101
|
Nguma E, Tominaga Y, Yamashita S, Otoki Y, Yamamoto A, Nakagawa K, Miyazawa T, Kinoshita M. Dietary PlsEtn Ameliorates Colon Mucosa Inflammatory Stress and ACF in DMH-Induced Colon Carcinogenesis Mice: Protective Role of Vinyl Ether Linkage. Lipids 2020; 56:167-180. [PMID: 32989804 DOI: 10.1002/lipd.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Ethanolamine plasmalogen (PlsEtn), a sub-class of ethanolamine glycerophospholipids (EtnGpl), is a universal phospholipid in mammalian membranes. Several researchers are interested in the relationship between colon carcinogenesis and colon PlsEtn levels. Here, we evaluated the functional role of dietary purified EtnGpl from the ascidian muscle (87.3 mol% PlsEtn in EtnGpl) and porcine liver (7.2 mol% PlsEtn in EtnGpl) in 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in vivo, and elucidated the possible underlying mechanisms behind it. Dietary EtnGpl-suppressed DMH-induced aberrant crypt with one foci (AC1) and total ACF formation (P < 0.05). ACF suppression by dietary ascidian muscle EtnGpl was higher compared with dietary porcine liver EtnGpl. Additionally, dietary EtnGpl decreased DMH-induced oxidative damage, overproduction of TNF-α, and expression of apoptosis-related proteins in the colon mucosa. The effect of dietary ascidian muscle EtnGpl showed superiority compared with dietary porcine liver EtnGpl. Our results demonstrate the mechanisms by which dietary PlsEtn suppress ACF formation and apoptosis. Dietary PlsEtn attained this suppression by reducing colon inflammation and oxidative stress hence a reduction in DMH-induced intestinal impairment. These findings provide new insights about the functional role of dietary PlsEtn during colon carcinogenesis.
Collapse
Affiliation(s)
- Ephantus Nguma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Yuki Tominaga
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan
| | - Ayaka Yamamoto
- Yaizu Suisankagaku Industry Co., Ltd., Shizuoka, 425-8570, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| |
Collapse
|
102
|
Miniewska K, Godzien J, Mojsak P, Maliszewska K, Kretowski A, Ciborowski M. Mass spectrometry-based determination of lipids and small molecules composing adipose tissue with a focus on brown adipose tissue. J Pharm Biomed Anal 2020; 191:113623. [PMID: 32966938 DOI: 10.1016/j.jpba.2020.113623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue has been the subject of research for a very long time. Many studies perform a comprehensive analysis of different types of adipose tissue with an emphasis on brown adipose tissue. Mass spectrometry-based approaches are particularly useful in the exploration not only of the metabolic composition of adipose tissue but also its function. In the presented review, a complex and critical overview of publications devoted to the analysis of adipose tissue by means of mass spectrometry was performed. Detailed investigation of analytical aspects related to either untargeted or targeted analysis of adipose tissue was performed, leading to the formation of a collection of hints at the available analytical methods. Moreover, a profound analysis of the metabolic composition of brown adipose tissue was performed. Brown adipose tissue metabolome was characterized on structural and functional levels, providing information about its exact metabolic composition but also connecting these molecules and placing them into biochemical pathways. All our work resulted in a very broad picture of the analysis of adipose tissue, starting from the analytical aspects and finishing on the current knowledge about its composition.
Collapse
Affiliation(s)
- Katarzyna Miniewska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
103
|
Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020; 585:603-608. [PMID: 32939090 DOI: 10.1038/s41586-020-2732-8] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
Collapse
|
104
|
Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, Meyer JG, Quan Q, Muehlbauer LK, Trujillo EA, He Y, Chopra A, Chieng HC, Tiwari A, Judson MA, Paulson B, Brademan DR, Zhu Y, Serrano LR, Linke V, Drake LA, Adam AP, Schwartz BS, Singer HA, Swanson S, Mosher DF, Stewart R, Coon JJ, Jaitovich A. Large-scale Multi-omic Analysis of COVID-19 Severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.17.20156513. [PMID: 32743614 PMCID: PMC7388490 DOI: 10.1101/2020.07.17.20156513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We performed RNA-Seq and high-resolution mass spectrometry on 128 blood samples from COVID-19 positive and negative patients with diverse disease severities. Over 17,000 transcripts, proteins, metabolites, and lipids were quantified and associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a comparative analysis with published data and a machine learning approach for prediction of COVID-19 severity.
Collapse
Affiliation(s)
- Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ian J. Miller
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - Trenton M. Peters-Clarke
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Jesse G. Meyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Qiuwen Quan
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Laura K. Muehlbauer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Edna A. Trujillo
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Yuchen He
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Hau C. Chieng
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Division of Sleep Medicine, Albany Medical Center, Albany, NY, USA
| | - Marc A. Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Brett Paulson
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Dain R. Brademan
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Yunyun Zhu
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Lia R. Serrano
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Vanessa Linke
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Lisa A. Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Department of Ophthalmology, Albany Medical College, Albany, NY, USA
| | | | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA
- Morgridge Institute for Research, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53562, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53562, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
105
|
Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. Plasmalogens in the Pathophysiology and Therapy of Age-Specific Diseases. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s207905702003011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Plasma Lipid Profile Reveals Plasmalogens as Potential Biomarkers for Colon Cancer Screening. Metabolites 2020; 10:metabo10060262. [PMID: 32630389 PMCID: PMC7345851 DOI: 10.3390/metabo10060262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
In this era of precision medicine, there is an increasingly urgent need for highly sensitive tests for detecting tumors such as colon cancer (CC), a silent disease where the first symptoms may take 10–15 years to appear. Mass spectrometry-based lipidomics is an emerging tool for such clinical diagnosis. We used ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry operating in high energy collision spectral acquisition mode (MSE) mode (UPLC-QTOF-MSE) and gas chromatography (GC) to investigate differences between the plasmatic lipidic composition of CC patients and control (CTR) subjects. Key enzymes in lipidic metabolism were investigated using immuno-based detection assays. Our partial least squares discriminant analysis (PLS-DA) resulted in a suitable discrimination between CTR and CC plasma samples. Forty-two statistically significant discriminating lipids were putatively identified. Ether lipids showed a prominent presence and accordingly, a decrease in glyceronephosphate O-acyltransferase (GNPAT) enzyme activity was found. A receiver operating characteristic (ROC) curve built for three plasmalogens of phosphatidylserine (PS), named PS(P-36:1), PS(P-38:3) and PS(P-40:5), presented an area under the curve (AUC) of 0.998, and sensitivity and specificity of 100 and 85.7% respectively. These results show significant differences in CC patients’ plasma lipid composition that may be useful in discriminating them from CTR individuals with a special role for plasmalogens.
Collapse
|
107
|
Li Q, Laflamme DP, Bauer JE. Serum untargeted metabolomic changes in response to diet intervention in dogs with preclinical myxomatous mitral valve disease. PLoS One 2020; 15:e0234404. [PMID: 32555688 PMCID: PMC7302913 DOI: 10.1371/journal.pone.0234404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Myocardial energy deprivation plays a causal role in the development of heart failure. A cardiac protection blend (CPB) of nutrients including medium chain triglycerides, fish oil and other key nutrients was developed to slow the progression of canine myxomatous mitral valve disease (MMVD). A six-month dietary intervention demonstrated efficacy of CPB in slowing MMVD progression. Untargeted metabolomic analysis of serum from these dogs identified 102 differential metabolites (adjusted P < 0.05). The ratios of omega-6 to omega-3 fatty acid (FA) changed from 2.41 and 1.46 in control and CPB groups at baseline to 4.30 and 0.46 at 6 months respectively. A 2.7-fold increase of α-aminobutyrate, a myocardial modulator of glutathione homeostasis, was found in CPB dogs compared to 1.3-fold increase in control dogs. Arginine and citrulline, precursors of nitric oxide biosynthesis, were both increased 2-fold; caprate, a medium chain FA, was increased 3-fold; and deoxycarnitine, precursor of carnitine biosynthesis, was increased 2.5-fold in CPB dogs. Margarate and methylpalmitate decreased in response to CPB, a potential benefit in MMVD dogs as positive correlations were found between changes in both these FAs and left atrial diameter (r = 0.69, r = 0.87 respectively, adjusted P < 0.05). Sphingomyelins with very long chain saturated FAs associated with decreased risk of heart failure in humans were increased in MMVD dogs fed the CPB diet. Our data supports the hypothesis that CPB improves FA utilization and energetics, reduces oxidative stress and inflammation in MMVD dogs. More studies are needed to understand the roles of specific metabolites in MMVD.
Collapse
Affiliation(s)
- Qinghong Li
- Nestlé Purina Research, St. Louis, MO, United States of America
| | | | - John E. Bauer
- Professor Emeritus, Texas A&M University, Longmont, CO, United States of America
| |
Collapse
|
108
|
Fontaine D, Figiel S, Félix R, Kouba S, Fromont G, Mahéo K, Potier-Cartereau M, Chantôme A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res 2020; 61:840-858. [PMID: 32265321 PMCID: PMC7269763 DOI: 10.1194/jlr.ra120000634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Indexed: 12/16/2022] Open
Abstract
Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage [i.e., plasmalogens (Pls)] at the sn1 position of the glycerol backbone, and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs) and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.
Collapse
Affiliation(s)
- Delphine Fontaine
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sandy Figiel
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Romain Félix
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sana Kouba
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Gaëlle Fromont
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France
| | - Karine Mahéo
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | | | - Aurélie Chantôme
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | - Christophe Vandier
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France. mailto:
| |
Collapse
|
109
|
Abstract
Several studies have demonstrated interactions between the two leaflets in membrane bilayers and the importance of specific lipid species for such interaction and membrane function. We here discuss these investigations with a focus on the sphingolipid and cholesterol-rich lipid membrane domains called lipid rafts, including the small flask-shaped invaginations called caveolae, and the importance of such membrane structures in cell biology and cancer. We discuss the possible interactions between the very long-chain sphingolipids in the outer leaflet of the plasma membrane and the phosphatidylserine species PS 18:0/18:1 in the inner leaflet and the importance of cholesterol for such interactions. We challenge the view that lipid rafts contain a large fraction of lipids with two saturated fatty acyl groups and argue that it is important in future studies of membrane models to use asymmetric membrane bilayers with lipid species commonly found in cellular membranes. We also discuss the need for more quantitative lipidomic studies in order to understand membrane function and structure in general, and the importance of lipid rafts in biological systems. Finally, we discuss cancer-related changes in lipid rafts and lipid composition, with a special focus on changes in glycosphingolipids and the possibility of using lipid therapy for cancer treatment.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
110
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Structural Elucidation of Ether Glycerophospholipids Using Gas-Phase Ion/Ion Charge Inversion Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1093-1103. [PMID: 32251588 PMCID: PMC7328668 DOI: 10.1021/jasms.0c00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ether lipids represent a unique subclass of glycerophospholipid (GPL) that possesses a 1-O-alkyl (i.e., plasmanyl subclass) or a 1-O-alk-1'-enyl (i.e., plasmenyl subclass) group linked at the sn-1 position of the glycerol backbone. As changes in ether GPL composition and abundance are associated with numerous human pathologies, analytical strategies capable of providing high-level structural detail are desirable. While mass spectrometry (MS) has emerged as a prominent tool for lipid structural elucidation in biological extracts, distinctions between the various isomeric forms of ether-linked GPLs have remained a significant challenge for tandem MS, principally due to similarities in the conventional tandem mass spectra obtained from the two ether-linked subclasses. To distinguish plasmanyl and plasmenyl GPLs, a multistage (i.e., MSn where n = 3 or 4) mass spectrometric approach reliant on low-energy collision-induced dissociation (CID) is required. While this method facilitates assignment of the sn-1 bond type (i.e., 1-O-alkyl versus 1-O-alk-1'-enyl), a composite distribution of isomers is left unresolved, as carbon-carbon double-bond (C=C) positions cannot be localized in the sn-2 fatty acyl substituent. In this study, we combine a systematic MSn approach with two unique gas-phase charge inversion ion/ion chemistries to elucidate ether GPL structures with high-level detail. Ultimately, we assign both the sn-1 bond type and sites of unsaturation in the sn-2 fatty acyl substituent using an entirely gas-phase MS-based workflow. Application of this workflow to human blood plasma extract permitted isomeric resolution and in-depth structural identification of major and, in some cases, minor isomeric contributors to ether GPLs that have been previously unresolved when examined via conventional methods.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
111
|
Robison HM, Chini CE, Comi TJ, Ryu SW, Ognjanovski E, Perry RH. Identification of lipid biomarkers of metastatic potential and gene expression (HER2/p53) in human breast cancer cell cultures using ambient mass spectrometry. Anal Bioanal Chem 2020; 412:2949-2961. [PMID: 32322955 DOI: 10.1007/s00216-020-02537-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
In breast cancer, overexpression of human epidermal growth factor receptor 2 (HER2) correlates with overactivation of lipogenesis, mutation of tumor suppressor p53, and increased metastatic potential. The mechanisms through which lipids mediate p53, HER2, and metastatic potential are largely unknown. We have developed a desorption electrospray ionization mass spectrometry (DESI-MS) method to identify lipid biomarkers of HER2/p53 expression, metastatic potential, and disease state (viz. cancer vs. non-cancerous) in monolayer and suspension breast cancer cell cultures (metastatic potential: MCF-7, T-47D, MDA-MB-231; HER2/p53: HCC2218 (HER2+++/p53+), HCC1599 (HER2-/p53-), HCC202 (HER2++/p53-), HCC1419 (HER2+++/p53-) HCC70 (HER2-/p53+++); non-cancerous: MCF-10A). Unsupervised principal component analysis (PCA) of DESI-MS spectra enabled identification of twelve lipid biomarkers of metastatic potential and disease state, as well as ten lipids that distinguish cell lines based on HER2/p53 expression levels (> 200 lipids were identified per cell line). In addition, we developed a DESI-MS imaging (DESI-MSI) method for mapping the spatial distribution of lipids in metastatic spheroids (MDA-MB-231). Of the twelve lipids that correlate with changes in the metastatic potential of monolayer cell cultures, three were localized to the necrotic core of spheroids, indicating a potential role in promoting cancer cell survival in nutrient-deficient environments. One lipid species, which was not detected in monolayer MDA-MB-231 cultures, was spatially localized to the periphery of the spheroid, suggesting a potential role in invasion and/or proliferation. These results demonstrate that combining DESI-MS/PCA of monolayer and suspension cell cultures with DESI-MSI of spheroids is a promising approach for identifying lipid biomarkers of specific genotypes and phenotypes, as well as elucidating the potential function of these biomarkers in breast cancer. Graphical Absract.
Collapse
Affiliation(s)
- Heather M Robison
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Corryn E Chini
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Troy J Comi
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Seung Woo Ryu
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Elaine Ognjanovski
- Department of Chemistry and Physics, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Richard H Perry
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA. .,Department of Chemistry and Physics, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA.
| |
Collapse
|
112
|
Gallego-García A, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Pérez-Castaño R, Iniesta AA, Fontes M, Padmanabhan S, Elías-Arnanz M. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science 2020; 366:128-132. [PMID: 31604315 DOI: 10.1126/science.aay1436] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2023]
Abstract
Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond. These lipids are found in animals and some bacteria and have proposed membrane organization, signaling, and antioxidant roles. We discovered the plasmanylethanolamine desaturase activity that is essential for vinyl ether bond formation in a bacterial enzyme, CarF, which is a homolog of the human enzyme TMEM189. CarF mediates light-induced carotenogenesis in Myxococcus xanthus, and plasmalogens participate in sensing photooxidative stress through singlet oxygen. TMEM189 and other animal homologs could functionally replace CarF in M. xanthus, and knockout of TMEM189 in a human cell line eliminated plasmalogens. Discovery of the human plasmanylethanolamine desaturase will spur further study of plasmalogen biogenesis, functions, and roles in disease.
Collapse
Affiliation(s)
- Aránzazu Gallego-García
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain.
| |
Collapse
|
113
|
Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK. Improved Dried Blood Spot-Based Metabolomics: A Targeted, Broad-Spectrum, Single-Injection Method. Metabolites 2020; 10:metabo10030082. [PMID: 32120852 PMCID: PMC7143494 DOI: 10.3390/metabo10030082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Dried blood spots (DBS) have proven to be a powerful sampling and storage method for newborn screening and many other applications. However, DBS methods have not yet been optimized for broad-spectrum targeted metabolomic analysis. In this study, we developed a robust, DBS-based, broad-spectrum, targeted metabolomic method that was able to measure over 400 metabolites from a 6.3 mm punch from standard Whatman 903TM filter paper cards. The effects of blood spot volumes, hematocrit, vacutainer chemistry, extraction methods, carryover, and comparability with plasma and fingerstick capillary blood samples were analyzed. The stability of over 400 metabolites stored under varying conditions over one year was also tested. No significant impacts of blood volume and hematocrit variations were observed when the spotted blood volume was over 60 µL and the hematocrit was between 31% and 50%. The median area under the curve (AUC) of metabolites in the DBS metabolome declined by 40% in the first 3 months and then did not decline further for at least 1 year. All originally detectable metabolites remained within detectable limits. The optimal storage conditions for metabolomic analysis were -80 °C with desiccants and without an O2 scavenger. The method was clinically validated for its potential utility in the diagnosis of the mitochondrial disease mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Our method provides a convenient alternative to freezing, storing, and shipping liquid blood samples for comparative metabolomic studies.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
- Correspondence: (K.L.); (R.K.N.)
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA 92103, USA
| | - Jonathan M. Monk
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92103, USA
- Correspondence: (K.L.); (R.K.N.)
| |
Collapse
|
114
|
Abstract
Excess adiposity is a risk factor for several cancer types. This is likely due to complex mechanisms including alterations in the lipid milieu that plays a pivotal role in multiple aspects of carcinogenesis. Here we consider the direct role of lipids in regulating well-known hallmarks of cancer. Furthermore, we suggest that obesity-associated remodelling of membranes and organelles drives cancer cell proliferation and invasion. Identification of cancer-related lipid-mediated mechanisms amongst the broad metabolic disturbances due to excess adiposity is central to the identification of novel and more efficacious prevention and intervention strategies.
Collapse
Affiliation(s)
- J Molendijk
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, 4006, Australia.
| | | | | | | |
Collapse
|
115
|
Enomoto H, Furukawa T, Takeda S, Hatta H, Zaima N. Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Foods 2020; 9:foods9020205. [PMID: 32079116 PMCID: PMC7073967 DOI: 10.3390/foods9020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Phosphatidylcholine (PC) is the major phospholipid in meat and influences meat qualities, such as healthiness. PC is classified into three groups based on the bond at the sn-1 position: Diacyl, alkylacyl, and alkenylacyl. To investigate their composition and distribution in pork tissues, including longissimus thoracis et lumborum (loin) spinalis muscles, intermuscular fat, and transparent tissues, we performed matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI). Eleven diacyl-, seven alkylacyl-, and six alkenylacyl-PCs were identified using liquid chromatography (LC)-tandem MS (MS/MS) analysis. Despite many alkylacyl- and alkenylacyl-PC species sharing identical m/z values, we were able to visualize these PC species using MALDI–MSI. Diacyl- and alkylacyl- and/or alkenylacyl-PC species showed unique distribution patterns in the tissues, suggesting that their distribution patterns were dependent on their fatty acid compositions. PCs are a major dietary source of choline in meat, and the amount was significantly higher in the muscle tissues. Consumption of choline mitigates age-related memory decline and neurodegenerative diseases; therefore, the consumption of pork muscle tissues could help to mitigate these diseases. These results support the use of MALDI–MSI analysis for assessing the association between PC species and the quality parameters of meat.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Correspondence: ; Tel.: +81-28-627-7312
| | - Tomohiro Furukawa
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
| | - Shiro Takeda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan;
| | - Hajime Hatta
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan;
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan;
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
116
|
Martín-Sierra C, Colombo S, Martins R, Laranjeira P, Melo T, Abrantes AM, Oliveira RC, Tralhão JG, Botelho MF, Furtado E, Domingues P, Domingues MR, Paiva A. Tumor Resection Induces Alterations on Serum Phospholipidome of Liver Cancer Patients. Lipids 2020; 55:185-191. [PMID: 32045496 DOI: 10.1002/lipd.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the most common primary malignant liver tumors. Since the liver plays a key role in lipid metabolism, the study of serum phospholipid (PL) profiles may provide a better understanding of alterations in hepatic lipid metabolism. In this study, we used a high-resolution HILIC-LC-MS lipidomic approach to establish the serum phospholipidome profile of patients with liver cancer before (T0) and after tumor resection (T1) and a control group (CT) of healthy individuals. After the analysis of PL profiles, we observed that the phospholipidome of patients with liver cancer was significantly modified after the tumor resection procedure. We observed an upregulation of some phosphatidylcholine (PtdCho) species, namely, PtdCho(36:6), PtdCho(42:6), PtdCho(38:5), PtdCho(36:5), PtdCho(38:6) and choline plasmalogens (PlsCho), and/or 1-O-alkyl-2-acyl-glycerophosphocholine (PakCho) in patients with liver cancer at T0 compared to the CT group, and a downregulation after tumor resection (T1) when compared to T0. These results show that LC-MS can detect different serum PL profiles in patients with liver cancer, before and after tumor resection, by defining a specific PL fingerprint that was used to determine the effect of tumor and tumor resection on lipid metabolism.
Collapse
Affiliation(s)
- Carmen Martín-Sierra
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & LAQV, University of Aveiro, Aveiro, Portugal
| | - Ricardo Martins
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC), Coimbra, Portugal.,Serviço de Cirurgia A, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Paula Laranjeira
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry & LAQV, University of Aveiro, Aveiro, Portugal.,Departamento de Química & CESAM& ECOMARE, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Margarida Abrantes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC), Coimbra, Portugal
| | - Rui Caetano Oliveira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal.,Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - José Guilherme Tralhão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC), Coimbra, Portugal.,Serviço de Cirurgia A, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Maria Filomena Botelho
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC), Coimbra, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & LAQV, University of Aveiro, Aveiro, Portugal
| | - M Rosario Domingues
- Mass Spectrometry Centre, Department of Chemistry & LAQV, University of Aveiro, Aveiro, Portugal.,Departamento de Química & CESAM& ECOMARE, Universidade de Aveiro, Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, Coimbra, Portugal
| |
Collapse
|
117
|
Buechler C, Aslanidis C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158658. [PMID: 32058031 DOI: 10.1016/j.bbalip.2020.158658] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and widespread cancer. Patients with liver cirrhosis of different aetiologies are at a risk to develop HCC. It is important to know that in approximately 20% of cases primary liver tumors arise in a non-cirrhotic liver. Lipid metabolism is variable in patients with chronic liver diseases, and lipid metabolites involved therein do play a role in the development of HCC. Of note, lipid composition of carcinogenic tissues differs from non-affected liver tissues. High cholesterol and low ceramide levels in the tumors protect the cells from oxidative stress and apoptosis, and do also promote cell proliferation. So far, detailed characterization of the mechanisms by which lipids enable the development of HCC has received little attention. Evaluation of the complex roles of lipids in HCC is needed to better understand the pathophysiology of HCC, the later being of paramount importance for the development of urgently needed therapeutic interventions. Disturbed hepatic lipid homeostasis has systemic consequences and lipid species may emerge as promising biomarkers for early diagnosis of HCC. The challenge is to distinguish lipids specifically related to HCC from changes simply related to the underlying liver disease. This review article discusses aberrant lipid metabolism in patients with HCC.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
118
|
Alatibi KI, Wehbe Z, Spiekerkoetter U, Tucci S. Sex-specific perturbation of complex lipids in response to medium-chain fatty acids in very long-chain acyl-CoA dehydrogenase deficiency. FEBS J 2020; 287:3511-3525. [PMID: 31971349 DOI: 10.1111/febs.15221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
Very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD) is the most common defect of long-chain fatty acid β-oxidation. The recommended treatment includes the application of medium-chain triacylglycerols (MCTs). However, long-term treatment of VLCAD-/- mice resulted in the development of a sex-specific metabolic syndrome due to the selective activation of the ERK/mTORc1 signalling in females and ERK/peroxisome proliferator-activated receptor gamma pathway in males. In order to investigate a subsequent sex-specific effect of MCT on the lipid composition of the cellular membranes, we performed lipidomic analysis, SILAC-based quantitative proteomics and gene expression in fibroblasts from WT and VLCAD-/- mice of both sexes. Treatment with octanoate (C8) affected the composition of complex lipids resulting in a sex-specific signature of the molecular profile. The content of ceramides and sphingomyelins in particular differed significantly under control conditions and increased markedly in cells from mutant female mice but remained unchanged in cells from mutant males. Moreover, we observed a specific upregulation of biosynthesis of plasmalogens only in male mice, whereas in females C8 led to the accumulation of higher concentration of phosphatidylcholines and lysophosphatidylcholines. Our data on membrane lipids in VLCAD after supplementation with C8 provide evidence of a sex-specific lipid perturbation. We hypothesize a likely C8-induced pro-inflammatory response contributing to the development of a severe metabolic syndrome in female VLCAD-/- mice on long-term MCT supplementation.
Collapse
Affiliation(s)
- Khaled I Alatibi
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Zeinab Wehbe
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics and Adolescent Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
119
|
Identification of plasmalogens in Bifidobacterium longum, but not in Bifidobacterium animalis. Sci Rep 2020; 10:427. [PMID: 31949186 PMCID: PMC6965078 DOI: 10.1038/s41598-019-57309-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023] Open
Abstract
Plasmalogens are glycerophospholipids that contain a vinyl ether bond at the sn-1 position of glycerol backbone instead of an ester bond. Plasmalogens are indicated to have many important functions in mammalian cells. On the other hand, it is suggested that some gut microbiota plays many probiotic functions to human health. Presence of plasmalogens in Clostridium strains in gut microbiota is well-known, but presence of plasmalogens in Bifidobacterium longum (B. longum) strain, one of the most important probiotic gut microbiota, has not been reported. We identified plasmalogens in lipid extract from some B. longum species, but not from Bifidobacterium animalis (B. animalis) species which are another important strain of probiotic bifidobacteria. Major phospholipid classes of plasmalogens in B. longum species were cardiolipin, phosphatidylglycerol and phosphatidic acid. Almost all of the phospholipids from B. longum examined were indicated to be plasmalogens. Although major phospholipid classes of plasmalogens in human brain and major phospholipid classes of plasmalogens in B. longum are different, it is interesting to note that many reported functions of microbiota-gut-brain axis on human neurodegenerative diseases and those functions of plasmalogens on neurodegenerative diseases are overlapped. The presence of plasmalogens in B. longum species may play important roles for many probiotic effects of B. longum to human health.
Collapse
|
120
|
Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA. Lipid-Induced Mechanisms of Metabolic Syndrome. J Obes 2020; 2020:5762395. [PMID: 32963827 PMCID: PMC7491450 DOI: 10.1155/2020/5762395] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome (MetS) has a worldwide tendency to increase and depends on many components, which explains the complexity of diagnosis, approaches to the prevention, and treatment of this pathology. Insulin resistance (IR) is the crucial cause of the MetS pathogenesis, which develops against the background of abdominal obesity. In light of recent evidence, it has been shown that lipids, especially fatty acids (FAs), are important signaling molecules that regulate the signaling pathways of insulin and inflammatory mediators. On the one hand, the lack of n-3 polyunsaturated fatty acids (PUFAs) in the body leads to impaired molecular mechanisms of glucose transport, the formation of unresolved inflammation. On the other hand, excessive formation of free fatty acids (FFAs) underlies the development of oxidative stress and mitochondrial dysfunction in MetS. Understanding the molecular mechanisms of the participation of FAs and their metabolites in the pathogenesis of MetS will contribute to the development of new diagnostic methods and targeted therapy for this disease. The purpose of this review is to highlight recent advances in the study of the effect of fatty acids as modulators of insulin response and inflammatory process in the pathogenesis and treatment for MetS.
Collapse
Affiliation(s)
- Yulia K. Denisenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Oxana Yu Kytikova
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | | |
Collapse
|
121
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
122
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
123
|
Gómez-Cortés P, Rodríguez-Pino V, Marín ALM, de la Fuente MA. Identification and quantification of dimethyl acetals from plasmalogenic lipids in lamb intramuscular fat under different derivatization procedures. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:24-28. [PMID: 31060023 DOI: 10.1016/j.jchromb.2019.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 11/29/2022]
Abstract
Meat lipids are mostly comprised by triacylglycerols, but small amounts of plasmalogens are also present in intramuscular fat. The purpose of this study was to evaluate the effect of lipid derivatization on the presence of dimethyl acetal (DMA) molecules from plasmalogenic lipids in intramuscular fat samples. Three different methods of methylation were assayed. Acid-catalyzed methanolysis using HCl, the traditional procedure to derivatize meat lipids, was compared to two base-catalyzed methanolysis based on the ISO International standard procedure using either KOH and/or NaOCH3 which, apparently, are only able to methylate fatty acids from triacylglycerols. DMA compounds were isolated by thin layer chromatography and then identified by gas chromatography-mass spectrometry. The most prominent DMA molecules detected were 16:0 and 18:0, but also minor amounts of monounsaturated and branched-chain DMA were quantified. Acid methylation yielded the highest amounts of DMA. However, the present article demonstrates that ISO standard based methylation procedures could also generate DMA derivatives in considerable quantities, which is not usually considered and may interfere with the determination of fatty acid methyl esters (FAME) from triacylglycerides. The current research warns scientist about possible FAME misidentifying and overestimations in intramuscular fat analysis using basic methylation and the need to consider the presence of DMA in samples that contain plasmalogens.
Collapse
Affiliation(s)
- P Gómez-Cortés
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - V Rodríguez-Pino
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - A L Martínez Marín
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain
| | - M A de la Fuente
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
124
|
Bocca C, Kane MS, Veyrat-Durebex C, Nzoughet JK, Chao de la Barca JM, Chupin S, Alban J, Procaccio V, Bonneau D, Simard G, Lenaers G, Reynier P, Chevrollier A. Lipidomics Reveals Triacylglycerol Accumulation Due to Impaired Fatty Acid Flux in Opa1-Disrupted Fibroblasts. J Proteome Res 2019; 18:2779-2790. [PMID: 31199663 DOI: 10.1021/acs.jproteome.9b00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPA1 is a dynamin GTPase implicated in mitochondrial membrane fusion. Despite its involvement in lipid remodeling, the function of OPA1 has never been analyzed by whole-cell lipidomics. We used a nontargeted, reversed-phase lipidomics approach, validated for cell cultures, to investigate OPA1-inactivated mouse embryonic fibroblasts ( Opa1 -/- MEFs). This led to the identification of a wide range of 14 different lipid subclasses comprising 212 accurately detected lipids. Multivariate and univariate statistical analyses were then carried out to assess the differences between the Opa1 -/- and Opa1 +/+ genotypes. Of the 212 lipids identified, 69 were found to discriminate between Opa1 -/- MEFs and Opa1 +/+ MEFs. Among these lipids, 34 were triglycerides, all of which were at higher levels in Opa1 -/- MEFs with fold changes ranging from 3.60 to 17.93. Cell imaging with labeled fatty acids revealed a sharp alteration of the fatty acid flux with a reduced mitochondrial uptake. The other 35 discriminating lipids included phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamine, and sphingomyelins, mainly involved in membrane remodeling, and ceramides, gangliosides, and phosphatidylinositols, mainly involved in apoptotic cell signaling. Our results show that the inactivation of OPA1 severely affects the mitochondrial uptake of fatty acids and lipids through membrane remodeling and apoptotic cell signaling.
Collapse
Affiliation(s)
- Cinzia Bocca
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Mariame Selma Kane
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Charlotte Veyrat-Durebex
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Judith Kouassi Nzoughet
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Juan Manuel Chao de la Barca
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Stephanie Chupin
- Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Jennifer Alban
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Vincent Procaccio
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Dominique Bonneau
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Gilles Simard
- Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France.,INSERM U1063 , Université d'Angers , 49933 Angers , France
| | - Guy Lenaers
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Pascal Reynier
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Arnaud Chevrollier
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| |
Collapse
|
125
|
Keski-Rahkonen P, Kolehmainen M, Lappi J, Micard V, Jokkala J, Rosa-Sibakov N, Pihlajamäki J, Kirjavainen PV, Mykkänen H, Poutanen K, Gunter MJ, Scalbert A, Hanhineva K. Decreased plasma serotonin and other metabolite changes in healthy adults after consumption of wholegrain rye: an untargeted metabolomics study. Am J Clin Nutr 2019; 109:1630-1639. [PMID: 31136658 DOI: 10.1093/ajcn/nqy394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Wholegrain consumption has been associated with beneficial health effects including reduction of diabetes and cancer risk; however, the underlying mechanisms are not fully understood. OBJECTIVE The aim of this study was to characterize the effects of wholegrain rye intake on circulating metabolites in a human intervention study using untargeted metabolomics. METHODS The intervention consisted of 2 successive 4-wk periods in a randomized crossover design, where 15 adults consumed wholegrain rye bread (WGR) or white wheat bread enriched with fermented rye bran (WW+RB), following a 4-wk rye-free period with white wheat bread (WW). Fasting plasma samples were collected at the end of each period and analyzed using liquid chromatography-mass spectrometry. Metabolic profiles were compared to identify compounds discriminating WGR from the WW+RB and WW periods. Because peripheral serotonin is produced mainly in the gut, a hypothesis of its altered biosynthesis as a response to increased cereal fiber intake was tested by measuring intestinal serotonin of mice fed for 9 wk on a high-fat diet supplemented with different sources of fiber (rye bran flour, ground wheat aleurone, or powdered cellulose). RESULTS Five endogenous metabolites and 15 rye phytochemicals associated with WGR intake were identified. Plasma concentrations of serotonin, taurine, and glycerophosphocholine were significantly lower after the WGR than WW period (Q < 0.05). Concentrations of 2 phosphatidylethanolamine plasmalogens, PE(18:2/P-18:0) and PE(18:2/P-16:0), were lower after the WGR period than the WW+RB period (Q < 0.05). The concentration of serotonin was significantly lower in the colonic tissue of mice that consumed rye bran or wheat aleurone compared with cellulose (P < 0.001). CONCLUSIONS Wholegrain rye intake decreases plasma serotonin in healthy adults when compared with refined wheat. Intake of rye bran and wheat aleurone decreases colonic serotonin in mice. These results suggest that peripheral serotonin could be a potential link between wholegrain consumption and its associated health effects.Data used in the study were derived from a trial registered at www.clinicaltrials.gov as NCT03550365.
Collapse
Affiliation(s)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jenni Lappi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Valerie Micard
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Montpellier SupAgro-INRA-University of Montpellier-CIRAD, Montpellier, France
| | - Jenna Jokkala
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Natalia Rosa-Sibakov
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Montpellier SupAgro-INRA-University of Montpellier-CIRAD, Montpellier, France
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Environmental Health Unit, The National Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| | | | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
126
|
Abstract
Growing evidence suggests that ethanolamine plasmalogens (PlsEtns), a subtype of phospholipids, have a close association with Alzheimer’s disease (AD). Decreased levels of PlsEtns have been commonly found in AD patients, and were correlated with cognition deficit and severity of disease. Limited studies showed positive therapeutic outcomes with plasmalogens interventions in AD subjects and in rodents. The potential mechanisms underlying the beneficial effects of PlsEtns on AD may be related to the reduction of γ–secretase activity, an enzyme that catalyzes the synthesis of β-amyloid (Aβ), a hallmark of AD. Emerging in vitro evidence also showed that PlsEtns prevented neuronal cell death by enhancing phosphorylation of AKT and ERK signaling through the activation of orphan G-protein coupled receptor (GPCR) proteins. In addition, PlsEtns have been found to suppress the death of primary mouse hippocampal neuronal cells through the inhibition of caspase-9 and caspase-3 cleavages. Further in-depth investigations are required to determine the signature molecular species of PlsEtns associated with AD, hence their potential role as biomarkers. Clinical intervention with plasmalogens is still in its infancy but may have the potential to be explored for a novel therapeutic approach to correct AD pathology and neural function.
Collapse
|
127
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
128
|
Marqueño A, Pérez-Albaladejo E, Flores C, Moyano E, Porte C. Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:513-521. [PMID: 30366299 DOI: 10.1016/j.envpol.2018.10.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BADGE (bisphenol A diglycidyl ether) is a synthesis product of bisphenol A (BPA), which, like other plasticizers, can cross the human placenta and reach the foetus. However, compared to BPA, there is almost no toxicological information. This work investigates the toxicity, endocrine and lipid disruption potential of BADGE and its hydrolysed and chlorinated derivatives (BADGE·H2O and BADGE·2HCl) in human placental JEG-3 cells. The analysis of culture medium by HPLC-ESI(+)-QqQ evidenced a good bioavailability of BADGE·2HCl and BADGE·H2O, but low stability of BADGE. Regardless, BADGE·2HCl and BADGE showed higher cytotoxicity than BADGE·H2O, which was the only compound that significantly inhibited CYP19 activity (IC50 49 ± 5 μM). JEG-3 cells lipidome analyzed by FIA-ESI(+/-)-Orbitrap was significantly altered by exposure to BADGE·2HCl and BADGE at concentrations at the low μM range. BADGE·2HCl lead to a strong decrease of diacyl- and triacyl-glycerides (DGs,TGs) together with some membrane lipids, while BADGE lead to an accumulation of TGs. The results evidence the ability of BADGE and derivatives to affect placental lipid handling and to modulate placental CYP19 activity (BADGE·H2O) and highlights the need to monitor human exposure to these compounds, at least as intensely as BPA is monitored.
Collapse
Affiliation(s)
- Anna Marqueño
- Environmental Chemistry Department, IDAEA, CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain
| | | | - Cintia Flores
- Environmental Chemistry Department, IDAEA, CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av Diagonal 645, Barcelona, 08028, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA, CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain.
| |
Collapse
|
129
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|