101
|
Xu W, Tucker JR, Bekele WA, You FM, Fu YB, Khanal R, Yao Z, Singh J, Boyle B, Beattie AD, Belzile F, Mascher M, Tinker NA, Badea A. Genome Assembly of the Canadian two-row Malting Barley cultivar AAC Synergy. G3-GENES GENOMES GENETICS 2021; 11:6128399. [PMID: 33856017 PMCID: PMC8049406 DOI: 10.1093/g3journal/jkab031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Barley (Hordeum vulgare L.) is one of the most important global crops. The six-row barley cultivar Morex reference genome has been used by the barley research community worldwide. However, this reference genome can have limitations when used for genomic and genetic diversity analysis studies, gene discovery, and marker development when working in two-row germplasm that is more common to Canadian barley. Here we assembled, for the first time, the genome sequence of a Canadian two-row malting barley, cultivar AAC Synergy. We applied deep Illumina paired-end reads, long mate-pair reads, PacBio sequences, 10X chromium linked read libraries, and chromosome conformation capture sequencing (Hi-C) to generate a contiguous assembly. The genome assembled from super-scaffolds had a size of 4.85 Gb, N50 of 2.32 Mb, and an estimated 93.9% of complete genes from a plant database (BUSCO, benchmarking universal single-copy orthologous genes). After removal of small scaffolds (< 300 Kb), the assembly was arranged into pseudomolecules of 4.14 Gb in size with seven chromosomes plus unanchored scaffolds. The completeness and annotation of the assembly were assessed by comparing it with the updated version of six-row Morex and recently released two-row Golden Promise genome assemblies.
Collapse
Affiliation(s)
- Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100 Morden, MB R6M 1Y5, Canada
| | - James R Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Raja Khanal
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100 Morden, MB R6M 1Y5, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, QC H9X 3V9, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | - Aaron D Beattie
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - François Belzile
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.,Département de phytologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| |
Collapse
|
102
|
Jayakodi M, Schreiber M, Stein N, Mascher M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res 2021; 28:6117190. [PMID: 33484244 PMCID: PMC7934568 DOI: 10.1093/dnares/dsaa030] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Pan-genomic studies aim at representing the entire sequence diversity within a species to provide useful resources for evolutionary studies, functional genomics and breeding of cultivated plants. Cost reductions in high-throughput sequencing and advances in sequence assembly algorithms have made it possible to create multiple reference genomes along with a catalogue of all forms of genetic variations in plant species with large and complex or polyploid genomes. In this review, we summarize the current approaches to building pan-genomes as an in silico representation of plant sequence diversity and outline relevant methods for their effective utilization in linking structural with phenotypic variation. We propose as future research avenues (i) transcriptomic and epigenomic studies across multiple reference genomes and (ii) the development of user-friendly and feature-rich pan-genome browsers.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mona Schreiber
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
103
|
Barchi L, Rabanus‐Wallace MT, Prohens J, Toppino L, Padmarasu S, Portis E, Rotino GL, Stein N, Lanteri S, Giuliano G. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:579-596. [PMID: 33964091 PMCID: PMC8453987 DOI: 10.1111/tpj.15313] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Eggplant (Solanum melongena L.) is an important horticultural crop and one of the most widely grown vegetables from the Solanaceae family. It was domesticated from a wild, prickly progenitor carrying small, round, non-anthocyanic fruits. We obtained a novel, highly contiguous genome assembly of the eggplant '67/3' reference line, by Hi-C retrofitting of a previously released short read- and optical mapping-based assembly. The sizes of the 12 chromosomes and the fraction of anchored genes in the improved assembly were comparable to those of a chromosome-level assembly. We resequenced 23 accessions of S. melongena representative of the worldwide phenotypic, geographic, and genetic diversity of the species, and one each from the closely related species Solanum insanum and Solanum incanum. The eggplant pan-genome contained approximately 51.5 additional megabases and 816 additional genes compared with the reference genome, while the pan-plastome showed little genetic variation. We identified 53 selective sweeps related to fruit color, prickliness, and fruit shape in the nuclear genome, highlighting selection leading to the emergence of present-day S. melongena cultivars from its wild ancestors. Candidate genes underlying the selective sweeps included a MYBL1 repressor and CHALCONE ISOMERASE (for fruit color), homologs of Arabidopsis GLABRA1 and GLABROUS INFLORESCENCE STEMS2 (for prickliness), and orthologs of tomato FW2.2, OVATE, LOCULE NUMBER/WUSCHEL, SUPPRESSOR OF OVATE, and CELL SIZE REGULATOR (for fruit size/shape), further suggesting that selection for the latter trait relied on a common set of orthologous genes in tomato and eggplant.
Collapse
Affiliation(s)
- Lorenzo Barchi
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | | - Jaime Prohens
- COMAVUniversitat Politècnica de ValènciaCamino de Vera 14Valencia46022Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
| | - Ezio Portis
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
- Department of Crop SciencesCenter for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityVon Siebold Str. 8Göttingen37075Germany
| | - Sergio Lanteri
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | |
Collapse
|
104
|
Betts NS, Collins HM, Shirley NJ, Cuesta-Seijo JA, Schwerdt JG, Phillips RJ, Finnie C, Fincher GB, Dockter C, Skadhauge B, Bulone V. Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110792. [PMID: 34034860 DOI: 10.1016/j.plantsci.2020.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-β-xylanase and six β-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a β-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.
Collapse
Affiliation(s)
- Natalie S Betts
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Helen M Collins
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia
| | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Renee J Phillips
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Christine Finnie
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia.
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Vincent Bulone
- School of Agriculture, Food and Wine, Waite Campus, Glen Osmond SA 5064 Australia; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
| |
Collapse
|
105
|
Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble‐Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo M. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:303-314. [PMID: 33893684 PMCID: PMC8360199 DOI: 10.1111/tpj.15289] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 05/09/2023]
Abstract
Until recently, achieving a reference-quality genome sequence for bread wheat was long thought beyond the limits of genome sequencing and assembly technology, primarily due to the large genome size and > 80% repetitive sequence content. The release of the chromosome scale 14.5-Gb IWGSC RefSeq v1.0 genome sequence of bread wheat cv. Chinese Spring (CS) was, therefore, a milestone. Here, we used a direct label and stain (DLS) optical map of the CS genome together with a prior nick, label, repair and stain (NLRS) optical map, and sequence contigs assembled with Pacific Biosciences long reads, to refine the v1.0 assembly. Inconsistencies between the sequence and maps were reconciled and gaps were closed. Gap filling and anchoring of 279 unplaced scaffolds increased the total length of pseudomolecules by 168 Mb (excluding Ns). Positions and orientations were corrected for 233 and 354 scaffolds, respectively, representing 10% of the genome sequence. The accuracy of the remaining 90% of the assembly was validated. As a result of the increased contiguity, the numbers of transposable elements (TEs) and intact TEs have increased in IWGSC RefSeq v2.1 compared with v1.0. In total, 98% of the gene models identified in v1.0 were mapped onto this new assembly through development of a dedicated approach implemented in the MAGAAT pipeline. The numbers of high-confidence genes on pseudomolecules have increased from 105 319 to 105 534. The reconciled assembly enhances the utility of the sequence for genetic mapping, comparative genomics, gene annotation and isolation, and more general studies on the biology of wheat.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Le Wang
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Hélène Rimbert
- GDECUniversité Clermont AuvergneINRAEClermont‐Ferrand63000France
| | | | - Karin R. Deal
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | | | - Frédéric Choulet
- GDECUniversité Clermont AuvergneINRAEClermont‐Ferrand63000France
| | | | - Josquin Tibbits
- Centre for AgriBioscienceAgriculture VictoriaAgriBioBundooraVIC3083Australia
| | - Jane Rogers
- International Wheat Genome Sequencing ConsortiumEau ClaireWI54701USA
| | - Kellye Eversole
- International Wheat Genome Sequencing ConsortiumEau ClaireWI54701USA
| | - Rudi Appels
- Centre for AgriBioscienceAgriculture VictoriaAgriBioBundooraVIC3083Australia
- International Wheat Genome Sequencing ConsortiumEau ClaireWI54701USA
| | - Yong Q. Gu
- Crop Improvement and Genetics Research UnitUSDA‐ARSAlbanyCA94710USA
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Jan Dvorak
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Ming‐Cheng Luo
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
106
|
Lu Q, Dockter C, Sirijovski N, Zakhrabekova S, Lundqvist U, Gregersen PL, Hansson M. Analysis of barley mutants ert-c.1 and ert-d.7 reveals two loci with additive effect on plant architecture. PLANTA 2021; 254:9. [PMID: 34148131 PMCID: PMC8215040 DOI: 10.1007/s00425-021-03653-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/29/2021] [Indexed: 05/31/2023]
Abstract
Both mutant ert-c.1 and ert-d.7 carry T2-T3 translocations in the Ert-c gene. Principal coordinate analyses revealed the translocation types and translocation breakpoints. Mutant ert-d.7 is an Ert-c Ert-d double mutant. Mutations in the Ert-c and Ert-d loci are among the most common barley mutations affecting plant architecture. The mutants have various degrees of erect and compact spikes, often accompanied with short and stiff culms. In the current study, complementation tests, linkage mapping, principal coordinate analyses and fine mapping were conducted. We conclude that the original ert-d.7 mutant does not only carry an ert-d mutation but also an ert-c mutation. Combined, mutations in Ert-c and Ert-d cause a pyramid-dense spike phenotype, whereas mutations in only Ert-c or Ert-d give a pyramid and dense phenotype, respectively. Associations between the Ert-c gene and T2-T3 translocations were detected in both mutant ert-c.1 and ert-d.7. Different genetic association patterns indicate different translocation breakpoints in these two mutants. Principal coordinate analysis based on genetic distance and screening of recombinants from all four ends of polymorphic regions was an efficient way to narrow down the region of interest in translocation-involved populations. The Ert-c gene was mapped to the marker interval of 2_0801to1_0224 on 3HL near the centromere. The results illuminate a complex connection between two single genes having additive effects on barley spike architecture and will facilitate the identification of the Ert-c and Ert-d genes.
Collapse
Affiliation(s)
- Qiongxian Lu
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Nick Sirijovski
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | | | - Udda Lundqvist
- Nordic Genetic Resource Centre (NordGen), Smedjevägen 3, 23053, Alnarp, Sweden
| | - Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| |
Collapse
|
107
|
Sharma P, Al-Dossary O, Alsubaie B, Al-Mssallem I, Nath O, Mitter N, Rodrigues Alves Margarido G, Topp B, Murigneux V, Kharabian Masouleh A, Furtado A, Henry RJ. Improvements in the sequencing and assembly of plant genomes. GIGABYTE 2021; 2021:gigabyte24. [PMID: 36824328 PMCID: PMC9631998 DOI: 10.46471/gigabyte.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Onkar Nath
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Gabriel Rodrigues Alves Margarido
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | | | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
108
|
Zhong X, Feng X, Li Y, Guzmán C, Lin N, Xu Q, Zhang Y, Tang H, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley ( Hordeum vulgare L.). Genome 2021; 64:1067-1080. [PMID: 34058097 DOI: 10.1139/gen-2020-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The basic leucine zipper (bZIP) family of genes encode transcription factors that play key roles in plant growth and development. In this study, a total of 92 HvbZIP genes were identified and compared with previous studies using recently released barley genome data. Two novel genes were characterized in this study, and some misannotated and duplicated genes from previous studies have been corrected. Phylogenetic analysis results showed that 92 HvbZIP genes were classified into 10 groups and three unknown groups. The gene structure and motif distribution of the three unknown groups implied that the genes of the three groups may be functionally different. Expression profiling indicated that the HvbZIP genes exhibited different patterns of spatial and temporal expression. Using qRT-PCR, more than 10 HvbZIP genes were identified with expression patterns similar to those of starch synthase genes in barley. Yeast one-hybrid analysis revealed that two of the HvbZIP genes exhibited in vitro binding activity to the promoter of HvAGP-S. The two HvbZIP genes may be candidate genes for further study to explore the mechanism by which they regulate the synthesis of barley starch.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, 14071, Spain
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, Sichuan 644000, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
109
|
Puglisi D, Delbono S, Visioni A, Ozkan H, Kara İ, Casas AM, Igartua E, Valè G, Piero ARL, Cattivelli L, Tondelli A, Fricano A. Genomic Prediction of Grain Yield in a Barley MAGIC Population Modeling Genotype per Environment Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:664148. [PMID: 34108982 PMCID: PMC8183822 DOI: 10.3389/fpls.2021.664148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Multi-parent Advanced Generation Inter-crosses (MAGIC) lines have mosaic genomes that are generated shuffling the genetic material of the founder parents following pre-defined crossing schemes. In cereal crops, these experimental populations have been extensively used to investigate the genetic bases of several traits and dissect the genetic bases of epistasis. In plants, genomic prediction models are usually fitted using either diverse panels of mostly unrelated accessions or individuals of biparental families and several empirical analyses have been conducted to evaluate the predictive ability of models fitted to these populations using different traits. In this paper, we constructed, genotyped and evaluated a barley MAGIC population of 352 individuals developed with a diverse set of eight founder parents showing contrasting phenotypes for grain yield. We combined phenotypic and genotypic information of this MAGIC population to fit several genomic prediction models which were cross-validated to conduct empirical analyses aimed at examining the predictive ability of these models varying the sizes of training populations. Moreover, several methods to optimize the composition of the training population were also applied to this MAGIC population and cross-validated to estimate the resulting predictive ability. Finally, extensive phenotypic data generated in field trials organized across an ample range of water regimes and climatic conditions in the Mediterranean were used to fit and cross-validate multi-environment genomic prediction models including G×E interaction, using both genomic best linear unbiased prediction and reproducing kernel Hilbert space along with a non-linear Gaussian Kernel. Overall, our empirical analyses showed that genomic prediction models trained with a limited number of MAGIC lines can be used to predict grain yield with values of predictive ability that vary from 0.25 to 0.60 and that beyond QTL mapping and analysis of epistatic effects, MAGIC population might be used to successfully fit genomic prediction models. We concluded that for grain yield, the single-environment genomic prediction models examined in this study are equivalent in terms of predictive ability while, in general, multi-environment models that explicitly split marker effects in main and environmental-specific effects outperform simpler multi-environment models.
Collapse
Affiliation(s)
- Damiano Puglisi
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università di Catania, Catania, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics–Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Andrea Visioni
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Avenue Hafiane Cherkaoui, Rabat, Morocco
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, Adana, Turkey
| | - İbrahim Kara
- Bahri Dagdas International Agricultural Research Institute, Konya, Turkey
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Ernesto Igartua
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Giampiero Valè
- DiSIT, Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Angela Roberta Lo Piero
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università di Catania, Catania, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics–Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics–Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics–Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| |
Collapse
|
110
|
Kan J, Gao G, He Q, Gao Q, Jiang C, Ahmar S, Liu J, Zhang J, Yang P. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Int J Mol Sci 2021; 22:5354. [PMID: 34069581 PMCID: PMC8160967 DOI: 10.3390/ijms22105354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (J.K.); (G.G.); (Q.H.); (Q.G.); (C.J.); (S.A.); (J.L.); (J.Z.)
| |
Collapse
|
111
|
Szurman-Zubrzycka M, Chwiałkowska K, Niemira M, Kwaśniewski M, Nawrot M, Gajecka M, Larsen PB, Szarejko I. Aluminum or Low pH - Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress. Front Genet 2021; 12:675260. [PMID: 34220949 PMCID: PMC8244595 DOI: 10.3389/fgene.2021.675260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Aluminum (Al) toxicity is considered to be the most harmful abiotic stress in acidic soils that today comprise more than 50% of the world’s arable lands. Barley belongs to a group of crops that are most sensitive to Al in low pH soils. We present the RNA-seq analysis of root meristems of barley seedlings grown in hydroponics at optimal pH (6.0), low pH (4.0), and low pH with Al (10 μM of bioavailable Al3+ ions). Two independent experiments were conducted: with short-term (24 h) and long-term (7 days) Al treatment. In the short-term experiment, more genes were differentially expressed (DEGs) between root meristems grown at pH = 6.0 and pH = 4.0, than between those grown at pH = 4.0 with and without Al treatment. The genes upregulated by low pH were associated mainly with response to oxidative stress, cell wall organization, and iron ion binding. Among genes upregulated by Al, overrepresented were those related to response to stress condition and calcium ion binding. In the long-term experiment, the number of DEGs between hydroponics at pH = 4.0 and 6.0 were lower than in the short-term experiment, which suggests that plants partially adapted to the low pH. Interestingly, 7 days Al treatment caused massive changes in the transcriptome profile. Over 4,000 genes were upregulated and almost 2,000 genes were downregulated by long-term Al stress. These DEGs were related to stress response, cell wall development and metal ion transport. Based on our results we can assume that both, Al3+ ions and low pH are harmful to barley plants. Additionally, we phenotyped the root system of barley seedlings grown in the same hydroponic conditions for 7 days at pH = 6.0, pH = 4.0, and pH = 4.0 with Al. The results correspond to transcriptomic data and show that low pH itself is a stress factor that causes a significant reduction of root growth and the addition of aluminum further increases this reduction. It should be noted that in acidic arable lands, plants are exposed simultaneously to both of these stresses. The presented transcriptome analysis may help to find potential targets for breeding barley plants that are more tolerant to such conditions.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Nawrot
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paul B Larsen
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
112
|
Krak K, Caklová P, Kopecký D, Blattner FR, Mahelka V. Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA. FRONTIERS IN PLANT SCIENCE 2021; 12:672879. [PMID: 34079572 PMCID: PMC8165317 DOI: 10.3389/fpls.2021.672879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Collapse
Affiliation(s)
- Karol Krak
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, Czechia
| | - Petra Caklová
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| | - David Kopecký
- Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Frank R. Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| |
Collapse
|
113
|
Cai K, Zeng F, Wang J, Zhang G. Identification and characterization of HAK/KUP/KT potassium transporter gene family in barley and their expression under abiotic stress. BMC Genomics 2021; 22:317. [PMID: 33932999 PMCID: PMC8088664 DOI: 10.1186/s12864-021-07633-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HAK/KUP/KT (High-affinity K+ transporters/K+ uptake permeases/K+ transporters) is the largest potassium transporter family in plants, and plays pivotal roles in K+ uptake and transport, as well as biotic and abiotic stress responses. However, our understanding of the gene family in barley (Hordeum vulgare L.) is quite limited. RESULTS In the present study, we identified 27 barley HAK/KUP/KT genes (hereafter called HvHAKs) through a genome-wide analysis. These HvHAKs were unevenly distributed on seven chromosomes, and could be phylogenetically classified into four clusters. All HvHAK protein sequences possessed the conserved motifs and domains. However, the substantial difference existed among HAK members in cis-acting elements and tissue expression patterns. Wheat had the most orthologous genes to barley HAKs, followed by Brachypodium distachyon, rice and maize. In addition, six barley HAK genes were selected to investigate their expression profiling in response to three abiotic stresses by qRT-PCR, and their expression levels were all up-regulated under salt, hyperosmotic and potassium deficiency treatments. CONCLUSION Twenty seven HAK genes (HvHAKs) were identified in barley, and they differ in tissue expression patterns and responses to salt stress, drought stress and potassium deficiency.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
114
|
Banerjee S, Bhandary P, Woodhouse M, Sen TZ, Wise RP, Andorf CM. FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences. BMC Bioinformatics 2021; 22:205. [PMID: 33879057 PMCID: PMC8056616 DOI: 10.1186/s12859-021-04120-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gene annotation in eukaryotes is a non-trivial task that requires meticulous analysis of accumulated transcript data. Challenges include transcriptionally active regions of the genome that contain overlapping genes, genes that produce numerous transcripts, transposable elements and numerous diverse sequence repeats. Currently available gene annotation software applications depend on pre-constructed full-length gene sequence assemblies which are not guaranteed to be error-free. The origins of these sequences are often uncertain, making it difficult to identify and rectify errors in them. This hinders the creation of an accurate and holistic representation of the transcriptomic landscape across multiple tissue types and experimental conditions. Therefore, to gauge the extent of diversity in gene structures, a comprehensive analysis of genome-wide expression data is imperative. RESULTS We present FINDER, a fully automated computational tool that optimizes the entire process of annotating genes and transcript structures. Unlike current state-of-the-art pipelines, FINDER automates the RNA-Seq pre-processing step by working directly with raw sequence reads and optimizes gene prediction from BRAKER2 by supplementing these reads with associated proteins. The FINDER pipeline (1) reports transcripts and recognizes genes that are expressed under specific conditions, (2) generates all possible alternatively spliced transcripts from expressed RNA-Seq data, (3) analyzes read coverage patterns to modify existing transcript models and create new ones, and (4) scores genes as high- or low-confidence based on the available evidence across multiple datasets. We demonstrate the ability of FINDER to automatically annotate a diverse pool of genomes from eight species. CONCLUSIONS FINDER takes a completely automated approach to annotate genes directly from raw expression data. It is capable of processing eukaryotic genomes of all sizes and requires no manual supervision-ideal for bench researchers with limited experience in handling computational tools.
Collapse
Affiliation(s)
- Sagnik Banerjee
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Bhandary
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Margaret Woodhouse
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, 50011, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, USDA-Agricultural Research Service, Albany, CA, 94710, USA
| | - Roger P Wise
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, 50011, USA.
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
115
|
Li M, Guo G, Pidon H, Melzer M, Prina AR, Börner T, Stein N. ATP-Dependent Clp Protease Subunit C1, HvClpC1, Is a Strong Candidate Gene for Barley Variegation Mutant luteostrians as Revealed by Genetic Mapping and Genomic Re-sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:664085. [PMID: 33936155 PMCID: PMC8086601 DOI: 10.3389/fpls.2021.664085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Implementation of next-generation sequencing in forward genetic screens greatly accelerated gene discovery in species with larger genomes, including many crop plants. In barley, extensive mutant collections are available, however, the causative mutations for many of the genes remains largely unknown. Here we demonstrate how a combination of low-resolution genetic mapping, whole-genome resequencing and comparative functional analyses provides a promising path toward candidate identification of genes involved in plastid biology and/or photosynthesis, even if genes are located in recombination poor regions of the genome. As a proof of concept, we simulated the prediction of a candidate gene for the recently cloned variegation mutant albostrians (HvAST/HvCMF7) and adopted the approach for suggesting HvClpC1 as candidate gene for the yellow-green variegation mutant luteostrians.
Collapse
Affiliation(s)
- Mingjiu Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Alberto R. Prina
- Institute of Genetics ‘Ewald A. Favret’ (IGEAF), INTA CICVyA/Argentina, Hurlingham, Buenos Aires, Argentina
| | - Thomas Börner
- Molecular Genetics, Institute of Biology, Humboldt University, Berlin, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
116
|
Cagirici HB, Budak H, Sen TZ. Genome-wide discovery of G-quadruplexes in barley. Sci Rep 2021; 11:7876. [PMID: 33846409 PMCID: PMC8041835 DOI: 10.1038/s41598-021-86838-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures with closely spaced guanine bases forming square planar G-quartets. Aberrant formation of G4 structures has been associated with genomic instability. However, most plant species are lacking comprehensive studies of G4 motifs. In this study, genome-wide identification of G4 motifs in barley was performed, followed by a comparison of genomic distribution and molecular functions to other monocot species, such as wheat, maize, and rice. Similar to the reports on human and some plants like wheat, G4 motifs peaked around the 5′ untranslated region (5′ UTR), the first coding domain sequence, and the first intron start sites on antisense strands. Our comparative analyses in human, Arabidopsis, maize, rice, and sorghum demonstrated that the peak points could be erroneously merged into a single peak when large window sizes are used. We also showed that the G4 distributions around genic regions are relatively similar in the species studied, except in the case of Arabidopsis. G4 containing genes in monocots showed conserved molecular functions for transcription initiation and hydrolase activity. Additionally, we provided examples of imperfect G4 motifs.
Collapse
Affiliation(s)
- H Busra Cagirici
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT, USA.,Agrogen, LLC., Omaha, NE, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
117
|
Civáň P, Drosou K, Armisen-Gimenez D, Duchemin W, Salse J, Brown TA. Episodes of gene flow and selection during the evolutionary history of domesticated barley. BMC Genomics 2021; 22:227. [PMID: 33794767 PMCID: PMC8015183 DOI: 10.1186/s12864-021-07511-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Barley is one of the founder crops of Neolithic agriculture and is among the most-grown cereals today. The only trait that universally differentiates the cultivated and wild subspecies is ‘non-brittleness’ of the rachis (the stem of the inflorescence), which facilitates harvesting of the crop. Other phenotypic differences appear to result from facultative or regional selective pressures. The population structure resulting from these regional events has been interpreted as evidence for multiple domestications or a mosaic ancestry involving genetic interaction between multiple wild or proto-domesticated lineages. However, each of the three mutations that confer non-brittleness originated in the western Fertile Crescent, arguing against multiregional origins for the crop. Results We examined exome data for 310 wild, cultivated and hybrid/feral barley accessions and showed that cultivated barley is structured into six genetically-defined groups that display admixture, resulting at least in part from two or more significant passages of gene flow with distinct wild populations. The six groups are descended from a single founding population that emerged in the western Fertile Crescent. Only a few loci were universally targeted by selection, the identity of these suggesting that changes in seedling emergence and pathogen resistance could represent crucial domestication switches. Subsequent selection operated on a regional basis and strongly contributed to differentiation of the genetic groups. Conclusions Identification of genetically-defined groups provides clarity to our understanding of the population history of cultivated barley. Inference of population splits and mixtures together with analysis of selection sweeps indicate descent from a single founding population, which emerged in the western Fertile Crescent. This founding population underwent relatively little genetic selection, those changes that did occur affecting traits involved in seedling emergence and pathogen resistance, indicating that these phenotypes should be considered as ‘domestication traits’. During its expansion out of the western Fertile Crescent, the crop underwent regional episodes of gene flow and selection, giving rise to a modern genetic signature that has been interpreted as evidence for multiple domestications, but which we show can be rationalized with a single origin. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07511-7.
Collapse
Affiliation(s)
- Peter Civáň
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.,INRA-Université Clermont-Auvergne, UMR 1095 GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Konstantina Drosou
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.,KNH Centre for Biomedical Egyptology, Faculty of Biology, Medicine and Health, University of Manchester, 99 Oxford Road, Manchester, M13 9PG, UK
| | - David Armisen-Gimenez
- INRA-Université Clermont-Auvergne, UMR 1095 GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, 69364, Lyon, France
| | - Wandrille Duchemin
- INRA-Université Clermont-Auvergne, UMR 1095 GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France.,Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland
| | - Jérôme Salse
- INRA-Université Clermont-Auvergne, UMR 1095 GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Terence A Brown
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
118
|
Shimizu KK, Copetti D, Okada M, Wicker T, Tameshige T, Hatakeyama M, Shimizu-Inatsugi R, Aquino C, Nishimura K, Kobayashi F, Murata K, Kuo T, Delorean E, Poland J, Haberer G, Spannagl M, Mayer KFX, Gutierrez-Gonzalez J, Muehlbauer GJ, Monat C, Himmelbach A, Padmarasu S, Mascher M, Walkowiak S, Nakazaki T, Ban T, Kawaura K, Tsuji H, Pozniak C, Stein N, Sese J, Nasuda S, Handa H. De Novo Genome Assembly of the Japanese Wheat Cultivar Norin 61 Highlights Functional Variation in Flowering Time and Fusarium-Resistant Genes in East Asian Genotypes. PLANT & CELL PHYSIOLOGY 2021; 62:8-27. [PMID: 33244607 PMCID: PMC7991897 DOI: 10.1093/pcp/pcaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/08/2023]
Abstract
Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Moeko Okada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Fuminori Kobayashi
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Kazuki Murata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tony Kuo
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- University of Guelph, Centre for Biodiversity Genomics, Guelph, ON, Canada
| | - Emily Delorean
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Georg Haberer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Weihenstephan, Germany
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Cecile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sean Walkowiak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Crop Science, Center of Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Humanome Lab, Inc, Tokyo, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Handa
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
- Laboratoty of Plant Breeding, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
119
|
Hewitt T, Müller MC, Molnár I, Mascher M, Holušová K, Šimková H, Kunz L, Zhang J, Li J, Bhatt D, Sharma R, Schudel S, Yu G, Steuernagel B, Periyannan S, Wulff B, Ayliffe M, McIntosh R, Keller B, Lagudah E, Zhang P. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. THE NEW PHYTOLOGIST 2021; 229:2812-2826. [PMID: 33176001 PMCID: PMC8022591 DOI: 10.1111/nph.17075] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.
Collapse
Affiliation(s)
- Tim Hewitt
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
- School of Life and Environmental SciencesPlant Breeding InstituteUniversity of Sydney107 Cobbitty RoadCobbittyNSW2570Australia
| | - Marion C. Müller
- Department of Plant and Microbial BiologyUniversity of ZurichZollikerstrasse 107Zürich8008Switzerland
| | - István Molnár
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 31Olomouc779 00Czech Republic
| | - Martin Mascher
- OT GaterslebenLeibniz Institute of Plant Genetics and Crop Plant ResearchCorrensstr. 3Stadt SeelandD‐06466Germany
| | - Kateřina Holušová
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 31Olomouc779 00Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 31Olomouc779 00Czech Republic
| | - Lukas Kunz
- Department of Plant and Microbial BiologyUniversity of ZurichZollikerstrasse 107Zürich8008Switzerland
| | - Jianping Zhang
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
| | - Jianbo Li
- School of Life and Environmental SciencesPlant Breeding InstituteUniversity of Sydney107 Cobbitty RoadCobbittyNSW2570Australia
| | - Dhara Bhatt
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
| | - Raghvendra Sharma
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
| | - Seraina Schudel
- Department of Plant and Microbial BiologyUniversity of ZurichZollikerstrasse 107Zürich8008Switzerland
| | | | | | - Sambasivam Periyannan
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
| | | | - Mick Ayliffe
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
| | - Robert McIntosh
- School of Life and Environmental SciencesPlant Breeding InstituteUniversity of Sydney107 Cobbitty RoadCobbittyNSW2570Australia
| | - Beat Keller
- Department of Plant and Microbial BiologyUniversity of ZurichZollikerstrasse 107Zürich8008Switzerland
| | - Evans Lagudah
- Agriculture & FoodCommonwealth Scientific & Industrial Research OrganizationGPO Box 1700CanberraACT2601Australia
- School of Life and Environmental SciencesPlant Breeding InstituteUniversity of Sydney107 Cobbitty RoadCobbittyNSW2570Australia
| | - Peng Zhang
- School of Life and Environmental SciencesPlant Breeding InstituteUniversity of Sydney107 Cobbitty RoadCobbittyNSW2570Australia
| |
Collapse
|
120
|
Pidon H, Wendler N, Habekuβ A, Maasberg A, Ruge-Wehling B, Perovic D, Ordon F, Stein N. High-resolution mapping of Rym14 Hb, a wild relative resistance gene to barley yellow mosaic disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:823-833. [PMID: 33263784 PMCID: PMC7925471 DOI: 10.1007/s00122-020-03733-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley's secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
| | - Neele Wendler
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574, Einbeck, Germany
| | - Antje Habekuβ
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Anja Maasberg
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research On Agricultural Crops, Julius Kühn Institute (JKI), Groß Lüsewitz, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Von Siebold Straße 8, 37075, Göttingen, Germany.
| |
Collapse
|
121
|
Mahelka V, Krak K, Fehrer J, Caklová P, Nagy Nejedlá M, Čegan R, Kopecký D, Šafář J. A Panicum-derived chromosomal segment captured by Hordeum a few million years ago preserves a set of stress-related genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1141-1164. [PMID: 33484020 DOI: 10.1111/tpj.15167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Karol Krak
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, 16500, Czech Republic
| | - Judith Fehrer
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Petra Caklová
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | | | - Radim Čegan
- Institute of Biophysics, Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| |
Collapse
|
122
|
Arrieta M, Macaulay M, Colas I, Schreiber M, Shaw PD, Waugh R, Ramsay L. An Induced Mutation in HvRECQL4 Increases the Overall Recombination and Restores Fertility in a Barley HvMLH3 Mutant Background. FRONTIERS IN PLANT SCIENCE 2021; 12:706560. [PMID: 34868104 PMCID: PMC8633572 DOI: 10.3389/fpls.2021.706560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/28/2021] [Indexed: 05/16/2023]
Abstract
Plant breeding relies on the meiotic recombination or crossing over to generate the new combinations of the alleles along and among the chromosomes. However, crossing over is constrained in the crops such as barley by a combination of the low frequency and biased distribution. In this study, we attempted to identify the genes that limit the recombination by performing a suppressor screen for the restoration of fertility to the semi-fertile barley mutant desynaptic10 (des10), carrying a mutation in the barley ortholog of MutL-Homolog 3 (HvMLH3), a member of the MutL-homolog (MLH) family of DNA mismatch repair genes. des10 mutants exhibit reduced recombination and fewer chiasmata, resulting in the loss of obligate crossovers (COs) leading to chromosome mis-segregation. We identified several candidate suppressor lines and confirmed their restored fertility in an Hvmlh3 background in the subsequent generations. We focus on one of the candidate suppressor lines, SuppLine2099, which showed the most complete restoration of fertility. We characterized this line by using a target-sequence enrichment and sequencing (TENSEQ) capture array representing barley orthologs of 46 meiotic genes. We found that SuppLine2099 contained a C/T change in the anti-CO gene RecQ-like helicase 4 (RECQL4) resulting in the substitution of a non-polar glycine to a polar aspartic acid (G700D) amino acid in the conserved helicase domain. Single nucleotide polymorphism (SNP) genotyping of F3 populations revealed a significant increase in the recombination frequency in lines with Hvrecql4 in the Hvmlh3 background that was associated with the restoration of fertility. The genotyping also indicated that there was nearly double the recombination levels in homozygous Hvrecql4 lines compared to the wild type (WT). However, we did not observe any significant change in the distribution of CO events. Our results confirm the anti-CO role of RECQL4 in a large genome cereal and establish the possibility of testing the utility of increasing recombination in the context of traditional crop improvement.
Collapse
Affiliation(s)
- Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Paul D. Shaw
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, The University of Dundee at The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Robbie Waugh
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Luke Ramsay
| |
Collapse
|
123
|
Ding J, Karim H, Li Y, Harwood W, Guzmán C, Lin N, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley ( Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:791584. [PMID: 34925430 PMCID: PMC8672199 DOI: 10.3389/fpls.2021.791584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/11/2021] [Indexed: 05/07/2023]
Abstract
The APETALA2/Ethylene-Responsive factor (AP2/ERF) gene family is a large plant-specific transcription factor family, which plays important roles in regulating plant growth and development. A role in starch synthesis is among the multiple functions of this family of transcription factors. Barley (Hordeum vulgare L.) is one of the most important cereals for starch production. However, there are limited data on the contribution of AP2 transcription factors in barley. In this study, we used the recently published barley genome database (Morex) to identify 185 genes of the HvAP2/ERF family. Compared with previous work, we identified 64 new genes in the HvAP2/ERF gene family and corrected some previously misannotated and duplicated genes. After phylogenetic analysis, HvAP2/ERF genes were classified into four subfamilies and 18 subgroups. Expression profiling showed different patterns of spatial and temporal expression for HvAP2/ERF genes. Most of the 12 HvAP2/ERF genes analyzed using quantitative reverse transcription-polymerase chain reaction had similar expression patterns when compared with those of starch synthase genes in barley, except for HvAP2-18 and HvERF-73. HvAP2-18 is homologous to OsRSR1, which negatively regulates the synthesis of rice starch. Luciferase reporter gene, and yeast one-hybrid assays showed that HvAP2-18 bound the promoter of AGP-S and SBE1 in vitro. Thus, HvAP2-18 might be an interesting candidate gene to further explore the mechanisms involved in the regulation of starch synthesis in barley.
Collapse
Affiliation(s)
- Jinjin Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Qiantao Jiang,
| |
Collapse
|
124
|
Li T, Pan W, Yuan Y, Liu Y, Li Y, Wu X, Wang F, Cui L. Identification, Characterization, and Expression Profile Analysis of the mTERF Gene Family and Its Role in the Response to Abiotic Stress in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:684619. [PMID: 34335653 PMCID: PMC8319850 DOI: 10.3389/fpls.2021.684619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 05/17/2023]
Abstract
Plant mitochondrial transcription termination factor (mTERF) family regulates organellar gene expression (OGE) and is functionally characterized in diverse species. However, limited data are available about its functions in the agriculturally important cereal barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley genome (HvmTERFs) through a comprehensive search against the most updated barley reference genome, Morex V2. Then, phylogenetic analysis categorized these genes into nine subfamilies, with approximately half of the HvmTERFs belonging to subfamily IX. Members within the same subfamily generally possessed conserved motif composition and exon-intron structure. Both segmental and tandem duplication contributed to the expansion of HvmTERFs, and the duplicated gene pairs were subjected to strong purifying selection. Expression analysis suggested that many HvmTERFs may play important roles in barley development (e.g., seedlings, leaves, and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion), and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only 4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the first report to characterize HvmTERFs, which will not only provide important insights into further evolutionary studies but also contribute to a better understanding of the potential functions of HvmTERFs and ultimately will be useful in future gene functional studies.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiyuan Yuan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ying Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Licao Cui
| |
Collapse
|
125
|
Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 2021; 53:564-573. [PMID: 33737754 PMCID: PMC8035072 DOI: 10.1038/s41588-021-00807-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.
Collapse
|
126
|
Saur IML, Hückelhoven R. Recognition and defence of plant-infecting fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153324. [PMID: 33249386 DOI: 10.1016/j.jplph.2020.153324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Attempted infections of plants with fungi result in diverse outcomes ranging from symptom-less resistance to severe disease and even death of infected plants. The deleterious effect on crop yield have led to intense focus on the cellular and molecular mechanisms that explain the difference between resistance and susceptibility. This research has uncovered plant resistance or susceptibility genes that explain either dominant or recessive inheritance of plant resistance with many of them coding for receptors that recognize pathogen invasion. Approaches based on cell biology and phytochemistry have contributed to identifying factors that halt an invading fungal pathogen from further invasion into or between plant cells. Plant chemical defence compounds, antifungal proteins and structural reinforcement of cell walls appear to slow down fungal growth or even prevent fungal penetration in resistant plants. Additionally, the hypersensitive response, in which a few cells undergo a strong local immune reaction, including programmed cell death at the site of infection, stops in particular biotrophic fungi from spreading into surrounding tissue. In this review, we give a general overview of plant recognition and defence of fungal parasites tracing back to the early 20th century with a special focus on Triticeae and on the progress that was made in the last 30 years.
Collapse
Affiliation(s)
- Isabel M L Saur
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Ramann-Straße 2, 85354 Freising, Germany.
| |
Collapse
|
127
|
Genomic Dissection of Peduncle Morphology in Barley through Nested Association Mapping. PLANTS 2020; 10:plants10010010. [PMID: 33374821 PMCID: PMC7823623 DOI: 10.3390/plants10010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 11/24/2022]
Abstract
Straw biomass and stability are crucial for stable yields. Moreover, straw harbors the potential to serve as a valuable raw material for bio-economic processes. The peduncle is the top part of the last shoot internode and carries the spike. This study investigates the genetic control of barley peduncle morphology. Therefore, 1411 BC1S3 lines of the nested association mapping (NAM) population “Halle Exotic Barley 25” (HEB-25), generated by crossing the spring barley elite cultivar Barke with an assortment of 25 exotic barley accessions, were used. Applying 50k Illumina Infinium iSelect SNP genotyping yielded new insights and a better understanding of the quantitative trait loci (QTL) involved in controlling the peduncle diameter traits, we found the total thickness of peduncle tissues and the area of the peduncle cross-section. We identified three major QTL regions on chromosomes 2H and 3H mainly impacting the traits. Remarkably, the exotic allele at the QTL on chromosome 3H improved all three traits investigated in this work. Introgressing this QTL in elite cultivars might facilitate to adjust peduncle morphology for improved plant stability or enlarged straw biomass production independent of flowering time and without detrimental effects on grain yield.
Collapse
|
128
|
Dreissig S, Maurer A, Sharma R, Milne L, Flavell AJ, Schmutzer T, Pillen K. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. THE NEW PHYTOLOGIST 2020; 228:1852-1863. [PMID: 32659029 DOI: 10.1111/nph.16810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Meiotic recombination rates vary considerably between species, populations and individuals. The genetic exchange between homologous chromosomes plays a major role in evolution by breaking linkage between advantageous and deleterious alleles in the case of introgressions. Identifying recombination rate modifiers is thus of both fundamental and practical interest to understand and utilize variation in meiotic recombination rates. We investigated recombination rate variation in a large intraspecific hybrid population (named HEB-25) derived from a cross between domesticated barley and 25 wild barley accessions. We observed quantitative variation in total crossover number with a maximum of a 1.4-fold difference between subpopulations and increased recombination rates across pericentromeric regions. The meiosis-specific α-kleisin cohesin subunit REC8 was identified as a candidate gene influencing crossover number and patterning. Furthermore, we quantified wild barley introgression patterns and revealed how local and genome-wide recombination rate variation shapes patterns of introgression. The identification of allelic variation in REC8 in combination with the observed changes in crossover patterning suggest a difference in how chromatin loops are tethered to the chromosome axis, resulting in reduced crossover suppression across pericentromeric regions. Local and genome-wide recombination rate variation is shaping patterns of introgressions and thereby directly influences the consequences of linkage drag.
Collapse
Affiliation(s)
- Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Rajiv Sharma
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Linda Milne
- The James Hutton Institute (JHI), Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Andrew John Flavell
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| |
Collapse
|
129
|
Okada K, Kato T, Oikawa T, Komatsuda T, Namai K. A genetic analysis of the resistance in barley to Soil-borne wheat mosaic virus. BREEDING SCIENCE 2020; 70:617-622. [PMID: 33603558 PMCID: PMC7878938 DOI: 10.1270/jsbbs.20071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Soil-borne wheat mosaic virus (SBWMV), a ubiquitous pathogen commonly encountered in temperate regions of the Northern hemisphere, can damage a number of economically important cereal crops, notably wheat and barley. Given that the plasmodiophorid cercozoan Polymyxa graminis, which acts as the vector of SBWMV, can survive in the soil for many decades, the only feasible control measure is the deployment of resistant cultivars. Here, a quantitative trait locus (QTL) approach was taken to characterize the genetic basis of the SBWMV resistance exhibited by the barley cultivar Haruna Nijo. The analysis revealed that between 33% and 41% of the variation for the measure chosen to represent resistance was under the control of a gene(s) mapping to a region at the distal end of the short arm of chromosome 2H. In contrast to most of the genes known to encode resistance to soil-borne mosaic viruses, the allele specifying resistance was dominant over those present in a susceptible genotype.
Collapse
Affiliation(s)
- Kaori Okada
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Tetsuo Oikawa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Kiyoshi Namai
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| |
Collapse
|
130
|
Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang XQ, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020; 588:284-289. [PMID: 33239781 PMCID: PMC7759462 DOI: 10.1038/s41586-020-2947-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Georg Haberer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Venkata Suresh Bonthala
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cécile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Lux
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadia Kamal
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Lang
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jennifer Ens
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Tefera T Angessa
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Camilla Hill
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Penghao Wang
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Lori B Boston
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | | | - Jerry Jenkins
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Dongdong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Chunchao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jane Grimwood
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Curtis J Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
131
|
Strejčková B, Čegan R, Pecinka A, Milec Z, Šafář J. Identification of polycomb repressive complex 1 and 2 core components in hexaploid bread wheat. BMC PLANT BIOLOGY 2020; 20:175. [PMID: 33050875 PMCID: PMC7557041 DOI: 10.1186/s12870-020-02384-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Polycomb repressive complexes 1 and 2 play important roles in epigenetic gene regulation by posttranslationally modifying specific histone residues. Polycomb repressive complex 2 is responsible for the trimethylation of lysine 27 on histone H3; Polycomb repressive complex 1 catalyzes the monoubiquitination of histone H2A at lysine 119. Both complexes have been thoroughly studied in Arabidopsis, but the evolution of polycomb group gene families in monocots, particularly those with complex allopolyploid origins, is unknown. RESULTS Here, we present the in silico identification of the Polycomb repressive complex 1 and 2 (PRC2, PRC1) subunits in allohexaploid bread wheat, the reconstruction of their evolutionary history and a transcriptional analysis over a series of 33 developmental stages. We identified four main subunits of PRC2 [E(z), Su(z), FIE and MSI] and three main subunits of PRC1 (Pc, Psc and Sce) and determined their chromosomal locations. We found that most of the genes coding for subunit proteins are present as paralogs in bread wheat. Using bread wheat RNA-seq data from different tissues and developmental stages throughout plant ontogenesis revealed variable transcriptional activity for individual paralogs. Phylogenetic analysis showed a high level of protein conservation among temperate cereals. CONCLUSIONS The identification and chromosomal location of the Polycomb repressive complex 1 and 2 core components in bread wheat may enable a deeper understanding of developmental processes, including vernalization, in commonly grown winter wheat.
Collapse
Affiliation(s)
- Beáta Strejčková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Radim Čegan
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200, Brno, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Zbyněk Milec
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900, Olomouc, Czech Republic.
| |
Collapse
|
132
|
Abrouk M, Ahmed HI, Cubry P, Šimoníková D, Cauet S, Pailles Y, Bettgenhaeuser J, Gapa L, Scarcelli N, Couderc M, Zekraoui L, Kathiresan N, Čížková J, Hřibová E, Doležel J, Arribat S, Bergès H, Wieringa JJ, Gueye M, Kane NA, Leclerc C, Causse S, Vancoppenolle S, Billot C, Wicker T, Vigouroux Y, Barnaud A, Krattinger SG. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat Commun 2020; 11:4488. [PMID: 32901040 DOI: 10.1101/2020.04.11.037671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/16/2020] [Indexed: 05/28/2023] Open
Abstract
Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.
Collapse
Affiliation(s)
- Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Yveline Pailles
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jan Bettgenhaeuser
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liubov Gapa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | | | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Hélène Bergès
- CNRGV Plant Genomics Center, INRAE, Toulouse, France
- Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA, 02139, USA
| | | | - Mathieu Gueye
- Laboratoire de Botanique, Département de Botanique et Géologie, IFAN Ch. A. Diop/UCAD, Dakar, Senegal
| | - Ndjido A Kane
- Senegalese Agricultural Research Institute, Dakar, Senegal
- Laboratoire Mixte International LAPSE, Dakar, Senegal
| | - Christian Leclerc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sandrine Causse
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sylvie Vancoppenolle
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Claire Billot
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | | | - Adeline Barnaud
- DIADE, Univ Montpellier, IRD, Montpellier, France.
- Laboratoire Mixte International LAPSE, Dakar, Senegal.
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
133
|
Abrouk M, Ahmed HI, Cubry P, Šimoníková D, Cauet S, Pailles Y, Bettgenhaeuser J, Gapa L, Scarcelli N, Couderc M, Zekraoui L, Kathiresan N, Čížková J, Hřibová E, Doležel J, Arribat S, Bergès H, Wieringa JJ, Gueye M, Kane NA, Leclerc C, Causse S, Vancoppenolle S, Billot C, Wicker T, Vigouroux Y, Barnaud A, Krattinger SG. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat Commun 2020; 11:4488. [PMID: 32901040 PMCID: PMC7479619 DOI: 10.1038/s41467-020-18329-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/16/2020] [Indexed: 01/24/2023] Open
Abstract
Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.
Collapse
Affiliation(s)
- Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Yveline Pailles
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jan Bettgenhaeuser
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liubov Gapa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | | | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Hélène Bergès
- CNRGV Plant Genomics Center, INRAE, Toulouse, France
- Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA, 02139, USA
| | | | - Mathieu Gueye
- Laboratoire de Botanique, Département de Botanique et Géologie, IFAN Ch. A. Diop/UCAD, Dakar, Senegal
| | - Ndjido A Kane
- Senegalese Agricultural Research Institute, Dakar, Senegal
- Laboratoire Mixte International LAPSE, Dakar, Senegal
| | - Christian Leclerc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sandrine Causse
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sylvie Vancoppenolle
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Claire Billot
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | | | - Adeline Barnaud
- DIADE, Univ Montpellier, IRD, Montpellier, France.
- Laboratoire Mixte International LAPSE, Dakar, Senegal.
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
134
|
Abstract
Barley (Hordeum vulgare), one of the most widely cultivated cereal crops, possesses a large genome of 5.1 Gbp. Through various international collaborations, the genome has recently been sequenced and assembled at the chromosome-scale by exploiting available genetic and genomic resources. Many wild and cultivated barley accessions have been collected and preserved around the world. These accessions are crucial to obtain diverse natural and induced barley variants. The barley bioresource project aims to investigate the diversity of this crop based on purified seed and DNA samples of a large number of collected accessions. The long-term goal of this project is to analyse the genome sequences of major barley accessions worldwide. In view of technical limitations, a strategy has been employed to establish the exome structure of a selected number of accessions and to perform high-quality chromosome-scale assembly of the genomes of several major representative accessions. For the future project, an efficient annotation pipeline is essential for establishing the function of genomes and genes as well as for using this information for sequence-based digital barley breeding. In this article, the author reviews the existing barley resources along with their applications and discuss possible future directions of research in barley genomics.
Collapse
Affiliation(s)
- Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
135
|
Rotasperti L, Sansoni F, Mizzotti C, Tadini L, Pesaresi P. Barley's Second Spring as A Model Organism for Chloroplast Research. PLANTS 2020; 9:plants9070803. [PMID: 32604986 PMCID: PMC7411767 DOI: 10.3390/plants9070803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley.
Collapse
|
136
|
Schreiber M, Mascher M, Wright J, Padmarasu S, Himmelbach A, Heavens D, Milne L, Clavijo BJ, Stein N, Waugh R. A Genome Assembly of the Barley 'Transformation Reference' Cultivar Golden Promise. G3 (BETHESDA, MD.) 2020; 10:1823-1827. [PMID: 32241919 PMCID: PMC7263683 DOI: 10.1534/g3.119.401010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023]
Abstract
Barley (Hordeum vulgare) is one of the most important crops worldwide and is also considered a research model for the large-genome small grain temperate cereals. Despite genomic resources improving all the time, they are limited for the cv Golden Promise, the most efficient genotype for genetic transformation. We have developed a barley cv Golden Promise reference assembly integrating Illumina paired-end reads, long mate-pair reads, Dovetail Chicago in vitro proximity ligation libraries and chromosome conformation capture sequencing (Hi-C) libraries into a contiguous reference assembly. The assembled genome of 7 chromosomes and 4.13Gb in size, has a super-scaffold N50 after Chicago libraries of 4.14Mb and contains only 2.2% gaps. Using BUSCO (benchmarking universal single copy orthologous genes) as evaluation the genome assembly contains 95.2% of complete and single copy genes from the plant database. A high-quality Golden Promise reference assembly will be useful and utilized by the whole barley research community but will prove particularly useful for CRISPR-Cas9 experiments.
Collapse
Affiliation(s)
- Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland DD2 5DA, UK
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Jonathan Wright
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sudharasan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Darren Heavens
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Linda Milne
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland DD2 5DA, UK
| | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- CiBreed - Center for Integrated Breeding Research, Georg-August University Göttingen, Department of Crop Sciences, Von Siebold Straße 8, 37075 Göttingen, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland DD2 5DA, UK
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland DD2 5DA, UK
- School of Agriculture and Wine, University of Adelaide, Plant Genome Building, Waite Campus, Urrbrae, Adelaide, South Australia
| |
Collapse
|