101
|
Pakkanen KI, Duelund L, Vuento M, Ipsen JH. Phase coexistence in a triolein-phosphatidylcholine system. Implications for lysosomal membrane properties. Chem Phys Lipids 2009; 163:218-27. [PMID: 19962372 DOI: 10.1016/j.chemphyslip.2009.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 10/10/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The effects of tri- and monoglycerides on phospholipid (POPC) membranes were studied using spectroscopical methods. Triolein was found to form two types of POPC-rich membranes, both with POPC or as a three-component system with monopalmitin. These two membrane types were determined as co-existing phases based on their spontaneous and stable separation and named heavy and light phase according to their sedimentation behaviour. Marked differences were seen in the physical properties of these phases, even though only minor compositional variation was detected. The light, less polar phase was found to be less ordered and more fluid and seemed to allow significantly lower amount of water penetration into the membrane-water interface than pure POPC membrane. The heavy phase, apart from their slightly altered water penetration, resembled more a pure POPC membrane. As triglycerides are present in lysosomal membranes, the present results can be seen as an implication for polarity-based water permeability barrier possibly contributing to the integrity of lysosomes.
Collapse
Affiliation(s)
- Kirsi I Pakkanen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | |
Collapse
|
102
|
Przybytkowski E, Behrendt M, Dubois D, Maysinger D. Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS J 2009; 276:6204-17. [DOI: 10.1111/j.1742-4658.2009.07324.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
103
|
De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:927-39. [PMID: 19700756 DOI: 10.2353/ajpath.2009.081155] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria.
Collapse
Affiliation(s)
- Aurélia De Pauw
- Laboratory of Biochemistry and Cell Biology, University of Namur, 61 rue de Bruxelles, Namur, Belgium
| | | | | | | | | |
Collapse
|
104
|
Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol Biol Rep 2009; 37:2173-82. [PMID: 19693701 DOI: 10.1007/s11033-009-9695-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/28/2009] [Indexed: 01/18/2023]
Abstract
Mitochondrial biogenesis is inherent to adipocyte differentiation. Mitochondrial dysfunction leads to abnormal lipid accumulation or the deterioration of the differentiation process. The aim of this study is to investigate the mitochondrial development during the differentiation of rat primary adipocytes and the effect of mitochondrial dysfunction on this process. We found, for the first time, that the number of mitochondria markedly increased during adipocyte differentiation by transmission electron microscopy. By immunofluorescence staining that the protein content of Cyt c increased in differentiated adipocyte in comparison with preadipocyte. The mRNA expression levels of mitochondrial gene including cytochromes c (Cyt c), malate dehydrogenases (MDH), and peroxisome proliferator activated receptor (PPAR) gamma coactivator-1beta (PGC-1beta) significantly increased along with the proceeding of adipocyte differentiation. The damage to mitochondrial respiratory chain function by rotenone caused significant decrease in gene expressions including mitochondrial MDH and PGC-1beta, and PPARgamma, CAAT/enhancer binding protein alpha (C/EBPalpha) and sterol regulatory element binding protein-1c (SREBP-1c), which are known as transcription factors of differentiation, and differentiation marker gene named fatty acid synthetase. Moreover, an apparent decrease was found in the synthesis of triglyceride and ATP due to the damage to mitochondria by rotenone. Based on the above results, our present study revealed that the density and oxidative capacity of mitochondrial markedly increased during primary adipocyte differentiation, and on the other hand, we suggested that mitochondria dysfunction might inhibit the differentiation process.
Collapse
|
105
|
Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 2009; 6:26. [PMID: 19500359 PMCID: PMC2701939 DOI: 10.1186/1743-7075-6-26] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022] Open
Abstract
Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT-1 mediates leucine induced mitochondrial biogenesis in muscle cells. Conclusion These data suggest that leucine and calcitriol modulation of muscle and adipocyte energy metabolism is mediated, in part, by mitochondrial biogenesis.
Collapse
|
106
|
Changes in lipid metabolism associated gene transcripts during porcine adipogenesis. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:8-17. [DOI: 10.1016/j.cbpb.2008.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/23/2008] [Accepted: 12/31/2008] [Indexed: 11/20/2022]
|
107
|
Guo AJ, Choi RCY, Cheung AWH, Li J, Chen IX, Dong TT, Tsim KWK, Lau BWC. Stimulation of Apolipoprotein A-IV expression in Caco-2/TC7 enterocytes and reduction of triglyceride formation in 3T3-L1 adipocytes by potential anti-obesity Chinese herbal medicines. Chin Med 2009; 4:5. [PMID: 19321011 PMCID: PMC2676280 DOI: 10.1186/1749-8546-4-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 03/26/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chinese medicine has been proposed as a novel strategy for the prevention of metabolic disorders such as obesity. The present study tested 17 Chinese medicinal herbs were tested for their potential anti-obesity effects. METHODS The herbs were evaluated in terms of their abilities to stimulate the transcription of Apolipoprotein A-IV (ApoA-IV) in cultured Caco-2/TC7 enterocytes. The herbs that showed stimulating effects on ApoA-IV transcription were further evaluated in terms of their abilities to reduce the formation of triglyceride in differentiated 3T3-L1 adipocytes. RESULTS ApoA-IV transcription was stimulated by Rhizoma Alismatis and Radix Angelica Sinensis in a dose- and time-dependent manner in cultured Caco-2/TC7 cells. Moreover, these two herbs reduced the amount of triglyceride in differentiated 3T3-L1 adipocytes. CONCLUSION The results suggest that Rhizoma Alistmatis and Radix Angelica Sinensis may have potential anti-obesity effects as they stimulate ApoA-IV transcription and reduce triglyceride formation.
Collapse
Affiliation(s)
- Ava Jiangyang Guo
- Department of Biology, Hong Kong University of Science and Technology, Hong Kong SAR, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
New aspects of adipogenesis: Radicals and oxidative stress. Differentiation 2009; 77:115-20. [DOI: 10.1016/j.diff.2008.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/06/2008] [Accepted: 07/25/2008] [Indexed: 01/04/2023]
|
109
|
Tejerina S, De Pauw A, Vankoningsloo S, Houbion A, Renard P, De Longueville F, Raes M, Arnould T. Mild mitochondrial uncoupling induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-independent mechanism, whereas TNFalpha-induced de-differentiation is PPARgamma dependent. J Cell Sci 2008; 122:145-55. [PMID: 19066287 DOI: 10.1242/jcs.027508] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Impairment of mitochondrial activity affects lipid-metabolizing tissues and mild mitochondrial uncoupling has been proposed as a possible strategy to fight obesity and associated diseases. In this report, we characterized the 3T3-L1-adipocyte ;de-differentiation' induced by carbonyl cyanide (p-trifluoromethoxy)-phenylhydrazone (FCCP), a mitochondrial uncoupler. We found a decrease in triglyceride (TG) content in adipocytes incubated with this molecule. We next analyzed the expression of genes encoding adipogenic markers and effectors and compared the differentially expressed genes in adipocytes treated with FCCP or TNFalpha (a cytokine known to induce adipocyte de-differentiation). Furthermore, a significant decrease in the transcriptional activity of PPARgamma and C/EBPalpha transcription factors was found in adipocytes with impaired mitochondrial activity. However, although these modifications were also found in TNFalpha-treated adipocytes, rosiglitazone and 9-cis retinoic acid (PPARgamma and RXR ligands) were unable to prevent triglyceride loss in FCCP-treated cells. Metabolic assays also revealed that TG reduction could be mediated by a downregulation of lipid synthesis rather than an upregulation of fatty acid oxidation. Finally, lipolysis stimulated by the uncoupler also seems to contribute to the TG reduction, a process associated with perilipin A downregulation. These results highlight some new mechanisms that might potentially be involved in adipocyte de-differentiation initiated by a mitochondrial uncoupling.
Collapse
Affiliation(s)
- Silvia Tejerina
- Laboratory of Biochemistry and Cellular Biology, University of Namur, 5000 Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Alcoholic fatty liver is a potentially pathologic condition which can progress to steatohepatitis, fibrosis, and cirrhosis if alcohol consumption is continued. Alcohol exposure may induce fatty liver by increasing NADH/NAD(+) ratio, increasing sterol regulatory element-binding protein-1 (SREBP-1) activity, decreasing peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activity, and increasing complement C3 hepatic levels. Alcohol may increase SREBP-1 activity by decreasing the activities of AMP-activated protein kinase and sirtuin-1. Tumor necrosis factor-alpha (TNF-alpha) produced in response to alcohol exposure may cause fatty liver by up-regulating SREBP-1 activity, whereas betaine and pioglitazone may attenuate fatty liver by down-regulating SREBP-1 activity. PPAR-alpha agonists have potentials to attenuate alcoholic fatty liver. Adiponectin and interleukin-6 may attenuate alcoholic fatty liver by up-regulating PPAR-alpha and insulin signaling pathways while down-regulating SREBP-1 activity and suppressing TNF-alpha production. Recent studies show that paracrine activation of hepatic cannabinoid receptor 1 by hepatic stellate cell-derived endocannabinoids also contributes to the development of alcoholic fatty liver. Furthermore, oxidative modifications and inactivation of the enzymes involved in the mitochondrial and/or peroxisomal beta-oxidation of fatty acids could contribute to fat accumulation in the liver.
Collapse
Affiliation(s)
- Vishnudutt Purohit
- Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5635 Fishers Lane, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
111
|
Semenou D, Cœugniet E, Segard M, Martinot-Duquennoy V, Delaporte E. Maladie de Launois-Bensaude : à propos de 17 cas. ANN CHIR PLAST ESTH 2008; 53:399-407. [DOI: 10.1016/j.anplas.2007.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 07/08/2007] [Indexed: 12/25/2022]
|
112
|
Phrakonkham P, Viengchareun S, Belloir C, Lombès M, Artur Y, Canivenc-Lavier MC. Dietary xenoestrogens differentially impair 3T3-L1 preadipocyte differentiation and persistently affect leptin synthesis. J Steroid Biochem Mol Biol 2008; 110:95-103. [PMID: 18359623 DOI: 10.1016/j.jsbmb.2008.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 11/21/2007] [Accepted: 02/11/2008] [Indexed: 02/08/2023]
Abstract
Recent observations have highlighted adipogenesis alterations under exposure to several xenoestrogens at critical stages, and pointed at their possible involvement in the pathogenesis of obesity. However, it remains unclear whether these effects are mediated by classical estrogen receptor (ER) binding and subsequent transcriptional modulation. The aim of this study was to determine the (anti-)adipogenic impact of apigenin, bisphenol A, genistein and 17beta-estradiol at the onset of adipose cell maturation, and to correlate it to their estrogenic potential. In steroid-free conditions, 3T3-L1 preadipocytes were induced to differentiate in the presence of xenoestrogens for 2 days. DNA and triglyceride levels, leptin secretion and expression of Pref-1, C/EBPbeta, PPARgamma2, FAS, leptin and ERs were measured on days 0, 3 and 8 of differentiation. Genistein potently blocked mitotic clonal expansion and all markers of maturation. Bisphenol A and estradiol did not modify triglyceride accumulation but increased the expression of differentiation genes. Apigenin caused a weak but reversible delay in adipogenesis although it unexpectedly enhanced leptin synthesis. However, the expression of steroid hormone receptors was not associated with these differential effects. In conclusion, we could not put a clear estrogen-dependent mechanism forward, but early exposure to xenoestrogens persistently disrupted adipocyte gene expression and leptin synthesis.
Collapse
Affiliation(s)
- Pascal Phrakonkham
- UMR1129 FLAVIC, INRA-ENESAD-Université de Bourgogne, F-21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
113
|
Vankoningsloo S, de Longueville F, Evrard S, Rahier P, Houbion A, Fattaccioli A, Gastellier M, Remacle J, Raes M, Renard P, Arnould T. Gene expression silencing with 'specific' small interfering RNA goes beyond specificity - a study of key parameters to take into account in the onset of small interfering RNA off-target effects. FEBS J 2008; 275:2738-53. [PMID: 18422646 DOI: 10.1111/j.1742-4658.2008.06415.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RNA-mediated gene silencing (RNA interference) is a powerful way to knock down gene expression and has revolutionized the fields of cellular and molecular biology. Indeed, the transfection of cultured cells with small interfering RNAs (siRNAs) is currently considered to be the best and easiest approach to loss-of-function experiments. However, several recent studies underscore the off-target and potential cytotoxic effects of siRNAs, which can lead to the silencing of unintended mRNAs. In this study, we used a low-density microarray to assess gene expression modifications in response to five different siRNAs in various cell types and transfection conditions. We found major differences in off-target signature according to: (a) siRNA sequence; (b) cell type; (c) duration of transfection; and (d) post-transfection time before analysis. These results contribute to a better understanding of important parameters that could impact on siRNA side effects in knockdown experiments.
Collapse
|
114
|
Keijer J, van Schothorst EM. Adipose tissue failure and mitochondria as a possible target for improvement by bioactive food components. Curr Opin Lipidol 2008; 19:4-10. [PMID: 18196980 DOI: 10.1097/mol.0b013e3282f39f95] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Adipose tissue is an essential, highly dynamic and metabolically active tissue that vigorously communicates to support its primary function: the storage of lipids. It performs this function to secure energy supply and prevent lipotoxicity. Adipose tissue is essential for maintaining a healthy glucose and lipid homeostasis and failure results in disease. This review discusses causes of adipose tissue failure and four categories of bioactive food components that may help to prevent this. RECENT FINDINGS Based on recent findings, it is argued that initial adipose failure following long-term excess energy intake may be the result of reduced mitochondrial capacity associated with altered mitochondrial reactive oxygen species signaling and adipose tissue hypoxia. Current data suggest that different classes of bioactive food components, including vitamin B3, retinoids, fatty acids and polyphenols, may have the potential to modulate mitochondrial function and consequently prevent adipose dysfunction in obesity. SUMMARY It seems most attractive to aim nutritional intervention at the prevention of initial adipose dysfunction and hence to target dietary intervention at improvement of mitochondrial function.
Collapse
Affiliation(s)
- Jaap Keijer
- RIKILT-Institute of Food Safety, Wageningen, The Netherlands.
| | | |
Collapse
|
115
|
Wittig R, Coy JF. The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0700100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets.
Collapse
Affiliation(s)
- Rainer Wittig
- R-Biopharm AG, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Johannes F. Coy
- R-Biopharm AG, Landwehrstrasse 54, 64293 Darmstadt, Germany
- TAVARTIS GmbH, Kroetengasse 10, 64853 Otzberg, Germany
- Dept. Of Gynaecology, University of Würzburg, Josef Schneider Str. 4, 97080 Würzburg, Germany
| |
Collapse
|
116
|
Orphan nuclear receptor estrogen-related receptor-beta suppresses in vitro and in vivo growth of prostate cancer cells via p21(WAF1/CIP1) induction and as a potential therapeutic target in prostate cancer. Oncogene 2007; 27:3313-28. [PMID: 18071305 DOI: 10.1038/sj.onc.1210986] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies indicate that estrogen-related receptors (ERRs) are involved in similar estrogen receptor (ER) regulatory pathways and play roles in energy and lipid metabolism. Here, we analysed the functional role of ERRbeta in prostate cancer cell growth regulation in an androgen-sensitive and androgen-insensitive prostate cancer cell lines. ERRbeta was expressed in normal human prostates, but exhibited a reduced expression in prostate cancer lesions. Stable ERRbeta expression suppressed significantly cell proliferation and tumorigenicity of LNCaP and DU145 cells, accompanied by an S-phase suppression and increased p21 expression. Reporter and chromatin immunoprecipitation assays showed that ERRbeta could directly transactivate p21 gene promoter, which could be further enhanced by peroxisome proliferator-activated receptor-gamma coactivator-1alpha. Truncation analysis showed that ERRbeta-mediated p21 transactivation and prostate cancer cell growth inhibition required intact DNA-binding domain and AF2 domains in ERRbeta. Interestingly, ERRbeta displayed a cell cycle associated downregulated expression pattern in ERRbeta-transduced and non-transduced cells. Finally, we showed that ERRbeta-mediated growth inhibition could be potentiated by an ERRbeta/gamma agonist DY131. Knockdown of ERRbeta by RNA interference could reduce the DY131-induced growth inhibition in prostate cancer cells. Taken together, our findings indicate that ERRbeta performs a tumor suppressing function in prostate cancer cells, and targeting ERRbeta could be a potential therapeutic strategy for prostate cancer.
Collapse
|
117
|
Luo GF, Yu TY, Wen XH, Li Y, Yang GS. Alteration of mitochondrial oxidative capacity during porcine preadipocyte differentiation and in response to leptin. Mol Cell Biochem 2007; 307:83-91. [PMID: 17909948 DOI: 10.1007/s11010-007-9587-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Mitochondrial apparatus is a fundamental aspect in cell, serving for amino acid biosynthesis, fatty acid oxidation (FAO), and ATP production. In this article, we investigated the change of mitochondrial oxidative capacity during porcine adipocyte differentiation and in response to leptin. Rhodamine 123 staining analysis showed about 2-fold increase of mitochondrial membrane electric potential in differentiated adipocyte in comparison with preadipocyte. The mRNA expression of Cytochromes c (Cyt c), carnitine palmitoyltransferase 1 (CPT1), and malate dehydrogenases (MDH) increased markedly (P < 0.05), but that of UCP2 decreased (P < 0.05). Moreover PGC-1alpha and UCP3 was very low and showed no changes during the adipocyte differentiation. The protein expression of Cyt c and the enzyme activity of Cytochrome c oxidase (COX) increased with preadipocyte differentiation, but cellular ATP level decreased. Furthermore, at the level of 10 and 100 ng/ml leptin not only selectively increased the gene expression of PGC-1alpha, CPT1, Cyt c, UCP2, and UCP3 (P < 0.05), but also enhanced COX enzyme activity which related to mitochondrial FAO. There is no change of Mitochondrial membrane electric potential and ATP level in cell treated by leptin. These results suggested Mitochondrial is not only critical in FAO, but also play an important role in adipogenesis.
Collapse
Affiliation(s)
- Gui-Fen Luo
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| | | | | | | | | |
Collapse
|
118
|
Lim JH, Lee JI, Suh YH, Kim W, Song JH, Jung MH. Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia 2006; 49:1924-36. [PMID: 16736133 DOI: 10.1007/s00125-006-0278-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 02/18/2006] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. MATERIALS AND METHODS Mitochondrial function of C2C12 myotube cells was impaired by genetic (ethidium bromide) and metabolic (oligomycin) stress, and changes in target molecules related to insulin signalling were analysed. RESULTS Concomitant with reductions in mitochondrial membrane potential (DeltaPsim) and ATP synthesis, production of IRS1 and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) were reduced. Moreover, serine phosphorylation of IRS1 increased, resulting in decreased tyrosine phosphorylation. This indicates that mitochondrial dysfunction decreases insulin-stimulated SLC2A4 translocation and glucose uptake. Mitochondrial stress activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) signalling in a Ca(2+)-dependent manner, and removal of free Ca(2+) by BAPTA-AM, as well as inhibition of JNK and p38 MAPK, abrogated mitochondrial stress-induced reductions in IRS1 and SLC2A4 production. Mitochondrial dysfunction after oligomycin treatment significantly increased levels of activating transcription factor 3 (ATF3), which represses Irs1 promoter activity. Removal of the 5' flanking region of Irs1 demonstrated that the promoter region within 191 bases from the transcription site may be involved in the transcriptional repression of Irs1 by mitochondrial stress. CONCLUSIONS/INTERPRETATION We show distinct mitochondrial retrograde signalling, where Irs1 is downregulated through ATF3 in a Ca(2+)-, JNK- and p38 MAPK-dependent manner, and IRS1 is inactivated. Therefore, mitochondrial dysfunction causes aberrant insulin signalling and abnormal utilisation of glucose, as observed in many insulin resistance states.
Collapse
Affiliation(s)
- J H Lim
- Division of Metabolic Disease, Department of Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, South Korea
| | | | | | | | | | | |
Collapse
|
119
|
Lonergan T, Brenner C, Bavister B. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol 2006; 208:149-53. [PMID: 16575916 DOI: 10.1002/jcp.20641] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several methods may be used to assess stem cell competence, including the expression of cell surface markers and telomerase activity. We hypothesized that mitochondrial characteristics might be an additional and reliable way to verify stem cell competence. In a multipotent, adult monkey stromal stem cell line, previously shown to differentiate into adipocytes, chondrocytes, and osteocytes, we found that several mitochondrial properties change with increasing passage number in culture. Cells from the earliest passage (P11) versus those from a later passage (P17) are characterized by: (a) a much higher percentage of cells (85% vs. 18%) with a perinuclear arrangement of mitochondria; (b) a much lower percentage of cells (1% vs. 57%) with an aggregated mitochondrial arrangement, in which mitochondria appear to coalesce into large clumps; (c) a much lower percentage of cells with lipid droplets (1% vs. 36%), suggesting less differentiation into adipocytes; (d) a 5.6-fold lower ATP content per cell (0.45 vs. 2.51 pmoles ATP/cell; and (e) a 10-fold higher rate of oxygen consumption (37.8 vs. 3.8 nmoles O2/min/10(3) cells), indicating a higher metabolic activity. Collectively, these data indicate that the perinuclear arrangement of mitochondria, accompanied by a low ATP/cell content and a high rate of oxygen consumption, may be valid indicators of stem cell differentiation competence, while departures from this profile indicate that cells are differentiating or perhaps becoming senescent. These results represent the first characterization of mitochondrial properties reported for a primate stem cell line.
Collapse
Affiliation(s)
- Thomas Lonergan
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA.
| | | | | |
Collapse
|
120
|
Zhang M, Wang B, Ni YH, Liu F, Fei L, Pan XQ, Guo M, Chen RH, Guo XR. Overexpression of uncoupling protein 4 promotes proliferation and inhibits apoptosis and differentiation of preadipocytes. Life Sci 2006; 79:1428-35. [PMID: 16716360 DOI: 10.1016/j.lfs.2006.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 11/27/2022]
Abstract
Uncoupling proteins are a family of mitochondrial proteins involved in energy metabolism. We previously showed that uncoupling protein 4 (UCP4) is differentially expressed in omental adipose tissue in diet-induced obese and normal rats. However, the effect of UCP4 on adipocytes is unclear. In this work, we established a stable preadipocyte cell line overexpressing UCP4 to observe the direct effect of UCP4 on adipocytes. Cells overexpressing UCP4 showed significantly attenuated differentiation of preadipocytes into adipocytes. During differentiation, expression of adipogenesis-associated markers such as fatty acid synthetase, peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein alpha, adipocyte lipid binding protein and lipoprotein lipase were downregulated. Preadipoctes expressing UCP4 grew faster and more of them stayed in S phase compared to control cells. In addition, UCP4 overexpression protected preadipocytes from apoptosis induced by serum deprivation. Our results demonstrate that overexpression of UCP4 can promote proliferation and inhibit apoptosis and differentiation of preadipocytes.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, Nanjing Maternity and Child Health Hospital of Nanjing Medical University, 210004 Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Vankoningsloo S, De Pauw A, Houbion A, Tejerina S, Demazy C, de Longueville F, Bertholet V, Renard P, Remacle J, Holvoet P, Raes M, Arnould T. CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes. J Cell Sci 2006; 119:1266-82. [PMID: 16537646 DOI: 10.1242/jcs.02848] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several mitochondrial pathologies are characterized by lipid redistribution and microvesicular cell phenotypes resulting from triglyceride accumulation in lipid-metabolizing tissues. However, the molecular mechanisms underlying abnormal fat distribution induced by mitochondrial dysfunction remain poorly understood. In this study, we show that inhibition of respiratory complex III by antimycin A as well as inhibition of mitochondrial protein synthesis trigger the accumulation of triglyceride vesicles in 3T3-L1 fibroblasts. We also show that treatment with antimycin A triggers CREB activation in these cells. To better delineate how mitochondrial dysfunction induces triglyceride accumulation in preadipocytes, we developed a low-density DNA microarray containing 89 probes, which allows gene expression analysis for major effectors and/or markers of adipogenesis. We thus determined gene expression profiles in 3T3-L1 cells incubated with antimycin A and compared the patterns obtained with differentially expressed genes during the course of in vitro adipogenesis induced by a standard pro-adipogenic cocktail. After an 8-day treatment, a set of 39 genes was found to be differentially expressed in cells treated with antimycin A, among them CCAAT/enhancer-binding protein alpha (C/EBPalpha), C/EBP homologous protein-10 (CHOP-10), mitochondrial glycerol-3-phosphate dehydrogenase (GPDmit), and stearoyl-CoA desaturase 1 (SCD1). We also demonstrate that overexpression of two dominant negative mutants of the cAMP-response element-binding protein CREB (K-CREB and M1-CREB) and siRNA transfection, which disrupt the factor activity and expression, respectively, inhibit antimycin-A-induced triglyceride accumulation. Furthermore, CREB knockdown with siRNA also downregulates the expression of several genes that contain cAMP-response element (CRE) sites in their promoter, among them one that is potentially involved in synthesis of triglycerides such as SCD1. These results highlight a new role for CREB in the control of triglyceride metabolism during the adaptative response of preadipocytes to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sébastien Vankoningsloo
- Laboratory of Biochemistry and Cellular Biology, University of Namur (F.U.N.D.P.), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Bavister BD. The mitochondrial contribution to stem cell biology. Reprod Fertil Dev 2006; 18:829-38. [PMID: 17147931 DOI: 10.1071/rd06111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/04/2006] [Indexed: 12/30/2022] Open
Abstract
The distribution and functions of mitochondria in stem cells have not been examined, yet the contributions of these organelles to stem cell viability and differentiation must be vitally important in view of their critical roles in all other cell types. A key role for mitochondria in stem cells is indicated by reports that they translocate in the oocyte during fertilisation to cluster around the pronuclei and can remain in a perinuclear pattern during embryo development. This clustering appears to be essential for normal embryonic development. Because embryonic stem cells are derived from fertilised oocytes, and eventually can differentiate into ‘adult’ stem cells, it was hypothesised that mitochondrial perinuclear clustering persists through preimplantation embryo development into the stem cells, and that this localisation is indicative of stem cell pluripotency. Further, it was predicted that mitochondrial activity, as measured by respiration and adenosine triphosphate (ATP) content, would correlate with the degree of perinuclear clustering. It was also predicted that these morphological and metabolic measurements could serve as indicators of ‘stemness.’ This article reviews the distribution and metabolism of mitochondria in a model stem cell line and how this information is related to passage number, differentiation and/or senescence. In addition, it describes mitochondrial DNA deletions in oocytes and embryos that could adversely affect stem cell performance.
Collapse
Affiliation(s)
- Barry D Bavister
- Department of Biological Sciences, University of New Orleans, 200 Computer Center, New Orleans, LA 70148-2960, USA.
| |
Collapse
|
123
|
Abstract
A 46-year-old man was diagnosed as having benign symmetric lipomatosis (BSL) based on the grotesque physical examination findings and subcutaneous fat tissue biopsy. Although markedly overweight, the glucose tolerance was normal and insulin levels indicated no remarkable insulin resistance on the 75 g oral glucose tolerance test. Furthermore his visceral fat tissue was very slight and the circulating adiponectin concentration was high those which suggesting a high insulin sensitivity. In addition, the relevance of alcohol in the onset of BSL is strongly suggested based on alcoholic hepatopathy and the history of the development of grotesque physical appearance associated with increased alcohol consumption.
Collapse
Affiliation(s)
- Akiko Hirose
- The First Department of Internal Medicine, School of Medicine, University of Occupational and EnvironmentalHealth, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | |
Collapse
|