101
|
Olmsted-Davis E, Mejia J, Salisbury E, Gugala Z, Davis AR. A Population of M2 Macrophages Associated With Bone Formation. Front Immunol 2021; 12:686769. [PMID: 34712222 PMCID: PMC8547272 DOI: 10.3389/fimmu.2021.686769] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
We previously identified transient brown adipocyte-like cells associated with heterotopic ossification (HO). These ancillary cells support new vessel synthesis essential to bone formation. Recent studies have shown that the M2 macrophage contributes to tissue regeneration in a similar way. To further define the phenotype of these brown adipocyte-like cells they were isolated and characterized by single-cell RNAseq (scRNAseq). Analysis of the transcriptome and the presence of surface markers specific for macrophages suggest that these cells are M2 macrophages. To validate these findings, clodronate liposomes were delivered to the tissues during HO, and the results showed both a significant reduction in these macrophages as well as bone formation. These cells were isolated and shown in culture to polarize towards either M1 or M2 similar to other macrophages. To confirm that these are M2 macrophages, mice received lipopolysacheride (LPS), which induces proinflammation and M1 macrophages. The results showed a significant decrease in this specific population and bone formation, suggesting an essential role for M2 macrophages in the production of bone. To determine if these macrophages are specific to HO, we isolated these cells using fluorescence-activated cell sorting (FACS) from a bone defect model and subjected them to scRNAseq. Surprisingly, the macrophage populations overlapped between the two groups (HO-derived versus callus) suggesting that they may be essential ancillary cells for bone formation in general and not selective to HO. Of further note, their unique metabolism and lipogenic properties suggest the potential for unique cross talk between these cells and the newly forming bone.
Collapse
Affiliation(s)
- Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States,Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Julio Mejia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Elizabeth Salisbury
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States,Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Alan R. Davis,
| |
Collapse
|
102
|
Xiao H, Han S, Baigude H. Regulation of microglia polarization via mannose receptor-mediated delivery of siRNA by ligand-functionalized DoGo LNP. RSC Adv 2021; 11:32549-32558. [PMID: 35493551 PMCID: PMC9041768 DOI: 10.1039/d1ra04293a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
The pro-inflammatory polarization of microglia after stroke is one of the major causes of secondary brain injury. Downregulation of the gene involved in canonical inflammatory pathways in glial cells can exert neuroprotective effects via inhibiting the release of pro-inflammatory factors. In this study, we functionalized DoGo lipids with mannose, the ligand of the mannose receptor (MR) that is expressed in microglia, and evaluated the MR-mediated cellular internalization of DoGo lipid nanoparticles (denote M3) carrying siRNA against TLR4 in BV2 cells in vitro. We confirmed that siTLR4/M3 complexes were specifically internalized by BV2 cells in a MR-dependent manner, and the treatment of oxygen glucose deprivation (OGD)-treated BV2 cells with siTLR4/M3 complexes resulted in remarkable silencing of TLR4, and induced downregulated M1 polarization and upregulated M2 polarization markers. Collectively, our data suggest that the M3 lipoplex is a promising microglia-targeting siRNA delivery agent. Mannose functionalized DoGo lipid nanoparticles (denote M3) can effectively deliver siRNA to microglia via receptor-mediated internalization, knockdown target gene and induce neuroprotective M2 polarization.![]()
Collapse
Affiliation(s)
- Hai Xiao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University Hohhot Inner Mongolia 010020 P. R. China +86 471 4992511 +86 471 4992511
| | - Shuqin Han
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University Hohhot Inner Mongolia 010020 P. R. China +86 471 4992511 +86 471 4992511
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University Hohhot Inner Mongolia 010020 P. R. China +86 471 4992511 +86 471 4992511
| |
Collapse
|
103
|
Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliv Rev 2021; 177:113930. [PMID: 34403751 DOI: 10.1016/j.addr.2021.113930] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Messenger RNAs (mRNAs) present a great potential as therapeutics for the treatment and prevention of a wide range of human pathologies, allowing for protein replacement, vaccination, cancer immunotherapy, and genomic engineering. Despite advances in the design of mRNA-based therapeutics, a key aspect for their widespread translation to clinic is the development of safe and effective delivery strategies. To this end, non-viral delivery systems including peptide-based complexes, lipidic or polymeric nanoparticles, and hybrid formulations are attracting growing interest. Despite displaying somewhat reduced efficacy compared to viral-based systems, non-viral carriers offer important advantages in terms of biosafety and versatility. In this review, we provide an overview of current mRNA therapeutic applications and discuss key biological barriers to delivery and recent advances in the development of non-viral systems. Challenges and future applications of this novel therapeutic modality are also discussed.
Collapse
Affiliation(s)
- Maria L Ibba
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, 80131 Naples, Italy
| | - Giuseppe Ciccone
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Carla L Esposito
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy.
| | - Silvia Catuogno
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy.
| | - Paloma H Giangrande
- University of Iowa, Department of Internal Medicine, Iowa City, IA, USA; Wave Life Sciences, Cambridge, MA, USA.
| |
Collapse
|
104
|
Study on Significance of Receptor Targeting in Killing of Intracellular Bacteria with Membrane‐Impermeable Antibiotics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
105
|
The diversity of lipocalin receptors. Biochimie 2021; 192:22-29. [PMID: 34534611 DOI: 10.1016/j.biochi.2021.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022]
Abstract
Lipocalins are important carriers of preferentially hydrophobic molecules, but they can also bind other ligands, like highly polar siderophores or intact proteins. Consequently, they are involved in a variety of physiological processes in many species. Since lipocalins are mainly extracellular proteins, they have to interact with cell receptors to exert their biological effects. In contrast to the large number of lipocalins identified in the last years, the number of receptors known is still limited. Nevertheless, some novel findings concerning the molecules involved in cellular uptake or signaling effects of lipocalins have been made recently. This review presents a detailed overview of the receptors identified so far. The methods used for isolation or identification are described and structural as well as functional information on these proteins is presented essentially in chronological order of their initial discovery.
Collapse
|
106
|
Cao H, Vickers MA. Oxidative stress, malaria, sickle cell disease, and innate immunity. Trends Immunol 2021; 42:849-851. [PMID: 34503910 DOI: 10.1016/j.it.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Plasmodium falciparum shields from adaptive immunity in erythrocytes, but how might the innate immune system recognize infected cells? Replication by the parasite results in oxidative stress, causing surface expression of high-mannose glycans. These can act as pathogen-associated molecular patterns to stimulate phagocytosis in the spleen and the sickle cell allele enhances these responses.
Collapse
Affiliation(s)
- Huan Cao
- Infection and Immunity, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mark A Vickers
- Infection and Immunity, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
107
|
García RA, Lupisella JA, Ito BR, Hsu MY, Fernando G, Carson NL, Allocco JJ, Ryan CS, Zhang R, Wang Z, Heroux M, Carrier M, St-Onge S, Bouvier M, Dudhgaonkar S, Nagar J, Bustamante-Pozo MM, Garate-Carrillo A, Chen J, Ma X, Search DJ, Dierks EA, Kick EK, Wexler RR, Gordon DA, Ostrowski J, Wurtz NR, Villarreal F. Selective FPR2 Agonism Promotes a Proresolution Macrophage Phenotype and Improves Cardiac Structure-Function Post Myocardial Infarction. ACTA ACUST UNITED AC 2021; 6:676-689. [PMID: 34466754 PMCID: PMC8385569 DOI: 10.1016/j.jacbts.2021.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
MI leads to ischemic damage of myocardium and activation of inflammatory programs as part of the wound healing response. Selective activation of FPR2 on macrophages potentiates key cellular activities that enable wound healing. MI was induced in rodents to study the effects of treatment with BMS-986235, a selective small molecule agonist of FPR2. BMS-986235 stimulated proresolution macrophage activities, induced neutrophil apoptosis and clearance, improved LV and infarct structure, and preserved cardiac function post MI. The findings suggest that targeted activation of FPR2 can improve post-MI outcome and may diminish the development of HF.
Dysregulated inflammation following myocardial infarction (MI) leads to maladaptive healing and remodeling. The study characterized and evaluated a selective formyl peptide receptor 2 (FPR2) agonist BMS-986235 in cellular assays and in rodents undergoing MI. BMS-986235 activated G proteins and promoted β-arrestin recruitment, enhanced phagocytosis and neutrophil apoptosis, regulated chemotaxis, and stimulated interleukin-10 and monocyte chemoattractant protein-1 gene expression. Treatment with BMS-986235 improved mouse survival, reduced left ventricular area, reduced scar area, and preserved wall thickness. Treatment increased macrophage arginase-1 messenger RNA and CD206 receptor levels indicating a proresolution phenotype. In rats following MI, BMS-986235 preserved viable myocardium, attenuated left ventricular remodeling, and increased ejection fraction relative to control animals. Therefore, FPR2 agonism improves post-MI healing, limits remodeling and preserves function, and may offer an innovative therapeutic option to improve outcomes.
Collapse
Key Words
- BRET, bioluminescence resonance energy transfer
- EC50, half maximal effective concentration
- FPR2
- FPR2, formyl peptide receptor 2
- HF
- HF, heart failure
- I/R, ischemia-reperfusion
- IL, interleukin
- KO, knockout
- LPS, lipopolysaccharide
- LV, left ventricle/ventricular
- MCP, monocyte chemoattractant protein
- MI
- MI, myocardial infarction
- SAA, serum amyloid A
- TNF, tumor necrosis factor
- WT, wild-type
- formyl peptide receptor 2
- heart failure
- mRNA, messenger RNA
- myocardial infarction
- resolution
Collapse
Affiliation(s)
- Ricardo A García
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA.,Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - John A Lupisella
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Bruce R Ito
- Department of Medicine, University of California-San Diego, San Diego, California, USA
| | - Mei-Yin Hsu
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Gayani Fernando
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Nancy L Carson
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - John J Allocco
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Carol S Ryan
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Rongan Zhang
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Zhaoqing Wang
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Madeleine Heroux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Marilyn Carrier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Stéphane St-Onge
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | | | - Jignesh Nagar
- Biocon Bristol Myers Squibb Research Center, Bangalore, India
| | | | | | - Jian Chen
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Xiuying Ma
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Debra J Search
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Elizabeth A Dierks
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Ellen K Kick
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Ruth R Wexler
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - David A Gordon
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jacek Ostrowski
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Nicholas R Wurtz
- Department of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Francisco Villarreal
- Department of Medicine, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
108
|
Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021; 131:16-40. [PMID: 34153512 PMCID: PMC8272596 DOI: 10.1016/j.actbio.2021.06.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Vaccination represents the best line of defense against infectious diseases and is crucial in curtailing pandemic spread of emerging pathogens to which a population has limited immunity. In recent years, mRNA vaccines have been proposed as the new frontier in vaccination, owing to their facile and rapid development while providing a safer alternative to traditional vaccine technologies such as live or attenuated viruses. Recent breakthroughs in mRNA vaccination have been through formulation with lipid nanoparticles (LNPs), which provide both protection and enhanced delivery of mRNA vaccines in vivo. In this review, current paradigms and state-of-the-art in mRNA-LNP vaccine development are explored through first highlighting advantages posed by mRNA vaccines, establishing LNPs as a biocompatible delivery system, and finally exploring the use of mRNA-LNP vaccines in vivo against infectious disease towards translation to the clinic. Furthermore, we highlight the progress of mRNA-LNP vaccine candidates against COVID-19 currently in clinical trials, with the current status and approval timelines, before discussing their future outlook and challenges that need to be overcome towards establishing mRNA-LNPs as next-generation vaccines. STATEMENT OF SIGNIFICANCE: With the recent success of mRNA vaccines developed by Moderna and BioNTech/Pfizer against COVID-19, mRNA technology and lipid nanoparticles (LNP) have never received more attention. This manuscript timely reviews the most advanced mRNA-LNP vaccines that have just been approved for emergency use and are in clinical trials, with a focus on the remarkable development of several COVID-19 vaccines, faster than any other vaccine in history. We aim to give a comprehensive introduction of mRNA and LNP technology to the field of biomaterials science and increase accessibility to readers with a new interest in mRNA-LNP vaccines. We also highlight current limitations and future outlook of the mRNA vaccine technology that need further efforts of biomaterials scientists to address.
Collapse
Affiliation(s)
- Emily H Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Estelle J A Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Natalie L Trevaskis
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Colin W Pouton
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nghia P Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
109
|
Huang Y, Zhou Z, Hu Y, He N, Li J, Han X, Zhao G, Liu H. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering. Biomed Mater 2021; 16. [PMID: 34348252 DOI: 10.1088/1748-605x/ac1ab4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023]
Abstract
3D bioprinting technology displays many advantages for tissue engineering applications, but its utilization is limited by veryfew bioinks available for biofabrication. In this study, a novel type of bioink, which includes three methacryloyl modifiedmannans, was introduced to 3D bioprinting for tissue engineering applications. Yeast mannan (YM) was modified by reactingwith methacrylate anhydride (MA) at different concentrations, and three YM derived bioinks were obtained, which weretermed as YM-MA-1, YM-MA-2 and YM-MA-3 and were distinguished with different adjusted methacrylation degrees. TheYM derived bioink displayed an advantage that the mechanical properties of its photo-cured hydrogels can be enhanced withits methacrylation degree. Hence, YM derived bioinks are fitted for the mechanical requirements of most soft tissueengineering, including cartilage tissue engineering. By selecting chondrocytes as the testing cells, well cytocompatibility of YM-MA-1, YM-MA-2 had been confirmed by CCK-8 method. Following photo-crosslinking and implantation into SD rats for 4 weeks, thein vivobiocompatibility of the YM-MA-2 hydrogel is acceptable for tissue engineering applications. Hence, YM-MA-2 was chosen for 3D bioprinting. Our data demonstrated that hydrogel products with designed shape and living chondrocytes have been printed by applying YM-MA-2 as the bioink carrying chondrocytes. After the YM-MA-2 hydrogel with encapsulated chondrocytes was implanted subcutaneously in nude mice for 2 weeks, GAG and COLII secretion was confirmed by histological staining in YM-MA-2-H, indicating that the YM derived bioink can be potentially applied to tissue engineering by employing a 3D printer of stereolithography.
Collapse
Affiliation(s)
- Yuting Huang
- College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Yingbing Hu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Ning He
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Jing Li
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Xiaoxiao Han
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Guoqun Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
110
|
Virus-Induced CD8 + T-Cell Immunity and Its Exploitation to Contain the SARS-CoV-2 Pandemic. Vaccines (Basel) 2021; 9:vaccines9080922. [PMID: 34452047 PMCID: PMC8402519 DOI: 10.3390/vaccines9080922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
The current battle against Severe Acute Respiratory Syndrome (SARS)-Coronavirus-2 benefits from the worldwide distribution of different vaccine formulations. All anti-SARS-CoV-2 vaccines in use are conceived to induce anti-Spike neutralizing antibodies. However, this strategy still has unresolved issues, the most relevant of which are: (i) the resistance to neutralizing antibodies of emerging SARS-CoV-2 variants and (ii) the waning of neutralizing antibodies. On the other hand, both pre-clinical evidence and clinical evidence support the idea that the immunity sustained by antigen-specific CD8+ T lymphocytes can complement and also surrogate the antiviral humoral immunity. As a distinctive feature, anti-SARS-CoV-2 CD8+ T-driven immunity maintains its efficacy even in the presence of viral protein mutations. In addition, on the basis of data obtained in survivors of the SARS-CoV epidemic, this immunity is expected to last for several years. In this review, both the mechanisms and role of CD8+ T-cell immunity in viral infections, particularly those induced by SARS-CoV and SARS-CoV-2, are analyzed. Moreover, a CD8+ T-cell-based vaccine platform relying on in vivo engineered extracellular vesicles is described. When applied to SARS-CoV-2, this strategy was proven to induce a strong immunogenicity, holding great promise for its translation into the clinic.
Collapse
|
111
|
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6:291. [PMID: 34344870 PMCID: PMC8333067 DOI: 10.1038/s41392-021-00687-0] [Citation(s) in RCA: 643] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of receptors that can directly recognize the specific molecular structures on the surface of pathogens, apoptotic host cells, and damaged senescent cells. PRRs bridge nonspecific immunity and specific immunity. Through the recognition and binding of ligands, PRRs can produce nonspecific anti-infection, antitumor, and other immunoprotective effects. Most PRRs in the innate immune system of vertebrates can be classified into the following five types based on protein domain homology: Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and absent in melanoma-2 (AIM2)-like receptors (ALRs). PRRs are basically composed of ligand recognition domains, intermediate domains, and effector domains. PRRs recognize and bind their respective ligands and recruit adaptor molecules with the same structure through their effector domains, initiating downstream signaling pathways to exert effects. In recent years, the increased researches on the recognition and binding of PRRs and their ligands have greatly promoted the understanding of different PRRs signaling pathways and provided ideas for the treatment of immune-related diseases and even tumors. This review describes in detail the history, the structural characteristics, ligand recognition mechanism, the signaling pathway, the related disease, new drugs in clinical trials and clinical therapy of different types of PRRs, and discusses the significance of the research on pattern recognition mechanism for the treatment of PRR-related diseases.
Collapse
Affiliation(s)
- Danyang Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
112
|
Ouyang A, Wang H, Su J, Liu X. Mannose Receptor Mediates the Activation of Chitooligosaccharides on Blunt Snout Bream ( Megalobrama amblycephala) Macrophages. Front Immunol 2021; 12:686846. [PMID: 34408745 PMCID: PMC8365301 DOI: 10.3389/fimmu.2021.686846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chitooligosaccharide (COS) is an important immune enhancer and has been proven to have a variety of biological activities. Our previous research has established an M1 polarization mode by COS in blunt snout bream (Megalobrama amblycephala) macrophages, but the mechanism of COS activation of blunt snout bream macrophages remains unclear. In this study, we further explored the internalization mechanism and signal transduction pathway of chitooligosaccharide hexamer (COS6) in blunt snout bream macrophages. The results showed that mannose receptor C-type lectin-like domain 4-8 of M. amblycephala (MaMR CTLD4-8) could recognize and bind to COS6 and mediate COS6 into macrophages by both clathrin-dependent and caveolin-dependent pathways. In the inflammatory response of macrophages activated by COS6, the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide synthase 2 (NOS2) was significantly inhibited after MaMR CTLD4-8-specific antibody blockade. However, even if it was blocked, the expression of these inflammation-related genes was still relatively upregulated, which suggested that there are other receptors involved in immune regulation. Further studies indicated that MaMR CTLD4-8 and Toll-like receptor 4 (TLR4) cooperated to regulate the pro-inflammatory response of macrophages caused by COS6. Taken together, these results revealed that mannose receptor (MR) CTLD4-8 is indispensable in the process of recognition, binding, internalization, and immunoregulation of COS in macrophages of blunt snout bream.
Collapse
Affiliation(s)
- Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| |
Collapse
|
113
|
Soluble mannose receptor induces proinflammatory macrophage activation and metaflammation. Proc Natl Acad Sci U S A 2021; 118:2103304118. [PMID: 34326259 DOI: 10.1073/pnas.2103304118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.
Collapse
|
114
|
The Role of Macrophages in the Host's Defense against Sporothrix schenckii. Pathogens 2021; 10:pathogens10070905. [PMID: 34358055 PMCID: PMC8308788 DOI: 10.3390/pathogens10070905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.
Collapse
|
115
|
Stavenhagen K, Laan LC, Gao C, Mehta AY, Heimburg-Molinaro J, Glickman JN, van Die I, Cummings RD. Tumor cells express pauci- and oligomannosidic N-glycans in glycoproteins recognized by the mannose receptor (CD206). Cell Mol Life Sci 2021; 78:5569-5585. [PMID: 34089345 PMCID: PMC11072813 DOI: 10.1007/s00018-021-03863-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 01/21/2023]
Abstract
The macrophage mannose receptor (CD206, MR) is an endocytic lectin receptor which plays an important role in homeostasis and innate immunity, however, the endogenous glycan and glycoprotein ligands recognized by its C-type lectin domains (CTLD) have not been well studied. Here we used the murine MR CTLD4-7 coupled to the Fc-portion of human IgG (MR-Fc) to investigate the MR glycan and glycoprotein recognition. We probed 16 different cancer and control tissues using the MR-Fc, and observed cell- and tissue-specific binding with varying intensity. All cancer tissues and several control tissues exhibited MR-Fc ligands, intracellular and/or surface-located. We further confirmed the presence of ligands on the surface of cancer cells by flow cytometry. To characterize the fine specificity of the MR for glycans, we screened a panel of glycan microarrays. Remarkably, the results indicate that the CTLD4-7 of the MR is highly selective for specific types of pauci- and oligomannose N-glycans among hundreds of glycans tested. As lung cancer tissue and the lung cancer cell line A549 showed intense MR-Fc binding, we further investigated the MR glycoprotein ligands in those cells by immunoprecipitation and glycoproteomic analysis. All enriched glycoproteins, of which 42 were identified, contained pauci- or oligomannose N-glycans, confirming the microarray results. Our study demonstrates that the MR CTLD4-7 is highly selective for pauci- and oligomannosidic N-glycans, structures that are often elevated in tumor cells, and suggest a potential role for the MR in tumor biology.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
116
|
Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, Li D, Calvo R, Dashnyam M, Singh A, Guerin T, White J, Ravichandran S, Kumar P, Talsania K, Chen V, Ghebremedhin A, Karanam B, Bin Salam A, Amin R, Odzorig T, Aiken T, Nguyen V, Bian Y, Zarif JC, de Groot AE, Mehta M, Fan L, Hu X, Simeonov A, Pate N, Abu-Asab M, Ferrer M, Southall N, Ock CY, Zhao Y, Lopez H, Kozlov S, de Val N, Yates CC, Baljinnyam B, Marugan J, Rudloff U. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med 2021; 12:12/530/eaax6337. [PMID: 32051227 DOI: 10.1126/scitranslmed.aax6337] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.
Collapse
Affiliation(s)
- Jesse M Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Integrative Biosciences Program, Tuskegee University, Tuskegee, AL 36088, USA.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Rushikesh Sable
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wendy Bautista
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Zachary Knotts
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abisola Abisoye-Ogunniyan
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Myagmarjav Dashnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anju Singh
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Parimal Kumar
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Keyur Talsania
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Vicky Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ruksana Amin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Taivan Odzorig
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Taylor Aiken
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Victoria Nguyen
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yansong Bian
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amber E de Groot
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Mehta
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick, MD 21701, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chan-Young Ock
- Department of Hemato Oncology, Seoul National University Hospital, Seoul 03080, Korea
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA.,Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 21701, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
117
|
Ørntoft NW, Blé M, Baiges A, Ferrusquia J, Hernández-Gea V, Turon F, Magaz M, Møller S, Møller HJ, Garcia-Pagan JC, Gronbaek H. Divergences in Macrophage Activation Markers Soluble CD163 and Mannose Receptor in Patients With Non-cirrhotic and Cirrhotic Portal Hypertension. Front Physiol 2021; 12:649668. [PMID: 34177608 PMCID: PMC8231705 DOI: 10.3389/fphys.2021.649668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Macrophages are involved in development and progression of chronic liver disease and portal hypertension. The macrophage activation markers soluble (s)CD163 and soluble mannose receptor (sMR), are associated with portal hypertension in patient with liver cirrhosis but never investigated in patients with non-cirrhotic portal hypertension. We hypothesized higher levels in cirrhotic patients with portal hypertension than patients with non-cirrhotic portal hypertension. We investigated sCD163 and sMR levels in patients with portal hypertension due to idiopathic portal hypertension (IPH) and portal vein thrombosis (PVT) in patients with and without cirrhosis. Methods We studied plasma sCD163 and sMR levels in patients with IPH (n = 26), non-cirrhotic PVT (n = 20), patients with cirrhosis without PVT (n = 31) and with PVT (n = 17), and healthy controls (n = 15). Results Median sCD163 concentration was 1.51 (95% CI: 1.24-1.83) mg/L in healthy controls, 1.96 (95% CI: 1.49-2.56) in patients with non-cirrhotic PVT and 2.16 (95% CI: 1.75-2.66) in patients with IPH. There was no difference between non-cirrhotic PVT patients and healthy controls, whereas IPH patients had significantly higher levels than controls (P < 0.05). The median sCD163 was significantly higher in the cirrhotic groups compared to the other groups, with a median sCD163 of 6.31 (95% CI: 5.16-7.73) in cirrhotics without PVT and 5.19 (95% CI: 4.18-6.46) with PVT (P < 0.01, all). Similar differences were observed for sMR. Conclusion Soluble CD163 and sMR levels are elevated in patients with IPH and patients with cirrhosis, but normal in patients with non-cirrhotic PVT. This suggests that hepatic macrophage activation is more driven by the underlying liver disease with cirrhosis than portal hypertension.
Collapse
Affiliation(s)
- Nikolaj Worm Ørntoft
- Department of Hepatology and Gastroenterology, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Aarhus University Hospital, Aarhus, Denmark
| | - Michel Blé
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna Baiges
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jose Ferrusquia
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Virginia Hernández-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Fanny Turon
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Marta Magaz
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Søren Møller
- Center of Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine 260, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Juan Carlos Garcia-Pagan
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Henning Gronbaek
- Department of Hepatology and Gastroenterology, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
118
|
Reif A, Lam K, Weidler S, Lott M, Boos I, Lokau J, Bretscher C, Mönnich M, Perkams L, Schmälzlein M, Graf C, Fischer J, Lechner C, Hallstein K, Becker S, Weyand M, Steegborn C, Schultheiss G, Rose‐John S, Garbers C, Unverzagt C. Natural Glycoforms of Human Interleukin 6 Show Atypical Plasma Clearance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andreas Reif
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Kevin Lam
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Sascha Weidler
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Marie Lott
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Irene Boos
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Juliane Lokau
- Department of Pathology Medical Faculty Otto von Guericke University Magdeburg 39120 Magdeburg Germany
| | | | - Manuel Mönnich
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Lukas Perkams
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Marina Schmälzlein
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Christopher Graf
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Jan‐Patrick Fischer
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Carolin Lechner
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Kerstin Hallstein
- Protein Engineering & Antibody Technologies Merck Healthcare KGaA Frankfurter Str. 250 64293 Darmstadt Germany
| | - Stefan Becker
- Protein Engineering & Antibody Technologies Merck Healthcare KGaA Frankfurter Str. 250 64293 Darmstadt Germany
| | - Michael Weyand
- Department of Biochemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Clemens Steegborn
- Department of Biochemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | | | | | - Christoph Garbers
- Department of Pathology Medical Faculty Otto von Guericke University Magdeburg 39120 Magdeburg Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
119
|
Liao W, Akahira S, Hara RI, Wada T, Kusamori K, Takakura Y, Nishikawa M. Enhanced Immunostimulatory Activity of CpG Oligodeoxynucleotide by the Combination of Mannose Modification and Incorporation into Nanostructured DNA. Biol Pharm Bull 2021; 43:1188-1195. [PMID: 32741939 DOI: 10.1248/bpb.b20-00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immunostimulatory activity of unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) could be improved via delivery to immune cells expressing Toll-like receptor 9 (TLR9). Previously, we showed that the polypod-like structured nucleic acid (polypodna), a nanostructured DNA comprised of three or more ODNs, was an efficient system for the delivery of CpG ODNs to immune cells. Because some TLR9-positive immune cells express mannose receptors (MR), the uptake of polypodna by immune cells can be further increased by its modification with mannose. In this study, we selected the phosphodiester CpG ODN, ODN1668, which has a sequence identical to CpG1668, and a hexapodna, a polypodna with six pods, to design a hexapodna that harbored ODN1668 or the mannosylated CpG ODN (Man-ODN1668) synthesized via modification of the 5'-terminal of ODN1668 with a synthesized mannose motif. By mixing ODN1668 or Man-ODN1668 with the hexapodna, ODN1668/hexapodna and Man-ODN1668/hexapodna were successfully formed with high yields. However, Man-ODN1668/hexapodna was found to induce a greater tumor necrosis factor-α release from TLR9- and MR-positive mouse peritoneal macrophages and macrophage-like J774.1 cells than Man-ODN1668 or ODN1668/hexapodna. These results indicate that the combination of mannose modification and incorporation into nanostructured DNA is a useful approach for enhancing the immunostimulatory activity of CpG ODN.
Collapse
Affiliation(s)
- Wenqing Liao
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University.,Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sakiko Akahira
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Rintaro Iwata Hara
- Laboratory of Organic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Takeshi Wada
- Laboratory of Organic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
120
|
Arima H. Twenty Years of Research on Cyclodextrin Conjugates with PAMAM Dendrimers. Pharmaceutics 2021; 13:697. [PMID: 34064866 PMCID: PMC8151880 DOI: 10.3390/pharmaceutics13050697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, the number of gene and oligonucleotide drugs are increasing. Of various drug delivery systems (DDSs) for gene and oligonucleotide drugs, few examples of the clinical application of polymer as drug carriers are known, despite development of the novel polymers has been progressing. Cyclodextrin (CD) conjugates with starburst polyamidoamine (PAMAM) dendrimer (CDEs), as a new type of polymer-based carriers, were first published in 2001. After that, galactose-, lactose-, mannose-, fucose-, folate-, and polyethyleneglycol (PEG)-appended CDEs have been prepared for passive and active targeting for gene, oligonucleotide, and low-molecular-weight drugs. PEG-appended CDE formed polypsuedorotaxanes with α-CD and γ-CD, which are useful for a sustained release system of gene and oligonucleotide drugs. Interestingly, CDEs were found to have anti-inflammatory effects and anti-amyloid effects themselves, which have potential as active pharmaceutical ingredients. Most recently, CDE is reported to be a useful Cas9-RNA ribonucleoproteins (Cas9 RNP) carrier that induces genome editing in the neuron and brain. In this review, the history and progression of CDEs are overviewed.
Collapse
Affiliation(s)
- Hidetoshi Arima
- School of Pharmacy, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan
| |
Collapse
|
121
|
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021; 9:520. [PMID: 34066608 PMCID: PMC8148582 DOI: 10.3390/biomedicines9050520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The current health crisis caused by coronavirus 2019 (COVID-19) and associated pathogens emphasize the urgent need for vaccine systems that can generate protective and long-lasting immune responses. Vaccination, employing peptides, nucleic acids, and other molecules, or using pathogen-based strategies, in fact, is one of the most potent approaches in the management of viral diseases. However, the vaccine candidate requires protection from degradation and precise delivery to the target cells. This can be achieved by employing different types of drug and vaccine delivery strategies, among which, nanotechnology-based systems seem to be more promising. This entry aims to provide insight into major aspects of vaccine design and formulation to address different diseases, including the recent outbreak of SARS-CoV-2. Special emphasis of this review is on the technical and practical aspects of vaccine construction and theranostic approaches to precisely target and localize the active compounds.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - Bahar Bahramimeimandi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - M. Salehi-Shadkami
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Patcharida Chaosri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
| | - M. R. Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
122
|
Reif A, Lam K, Weidler S, Lott M, Boos I, Lokau J, Bretscher C, Mönnich M, Perkams L, Schmälzlein M, Graf C, Fischer JP, Lechner C, Hallstein K, Becker S, Weyand M, Steegborn C, Schultheiss G, Rose-John S, Garbers C, Unverzagt C. Natural Glycoforms of Human Interleukin 6 Show Atypical Plasma Clearance. Angew Chem Int Ed Engl 2021; 60:13380-13387. [PMID: 33756033 PMCID: PMC8251587 DOI: 10.1002/anie.202101496] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/18/2022]
Abstract
A library of glycoforms of human interleukin 6 (IL‐6) comprising complex and mannosidic N‐glycans was generated by semisynthesis. The three segments were connected by sequential native chemical ligation followed by two‐step refolding. The central glycopeptide segments were assembled by pseudoproline‐assisted Lansbury aspartylation and subsequent enzymatic elongation of complex N‐glycans. Nine IL‐6 glycoforms were synthesized, seven of which were evaluated for in vivo plasma clearance in rats and compared to non‐glycosylated recombinant IL‐6 from E. coli. Each IL‐6 glycoform was tested in three animals and reproducibly showed individual serum clearances depending on the structure of the N‐glycan. The clearance rates were atypical, since the 2,6‐sialylated glycoforms of IL‐6 cleared faster than the corresponding asialo IL‐6 with terminal galactoses. Compared to non‐glycosylated IL‐6 the plasma clearance of IL‐6 glycoforms was delayed in the presence of larger and multibranched N‐glycans in most cases
Collapse
Affiliation(s)
- Andreas Reif
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Kevin Lam
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Sascha Weidler
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marie Lott
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Irene Boos
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | | | - Manuel Mönnich
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Lukas Perkams
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marina Schmälzlein
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Christopher Graf
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Jan-Patrick Fischer
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Carolin Lechner
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Kerstin Hallstein
- Protein Engineering & Antibody Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering & Antibody Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | | | - Stefan Rose-John
- Department of Biochemistry, Kiel University, 24098, Kiel, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
123
|
Villar J, Salazar ML, Jiménez JM, Campo MD, Manubens A, Gleisner MA, Ávalos I, Salazar-Onfray F, Salazar F, Mitchell DA, Alshahrani MY, Martínez-Pomares L, Becker MI. C-type lectin receptors MR and DC-SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. Eur J Immunol 2021; 51:1715-1731. [PMID: 33891704 DOI: 10.1002/eji.202149225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Hemocyanins are used as immunomodulators in clinical applications because they induce a strong Th1-biased cell-mediated immunity, which has beneficial effects. They are multiligand glycosylated molecules with abundant and complex mannose-rich structures. It remains unclear whether these structures influence hemocyanin-induced immunostimulatory processes in human APCs. We have previously shown that hemocyanin glycans from Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), participate in their immune recognition and immunogenicity in mice, interacting with murine C-type lectin receptors (CLRs). Here, we studied the interactions of these hemocyanins with two major mannose-binding CLRs on monocyte-derived human DCs: MR (mannose receptor) and DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin). Diverse analyses showed that hemocyanins are internalized by a mannose-sensitive mechanism. This process was calcium dependent. Moreover, hemocyanins colocalized with MR and DC-SIGN, and were partly internalized through clathrin-mediated endocytosis. The hemocyanin-mediated proinflammatory cytokine response was impaired when using deglycosylated FLH and KLH compared to CCH. We further showed that hemocyanins bind to human MR and DC-SIGN in a carbohydrate-dependent manner with affinity constants in the physiological concentration range. Overall, we showed that these three clinically valuable hemocyanins interact with human mannose-sensitive CLRs, initiating an immune response and promoting a Th1 cell-driving potential.
Collapse
Affiliation(s)
- Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - José M Jiménez
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Ignacio Ávalos
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Daniel A Mitchell
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| |
Collapse
|
124
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
125
|
Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC. Effect of O-linked glycosylation on the antigenicity, cellular uptake and trafficking in dendritic cells of recombinant Ber e 1. PLoS One 2021; 16:e0249876. [PMID: 33914740 PMCID: PMC8084162 DOI: 10.1371/journal.pone.0249876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
Collapse
Affiliation(s)
- Nuzul N. Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Susan Liddell
- Division of Animal Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Luisa Martinez-Pomares
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Marcos J. C. Alcocer
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
126
|
Arve-Butler S, Schmidt T, Mossberg A, Berthold E, Gullstrand B, Bengtsson AA, Kahn F, Kahn R. Synovial fluid neutrophils in oligoarticular juvenile idiopathic arthritis have an altered phenotype and impaired effector functions. Arthritis Res Ther 2021; 23:109. [PMID: 33836809 PMCID: PMC8034063 DOI: 10.1186/s13075-021-02483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neutrophils are the most prevalent immune cells in the synovial fluid in inflamed joints of children with oligoarticular juvenile idiopathic arthritis (JIA). Despite this, little is known about neutrophil function at the site of inflammation in JIA and how local neutrophils contribute to disease pathogenesis. This study aimed to characterize the phenotype and function of synovial fluid neutrophils in oligoarticular JIA. Methods Neutrophils obtained from paired blood and synovial fluid from patients with active oligoarticular JIA were investigated phenotypically (n = 17) and functionally (phagocytosis and oxidative burst, n = 13) by flow cytometry. In a subset of patients (n = 6), blood samples were also obtained during inactive disease at a follow-up visit. The presence of CD206-expressing neutrophils was investigated in synovial biopsies from four patients by immunofluorescence. Results Neutrophils in synovial fluid had an activated phenotype, characterized by increased CD66b and CD11b levels, and most neutrophils had a CD16hi CD62Llowaged phenotype. A large proportion of the synovial fluid neutrophils expressed CD206, a mannose receptor not commonly expressed by neutrophils but by monocytes, macrophages, and dendritic cells. CD206-expressing neutrophils were also found in synovial tissue biopsies. The synovial fluid neutrophil phenotype was not dependent on transmigration alone. Functionally, synovial fluid neutrophils had reduced phagocytic capacity and a trend towards impaired oxidative burst compared to blood neutrophils. In addition, the effector functions of the synovial fluid neutrophils correlated negatively with the proportion of CD206+ neutrophils. Conclusions Neutrophils in the inflamed joint in oligoarticular JIA were altered, both regarding phenotype and function. Neutrophils in the synovial fluid were activated, had an aged phenotype, had gained monocyte-like features, and had impaired phagocytic capacity. The impairment in phagocytosis and oxidative burst was associated with the phenotype shift. We speculate that these neutrophil alterations might play a role in the sustained joint inflammation seen in JIA.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anki Mossberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Elisabet Berthold
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Department of Infection Medicine, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Robin Kahn
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
127
|
Cells with Many Talents: Lymphatic Endothelial Cells in the Brain Meninges. Cells 2021; 10:cells10040799. [PMID: 33918497 PMCID: PMC8067019 DOI: 10.3390/cells10040799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The lymphatic system serves key functions in maintaining fluid homeostasis, the uptake of dietary fats in the small intestine, and the trafficking of immune cells. Almost all vascularized peripheral tissues and organs contain lymphatic vessels. The brain parenchyma, however, is considered immune privileged and devoid of lymphatic structures. This contrasts with the notion that the brain is metabolically extremely active, produces large amounts of waste and metabolites that need to be cleared, and is especially sensitive to edema formation. Recently, meningeal lymphatic vessels in mammals and zebrafish have been (re-)discovered, but how they contribute to fluid drainage is still not fully understood. Here, we discuss these meningeal vessel systems as well as a newly described cell population in the zebrafish and mouse meninges. These cells, termed brain lymphatic endothelial cells/Fluorescent Granular Perithelial cells/meningeal mural lymphatic endothelial cells in fish, and Leptomeningeal Lymphatic Endothelial Cells in mice, exhibit remarkable features. They have a typical lymphatic endothelial gene expression signature but do not form vessels and rather constitute a meshwork of single cells, covering the brain surface.
Collapse
|
128
|
Toribio RE, Young N, Schlesinger LS, Cope FO, Ralph DA, Jarjour W, Rosol TJ. Cy3-tilmanocept labeling of macrophages in joints of mice with antibody-induced arthritis and synovium of human patients with rheumatoid arthritis. J Orthop Res 2021; 39:821-830. [PMID: 33107629 DOI: 10.1002/jor.24900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
γ-Tilmanocept (99m Tc-tilmanocept) is a receptor-directed, radiolabeled tracer that is FDA-approved for guiding sentinel lymph node biopsy. Tilmanocept binds the C-type lectin mannose receptor (MR, CD206) on macrophages. In this study, nonradioactive, fluorescently-labeled Cy3-tilmanocept was used to detect CD206+ mononuclear cells in the cartilage of mice with antibody-induced arthritis and in the synovial fluid and tissue of human subjects with rheumatoid arthritis (RA) for comparison with osteoarthritis (OA), and healthy volunteer (HV) controls. Murine arthritis was induced by injection of monoclonal anti-cartilage antibody followed by injection of Escherichia coli lipopolysaccharide. Post-arthritis development (7-11 days), the mice were injected intravenously with Cy3-tilmanocept followed by in vivo and ex vivo epifluorescence imaging. Two-photon imaging, immunofluorescence, and immunohistochemistry were used to identify articular and synovial macrophages (CD206, F4/80, and Cy3-tilmanocept binding) in murine tissues. Cy3-tilmanocept epifluorescence was present in arthritic knees and elbows of murine tissues; no radiographic changes were noted in the skeletons. However, inflammatory arthritic changes were apparent by histopathology and immunohistochemistry (F4/80), immunofluorescence (CD206) and Cy3-tilmanocept binding. In human RA synovial fluid, Cy3-tilmanocept staining correlated with CD206+ /CD16+ cells; negligible labeling was observed in OA samples. Cy3-tilmanocept colocalized with CD206 and staining was significantly higher in RA synovial tissue compared to OA or HV. Our results demonstrate that imaging with Cy3-tilmanocept can detect in vivo inflammatory, CD206+ macrophages in an early arthritis animal model and in human RA patients. These data establish a novel tool for preclinical research of early arthritis and have implications for early RA detection and monitoring of therapeutic efficacy in humans.
Collapse
Affiliation(s)
- Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas Young
- Division of Rheumatology and Immunology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, USA.,Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Fred O Cope
- Navidea Biopharmaceuticals, Inc., Dublin, Ohio, USA.,Physis International LLC, Westerville, Ohio, USA
| | | | - Wael Jarjour
- Division of Rheumatology and Immunology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
129
|
Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021; 167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Macrophages are a type of functionally plastic cells that can create a pro-/anti-inflammatory microenvironment for organs by producing different kinds of cytokines, chemokines, and growth factors to regulate immunity and inflammatory responses. In addition, they can also be induced to adopt different phenotypes in response to extracellular and intracellular signals, a process defined as M1/M2 polarization. Growing evidence indicates that glycobiology is closely associated with this polarization process. In this research, we review studies of the roles of glycosylation, glucose metabolism, and key lectins in the regulation of macrophages function and polarization to provide a new perspective for immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110000, China
| | - Xibo Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoqing Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaohan Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinghe Chen
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
130
|
Cao H, Antonopoulos A, Henderson S, Wassall H, Brewin J, Masson A, Shepherd J, Konieczny G, Patel B, Williams ML, Davie A, Forrester MA, Hall L, Minter B, Tampakis D, Moss M, Lennon C, Pickford W, Erwig L, Robertson B, Dell A, Brown GD, Wilson HM, Rees DC, Haslam SM, Alexandra Rowe J, Barker RN, Vickers MA. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun 2021; 12:1792. [PMID: 33741926 PMCID: PMC7979802 DOI: 10.1038/s41467-021-21814-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
In both sickle cell disease and malaria, red blood cells (RBCs) are phagocytosed in the spleen, but receptor-ligand pairs mediating uptake have not been identified. Here, we report that patches of high mannose N-glycans (Man5-9GlcNAc2), expressed on diseased or oxidized RBC surfaces, bind the mannose receptor (CD206) on phagocytes to mediate clearance. We find that extravascular hemolysis in sickle cell disease correlates with high mannose glycan levels on RBCs. Furthermore, Plasmodium falciparum-infected RBCs expose surface mannose N-glycans, which occur at significantly higher levels on infected RBCs from sickle cell trait subjects compared to those lacking hemoglobin S. The glycans are associated with high molecular weight complexes and protease-resistant, lower molecular weight fragments containing spectrin. Recognition of surface N-linked high mannose glycans as a response to cellular stress is a molecular mechanism common to both the pathogenesis of sickle cell disease and resistance to severe malaria in sickle cell trait.
Collapse
Affiliation(s)
- Huan Cao
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sadie Henderson
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Heather Wassall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - John Brewin
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Alanna Masson
- grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jenna Shepherd
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gabriela Konieczny
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bhinal Patel
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Maria-Louise Williams
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adam Davie
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Megan A. Forrester
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lindsay Hall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Minter
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Dimitris Tampakis
- grid.13097.3c0000 0001 2322 6764Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University and Division of Cancer Studies, King’s College London, London, UK
| | - Michael Moss
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Charlotte Lennon
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Wendy Pickford
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lars Erwig
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Robertson
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Gordon D. Brown
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.8391.30000 0004 1936 8024Medical Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Heather M. Wilson
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C. Rees
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Stuart M. Haslam
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - J. Alexandra Rowe
- grid.4305.20000 0004 1936 7988Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Robert N. Barker
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mark A. Vickers
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK ,grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
131
|
Shinchi H, Yuki M, Yamauchi T, Niimura M, Wakao M, Cottam HB, Hayashi T, Carson DA, Moroishi T, Suda Y. Glyco-Nanoadjuvants: Sugar Structures on Carriers of a Small Molecule TLR7 Ligand Affect Their Immunostimulatory Activities. ACS APPLIED BIO MATERIALS 2021; 4:2732-2741. [PMID: 35014312 DOI: 10.1021/acsabm.0c01639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that activate innate immunity, and their ligands are promising adjuvants for vaccines and immunotherapies. Small molecule TLR7 ligands are ideal vaccine adjuvants as they induce not only proinflammatory cytokines but also type I interferons. However, their application has only been approved for local administration due to severe systemic immune-related adverse events. In a previous study, we prepared the gold nanoparticles coimmobilized with synthetic small molecule TLR7 ligand, 1V209, and α-mannose (1V209-αMan-GNPs). 1V209-αMan-GNPs were selectively delivered via a cell surface sugar-binding protein, mannose receptor, which enabled selective delivery of TLR7 ligands to immune cells. Besides the mannose receptor, immune cells express various sugar-binding proteins such as macrophage galactose binding lectins and sialic acid-binding immunoglobulin-type lectins and recognize distinct sugar structures. Hence, in the present study, we investigated whether sugar structures on GNPs affect the efficiency and selectivity of intracellular delivery and subsequent immunostimulatory potencies. Five neutral sugars and two sialosides were selected and each sugar was coimmobilized with 1V209 onto GNPs (1V209-SGNPs) and their innate immunostimulatory potencies were compared to that of 1V209-αMan-GNPs. The in vitro study using mouse bone marrow derived dendritic cells (BMDCs) demonstrated that α-glucose, α-N-acetylglucosamine, or α-fucose immobilized 1V209-SGNPs increased interleukin-6 and type I interferon release similar to that of 1V209-αMan-GNPs, whereas galacto-type sugar immobilized 1V209-SGNPs predominantly enhanced type I interferon release. In contrast, sialoside immobilized 1V209-SGNPs did not enhance the potency of 1V209. In the in vivo immunization study using ovalbumin as a model antigen, neutral sugar immobilized 1V209-SGNPs induced comparable T helper-1 immune response to that of 1V209-αMan-GNPs and by 10-fold higher than that of sialoside immobilized 1V209-SGNPs. These results indicate that the sugar structures on 1V209-SGNPs affect their immunostimulatory activities, and functionalization of the carrier particles is important to shape immune responses.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Masaharu Yuki
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Takayoshi Yamauchi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mayumi Niimura
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.,SUDx-Biotec Corporation, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
132
|
Bossen L, Vesterhus M, Hov JR, Färkkilä M, Rosenberg WM, Møller HJ, Boberg KM, Karlsen TH, Grønbæk H. Circulating Macrophage Activation Markers Predict Transplant-Free Survival in Patients With Primary Sclerosing Cholangitis. Clin Transl Gastroenterol 2021; 12:e00315. [PMID: 33646203 PMCID: PMC7925135 DOI: 10.14309/ctg.0000000000000315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a progressive liver disease characterized by bile duct inflammation and fibrosis. The role of macrophages in PSC development and progression is less studied. Macrophage activation markers soluble (s)CD163 and mannose receptor (sMR) are associated with disease severity and outcome in other liver diseases, but not previously investigated in PSC. We evaluated sCD163 and sMR regarding disease severity and prognosis in patients with PSC. METHODS We investigated 2 independent PSC cohorts from Oslo (n = 138) and Helsinki (n = 159) and analyzed blood sCD163 and sMR levels. The Mayo score, Enhanced Liver Fibrosis Test, and Amsterdam-Oxford model were assessed for comparison. RESULTS Median (interquartile range) sCD163 was 3.32 (2.27-5.60) and 1.96 (1.47-2.70) mg/L in the Oslo and Helsinki cohorts, respectively, reflecting differences in disease severity between cohorts. Median sMR was similar in both cohorts, 0.28 (0.22-0.44) and 0.28 mg/L (0.20-0.36), respectively. In both cohorts, sCD163 and sMR levels raised with increasing disease severity (liver enzymes, Mayo score, and enhanced liver fibrosis test). Patients with high baseline levels of sCD163 had shorter transplant-free survival than patients with low baseline levels. Furthermore, sCD163 was associated with transplant-free survival in univariate cox-regression analyses. Both sCD163 and sMR performed better in the Oslo cohort of more severely diseased patients than those in the Helsinki cohort of more mildly diseased patients. DISCUSSION Macrophage activation markers are elevated according to disease severity suggesting an important role of macrophages in PSC. Furthermore, sCD163 was identified as a prognostic marker and predictor of transplant-free survival in PSC (see Visual Abstract, Supplementary Digital Content 4, http://links.lww.com/CTG/A516).
Collapse
MESH Headings
- Adult
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomarkers/blood
- Biomarkers/metabolism
- Case-Control Studies
- Cholangitis, Sclerosing/blood
- Cholangitis, Sclerosing/immunology
- Cholangitis, Sclerosing/mortality
- Cholangitis, Sclerosing/surgery
- Disease Progression
- End Stage Liver Disease/blood
- End Stage Liver Disease/epidemiology
- End Stage Liver Disease/immunology
- End Stage Liver Disease/surgery
- Female
- Finland/epidemiology
- Humans
- Liver Transplantation/statistics & numerical data
- Macrophage Activation
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/metabolism
- Middle Aged
- Norway/epidemiology
- Prognosis
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/analysis
- Receptors, Immunologic/metabolism
- Registries/statistics & numerical data
- Retrospective Studies
- Risk Assessment/methods
- Severity of Illness Index
Collapse
Affiliation(s)
- Lars Bossen
- Department of Hepatology & Gastroenterology, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Aarhus University Hospital, Aarhus, Denmark;
| | - Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway;
- Department of Clinical Science, University of Bergen, Bergen, Norway;
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway;
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway;
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;
| | - Martti Färkkilä
- Helsinki University, Clinic of Gastroenterology, Helsinki University Hospital, Helsinki, Finland;
| | - William M. Rosenberg
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London & Royal Free London, NHS Foundation Trust, London, UK;
| | - Holger J. Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | - Kirsten M. Boberg
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway;
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway;
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Oslo University Hospital Rikshospitalet, Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway;
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway;
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Aarhus University Hospital, Aarhus, Denmark;
| |
Collapse
|
133
|
Lin B, Wang Q, Liu K, Dong X, Zhu M, Li M. Alpha-Fetoprotein Binding Mucin and Scavenger Receptors: An Available Bio-Target for Treating Cancer. Front Oncol 2021; 11:625936. [PMID: 33718192 PMCID: PMC7947232 DOI: 10.3389/fonc.2021.625936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Alpha-fetoprotein (AFP) entrance into cancer cells is mediated by AFP receptors (AFPRs) and exerts malignant effects. Therefore, understanding the structure of AFPRs will facilitate the development of rational approaches for vaccine design, drug delivery, antagonizing immune suppression and diagnostic imaging to treat cancer effectively. Throughout the last three decades, the identification of universal receptors for AFP has failed due to their complex carbohydrate polymer structures. Here, we focused on the two types of binding proteins or receptors that may serve as AFPRs, namely, the A) mucin receptors family, and B) the scavenger family. We presented an informative review with detailed descriptions of the signal transduction, cross-talk, and interplay of various transcription factors which highlight the downstream events following AFP binding to mucin or scavenger receptors. We mainly explored the underlying mechanisms involved mucin or scavenger receptors that interact with AFP, provide more evidence to support these receptors as tumor AFPRs, and establish a theoretical basis for targeting therapy of cancer.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China.,Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
134
|
Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021; 9:biomedicines9020212. [PMID: 33669804 PMCID: PMC7922638 DOI: 10.3390/biomedicines9020212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The impact of inflammation on the outcome of many medical conditions such as cardiovascular diseases, neurological disorders, infections, cancer, and autoimmune diseases has been widely acknowledged. However, in contrast to neurological, oncologic, and cardiovascular disorders, imaging plays a minor role in research and management of inflammation. Imaging can provide insights into individual and temporospatial biology and grade of inflammation which can be of diagnostic, therapeutic, and prognostic value. There is therefore an urgent need to evaluate and understand current approaches and potential applications for imaging of inflammation. This review discusses radiotracers for positron emission tomography (PET) that have been used to image inflammation in cardiovascular diseases and other inflammatory conditions with a special emphasis on radiotracers that have already been successfully applied in clinical settings.
Collapse
|
135
|
Kozak RP, Mondragon-Shem K, Williams C, Rose C, Perally S, Caljon G, Van Den Abbeele J, Wongtrakul-Kish K, Gardner RA, Spencer D, Lehane MJ, Acosta-Serrano Á. Tsetse salivary glycoproteins are modified with paucimannosidic N-glycans, are recognised by C-type lectins and bind to trypanosomes. PLoS Negl Trop Dis 2021; 15:e0009071. [PMID: 33529215 PMCID: PMC7880456 DOI: 10.1371/journal.pntd.0009071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/12/2021] [Accepted: 12/14/2020] [Indexed: 12/01/2022] Open
Abstract
African sleeping sickness is caused by Trypanosoma brucei, a parasite transmitted by the bite of a tsetse fly. Trypanosome infection induces a severe transcriptional downregulation of tsetse genes encoding for salivary proteins, which reduces its anti-hemostatic and anti-clotting properties. To better understand trypanosome transmission and the possible role of glycans in insect bloodfeeding, we characterized the N-glycome of tsetse saliva glycoproteins. Tsetse salivary N-glycans were enzymatically released, tagged with either 2-aminobenzamide (2-AB) or procainamide, and analyzed by HILIC-UHPLC-FLR coupled online with positive-ion ESI-LC-MS/MS. We found that the N-glycan profiles of T. brucei-infected and naïve tsetse salivary glycoproteins are almost identical, consisting mainly (>50%) of highly processed Man3GlcNAc2 in addition to several other paucimannose, high mannose, and few hybrid-type N-glycans. In overlay assays, these sugars were differentially recognized by the mannose receptor and DC-SIGN C-type lectins. We also show that salivary glycoproteins bind strongly to the surface of transmissible metacyclic trypanosomes. We suggest that although the repertoire of tsetse salivary N-glycans does not change during a trypanosome infection, the interactions with mannosylated glycoproteins may influence parasite transmission into the vertebrate host. In addition to helping the ingestion of a bloodmeal, the saliva of vector insects can modulate vertebrate immune responses. However, most research has focused on the salivary proteins, while the sugars (glycans) that modify them remain unexplored. Here we studied N-glycosylation, a common post-translational modification where sugar structures are attached to specific sites of a protein. Insect salivary N-glycans may affect how the saliva is recognized by the host, possibly playing a role during pathogen transmission. In this manuscript, we present the first detailed structural characterization of the salivary N-glycans in the tsetse fly Glossina morsitans, vector of African trypanosomiasis. We found that tsetse fly glycoproteins are mainly modified by simple N-glycans with short mannose modifications, which are recognised by mammalian C-type lectins (mannose receptor and DC-SIGN). Furthermore, we show that salivary glycoproteins bind to the surface of the trypanosomes that are transmitted to the vertebrate host; this opens up interesting questions as to the role of these glycoproteins in the successful establishment of infection by this parasite. Overall, our work represents a novel contribution towards the salivary N-glycome of an important insect vector, and towards the understanding of vector saliva and its complex effects in the vertebrate host.
Collapse
Affiliation(s)
| | - Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christopher Williams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samirah Perally
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | - Daniel Spencer
- Ludger Ltd., Culham Science Centre, Oxford, United Kingdom
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
136
|
Zlatina K, Galuska SP. The N-glycans of lactoferrin: more than just a sweet decoration. Biochem Cell Biol 2021; 99:117-127. [DOI: 10.1139/bcb-2020-0106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nearly all extracellular proteins undergo post-translational modification with sugar chains during their transit through the endoplasmic reticulum and the Golgi apparatus. These “sweet” modifications not only influence the activity of its carrier protein, but they themselves often have bioactivity, independent of the carrier function. Lactoferrin belongs to the group of glycoproteins and is modified with several different N-glycans. This minireview summarizes several studies dealing with the diverse glycosylation patterns of lactoferrin from different origins, and the potential impact of these post-translational modifications on the functionality of lactoferrin. A special emphasis is placed on the differences between human and bovine lactoferrin, because the latter form is often selected for the development of novel therapeutic approaches in humans. For this reason, the potential impact of the bovine-specific glycosylation patterns on the observed heterogeneous effects of lactoferrin in humans is discussed within this minireview.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
137
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
138
|
Gantzel RH, Kjær MB, Laursen TL, Kazankov K, George J, Møller HJ, Grønbæk H. Macrophage Activation Markers, Soluble CD163 and Mannose Receptor, in Liver Fibrosis. Front Med (Lausanne) 2021; 7:615599. [PMID: 33490096 PMCID: PMC7820116 DOI: 10.3389/fmed.2020.615599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are essential components of the human host immune system, which upon activation facilitates a broad pallet of immunomodulatory events including release of pro- or anti-inflammatory cytokines and chemokines, restoration of immune homeostasis and/or wound healing. Moreover, some macrophage phenotypes are crucially involved in fibrogenesis through stimulation of myofibroblasts, while others promote fibrolysis. During the last decades, the role of resident liver macrophages viz. Kupffer cells and recruited monocytes/macrophages in acute and chronic liver diseases has gained interest and been extensively investigated. Specifically, the scavenger receptors CD163 and mannose receptor (CD206), expressed by macrophages, are of utmost interest since activation by various stimuli induce their shedding to the circulation. Thus, quantifying concentrations of these soluble biomarkers may be of promising clinical relevance in estimating the severity of inflammation and fibrosis and to predict outcomes such as survival. Here, we review the existing literature on soluble CD163 and soluble mannose receptor in liver diseases with a particular focus on their relationship to hepatic fibrosis in metabolic associated fatty liver disease, as well as in chronic hepatitis B and C.
Collapse
Affiliation(s)
| | - Mikkel Breinholt Kjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.,Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
139
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
140
|
Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release 2021; 329:676-695. [DOI: 10.1016/j.jconrel.2020.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
|
141
|
Väyrynen JP, Haruki K, Lau MC, Väyrynen SA, Zhong R, Dias Costa A, Borowsky J, Zhao M, Fujiyoshi K, Arima K, Twombly TS, Kishikawa J, Gu S, Aminmozaffari S, Shi S, Baba Y, Akimoto N, Ugai T, Da Silva A, Guerriero JL, Song M, Wu K, Chan AT, Nishihara R, Fuchs CS, Meyerhardt JA, Giannakis M, Ogino S, Nowak JA. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res 2021; 9:8-19. [PMID: 33023967 PMCID: PMC7785652 DOI: 10.1158/2326-6066.cir-20-0527] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Macrophages are among the most common cells in the colorectal cancer microenvironment, but their prognostic significance is incompletely understood. Using multiplexed immunofluorescence for CD68, CD86, IRF5, MAF, MRC1 (CD206), and KRT (cytokeratins) combined with digital image analysis and machine learning, we assessed the polarization spectrum of tumor-associated macrophages in 931 colorectal carcinomas. We then applied Cox proportional hazards regression to assess prognostic survival associations of intraepithelial and stromal densities of M1-like and M2-like macrophages while controlling for potential confounders, including stage and microsatellite instability status. We found that high tumor stromal density of M2-like macrophages was associated with worse cancer-specific survival, whereas tumor stromal density of M1-like macrophages was not significantly associated with better cancer-specific survival. High M1:M2 density ratio in tumor stroma was associated with better cancer-specific survival. Overall macrophage densities in tumor intraepithelial or stromal regions were not prognostic. These findings suggested that macrophage polarization state, rather than their overall density, was associated with cancer-specific survival, with M1- and M2-like macrophage phenotypes exhibiting distinct prognostic roles. These results highlight the utility of a multimarker strategy to assess the macrophage polarization at single-cell resolution within the tumor microenvironment.
Collapse
Affiliation(s)
- Juha P Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Simeng Gu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Saina Aminmozaffari
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yoshifumi Baba
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Annacarolina Da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
142
|
Elchaninov A, Lokhonina A, Nikitina M, Vishnyakova P, Makarov A, Arutyunyan I, Poltavets A, Kananykhina E, Kovalchuk S, Karpulevich E, Bolshakova G, Sukhikh G, Fatkhudinov T. Comparative Analysis of the Transcriptome, Proteome, and miRNA Profile of Kupffer Cells and Monocytes. Biomedicines 2020; 8:biomedicines8120627. [PMID: 33352881 PMCID: PMC7766432 DOI: 10.3390/biomedicines8120627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage populations in most mammalian organs consist of cells of different origin. Resident macrophages originate from erythromyeloid precursors of the yolk sac wall; maintenance of the numbers of such macrophages in postnatal ontogenesis is practically independent of bone marrow haematopoiesis. The largest populations of the resident macrophages of embryonic origin are found in the central nervous system (microglia) and liver (Kupffer cells). In contrast, skin dermis and mucous membranes become predominantly colonized by bone marrow-derived monocytes that show pronounced functional and phenotypic plasticity. In the present study, we compared Kupffer cells and monocytes using the immunophenotype, gene expression profile, proteome, and pool of microRNA. The observed differences did not consider the resident liver macrophages as purely M2 macrophages or state that monocytes have purely M1 features. Monocytes show signs of high plasticity and sensitivity to pathogen-associated molecular patterns (e.g., high levels of transcription for Tlr 2, 4, 7, and 8). In contrast, the resident liver macrophages were clearly involved in the regulation of specific organ functions (nitrogen metabolism, complement system protein synthesis).
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Correspondence:
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Maria Nikitina
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Andrey Makarov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Evgenia Kananykhina
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Sergey Kovalchuk
- Laboratory of Bioinformatic Methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, 109004 Moscow, Russia;
- Genome Engineering Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| |
Collapse
|
143
|
Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms 2020; 8:microorganisms8121965. [PMID: 33322320 PMCID: PMC7764263 DOI: 10.3390/microorganisms8121965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
The evolutionary conflict between retroviruses and their vertebrate hosts over millions of years has led to the emergence of cellular innate immune proteins termed restriction factors as well as their viral antagonists. Evidence accumulated in the last two decades has substantially increased our understanding of the elaborate mechanisms utilized by these restriction factors to inhibit retroviral replication, mechanisms that either directly block viral proteins or interfere with the cellular pathways hijacked by the viruses. Analyses of these complex interactions describe patterns of accelerated evolution for these restriction factors as well as the acquisition and evolution of their virus-encoded antagonists. Evidence is also mounting that many restriction factors identified for their inhibition of specific retroviruses have broader antiviral activity against additional retroviruses as well as against other viruses, and that exposure to these multiple virus challenges has shaped their adaptive evolution. In this review, we provide an overview of the restriction factors that interfere with different steps of the retroviral life cycle, describing their mechanisms of action, adaptive evolution, viral targets and the viral antagonists that evolved to counter these factors.
Collapse
|
144
|
Espejo-Mojica AJ, Rodríguez-López A, Li R, Zheng W, Alméciga-Díaz CJ, Dulcey-Sepúlveda C, Combariza G, Barrera LA. Human recombinant lysosomal β-Hexosaminidases produced in Pichia pastoris efficiently reduced lipid accumulation in Tay-Sachs fibroblasts. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:885-895. [PMID: 33111489 PMCID: PMC8045741 DOI: 10.1002/ajmg.c.31849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/11/2022]
Abstract
GM2 gangliosidosis, Tay-Sachs and Sandhoff diseases, are lysosomal storage disorders characterized by the lysosomal accumulation of GM2 gangliosides. This accumulation is due to deficiency in the activity of the β-hexosaminidases Hex-A or Hex-B, which are dimeric hydrolases formed by αβ or ββ subunits, respectively. These disorders show similar clinical manifestations that range from mild systemic symptoms to neurological damage and premature death. There is still no effective therapy for GM2 gangliosidoses, but some therapeutic alternatives, as enzyme replacement therapy, have being evaluated. Previously, we reported the production of active human recombinant β-hexosaminidases (rhHex-A and rhHex-B) in the methylotrophic yeast Pichia pastoris. In this study, we evaluated in vitro the cellular uptake, intracellular delivery to lysosome, and reduction of stored substrates. Both enzymes were taken-up via endocytic pathway mediated by mannose and mannose-6-phosphate receptors and delivered to lysosomes. Noteworthy, rhHex-A diminished the levels of stored lipids and lysosome mass in fibroblasts from Tay-Sachs patients. Overall, these results confirm the potential of P. pastoris as host to produce recombinant β-hexosaminidases intended to be used in the treatment of GM2 gangliosidosis.
Collapse
Affiliation(s)
- Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Cindy Dulcey-Sepúlveda
- Department of Mathematics. Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Germán Combariza
- Department of Mathematics. Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
145
|
Kristensen MW, Kejlberg-Jensen S, Sørensen AS, Vorup-Jensen T, W Kragstrup T, Hokland M, Andersen MN. Behold Cytometrists: One Block Is Not Enough! Cyanine-Tandems Bind Non-Specifically to Human Monocytes. Cytometry A 2020; 99:265-268. [PMID: 33249734 DOI: 10.1002/cyto.a.24273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Anne S Sørensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Morten N Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
146
|
Dagkonaki A, Avloniti M, Evangelidou M, Papazian I, Kanistras I, Tseveleki V, Lampros F, Tselios T, Jensen LT, Möbius W, Ruhwedel T, Androutsou ME, Matsoukas J, Anagnostouli M, Lassmann H, Probert L. Mannan-MOG35-55 Reverses Experimental Autoimmune Encephalomyelitis, Inducing a Peripheral Type 2 Myeloid Response, Reducing CNS Inflammation, and Preserving Axons in Spinal Cord Lesions. Front Immunol 2020; 11:575451. [PMID: 33329540 PMCID: PMC7711156 DOI: 10.3389/fimmu.2020.575451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
CNS autoantigens conjugated to oxidized mannan (OM) induce antigen-specific T cell tolerance and protect mice against autoimmune encephalomyelitis (EAE). To investigate whether OM-peptides treat EAE initiated by human MHC class II molecules, we administered OM-conjugated murine myelin oligodendrocyte glycoprotein peptide 35-55 (OM-MOG) to humanized HLA-DR2b transgenic mice (DR2b.Ab°), which are susceptible to MOG-EAE. OM-MOG protected DR2b.Ab° mice against MOG-EAE by both prophylactic and therapeutic applications. OM-MOG reversed clinical symptoms, reduced spinal cord inflammation, demyelination, and neuronal damage in DR2b.Ab° mice, while preserving axons within lesions and inducing the expression of genes associated with myelin (Mbp) and neuron (Snap25) recovery in B6 mice. OM-MOG-induced tolerance was peptide-specific, not affecting PLP178-191-induced EAE or polyclonal T cell proliferation responses. OM-MOG-induced immune tolerance involved rapid induction of PD-L1- and IL-10-producing myeloid cells, increased expression of Chi3l3 (Ym1) in secondary lymphoid organs and characteristics of anergy in MOG-specific CD4+ T cells. The results show that OM-MOG treats MOG-EAE in a peptide-specific manner, across mouse/human MHC class II barriers, through induction of a peripheral type 2 myeloid cell response and T cell anergy, and suggest that OM-peptides might be useful for suppressing antigen-specific CD4+ T cell responses in the context of human autoimmune CNS demyelination.
Collapse
Affiliation(s)
- Anastasia Dagkonaki
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Avloniti
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Evangelidou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Irini Papazian
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Kanistras
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Fotis Lampros
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - John Matsoukas
- Department of Chemistry, University of Patras, Patras, Greece
| | - Maria Anagnostouli
- Immunogenetics Laboratory, First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
147
|
Increased Levels of Soluble CD206 Associated with Rapidly Progressive Interstitial Lung Disease in Patients with Dermatomyositis. Mediators Inflamm 2020; 2020:7948095. [PMID: 33192174 PMCID: PMC7641712 DOI: 10.1155/2020/7948095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/02/2023] Open
Abstract
Objective Soluble CD206 (sCD206) is considered a macrophage activation marker, and a previous study proved it as a potential biomarker to predict the severity of anti-melanoma differentiation-associated gene 5- (anti-MDA-5-) positive dermatomyositis- (DM-) associated interstitial lung disease (ILD). To investigate the role of sCD206 in various subtypes of DM, we evaluated the serum level of sCD206 in patients with different myositis-specific autoantibodies besides anti-MDA-5 and clarified its clinical significance. Methods Commercial enzyme-linked immunosorbent assay kits were used to detect serum concentrations of sCD206 in 150 patients with DM and 52 healthy controls (HCs). Correlations between sCD206 levels and clinical features, laboratory examinations, and pulmonary function test parameters were analysed. Results The median concentrations of serum sCD206 in DM patients were significantly higher than those in HCs (p < 0.0001). Furthermore, median sCD206 levels were elevated in patients with ILD (p = 0.001), especially in those with rapidly progressive ILD (RP-ILD) (p < 0.0001). In addition, sCD206 levels were negatively correlated with the pulmonary function test results, including the percent predicted forced vital capacity (r = −0.234, p = 0.023), percent predicted forced expiratory volume in one second (r = −0.225, p = 0.030), and percent predicted carbon monoxide diffusion capacity (r = −0.261, p = 0.014). Age- and gender-adjusted multivariable analysis showed that sCD206 was an independent prognostic factor for RP-ILD in patients with DM. A longitudinal study showed that sCD206 levels were positively correlated with the physician global assessment visual analog scale scores (β = 54.201, p = 0.001). Conclusion Serum sCD206 levels were significantly increased in patients with DM and significantly associated with RP-ILD, suggesting that sCD206 is an important biological predictor of RP-ILD in patients with DM.
Collapse
|
148
|
Lan X, Liu F, Ma J, Chang Y, Lan X, Xiang L, Shen X, Zhou F, Zhao Q. Leukocyte immunoglobulin-like receptor A3 is increased in IBD patients and functions as an anti-inflammatory modulator. Clin Exp Immunol 2020; 203:286-303. [PMID: 33006756 PMCID: PMC7806419 DOI: 10.1111/cei.13529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence shows that a homozygous 6·7-kb deletion of the novel anti-inflammatory molecule leukocyte immunoglobulin-like receptor A3 (LILRA3) is associated with many autoimmune disorders. However, its effects on pathogenesis of inflammatory bowel disease (IBD) have yet not been clarified. LILRA3 is mainly expressed in monocytes, whereas its effects on biological behaviors of monocytes have not been systematically reported. In our study, to investigate the association between LILRA3 polymorphism and IBD susceptibility, LILRA3 polymorphism was assessed in 378 IBD patients and 509 healthy controls. Quantitative real time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC) were employed to detect the LILRA3 expression in IBD patient blood and intestinal samples. The human U937 monocyte cell line was employed to establish LILRA3 over-expressing cells and the effects of LILRA3 on the biological behaviors of U937 cells were systematically explored. Although no association of the polymorphism with IBD development was found, LILRA3 expression was markedly increased in IBD patients compared with healthy controls. Over-expression of LILRA3 in monocytes led to significant decreases in secretion of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-6. Additionally, LILRA3 abated monocyte migration by reducing the expression of several chemokines and enhanced monocyte phagocytosis by increasing CD36 expression. Furthermore, LILRA3 promoted monocyte proliferation through a combination of Akt and extracellular receptor kinase/mitogen-activated protein kinase (Erk/MEK) signaling pathways. We report for the first time, to our knowledge, that LILRA3 is related to IBD and functions as an anti-inflammatory modulator in U937 cells.
Collapse
Affiliation(s)
- X Lan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Liu
- Department of Gastroenterology, Xuhui District Central Hospital, Shanghai, China
| | - J Ma
- Department of Health Related Product Evaluation, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Y Chang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - X Lan
- Pathology department, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, China
| | - L Xiang
- Department of Infectious Disease, Xiangxi Autonomous Prefecture People's Hospital, Xiangxi, China
| | - X Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Zhou
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Q Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
149
|
Hall AP, Cauvin A, Dudal S, Raymond J, Rogerson P, Jolette J. Case Studies Discussing the Pathology, Immunogenicity, and Proposed Mechanism of Toxicity of an Inhaled Anti-TGFβ Humanized Fab Antibody in Non-Human Primates and Mice. Toxicol Pathol 2020; 49:315-333. [PMID: 33167807 DOI: 10.1177/0192623320960023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatment of nonhuman primates and mice with a humanized antigen-binding fragment (Fab) antibody (UCBFab) inhibiting transforming growth factor β via daily inhalation for up to 13 weeks resulted in low systemic exposure but high local exposure in the lung. Target engagement was demonstrated by reduced levels of signal transducers, phosphoSMAD and plasminogen activator inhibitor-1 in the bronchoalveolar lavage fluid (BALF). Treatment was associated with a high frequency and titer of antidrug antibodies, indicating high local immunogenicity, and local pathology within the lung and draining lymph nodes. Microscopic changes were characterized by perivascular (PV) and peribronchiolar (PB) mononuclear inflammatory cell (MIC) infiltrates that were principally lymphocytic in nature and mixed inflammatory cell infiltrates and/or inflammation within the alveoli. Immunohistochemical investigation revealed a predominantly CD68-positive macrophage and CD3- and CD8>CD4-positive T-cell response in the alveoli, whereas within the airways, there was a variable mixture of CD3-positive T cells, CD20-positive B cells, and CD68-positive macrophages. Increased cellularity of the draining lymph nodes was also noted, indicating the presence of an immune response to the inhaled test article. Morphologic changes did not progress over time, and all changes partially recovered. Increased leukocytes (principally macrophages) in BALF cytology correlated with the changes seen by histopathology.
Collapse
Affiliation(s)
| | | | | | - James Raymond
- Charles River Pathology Associates, Frederick, MA, USA
| | | | | |
Collapse
|
150
|
Asad S, Wegler C, Ahl D, Bergström CAS, Phillipson M, Artursson P, Teleki A. Proteomics-Informed Identification of Luminal Targets For In Situ Diagnosis of Inflammatory Bowel Disease. J Pharm Sci 2020; 110:239-250. [PMID: 33159915 DOI: 10.1016/j.xphs.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition resulting in impaired intestinal homeostasis. Current practices for diagnosis of IBD are challenged by invasive, demanding procedures. We hypothesized that proteomics analysis could provide a powerful tool for identifying clinical biomarkers for non-invasive IBD diagnosis. Here, the global intestinal proteomes from commonly used in vitro and in vivo models of IBD were analyzed to identify apical and luminal proteins that can be targeted by orally delivered diagnostic agents. Global proteomics analysis revealed upregulated plasma membrane proteins in intestinal segments of proximal- and distal colon from dextran sulfate sodium-treated mice and also in inflamed human intestinal Caco-2 cells pretreated with pro-inflammatory agents. The upregulated colon proteins in mice were compared to the proteome of the healthy ileum, to ensure targeting of diagnostic agents to the inflamed colon. Promising target proteins for future investigations of non-invasive diagnosis of IBD were found in both systems and included Tgm2/TGM2, Icam1/ICAM1, Ceacam1/CEACAM1, and Anxa1/ANXA1. Ultimately, these findings will guide the selection of appropriate antibodies for surface functionalization of imaging agents aimed to target inflammatory biomarkers in situ.
Collapse
Affiliation(s)
- Shno Asad
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), SE-75123 Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|