)
- Oļegs Sokolovs-Karijs
- Department of Otorhinolaryngology, Medical Faculty, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia;
- AIWA Clinic, 241 Maskavas Str., LV-1019 Rīga, Latvia
- Correspondence: ; Tel.: +371-26-516-362
| | - Monta Brīvība
- Latvian Biomedical Research and Study Centre, Rātsupītes Str. 1, LV-1067 Rīga, Latvia; (M.B.); (R.S.)
| | - Rihards Saksis
- Latvian Biomedical Research and Study Centre, Rātsupītes Str. 1, LV-1067 Rīga, Latvia; (M.B.); (R.S.)
| | - Gunta Sumeraga
- Department of Otorhinolaryngology, Medical Faculty, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia;
| | - Francesca Girotto
- Medical Faculty, Rīga Stradiņš University, Dzirciema Str., LV-1007 Rīga, Latvia;
| | - Renārs Erts
- Faculty of Medicine, Latvian University, Raina Blvd. 19, LV-1586 Riga, Latvia;
| | - Jana Osīte
- Centrālā Laboratorija, Šarlotes Str. 1b, LV-1011 Rīga, Latvia;
| | - Angelika Krūmiņa
- Department of Infectology, Medical Faculty, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia;
| |
Collapse
|
121
|
Ferrari L, Favero C, Solazzo G, Mariani J, Luganini A, Ferraroni M, Montomoli E, Milani GP, Bollati V. Nasopharyngeal Bacterial Microbiota Composition and SARS-CoV-2 IgG Antibody Maintenance in Asymptomatic/Paucisymptomatic Subjects. Front Cell Infect Microbiol 2022; 12:882302. [PMID: 35873175 PMCID: PMC9297915 DOI: 10.3389/fcimb.2022.882302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), ranging from asymptomatic conditions to severe/fatal lung injury and multi-organ failure. Growing evidence shows that the nasopharyngeal microbiota composition may predict the severity of respiratory infections and may play a role in the protection from viral entry and the regulation of the immune response to the infection. In the present study, we have characterized the nasopharyngeal bacterial microbiota (BNM) composition and have performed factor analysis in a group of 54 asymptomatic/paucisymptomatic subjects who tested positive for nasopharyngeal swab SARS-CoV-2 RNA and/or showed anti-RBD-IgG positive serology at the enrolment. We investigated whether BNM was associated with SARS-CoV-2 RNA positivity and serum anti-RBD-IgG antibody development/maintenance 20–28 weeks after the enrolment. Shannon’s entropy α-diversity index [odds ratio (OR) = 5.75, p = 0.0107] and the BNM Factor1 (OR = 2.64, p = 0.0370) were positively associated with serum anti-RBD-IgG antibody maintenance. The present results suggest that BNM composition may influence the immunological memory against SARS-CoV-2 infections. To the best of our knowledge, this is the first study investigating the link between BNM and specific IgG antibody maintenance. Further studies are needed to unveil the mechanisms through which the BNM influences the adaptive immune response against viral infections.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Mila-no, Milan, Italy
- Department of Preventive Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Mila-no, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Mila-no, Milan, Italy
| | - Jacopo Mariani
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Mila-no, Milan, Italy
| | - Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Monica Ferraroni
- Branch of Medical Statistics, Biometry, and Epidemiology "G. A. Maccacaro", Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, Università degli Studi di Siena, Siena, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Mila-no, Milan, Italy
- Department of Preventive Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Valentina Bollati,
| |
Collapse
|
122
|
Devi P, Maurya R, Mehta P, Shamim U, Yadav A, Chattopadhyay P, Kanakan A, Khare K, Vasudevan JS, Sahni S, Mishra P, Tyagi A, Jha S, Budhiraja S, Tarai B, Pandey R. Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiol Spectr 2022; 10:e0231121. [PMID: 35579429 PMCID: PMC9241827 DOI: 10.1128/spectrum.02311-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The modulators of severe COVID-19 have emerged as the most intriguing features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial co-infections are being investigated as one of the crucial factors for exacerbation of disease severity and complications of COVID-19. A key question remains whether early transcriptionally active microbial signature/s in COVID-19 patients can provide a window for future disease severity susceptibility and outcome? Using complementary metagenomics sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study highlights the possible functional role of nasopharyngeal early resident transcriptionally active microbes in modulating disease severity, within recovered patients with sub-phenotypes (mild, moderate, severe) and mortality. The integrative analysis combines patients' clinical parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their functional role. The clinical sub-phenotypes analysis led to the identification of transcriptionally active bacterial species associated with disease severity. We found significant transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality, Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic pathways, distinguishing the microbial functional signatures between the clinical sub-phenotypes, were also identified. We report a plausible mechanism wherein the increased transcriptionally active bacterial isolates might contribute to enhanced inflammatory response and co-infections that could modulate the disease severity in these groups. Current study provides an opportunity for potentially using these bacterial species for screening and identifying COVID-19 patient sub-groups with severe disease outcome and priority medical care. IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with multiple facets involved in modulating the progression and outcome. In this regard, we investigated the role of transcriptionally active microbial co-infections as possible modulators of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically, can there be early nasopharyngeal microbial signatures indicative of prospective disease severity? Based on disease severity symptoms, the patients were segregated into clinical sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus cereus in the mortality patients. Importantly, the bacterial species might contribute toward enhancing the inflammatory responses as well as reported to be resistant to common antibiotic therapy, which together hold potential to alter the disease severity and outcome.
Collapse
Affiliation(s)
- Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aanchal Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kriti Khare
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Shweta Sahni
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
123
|
Zieliński W, Hubeny J, Buta-Hubeny M, Rolbiecki D, Harnisz M, Paukszto Ł, Korzeniewska E. Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154354. [PMID: 35259375 DOI: 10.1016/j.scitotenv.2022.154354] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/23/2023]
Abstract
During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn Plac Łódzki 1, 10-721 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland.
| |
Collapse
|
124
|
McKeon MG, Gallant JN, Kim YJ, Das SR. It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14133120. [PMID: 35804891 PMCID: PMC9265087 DOI: 10.3390/cancers14133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Certain viruses, specifically, human papillomavirus (HPV) and Epstein–Barr virus (EBV), have been linked with the development of head and neck cancer. In this study, we review the mechanisms by which (these) viruses lead to cellular transformation and a chronic inflammatory state. Given that the head and neck host a rich microbiome (which itself is intrinsically linked to inflammation), we scrutinize the literature to highlight the interplay between viruses, cellular transformation, inflammation, and the local host microbiome in head and neck cancer. Abstract While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)—a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC—suggesting that additional cofactors or coinfections may be required. Epstein–Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions—leading to tumor growth.
Collapse
Affiliation(s)
- Mallory G. McKeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Young J. Kim
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Correspondence: ; Tel.: +1-(615)-322-0322; Fax: +1-(615)-343-6160
| |
Collapse
|
125
|
Baerentsen R, Tang CM, Exley RM. Et tu, Neisseria? Conflicts of Interest Between Neisseria Species. Front Cell Infect Microbiol 2022; 12:913292. [PMID: 35811666 PMCID: PMC9263626 DOI: 10.3389/fcimb.2022.913292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are two obligate human pathogens that have evolved to be uniquely adapted to their host. The meningococcus is frequently carried asymptomatically in the nasopharynx, while gonococcal infection of the urogenital tract usually elicits a marked local inflammatory response. Other members of the Neisseria genus are abundant in the upper airway where they could engage in co-operative or competitive interactions with both these pathogens. Here, we briefly outline the potential sites of contact between Neisseria spp. in the body, with emphasis on the upper airway, and describe the growing yet circumstantial evidence for antagonism from carriage studies and human volunteer challenge models with Neisseria lactamica. Recent laboratory studies have characterized antagonistic mechanisms that enable competition between Neisseria species. Several of these mechanisms, including Multiple Adhesin family (Mafs), Two Partner Secretion Systems, and Type VI secretion system, involve direct contact between bacteria; the genetic organisation of these systems, and the domain structure of their effector molecules have striking similarities. Additionally, DNA from one species of Neisseria can be toxic to another species, following uptake. More research is needed to define the full repertoire of antagonistic mechanisms in Neisseria spp., their distribution in strains, their range of activity, and contribution to survival in vivo. Understanding the targets of effectors could reveal how antagonistic relationships between close relatives shape subsequent interactions between pathogens and their hosts.
Collapse
|
126
|
Meepoo W, Jaroensong T, Pruksakorn C, Rattanasrisomporn J. Investigation of Bacterial Isolations and Antimicrobial Susceptibility of Chronic Rhinitis in Cats. Animals (Basel) 2022; 12:ani12121572. [PMID: 35739908 PMCID: PMC9219427 DOI: 10.3390/ani12121572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic rhinitis is a quite common upper respiratory tract (URT) disease in cats. As a result of unclear etiology, frequently, multidrug-resistant bacteria are identified. This study investigated bacterial isolations and an antimicrobial susceptibility test (AST) in chronic rhinitis in cats. The medical records of 395 cats with chronic URT signs were reviewed at the Kasetsart University Veterinary Teaching Hospital (KUVTH) between 2016 and 2021 to survey the underlying causes of URT. Then, apart from rhinitis, other causes were excluded to identify the bacterial species and antimicrobial susceptibility. The results indicated that the most frequent finding was neoplasia, followed by rhinitis and anatomical defects. Furthermore, the only significant association was between the age range and disease group, with gender, FIV, or FeLV infection not being significant. Rhinitis was 4.7 times more likely to occur than neoplasia in younger and young adult cats in the age range < 1−3 years compared to the group > 10 years. The main bacterial species was the Pseudomonas species. Antimicrobials with a susceptibility rate of more than 90% were amikacin, gentamicin, ciprofloxacin, norfloxacin, marbofloxacin, imipenem, and meropenem. In conclusion, rhinitis was the second most common chronic URT disease in cats and was more common in younger and young adult cats. The predominant bacteria with AST in this study reflect the antimicrobial resistance situation. Thus, antimicrobial usage should follow antimicrobial use guidelines first.
Collapse
Affiliation(s)
- Wannisa Meepoo
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen Campus, Kasetsart University, Nakhon Pathom 73140, Thailand;
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand;
| | - Tassanee Jaroensong
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand;
| | - Chantima Pruksakorn
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand
- Correspondence: (C.P.); (J.R.)
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand;
- Faculty of Veterinary Medicine, Kasetsart University Veterinary Teaching Hospital, 50 Ngamwongwan Rd., Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: (C.P.); (J.R.)
| |
Collapse
|
127
|
Guo H, Xiang X, Lin X, Wang Q, Qin S, Lu X, Xu J, Fang Y, Liu Y, Cui J, Li Z. Oropharyngeal Probiotic ENT-K12 as an Effective Dietary Intervention for Children With Recurrent Respiratory Tract Infections During Cold Season. Front Nutr 2022; 9:900448. [PMID: 35634421 PMCID: PMC9132010 DOI: 10.3389/fnut.2022.900448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent respiratory tract infections (RRTi) cause a high burden of disease and lead to negative impact on quality of life, frequent school/work absenteeism, and doctor visits, which remain a great challenge to pediatricians because RRTi can increase the risk of various complications including antibiotic overuse and resistance, which is one of the biggest threats to global health, and there is no confirmed effective treatment. In this study, we aimed to assess the clinical efficacy and safety of oropharyngeal probiotic ENT-K12 as a dietary intervention or a complementary treatment along with standard medical treatment during acute respiratory infections among children with RRTi during cold season. The results of this study show that when comparing to practicing of standard medical treatment only, the complementary intake of oropharyngeal probiotic ENT-K12 can effectively reduce episodes of both acute and RRTi in school children, shorten the course of respiratory symptoms onset, reduce the use of antibiotics and antiviral drugs, and reduce the absence days from both children's school and parents' work. Using oropharyngeal probiotics as a complementary dietary intervention to stabilize oropharyngeal microflora, specifically inhibiting respiratory pathogens and enhancing host immunity, could possibly be a promising approach to reduce RRTi burden and combating antibiotic resistance in long term, more clinical studies will be needed to further confirm the clinical practicing guide to ensure its clinical benefit.
Collapse
Affiliation(s)
- Hongyan Guo
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xuan Lin
- Department of Endocrinology, CR & WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinyan Lu
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiawei Xu
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Fang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yang Liu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Cui
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
128
|
Maestre-Carballa L, Navarro-López V, Martinez-Garcia M. A Resistome Roadmap: From the Human Body to Pristine Environments. Front Microbiol 2022; 13:858831. [PMID: 35633673 PMCID: PMC9134733 DOI: 10.3389/fmicb.2022.858831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
A comprehensive characterization of the human body resistome [sets of antibiotic resistance genes (ARGs)] is yet to be done and paramount for addressing the antibiotic microbial resistance threat. Here, we study the resistome of 771 samples from five major body parts (skin, nares, vagina, gut, and oral cavity) of healthy subjects from the Human Microbiome Project (HMP) and addressed the potential dispersion of ARGs in pristine environments. A total of 28,714 ARGs belonging to 235 different ARG types were found in the HMP proteome dataset (n = 9.1 × 107 proteins analyzed). Our study reveals a distinct resistome profile (ARG type and abundance) between body sites and high interindividual variability. Nares had the highest ARG load (≈5.4 genes/genome) followed by the oral cavity, whereas the gut showed one of the highest ARG richness (shared with nares) but the lowest abundance (≈1.3 genes/genome). The fluroquinolone resistance genes were the most abundant in the human body, followed by macrolide–lincosamide–streptogramin (MLS) or tetracycline. Most ARGs belonged to common bacterial commensals and multidrug resistance trait were predominant in the nares and vagina. Many ARGs detected here were considered as low risk for human health, whereas only a few of them, such as BlaZ, dfrA14, dfrA17, or tetM, were classified as high-risk ARG. Our data also provide hope, since the spread of common ARG from the human body to pristine environments (n = 271 samples; 77 Gb of sequencing data and 2.1 × 108 proteins analyzed) thus far remains very unlikely (only one case found in an autochthonous bacterium from a pristine environment). These findings broaden our understanding of ARG in the context of the human microbiome and the One-Health Initiative of WHO uniting human host–microbes and environments as a whole.
Collapse
Affiliation(s)
- Lucia Maestre-Carballa
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Vicente Navarro-López
- Clinical Microbiology and Infectious Disease Unit, Hospital Universitario Vinalopó, Elche, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
129
|
Rathbun KP, Bourgault AM, Sole ML. Oral Microbes in Hospital-Acquired Pneumonia: Practice and Research Implications. Crit Care Nurse 2022; 42:47-54. [PMID: 35640896 PMCID: PMC9923822 DOI: 10.4037/ccn2022672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hospital-acquired pneumonia accounts for 25% of all health care-associated infections and is classified as either ventilator-associated or non-ventilator-associated pneumonia. Hospital-acquired pneumonia most frequently results from aspiration of oropharyngeal secretions into the lungs. Although preventive measures for ventilator-associated pneumonia are well established, few preventive measures exist for the nonventilator type. OBJECTIVE To (1) explore oral microbes associated with ventilator-associated and non-ventilator-associated pneumonia in acutely ill, adult hospitalized patients, and (2) provide evidence-based recommendations for measures to prevent pneumonia in hospitalized patients. METHODS A literature search was conducted using CINAHL, Academic Search Premier, Medline, and the Cochrane Library. RESULTS Ten studies were found that identified common oral microbes in ventilator-associated and non-ventilator-associated pneumonia, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, S aureus, and Streptococcus pneumoniae. Collectively, oral colonization with E coli, P aeruginosa, methicillin-resistant S aureus, and S aureus increased the risk of nonventilator pneumonia. Findings also suggested microaspiration of colonized oral microbes into the lungs. Non-ventilator-associated pneumonia had similar colonization rates of gram-positive and gram-negative bacteria, whereas ventilator-associated pneumonia had greater colonization with gram-negative bacteria. The literature did not indicate a standard of oral care effective in all patient populations. DISCUSSION Oral care is an effective intervention to prevent hospital-acquired pneumonia by reducing pathogenic oral microbial colonization. The impact of different methods and timing of oral care on oral microbes should be further explored, particularly in patients not receiving mechanical ventilation. CONCLUSIONS Findings reaffirm the importance of consistent oral care in hospitalized patients. In addition, practices should be different in patients receiving mechanical ventilation versus patients not receiving ventilation. Results may also provide knowledge to inform future preventive measures for pneumonia, particularly for nonventilator pneumonia.
Collapse
Affiliation(s)
- Kimberly Paige Rathbun
- Kimberly Paige Rathbun is a PhD student, predoctoral fellow, and graduate student research assistant at the University of Central Florida College of Nursing, Orlando
| | - Annette M Bourgault
- Annette M. Bourgault is an associate professor at the University of Central Florida College of Nursing
| | - Mary Lou Sole
- Mary Lou Sole is dean, professor, and Orlando Health Endowed Chair in Nursing at the University of Central Florida College of Nursing
| |
Collapse
|
130
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
131
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|
132
|
Zhang Y, Shen F, Yang Y, Niu M, Chen D, Chen L, Wang S, Zheng Y, Sun Y, Zhou F, Qian H, Wu Y, Zhu T. Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6282-6293. [PMID: 35512288 PMCID: PMC9113006 DOI: 10.1021/acs.est.2c00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 05/04/2023]
Abstract
Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.
Collapse
Affiliation(s)
- Yin Zhang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Yi Yang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Mutong Niu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Da Chen
- School
of Environment and Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Longfei Chen
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Shengqi Wang
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yunhao Zheng
- Institute
of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Sun
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Feng Zhou
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hua Qian
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yan Wu
- School of
Environmental Science and Engineering, Shandong
University, Jinan 250100, China
| | - Tianle Zhu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
133
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
134
|
R. Borgogna T, M. Voyich J. Examining the Executioners, Influenza Associated Secondary Bacterial Pneumonia. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.101666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Influenza infections typically present mild to moderate morbidities in immunocompetent host and are often resolved within 14 days of infection onset. Death from influenza infection alone is uncommon; however, antecedent influenza infection often leads to an increased susceptibility to secondary bacterial pneumonia. Bacterial pneumonia following viral infection exhibits mortality rates greater than 10-fold of those of influenza alone. Furthermore, bacterial pneumonia has been identified as the major contributor to mortality during each of the previous four influenza pandemics. Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes are the most prevalent participants in this pathology. Of note, these lung pathogens are frequently found as commensals of the upper respiratory tract. Herein we describe influenza-induced host-changes that lead to increased susceptibility to bacterial pneumonia, review virulence strategies employed by the most prevalent secondary bacterial pneumonia species, and highlight recent findings of bacterial sensing and responding to the influenza infected environment.
Collapse
|
135
|
Prasad P, Mahapatra S, Mishra R, Murmu KC, Aggarwal S, Sethi M, Mohapatra P, Ghosh A, Yadav R, Dodia H, Ansari SA, De S, Singh D, Suryawanshi A, Dash R, Senapati S, Beuria TK, Chattopadhyay S, Syed GH, Swain R, Raghav SK, Parida A. Long-read 16S-seq reveals nasopharynx microbial dysbiosis and enrichment of Mycobacterium and Mycoplasma in COVID-19 patients: a potential source of co-infection. Mol Omics 2022; 18:490-505. [PMID: 35506682 DOI: 10.1039/d2mo00044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx, which may be involved in co-infection in COVID-19 patients. The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in the COVID-19 NP microbiome with an increase in the abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggests their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.
Collapse
Affiliation(s)
- Punit Prasad
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Soumendu Mahapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, India. .,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, Odisha, India
| | | | | | | | - Manisha Sethi
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Rina Yadav
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Hiren Dodia
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Saikat De
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Deepak Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | | | | | | | - Rajeeb Swain
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | | | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
136
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
137
|
Dash HR, Das S. Microbial community signatures for estimation of postmortem time intervals. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:91-113. [PMID: 35461664 DOI: 10.1016/bs.aambs.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human body provides a complex ecosystem for symbiotic habitation of a huge number of microorganisms. These commensal microorganisms provide a huge benefit to the living host by acting against many deadly infections. Once the host dies, many changes in the complex ecosystem of the human body take place. The personalized microbes of a human body undergo successional change as many exogenous microbes attack the nutrient-rich cadaver after death. The succession pattern change of microbes in human cadaver allows postulating different models for estimation of Postmortem time interval (PMI). Estimation of PMI has a broad prospect from the criminal investigation point of view. Though many techniques are being used nowadays to estimate PMI, all of them have their pros and cons. With the advent of advanced molecular biological techniques, studies on the thanatomicrobiome of a human cadaver have gained pace and provide a superior alternative for conventional methods of PMI estimation. This chapter summarizes the recent advancements in the changes in signature microflora postmortem with change in human microenvironment to postulate a consensus model for estimation of PMI.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, Forensic Science Laboratory, Bhopal, Madhya Pradesh, India.
| | - Surajit Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
138
|
An optimized approach for processing of frozen lung and lavage samples for microbiome studies. PLoS One 2022; 17:e0265891. [PMID: 35381030 PMCID: PMC8982836 DOI: 10.1371/journal.pone.0265891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
The respiratory tract has a resident microbiome with low biomass and limited diversity. This results in difficulties with sample preparation for sequencing due to uneven bacteria-to-host DNA ratio, especially for small tissue samples such as mouse lungs. We compared effectiveness of current procedures used for DNA extraction in microbiome studies. Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected to test different forms of sample pre-treatment and extraction methods to increase bacterial DNA yield and optimize library preparation. DNA extraction using a pre-treatment method of mechanical lysis (lung tissue) and one-step centrifugation (BALF) increased DNA yield and bacterial content of samples. In contrast, a significant increase of environmental contamination was detected after phenol chloroform isoamyl alcohol (PCI) extraction and nested PCR. While PCI has been a standard procedure used in microbiome studies, our data suggests that it is not efficient for DNA extraction of frozen low biomass samples. Finally, a DNA Enrichment kit was tested and found to improve the 16S copy number of lung tissue with a minor shift in microbial composition. Overall, we present a standardized method to provide high yielding DNA and improve sequencing coverage of low microbial biomass frozen samples with minimal contamination.
Collapse
|
139
|
Campbell CD, Barnett C, Sulaiman I. A clinicians’ review of the respiratory microbiome. Breathe (Sheff) 2022; 18:210161. [PMID: 36338247 PMCID: PMC9584600 DOI: 10.1183/20734735.0161-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
The respiratory microbiome and its impact in health and disease is now well characterised. With the development of next-generation sequencing and the use of other techniques such as metabolomics, the functional impact of microorganisms in different host environments can be elucidated. It is now clear that the respiratory microbiome plays an important role in respiratory disease. In some diseases, such as bronchiectasis, examination of the microbiome can even be used to identify patients at higher risk of poor outcomes. Furthermore, the microbiome can aid in phenotyping. Finally, development of multi-omic analysis has revealed interactions between the host and microbiome in some conditions. This review, although not exhaustive, aims to outline how the microbiome is investigated, the healthy respiratory microbiome and its role in respiratory disease. The respiratory microbiome encompasses bacterial, fungal and viral communities. In health, it is a dynamic structure and dysbiotic in disease. Dysbiosis can be related to disease severity and may be utilised to predict patients at clinical risk.https://bit.ly/3pNSgnA
Collapse
|
140
|
Blanco KC, da Silva AP, Panhoca VH, Moriyama LT, Bagnato VS. Photodynamic therapy of adenoid hypertrophy in acute rhinosinusitis. Photodiagnosis Photodyn Ther 2022; 39:102892. [DOI: 10.1016/j.pdpdt.2022.102892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
141
|
Giugliano R, Sellitto A, Ferravante C, Rocco T, D'Agostino Y, Alexandrova E, Lamberti J, Palumbo D, Galdiero M, Vaccaro E, Pagliano P, Weisz A, Giurato G, Franci G, Rizzo F. NGS analysis of nasopharyngeal microbiota in SARS-CoV-2 positive patients during the first year of the pandemic in the Campania Region of Italy. Microb Pathog 2022; 165:105506. [PMID: 35358660 PMCID: PMC8958261 DOI: 10.1016/j.micpath.2022.105506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
|
142
|
A High-Risk Profile for Invasive Fungal Infections Is Associated with Altered Nasal Microbiota and Niche Determinants. Infect Immun 2022; 90:e0004822. [PMID: 35311544 DOI: 10.1128/iai.00048-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is becoming increasingly clear that the communities of microorganisms that populate the surfaces exposed to the external environment, termed microbiota, are key players in the regulation of pathogen-host cross talk affecting the onset as well as the outcome of infectious diseases. We have performed a multicenter, prospective, observational study in which nasal and oropharyngeal swabs were collected for microbiota predicting the risk of invasive fungal infections (IFIs) in patients with hematological malignancies. Here, we demonstrate that the nasal and oropharyngeal microbiota are different, although similar characteristics differentiate high-risk from low-risk samples at both sites. Indeed, similar to previously published results on the oropharyngeal microbiota, high-risk samples in the nose were characterized by low diversity, a loss of beneficial bacteria, and an expansion of potentially pathogenic taxa, in the presence of reduced levels of tryptophan (Trp). At variance with oropharyngeal samples, however, low Trp levels were associated with defective host-derived kynurenine production, suggesting reduced tolerance mechanisms at the nasal mucosal surface. This was accompanied by reduced levels of the chemokine interleukin-8 (IL-8), likely associated with a reduced recruitment of neutrophils and impaired fungal clearance. Thus, the nasal and pharyngeal microbiomes of hematological patients provide complementary information that could improve predictive tools for the risk of IFI in hematological patients.
Collapse
|
143
|
Panthee B, Gyawali S, Panthee P, Techato K. Environmental and Human Microbiome for Health. Life (Basel) 2022; 12:life12030456. [PMID: 35330207 PMCID: PMC8949289 DOI: 10.3390/life12030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Microorganisms are an essential part of life on the earth and can exist in association with virtually any living thing. The environmental microbiome is much more diverse than the human microbiome. It is reported that most microbes existing in the environment are difficult to culture in the laboratory. Whereas both pathogenic and beneficial microbes may be prevailing in the environment, the human body can have three categories of microbes- beneficial, pathogenic, and opportunistic pathogenic. With at least 10-fold more cells than human cells, microbes as normal flora are critical for human survival. The microbes present in the human body play a crucial role in maintaining human health, and the environmental microbiome influences the human microbiome makeup. The interaction between the environmental and human microbiome highly influences human health, however it is poorly understood. In addition, as an established infection is associated with health-seeking behavior, a large number of studies have focused on the transmission and dynamics of infectious microorganisms than the noninfectious or beneficial ones. This review will summarize how the interaction between the environmental and human microbiome affects human health and identify approaches that might be beneficial for humans to improve health by being exposed to the natural environment.
Collapse
Affiliation(s)
- Bimala Panthee
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand;
- Sustainable Study and Research Institute, Kathmandu 44600, Nepal;
- Correspondence: (B.P.); (K.T.)
| | - Saroj Gyawali
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand;
- Sustainable Study and Research Institute, Kathmandu 44600, Nepal;
| | | | - Kuaanan Techato
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand;
- Correspondence: (B.P.); (K.T.)
| |
Collapse
|
144
|
Ndhlovu GON, Dube FS, Moonsamy RT, Mankahla A, Hlela C, Levin ME, Lunjani N, Shittu AO, Abdulgader SM. Skin and nasal colonization of coagulase-negative staphylococci are associated with atopic dermatitis among South African toddlers. PLoS One 2022; 17:e0265326. [PMID: 35298533 PMCID: PMC8929619 DOI: 10.1371/journal.pone.0265326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Skin colonization with coagulase-negative staphylococci (CoNS) is generally beneficial, but recent investigations suggest its association with flares and atopic dermatitis (AD) severity. However, this relationship remains unclear.
Objective
To assess patterns of staphylococcal colonization and biofilm formation in toddlers with and without AD from rural and urban South African settings.
Methods
We conducted a cross-sectional study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. CoNS isolates were recovered from lesional, nonlesional skin samples and the anterior nares of participants. Identification of the staphylococci was achieved by MALDI-TOF mass spectrometry. The microtiter plate assay assessed in-vitro biofilm formation.
Results
CoNS and S. aureus commonly co-colonized nonlesional skin among cases (urban: 24% vs. 3%, p = 0.037 and rural 21% vs. 6%, p<0.001), and anterior nares in urban cases (24% vs. 0%, p = 0.002) than the control group. S. capitis colonization on nonlesional skin and anterior nares was positively associated with more severe disease in rural (48.3±10.8 vs. 39.7±11.5, P = 0.045) and urban cases (74.9±10.3 vs. 38.4±13, P = 0.004), respectively. Biofilm formation was similar between cases and controls, independent of rural-urban living.
Conclusion
CoNS colonization is associated with AD and disease severity and may be implicated in AD exacerbations. Studies are needed to understand their underlying pathological contribution in AD pathogenesis.
Collapse
Affiliation(s)
- Gillian O. N. Ndhlovu
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rasalika T. Moonsamy
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Department of Medicine and Pharmacology, Division of Dermatology, Walter Sisulu University, Umtata, South Africa
| | - Carol Hlela
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Michael E. Levin
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla Lunjani
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Shima M. Abdulgader
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
145
|
Liu T, Lin CH, Chen YL, Jeng SL, Tsai HJ, Ho CL, Kuo WS, Hsieh MH, Chen PC, Wu LSH, Wang JY. Nasal Microbiome Change During and After Exacerbation in Asthmatic Children. Front Microbiol 2022; 12:833726. [PMID: 35310400 PMCID: PMC8931732 DOI: 10.3389/fmicb.2021.833726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Airway and gut microbiota are important in asthma pathogenesis. Although several studies have revealed distinct microbiota in asthmatic airways at baseline compared to healthy controls, limited studies compared microbiota during acute exacerbation (AE) and in the recovery phase (RP) in the same asthmatic children. We aim to investigate association between microbiota and asthma status in children and explore their relationship with clinical features of asthma. We recruited 56 asthmatic children and investigated their nasal, throat, and stool microbiota during AE and in the RP. Totally, 320 samples were subjected to 16S rRNA sequencing. Although the microbial communities were clearly separated by body site, within each site the overall communities during AE and in the RP could not be distinguished. Most nasal microbiota were dominated by only one or two of six bacterial genera. The domination was associated with mite allergy and patient age only during AE but not in the RP. When moving into RP, the relative abundance of Staphylococcus increased while that of Moraxella decreased. Throat and stool microbiota were not associated with most of the clinical features. Interestingly, stool microbiota during AE was associated with ABO blood type and stool microbiota in the RP was associated with frequency of the subsequent exacerbations. In summary, the association between nasal microbiota and mite allergy only during AE suggests an altered local immunity and its interplay with nasal microbes. Our work provides a basis for studying microbes, and prevention or therapeutic strategy in childhood asthma, especially during AE.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Han Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Molecular Diagnostic Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Center for Innovative Fin Tech Business Models, Institute of Data Science, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Liang Ho
- Molecular Diagnostic Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Shuo Kuo
- Center of Allergy, Immunology, and Microbiome (AIM), China Medical University Children’s Hospital, Taichung, Taiwan
| | - Miao-Hsi Hsieh
- Center of Allergy, Immunology, and Microbiome (AIM), China Medical University Children’s Hospital, Taichung, Taiwan
| | - Pei-Chi Chen
- Center of Allergy, Immunology, and Microbiome (AIM), China Medical University Children’s Hospital, Taichung, Taiwan
| | - Lawrence Shih-Hsin Wu
- Center of Allergy, Immunology, and Microbiome (AIM), China Medical University Children’s Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- *Correspondence: Lawrence Shih-Hsin Wu,
| | - Jiu-Yao Wang
- Center of Allergy, Immunology, and Microbiome (AIM), China Medical University Children’s Hospital, Taichung, Taiwan
- Allergy and Clinical Immunology Research (ACIR) Center, National Cheng Kung University, Tainan, Taiwan
- Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
- Jiu-Yao Wang, ,
| |
Collapse
|
146
|
Ortega-Peña S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Staphylococcus epidermidis Controls Opportunistic Pathogens in the Nose, Could It Help to Regulate SARS-CoV-2 (COVID-19) Infection? Life (Basel) 2022; 12:341. [PMID: 35330092 PMCID: PMC8954679 DOI: 10.3390/life12030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host's innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells.
Collapse
Affiliation(s)
- Silvestre Ortega-Peña
- Laboratorio Tejido Conjuntivo, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luís Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Mario E. Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Juan C. Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
147
|
Castledine M, Padfield D, Sierocinski P, Soria Pascual J, Hughes A, Mäkinen L, Friman VP, Pirnay JP, Merabishvili M, de Vos D, Buckling A. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 2022; 11:73679. [PMID: 35188102 PMCID: PMC8912922 DOI: 10.7554/elife.73679] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct ‘in vitro evolutionary simulations’ using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria—evolved in vitro and in vivo—had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.
Collapse
Affiliation(s)
- Meaghan Castledine
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Daniel Padfield
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Pawel Sierocinski
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Jesica Soria Pascual
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Adam Hughes
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Lotta Mäkinen
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | | | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel de Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Angus Buckling
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
148
|
Shetty SA, van Beek J, Bijvank E, Groot J, Kuiling S, Bosch T, van Baarle D, Fuentes S. Associations and recovery dynamics of the nasopharyngeal microbiota during influenza-like illness in the aging population. Sci Rep 2022; 12:1915. [PMID: 35115596 PMCID: PMC8813934 DOI: 10.1038/s41598-022-05618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Influenza-like illness (ILI), a disease caused by respiratory pathogens including influenza virus, is a major health concern in older adults. There is little information on changes and recovery dynamics of the nasopharyngeal (NP) microbiota of older adults associated with an ILI. Here, we compared the NP microbiota in older adults reporting (n = 240) or not (n = 157) ILI during the 2014-2015 influenza season at different times of the ILI event. A small but significant effect of the ILI was observed on the microbiota community composition and structure when compared to controls and samples collected at recovery. Corynebacterium was negatively associated with ILI and its abundance increased after recovery. Potential pathobionts such as Haemophilus, Porphyromonas and Gemella had higher abundances during acute-ILI. Stability and changes in the NP microbial community showed individual dynamics. Key core genera, Corynebacterium, Moraxella and Dolosigranulum exhibited higher inter-individual variability in acute-ILI, but showed comparable variability to controls after recovery. Participants in the ILI group with higher core microbiota abundances at the acute phase showed higher microbiota stability after recovery. Our findings demonstrate that acute-ILI is associated with alterations in the phylogenetic structure of the NP microbiota in older adults. The variation in the core microbiota suggests imbalances in the ecosystem, which could potentially play a role in the susceptibility and recovery of the NP microbiota after an ILI event.
Collapse
Affiliation(s)
- Sudarshan A Shetty
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elske Bijvank
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - James Groot
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Sjoerd Kuiling
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Thijs Bosch
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Susana Fuentes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
149
|
Gupta A, Karyakarte R, Joshi S, Das R, Jani K, Shouche Y, Sharma A. Nasopharyngeal microbiome reveals the prevalence of opportunistic pathogens in SARS-CoV-2 infected individuals and their association with host types. Microbes Infect 2022; 24:104880. [PMID: 34425246 PMCID: PMC8379005 DOI: 10.1016/j.micinf.2021.104880] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/09/2023]
Abstract
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is causing a severe global health emergency owing to its highly infectious nature. Although the symptoms of SARS-CoV-2 are well known but its impact on nasopharyngeal microbiome is poorly studied. The present cross-sectional study was intended to understand the perturbation in the nasopharyngeal microbiome composition within the infected (n = 63) and non-infected (n = 26) individuals using 16S rRNA gene based targeted amplicon sequencing and their association with host types and the prevalence of opportunistic pathogens at the stage of infection. The results confirmed that number of OTUs were significantly (p < 0.05) decreased in the SARS-CoV-2 infected individuals in comparison to non-infected individuals. Pairwise Wilcoxon test showed a significant (p < 0.05) increase in the abundance of Proteobacteria in infected individuals compared to non-infected ones and vice-versa for Fusobacteria and Bacteroidetes. Similarity percentage (SIMPER) analysis showed the increment in the abundance of opportunistic pathogens (Haemophilus, Stenotrophomonas, Acinetobacter, Moraxella, Corynebacterium 1, Gemella, Ralstonia, and Pseudomonas) involved in secondary infection. Furthermore, this study highlighted the microbial community structure of individuals within and across the families. In this study, we also performed the assesment of microbiome associated with host types (age and genders) and COVID-19 conditions (symptomatic and asymptomatic). The data suggested that the host types/conditions during the COVID-19 infection are potential factors in enrichment of specific bacterial communities in upper respiratory tract.
Collapse
Affiliation(s)
- Abhishek Gupta
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Rajesh Karyakarte
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, 411001, India
| | - Suvarna Joshi
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, 411001, India
| | - Rashmita Das
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, 411001, India
| | - Kunal Jani
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Yogesh Shouche
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Avinash Sharma
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India.
| |
Collapse
|
150
|
Hong SN, Kim KJ, Baek MG, Yi H, Lee SH, Kim DY, Lee CH, Shin C, Rhee CS. Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. J Clin Sleep Med 2022; 18:505-515. [PMID: 34463248 PMCID: PMC8804986 DOI: 10.5664/jcsm.9640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES Although the airway mucosal system plays a pivotal role in the pathogenesis of obstructive sleep apnea (OSA), the underlying disease mechanism remains unclear. The microbiome greatly impacts human health and disease, particularly in the mucosa, where it can have direct interactions. In this study, we aimed to analyze the microbiome composition in the upper airway mucosa of individuals with and without OSA to identify potential disease severity-related microbial signatures. METHODS This population-based cohort study involved 92 participants (mean age = 62.7 ± 5.8 years; male-to-female ratio = 0.74) who underwent a physical examination and sleep study. Upper airway swab samples were collected from the nasopharyngeal mucosa to evaluate the microbiome based on 16S rRNA gene pyrosequencing. The relationship between microbiome composition and sleep parameters was explored through bioinformatics analysis. RESULTS The average apnea-hypopnea index was 7.75 ± 6.5 events/h. Proteobacteria, Firmicutes, and Actinobacteria were the predominant phyla in the nasopharyngeal microbiota in all participants. Simpson diversity indexes were higher in patients with OSA (0.6435 ± 0.2827) than in the control patients (0.6095 ± 0.2683); however, the difference was not significant (P = .1155). Specific anaerobes negatively correlated with the lowest oxygen saturation level during sleep (sum of powered score (1) = -117.47; P = .0052). CONCLUSIONS The upper airway microbiome of older patients with mild-moderate OSA exhibited minor differences in composition compared with that of individuals without OSA, possibly owing to environmental changes in the upper airway mucosa resulting from recurrent airway obstruction and intermittent hypoxia in patients with OSA. CITATION Hong S-N, Kim KJ, Baek M-G, et al. Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. J Clin Sleep Med. 2022;18(2):505-515.
Collapse
Affiliation(s)
- Seung-No Hong
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| | - Kang Jin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Min-Gyung Baek
- Department of Public Health Sciences, Korea University, Seoul, Korea
| | - Hana Yi
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul Hee Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chol Shin
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea,Sensory Organ Research Institute, Medical Research Center, Seoul National University, Seoul, Korea,Address correspondence to: Chae-Seo Rhee, MD, PhD, Department of Otorhinolaryngology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744, Korea; Tel: +82-2-2072-2440; Fax: +82-2-745-2387;
| |
Collapse
|