101
|
Jeong Y, Carleton SM, Gentry BA, Yao X, Ferreira JA, Salamango DJ, Weis M, Oestreich AK, Williams AM, McCray MG, Eyre DR, Brown M, Wang Y, Phillips CL. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise. J Bone Miner Res 2015; 30:1874-86. [PMID: 25829218 PMCID: PMC8157311 DOI: 10.1002/jbmr.2518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 11/08/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Bettina A Gentry
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - J Andries Ferreira
- Department of Biomedical Sciences and Physical Therapy Program, University of Missouri, Columbia, MO, USA
| | | | - MaryAnn Weis
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Arin K Oestreich
- Department of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ashlee M Williams
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Marcus G McCray
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Marybeth Brown
- Department of Biomedical Sciences and Physical Therapy Program, University of Missouri, Columbia, MO, USA
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
102
|
Misof BM, Roschger P, Jorgetti V, Klaushofer K, Borba VZC, Boguszewski CL, Cohen A, Shane E, Zhou H, Dempster DW, Moreira CA. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease. Bone 2015; 79:1-7. [PMID: 26003953 DOI: 10.1016/j.bone.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone mineralization pattern. However, the observed concomitant occurrence of relatively lower bone volumes with lower bone matrix mineralization will both contribute to the reduced aBMD in some patients with COPD.
Collapse
Affiliation(s)
- B M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - V Jorgetti
- Department of Nephrology, School of Medicine, University of Sao Paulo, SP, Brazil
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - V Z C Borba
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
| | - C L Boguszewski
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
| | - A Cohen
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Shane
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - H Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, USA
| | - D W Dempster
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA; Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, USA
| | - C A Moreira
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
103
|
González-Cerón F, Rekaya R, Aggrey S. Genetic relationship between leg problems and bone quality traits in a random mating broiler population. Poult Sci 2015; 94:1787-90. [DOI: 10.3382/ps/pev159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2015] [Indexed: 11/20/2022] Open
|
104
|
Drake MT, Clarke BL, Lewiecki EM. The Pathophysiology and Treatment of Osteoporosis. Clin Ther 2015; 37:1837-50. [PMID: 26163201 DOI: 10.1016/j.clinthera.2015.06.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The objectives of this article are to review the pathophysiology of bone loss associated with aging and to review current pharmacologic approaches for the treatment of osteoporosis. METHODS A literature search with PubMed was performed with the terms osteoporosis and pathophysiology and osteoporosis and treatment and limited to studies written in English that were published within the preceding 10 years. Given the large number of studies identified, we selectively reviewed those studies that contained primary data related to osteoporosis pathophysiology or osteoporosis pharmacologic treatments and references included within selected studies identified from abstract review. FINDINGS Published studies have consistently reported that osteoporosis in older adults is caused by an imbalance of bone resorption in excess of bone formation. The dominant factor leading to bone loss in older adults appears to be gonadal sex steroid deficiency, with multiple genetic and biochemical factors, such as vitamin D deficiency or hyperparathyroidism, that may accelerate bone loss. Conditions that adversely affect growth and development may limit development of peak bone mass and accelerate subsequent bone loss. Studies of bone microarchitecture have shown that trabecular bone loss begins in the third decade of life, before gonadal sex steroid deficiency develops, whereas cortical loss typically begins in the sixth decade, about the time of menopause in women and about the same age in men. Antiresorptive agents for the treatment of osteoporosis act primarily by limiting osteoclast activity, whereas osteoanabolic agents, such as teriparatide, act primarily by stimulating osteoblastic bone formation. Clinical investigation of new compounds for the treatment of osteoporosis is mainly directed to those that stimulate bone formation or differentially decrease bone resorption more than bone formation. Therapies for osteoporosis are associated with adverse effects, but in patients at high risk of fracture, the benefits generally far outweigh the risks. IMPLICATIONS Current osteoporosis therapies mitigate or reverse the loss of bone associated with age-related decreases of gonadal sex steroids, increase bone strength, and reduce fracture risk. With improved knowledge of the pathophysiology of osteoporosis, new targets for therapeutic intervention have been identified. Clinical investigations of potential new treatments for osteoporosis are primarily directed to stimulating osteoblastic bone formation or to modulating the balance of bone resorption and formation in ways that improve bone strength.
Collapse
Affiliation(s)
- Matthew T Drake
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Bart L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, University of New Mexico School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
105
|
Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part II. J Clin Densitom 2015; 18:359-92. [PMID: 26277852 DOI: 10.1016/j.jocd.2015.06.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 01/19/2023]
Abstract
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.
Collapse
Affiliation(s)
- Philippe Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Ling Qin
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Lang
- Center for Clinical and Translational Science, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, Canada; Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - John A Shepherd
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - John T Schousboe
- Park Nicollet Clinic/HealthPartners, Minneapolis, MN, USA; Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA
| | - Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Erlangen, Germany; Bioclinica, Hamburg, Germany.
| |
Collapse
|
106
|
Stewart MC, Goliath JR, Stout SD, Hubbe M. Intraskeletal Variability of Relative Cortical Area in Humans. Anat Rec (Hoboken) 2015; 298:1635-43. [PMID: 26058578 DOI: 10.1002/ar.23181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/26/2015] [Accepted: 04/20/2015] [Indexed: 11/11/2022]
Abstract
Histomorphometric and cross-sectional geometric studies of bone have provided valuable information about age at death, behavioral and activity patterns, and pathological conditions for past and present human populations. While a considerable amount of exploratory and applied research has been completed using histomorphometric and cross-sectional geometric properties, the effects of intraskeletal variability on interpreting observed histomorphometric data have not been fully explored. The purpose of this study is to quantify intraskeletal variability in the relative cortical area of long bones and ribs from modern humans. To examine intraskeletal variability, cross-sections of the femur, tibia, fibula, humerus, radius, ulna, and rib when present, were examined within individuals from a cadaveric collection (N = 34). Relative cortical area was compared within individuals using a repeated measurements General Linear Model, which shows significant differences between bones, particularly between the rib and the remaining long bones. Complementarily, correlations between bones' relative cortical area values suggest an important allometric component affecting this aspect of long bones, but not of the rib. This study highlights the magnitude of intraskeletal variability in relative cortical area in the human skeleton, and because the relative cortical area of any particular bone is affected by a series of confounding factors, extrapolation of relative cortical area values to infer load history for other skeletal elements can be misleading.
Collapse
Affiliation(s)
- Marissa C Stewart
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Jesse R Goliath
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Sam D Stout
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Mark Hubbe
- Department of Anthropology, The Ohio State University, Columbus, Ohio.,Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, San Pedro de Atacama, Chile
| |
Collapse
|
107
|
Pritchard ZJ, Cary RL, Yang C, Novack DV, Voor MJ, Sankar U. Inhibition of CaMKK2 reverses age-associated decline in bone mass. Bone 2015; 75:120-7. [PMID: 25724145 PMCID: PMC4737584 DOI: 10.1016/j.bone.2015.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
Decline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca(2+)/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual, mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study, we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume, microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age, WT mice sustain a significant decline in trabecular bone volume, microarchitecture and strength as well as cortical bone strength. However, treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume, quality, as well as trabecular and cortical bone strength. We also observed that regardless of age, male Camkk2(-/-) mice possessed significantly elevated trabecular bone volume, microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice, implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further, whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral mid-shaft geometry, the mid-shaft cortical wall thickness and material bending stress remained similar among the cohorts, implying that regardless of treatment, the material properties of the bone remain similar. Thus, our cumulative results provide evidence for the pharmacological inhibition of CaMKK2 as a bone anabolic strategy in combating age-associated osteoporosis.
Collapse
Affiliation(s)
- Zachary J Pritchard
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rachel L Cary
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chang Yang
- Department of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah V Novack
- Department of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.
| | - Uma Sankar
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
108
|
Kish K, Mezil Y, Ward WE, Klentrou P, Falk B. Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur J Appl Physiol 2015; 115:2115-24. [DOI: 10.1007/s00421-015-3191-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/14/2015] [Indexed: 12/20/2022]
|
109
|
Swimming Activity Prevents the Unloading Induced Loss of Bone Mass, Architecture, and Strength in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:507848. [PMID: 26090414 PMCID: PMC4450217 DOI: 10.1155/2015/507848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022]
Abstract
We investigated whether swimming activity associated with a three-week period of hypoactivity could prevent the deleterious effects of disuse on the tibias of tail-suspended rats. Forty Wistar rats were divided into five groups: (HS) permanently hindlimb suspension rats; (HS + Swim) rats submitted to unloading interrupted by swimming exercise; (HS + WB) hindlimb suspension rats with interruption for regular weight bearing for the same length of time as the HS+Swim rats; (Control) control rats that were allowed regular cage activities; and (Control + Swim) control rats that underwent swimming exercise. At the end of the experiment, bone mineral density, bone strength, and trabecular quantification were analyzed. The hindlimb-suspended rats exhibited bone quality loss (significant decrease in BMD, bone strength, and deterioration of trabecular and cortical bone architecture; decrease in BV/TV, TbN, TbTh, ConnD, CtV, and CtTh; and increase in TbSp) when compared to control rats. In contrast, trained rats showed a significant increase of 43% in bone mass, 29% in bone strength, 58% in trabecular thickness, 85% in bone volume, 27% in trabeculae number, and 30% in cortical volume, when compared to the hindlimb-suspended rats. We conclude that swimming activity not only ameliorates but also fully prevents the deleterious effects on bone quality in osteopenic rats.
Collapse
|
110
|
Bortolin RH, da Graça Azevedo Abreu BJ, Abbott Galvão Ururahy M, Costa de Souza KS, Bezerra JF, Bezerra Loureiro M, da Silva FS, Marques DEDS, Batista AADS, Oliveira G, Luchessi AD, Lima VMGDM, Miranda CES, Lia Fook MV, Almeida MDG, de Rezende LA, de Rezende AA. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats. PLoS One 2015; 10:e0125349. [PMID: 25933189 PMCID: PMC4416905 DOI: 10.1371/journal.pone.0125349] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 02/01/2023] Open
Abstract
Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus), and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic and protective effect of zinc under chronic diabetic conditions. Furthermore, these results indicate that zinc supplementation could act as a complementary therapy in chronic T1DM.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Bone Density/drug effects
- Bone Resorption/prevention & control
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/diet therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Dietary Supplements
- Elastic Modulus
- Femur/drug effects
- Femur/metabolism
- Femur/pathology
- Gene Expression Regulation
- Humans
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin
- Tibia/drug effects
- Tibia/metabolism
- Tibia/pathology
- Zinc/administration & dosage
Collapse
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Marcela Abbott Galvão Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Melina Bezerra Loureiro
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávio Santos da Silva
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Gisele Oliveira
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Marcus Vinicius Lia Fook
- Laboratory of Evaluation and Development of Biomaterials, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| |
Collapse
|
111
|
Hotca A, Rajapakse CS, Cheng C, Honig S, Egol K, Regatte RR, Saha PK, Chang G. In vivo measurement reproducibility of femoral neck microarchitectural parameters derived from 3T MR images. J Magn Reson Imaging 2015; 42:1339-45. [PMID: 25824566 DOI: 10.1002/jmri.24892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/08/2015] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To evaluate the within-day and between-day measurement reproducibility of in vivo 3D MRI assessment of trabecular bone microarchitecture of the proximal femur. MATERIALS AND METHODS This Health Insurance Portability and Accountability Act (HIPPA)-compliant, Institutional Review Board (IRB)-approved study was conducted on 11 healthy subjects (mean age = 57.4 ± 14.1 years) with written informed consent. All subjects underwent a 3T MRI hip scan in vivo (0.234 × 0.234 × 1.5 mm) at three timepoints: baseline, second scan same day (intrascan), and third scan 1 week later (interscan). We applied digital topological analysis and volumetric topological analysis to compute the following microarchitectural parameters within the femoral neck: total bone volume, bone volume fraction, markers of trabecular number (skeleton density), connectivity (junctions), plate-like structure (surfaces), plate width, and trabecular thickness. Reproducibility was assessed using root-mean-square coefficient of variation (RMS-CV) and intraclass correlation coefficient (ICC). RESULTS The within-day RMS-CVs ranged from 2.3% to 7.8%, and the between-day RMS-CVs ranged from 4.0% to 7.3% across all parameters. The within-day ICCs ranged from 0.931 to 0.989, and the between-day ICCs ranged from 0.934 to 0.971 across all parameters. CONCLUSION These results demonstrate high reproducibility for trabecular bone microarchitecture measures derived from 3T MR images of the proximal femur. The measurement reproducibility is within a range suitable for clinical cross-sectional and longitudinal studies in osteoporosis.
Collapse
Affiliation(s)
- Alexandra Hotca
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, New York, New York, USA.,Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chen Cheng
- Department of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Kenneth Egol
- Department of Orthopedic Surgery, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| | - Punam K Saha
- Department of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Gregory Chang
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, New York, New York, USA.,Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| |
Collapse
|
112
|
Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption. PLoS Genet 2015; 11:e1005057. [PMID: 25811986 PMCID: PMC4374855 DOI: 10.1371/journal.pgen.1005057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/07/2015] [Indexed: 12/26/2022] Open
Abstract
Mutations in sorting nexin 10 (Snx10) have recently been found to account for roughly 4% of all human malignant osteopetrosis, some of them fatal. To study the disease pathogenesis, we investigated the expression of Snx10 and created mouse models in which Snx10 was knocked down globally or knocked out in osteoclasts. Endocytosis is severely defective in Snx10-deficient osteoclasts, as is extracellular acidification, ruffled border formation, and bone resorption. We also discovered that Snx10 is highly expressed in stomach epithelium, with mutations leading to high stomach pH and low calcium solubilization. Global Snx10-deficiency in mice results in a combined phenotype: osteopetrosis (due to osteoclast defect) and rickets (due to high stomach pH and low calcium availability, resulting in impaired bone mineralization). Osteopetrorickets, the paradoxical association of insufficient mineralization in the context of a positive total body calcium balance, is thought to occur due to the inability of the osteoclasts to maintain normal calcium-phosphorus homeostasis. However, osteoclast-specific Snx10 knockout had no effect on calcium balance, and therefore led to severe osteopetrosis without rickets. Moreover, supplementation with calcium gluconate rescued mice from the rachitic phenotype and dramatically extended life span in global Snx10-deficient mice, suggesting that this may be a life-saving component of the clinical approach to Snx10-dependent human osteopetrosis that has previously gone unrecognized. We conclude that tissue-specific effects of Snx10 mutation need to be considered in clinical approaches to this disease entity. Reliance solely on hematopoietic stem cell transplantation can leave hypocalcemia uncorrected with sometimes fatal consequences. These studies established an essential role for Snx10 in bone homeostasis and underscore the importance of gastric acidification in calcium uptake.
Collapse
|
113
|
Ramaswamy K, Marx V, Laser D, Kenny T, Chi T, Bailey M, Sorensen MD, Grubbs RH, Stoller ML. Targeted microbubbles: a novel application for the treatment of kidney stones. BJU Int 2015; 116:9-16. [PMID: 25402588 DOI: 10.1111/bju.12996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kidney stone disease is endemic. Extracorporeal shockwave lithotripsy was the first major technological breakthrough where focused shockwaves were used to fragment stones in the kidney or ureter. The shockwaves induced the formation of cavitation bubbles, whose collapse released energy at the stone, and the energy fragmented the kidney stones into pieces small enough to be passed spontaneously. Can the concept of microbubbles be used without the bulky machine? The logical progression was to manufacture these powerful microbubbles ex vivo and inject these bubbles directly into the collecting system. An external source can be used to induce cavitation once the microbubbles are at their target; the key is targeting these microbubbles to specifically bind to kidney stones. Two important observations have been established: (i) bisphosphonates attach to hydroxyapatite crystals with high affinity; and (ii) there is substantial hydroxyapatite in most kidney stones. The microbubbles can be equipped with bisphosphonate tags to specifically target kidney stones. These bubbles will preferentially bind to the stone and not surrounding tissue, reducing collateral damage. Ultrasound or another suitable form of energy is then applied causing the microbubbles to induce cavitation and fragment the stones. This can be used as an adjunct to ureteroscopy or percutaneous lithotripsy to aid in fragmentation. Randall's plaques, which also contain hydroxyapatite crystals, can also be targeted to pre-emptively destroy these stone precursors. Additionally, targeted microbubbles can aid in kidney stone diagnostics by virtue of being used as an adjunct to traditional imaging methods, especially useful in high-risk patient populations. This novel application of targeted microbubble technology not only represents the next frontier in minimally invasive stone surgery, but a platform technology for other areas of medicine.
Collapse
Affiliation(s)
- Krishna Ramaswamy
- Department of Urology, University of California, San Francisco, CA, USA
| | - Vanessa Marx
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Thomas Kenny
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas Chi
- Department of Urology, University of California, San Francisco, CA, USA
| | - Michael Bailey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Mathew D Sorensen
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert H Grubbs
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
114
|
González-Cerón F, Rekaya R, Aggrey SE. Genetic analysis of bone quality traits and growth in a random mating broiler population. Poult Sci 2015; 94:883-9. [PMID: 25784765 DOI: 10.3382/ps/pev056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 11/20/2022] Open
Abstract
We report the genetic relationship between growth and bone quality traits in a random mating broiler control population. Traits studied were growth rates from week 0 to 4 [body weight gain (BWG) 0 to 4], from week 0 to 6 (BWG 0 to 6), and residual feed intake (RFI) from week 5 to 6 (RFI 5 to 6). Bone quality traits were obtained at 6 weeks of age. These traits were shank weight (SW), shank length (SL), shank diameter (SDIAM), tibia weight (TW), tibia length (TL), and tibia diameter (TDIAM). Likewise, tibia was used to obtain the tibia density (TDEN), tibia breaking strength (TBS), tibia mineral density (TMD), tibia mineral content (TMC), and tibia ash content (TAC). At the phenotypic level, growth traits were positively correlated with most of the bone quality traits except with TDEN and TAC which tended to show unfavorable associations (-0.04 to -0.31). Heritability of bone quality traits ranged from 0.08 to 0.54. The additive genetic associations of growth traits with weight, length, and diameter of shank and tibia were positive (0.37 to 0.80). A similar pattern was observed with TMD and TMC (0.06 to 0.65). In contrast, growth traits showed unfavorable genetic associations with TDEN, TBS, and TAC (-0.03 to -0.18). It was concluded that bone quality traits have an additive genetic background and they can be improved by means of genetic tools. It appears that selection for growth is negatively correlated with some traits involved in the integrity, health, and maturity of leg bones.
Collapse
Affiliation(s)
- F González-Cerón
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - R Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602
| | - S E Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602
| |
Collapse
|
115
|
Mohd Effendy N, Abdullah S, Yunoh MFM, Shuid AN. Time and dose-dependent effects of Labisia pumila on the bone strength of postmenopausal osteoporosis rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:58. [PMID: 25887391 PMCID: PMC4364645 DOI: 10.1186/s12906-015-0567-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/19/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Post-menopausal osteoporosis has long been treated and prevented by estrogen replacement therapy (ERT). Despite its effectiveness, ERT is associated with serious adverse effects. Labisia pumila var. alata (LP) is a herb with potential as an alternative agent to ERT due to its phytoestrogenic, antioxidative and anti-inflammatory effects on bone. This study aimed to determine the effects of LP supplementation on bone biomechanical strength of postmenopausal osteoporosis rat model. METHODS Ninety-six female Sprague-Dawley rats aged 4 to 5 months old were randomly divided into six groups; six rats in the baseline group (BL) and eighteen rats in each group of; Sham- operated (Sham), ovariectomised control (OVXC) and ovariectomised with daily oral gavages of Premarin at 64.5 μg/kg (ERT), LP at 20 mg/kg (LP20) and LP at 100 mg/kg (LP100) respectively. These groups were subdivided into three, six and nine weeks of treatment periods. Rats in BL group were euthanized before the start of the study, while other rats were euthanized after completion of their treatments. Femora were dissected out for biomechanical strength analysis using Instron Universal Model 5848 Micro Tester. RESULTS OVXC group showed deterioration in the bone biomechanical strength with time. Both ERT and LP supplemented rats showed improvements in bone strength parameters such as maximum load, displacement, stiffness, stress, and Young Modulus. The most improved bone strength was seen in rats given LP at the dose of 100 mg/kg for nine weeks. CONCLUSION LP supplementation at 100 mg/kg was more effective than ERT in reversing ovariectomy-induced bone biomechanical changes.
Collapse
Affiliation(s)
- Nadia Mohd Effendy
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 KL, Kuala Lumpur, Malaysia.
| | - Shahrum Abdullah
- Department of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Mohd Faridz Mod Yunoh
- Department of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 KL, Kuala Lumpur, Malaysia.
| |
Collapse
|
116
|
Deal CL, Abelson AG. Management of osteoporosis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
117
|
Connective tissue responses to mechanical stress. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
118
|
Effects of in ovo injection of bovine lactoferrin before incubation in layer breeder eggs on tibia measurements and performance of laying hens. Animal 2015; 9:1813-9. [DOI: 10.1017/s1751731115001093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
119
|
Abdul-Majeed S, Mohamed N, Soelaiman IN. The use of delta-tocotrienol and lovastatin for anti-osteoporotic therapy. Life Sci 2014; 125:42-8. [PMID: 25534439 DOI: 10.1016/j.lfs.2014.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/23/2014] [Accepted: 12/05/2014] [Indexed: 12/22/2022]
Abstract
AIMS Statins are competitive inhibitors of HMGCoA reductase and are commonly used as antihypercholesterolemic agents. Experimental studies clearly demonstrate the beneficial effects of statins on bone. Tocotrienols have also been shown to have anti-osteoporotic effects on the skeletal system. This study was conducted to observe the effect of a combination of delta-tocotrienol and lovastatin on structural bone histomorphometry and bone biomechanical strength in a postmenopausal rat model at clinically tolerable doses, and to compare it with the effect of delta-tocotrienol or lovastatin. MAIN METHODS Forty-eight female Sprague Dawley rats were randomly divided into six groups: baseline control; sham-operated control; ovariectomised control; ovariectomised+11mg/kg lovastatin; ovariectomised+60mg/kg delta-tocotrienol and ovariectomised+60mg/kg delta-tocotrienol+11mg/kg lovastatin. These treatments were given via oral gavage daily for eight weeks. After sacrificing the rats, the left and right femurs were dissected and processed for bone histomorphometric analysis and a bone biomechanical test, respectively. KEY FINDINGS Delta-tocotrienol in combination with lovastatin significantly improved the trabecular volume, trabecular number, trabecular thickness and trabecular separation; and it significantly increased bone strength in oestrogen-deficient rats. Delta-tocotrienol alone enhanced bone formation and maintained bone strength in ovariectomised rats. Delta-tocotrienol plus lovastatin treatment promoted better trabecular volume and trabecular number and received higher load than delta-tocotrienol alone. Lovastatin alone was not effective. SIGNIFICANCE Thus, the combination of delta-tocotrienol and lovastatin has the potential to be used for anti-osteoporotic therapy in postmenopausal women.
Collapse
Affiliation(s)
- Saif Abdul-Majeed
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan 19/155b, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital UKM, Jalan Ya'acob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Ima-Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital UKM, Jalan Ya'acob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
120
|
Gabutti M, Draper-Rodi J. Osteopathic decapitation: Why do we consider the head differently from the rest of the body? New perspectives for an evidence-informed osteopathic approach to the head. INT J OSTEOPATH MED 2014. [DOI: 10.1016/j.ijosm.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
121
|
Báez-Molgado S, Bartelink EJ, Jellema LM, Spurlock L, Sholts SB. Classification of pelvic ring fractures in skeletonized human remains. J Forensic Sci 2014; 60 Suppl 1:S171-6. [PMID: 25381919 DOI: 10.1111/1556-4029.12613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Abstract
Pelvic ring fractures are associated with high rates of mortality and thus can provide key information about circumstances surrounding death. These injuries can be particularly informative in skeletonized remains, yet difficult to diagnose and interpret. This study adapted a clinical system of classifying pelvic ring fractures according to their resultant degree of pelvic stability for application to gross human skeletal remains. The modified Tile criteria were applied to the skeletal remains of 22 individuals from the Cleveland Museum of Natural History and Universidad Nacional Autónoma de México that displayed evidence of pelvic injury. Because these categories are tied directly to clinical assessments concerning the severity and treatment of injuries, this approach can aid in the identification of manner and cause of death, as well as interpretations of possible mechanisms of injury, such as those typical in car-to-pedestrian and motor vehicle accidents.
Collapse
Affiliation(s)
- Socorro Báez-Molgado
- Department of Anthropology, Texas State University, San Marcos, TX; Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
122
|
Wang Q, Chen D, Nicholson P, Cheng S, Alen M, Mao L, Cheng S. The associations of serum serotonin with bone traits are age- and gender-specific. PLoS One 2014; 9:e109028. [PMID: 25279460 PMCID: PMC4184839 DOI: 10.1371/journal.pone.0109028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/27/2014] [Indexed: 02/05/2023] Open
Abstract
Context Serotonin plays a potential role in bone metabolism, but the nature and extent of this relationship is unclear and human studies directly addressing the skeletal effect of circulating serotonin are rare. Objective The study aimed to investigate the associations between serum serotonin and bone traits at multiple skeletal sites in women and men. Subjects and Methods Subjects were part of the CALEX-family study and comprised 235 young women, 121 premenopausal women, 124 postmenopausal women, and 168 men. Body composition was assessed using DXA, as was areal bone mineral density (aBMD) of spine, femur and whole body. In addition, pQCT was used to determine bone properties at tibial midshaft and distal radius. Fasting serum serotonin concentration was assessed using a competitive enzyme-linked immunosorbent assay. Results Serum serotonin declined with advancing age both in females and males (all p<0.01). Serotonin was negatively correlated with weight, BMI, lean and fat mass in women (r = −0.22 to −0.39, all p<0.001), but positively with height and lean mass in men (all p<0.01). In the premenopausal women, serotonin was negatively correlated with lumbar spine aBMD (r = −0.23, p<0.05) but the statistical significance disappeared after adjustment for weight. Conversely, in postmenopausal women, serotonin was positively correlated with whole body and femur aBMD, as well as with distal radius bone mineral content and volumetric BMD (r = 0.20 to 0.30, all p<0.05), and these associations remained significant after adjustment for weight. In men, no significant associations were found between serotonin and bone traits. Conclusion Serum serotonin is positively associated with bone traits in postmenopausal women, but not in premenopausal women or men. This partially supports the idea of circulating serotonin playing a role in the regulation of bone metabolism, but also indicates the importance of gender and age specific factors.
Collapse
Affiliation(s)
- Qin Wang
- Department of Endocrinology, West China Hospital of Sichuan University, Sichuan, China
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Decai Chen
- Department of Endocrinology, West China Hospital of Sichuan University, Sichuan, China
| | - Patrick Nicholson
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Shumei Cheng
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Alen
- Department of Medical Rehabilitation, Oulu University Hospital and Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Lijian Mao
- Department of Sport and Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Sulin Cheng
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Sport and Physical Education, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
123
|
Volpon JB, Falcai MJ, Moro CA, Leal DM. Torsional force applied to the tibia of living lambs in an attempt to change the bone rotational axis. Acta Cir Bras 2014; 29:193-200. [PMID: 24626732 DOI: 10.1590/s0102-86502014000300008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/21/2014] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To evaluate the effects of torsional force on the rotational axis of living lamb tibias. METHODS An external fixator device was designed to apply rotation to the tibias of lambs. Once a week, the bone distal extremity was rotated 2º. After achieving ~20º of internal rotation, the turning was discontinued and the device was maintained in situ for one month and euthanasia occurred in group A (n=10) after this. In group B (n=9) euthanasia occurred three months after removing the device. Computed tomography scans evaluated the rotational angle; dual-energy X-ray absorptiometry assessed the bone mineral density, and conventional and polarized light microscopy studied the bone microstructure. RESULTS In group A, the mean angle of the external rotation in the control tibias was 24º and 8º in the twisted tibias (p<0.0001); in group B, the angle was 23º (control) and 7º (twisted, p<0.0001), with no differences between groups A and B (p=0.9567). The BMD increased in the twisted tibias in group A (p<0.0001) and in group B (p=0.0023), with no between-group differences (p>0.05). Microscopically, the twisted tibias showed asymmetrical subperiosteal bone deposition on the lateral cortex surface. CONCLUSION Gradual torsion applied to the immature tibia significantly modified its rotational axis.
Collapse
Affiliation(s)
- José Batista Volpon
- University of Sao Paulo, School of Medicine of Ribeirao Preto, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Brazil, PhD, Full Professor, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Brazil. Design, intellectual and scientific content of the study, interpretation of data, manuscript writing, critical revision
| | - Maurício José Falcai
- USP, School of Medicine of Ribeirao Preto, Brazil, Fellow PhD degree, Postgraduate Program in Health Sciences Applied to the Locomotor System, School of Medicine of Ribeirao Preto, USP, Brazil. Animal care, technical procedures
| | - Carlos Alberto Moro
- USP, School of Medicine of Ribeirao Preto, Brazil, Master, Engineer, Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, USP, Brazil. Torsion device design and mechanical testing performance
| | - Daniel Mendes Leal
- USP, School of Medicine of Ribeirao Preto, Brazil, Fellow PhD degree, Postgraduate Program in Health Sciences Applied to the Locomotor System, School of Medicine of Ribeirao Preto, USP, Brazil. Animal care, technical procedures, critical revision
| |
Collapse
|
124
|
Ruggiu A, Cancedda R. Bone mechanobiology, gravity and tissue engineering: effects and insights. J Tissue Eng Regen Med 2014; 9:1339-51. [PMID: 25052837 DOI: 10.1002/term.1942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/10/2023]
Abstract
Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems.
Collapse
Affiliation(s)
- Alessandra Ruggiu
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Ranieri Cancedda
- University of Genova, Department of Experimental Medicine & IRCCS AOU San Martino-IST, National Institute for Cancer Research, Genova, Italy
| |
Collapse
|
125
|
Zamarioli A, Maranho DA, Butezloff MM, Moura PA, Volpon JB, Shimano AC. Anatomic changes in the macroscopic morphology and microarchitecture of denervated long bone tissue after spinal cord injury in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:853159. [PMID: 25136632 PMCID: PMC4127270 DOI: 10.1155/2014/853159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
To study the effects of mechanical loading on bones after SCI, we assessed macro- and microscopic anatomy in rats submitted to passive standing (PS) and electrical stimulation (ES). The study design was based on two main groups of juvenile male Wistar rats with SCI: one was followed for 33 days with therapies starting at day 3 and the other was followed for 63 days with therapies starting at day 33. Both groups were composed of four subgroups (n = 10/group): (1) Sham, (2) SCI, (3) SCI + PS, and (4) SCI + ES. Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days. The animals were sequentially weighed and euthanized. The femur and tibia were assessed macroscopically and microscopically by scanning electronic microscopy (SEM). The SCI rats gained less weight than Sham-operated animals. Significant reduction of bone mass and periosteal radii was observed in the SCI rats, whereas PS and ES efficiently improved the macroscopic parameters. The SEM images showed less and thin trabecular bone in SCI rats. PS and ES efficiently ameliorated the bone microarchitecture deterioration by thickening and increasing the trabeculae. Based on the detrimental changes in bone tissue following SCI, the mechanical loading through weight bearing and muscle contraction may decrease the bone loss and restore the macro- and microanatomy.
Collapse
Affiliation(s)
- Ariane Zamarioli
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
- Laboratory of Bioengineering, School of Medicine of Ribeirão Preto, University of São Paulo, Pedreira de Freitas, Casa 1, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Daniel A. Maranho
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Mariana M. Butezloff
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Patrícia A. Moura
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - José Batista Volpon
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Antônio C. Shimano
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
126
|
Deplaine H, Acosta-Santamaría VA, Vidaurre A, Gómez Ribelles JL, Doblaré M, Ochoa I, Gallego Ferrer G. Evolution of the properties of a poly(l-lactic acid) scaffold with double porosity duringin vitrodegradation in a phosphate-buffered saline solution. J Appl Polym Sci 2014. [DOI: 10.1002/app.40956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Harmony Deplaine
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València; 46022 Valencia Spain
| | - Victor A. Acosta-Santamaría
- Group of Structural Mechanics and Materials Modelling; Aragón Institute of Engineering Research, University of Zaragoza; 50009 Zaragoza Spain
- Aragon Institute of Technology; 50009 Zaragoza Spain
| | - Ana Vidaurre
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València; 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine; 50018 Zaragoza Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València; 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine; 50018 Zaragoza Spain
| | - Manuel Doblaré
- Group of Structural Mechanics and Materials Modelling; Aragón Institute of Engineering Research, University of Zaragoza; 50009 Zaragoza Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine; 50018 Zaragoza Spain
| | - Ignacio Ochoa
- Group of Structural Mechanics and Materials Modelling; Aragón Institute of Engineering Research, University of Zaragoza; 50009 Zaragoza Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine; 50018 Zaragoza Spain
| | - Gloria Gallego Ferrer
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València; 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine; 50018 Zaragoza Spain
| |
Collapse
|
127
|
Soto SA, Chiappe Barbará A. Bisphosphonates: Pharmacology and Clinical Approach to Their Use in Equine Osteoarticular Diseases. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
128
|
Willems NMBK, Langenbach GEJ, Stoop R, den Toonder JMJ, Mulder L, Zentner A, Everts V. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:15-21. [PMID: 25063086 DOI: 10.1016/j.msec.2014.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 04/07/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023]
Abstract
The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2M ribose at 37°C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness.
Collapse
Affiliation(s)
- Nop M B K Willems
- Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Geerling E J Langenbach
- Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Reinout Stoop
- Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden, The Netherlands
| | - Jaap M J den Toonder
- Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lars Mulder
- Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andrej Zentner
- Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Vincent Everts
- Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
129
|
Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head. PLoS One 2014; 9:e96361. [PMID: 24800992 PMCID: PMC4011745 DOI: 10.1371/journal.pone.0096361] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/06/2014] [Indexed: 12/31/2022] Open
Abstract
Objective To detect and compare the bone microstructure and osteoblast and osteoclast activity in different regions of human osteonecrotic femoral heads. Methods Osteonecrotic femoral heads were obtained from 10 patients (6 males, 4 females; Ficat IV) undergoing total hip arthroplasty between 2011 and 2013. The samples were divided into subchondral bone, necrotic, sclerotic, and healthy regions based on micro-computed tomography (CT) images. The bone microstructure, micromechanics, and osteoblast and osteoclast activity were assessed using micro-CT, pathology, immunohistochemistry, nanoindentation, reverse transcription polymerase chain reaction (RT-PCR), tartrate-resistant acid phosphatase staining and Western blotting. Results (1) The spatial structure of the bone trabeculae differed markedly in the various regions of the osteonecrotic femoral heads. (2) The elastic modulus and hardness of the bone trabeculae in the healthy and necrotic regions did not differ significantly (P >0.05). (3) The subchondral bone and necrotic region were positive on TRAP staining, while the other regions were negative. (4) On immunohistochemical staining, RANK and RANKL staining intensities were increased significantly in the subchondral bone and necrotic region compared with the healthy region, while RUNX2 and BMP2 staining intensities were increased significantly in the sclerotic region compared with the necrotic region. (5) OPG, RANK, RANKL, RUNX2, BMP2, and BMP7 protein levels were greater in the necrotic and sclerotic region than in subchondral bone and the healthy region. Conclusion The micromechanical properties of bone trabeculae in the necrotic region did not differ significantly from the healthy region. During the progress of osteonecrosis, the bone structure changed markedly. Osteoclast activity increased in subchondral bone and the necrotic region while osteoblast activity increased in the sclerotic region. We speculate that the altered osteoblast and osteoclast activity leads to a reduction in macroscopic mechanical strength.
Collapse
|
130
|
Falcai MJ, Zamarioli A, Okubo R, de Paula FJA, Volpon JB. The osteogenic effects of swimming, jumping, and vibration on the protection of bone quality from disuse bone loss. Scand J Med Sci Sports 2014; 25:390-7. [PMID: 24779886 DOI: 10.1111/sms.12240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
Abstract
We assessed and compared the effects of swimming, jumping, and vibration therapies on the prevention of bone loss because of unloading. Eighty Wistar rats were randomly divided into eight groups: S, permanent hind limb-suspended rats; CON, control rats; S + Swim, unloading interrupted by swimming exercise; S + C(Swim), suspension interrupted by regular weight-bearing with the same duration as in the S + Swim protocol; S + Jump, unloading interrupted by jumping exercise; S + C(Jump), suspension interrupted for regular weight-bearing as in the S + Jump group; S + Vibr, unloading interrupted by vibration; and S + C(Vibr), suspension with interruptions for regular weight-bearing with the same protocol as that used for the S + Vibr rats. At the end of the experiment, the bone mineral density, bone strength, histomorphometric parameters, and serum levels of the bone markers were analyzed. The hind limb-suspended rats exhibited bone quality loss. In contrast, the trained rats showed a significant increase in bone mass, bone strength, bone formation, and serum levels of bone markers compared with the respective controls. Although we did not find a significant difference among the three physical exercises, the osteogenic effect of vibration was slightly lower than that of swimming and jumping. Thus, all physical exercises were efficient in preventing bone loss because of unloading and preserving bone quality.
Collapse
Affiliation(s)
- M J Falcai
- Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A Zamarioli
- Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - R Okubo
- Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - F J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J B Volpon
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
131
|
Reeve J, Loveridge N. The fragile elderly hip: mechanisms associated with age-related loss of strength and toughness. Bone 2014; 61:138-48. [PMID: 24412288 PMCID: PMC3991856 DOI: 10.1016/j.bone.2013.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 01/23/2023]
Abstract
Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations.
Collapse
Affiliation(s)
- Jonathan Reeve
- NIHR Musculoskeletal Biomedical Research Unit, Institute of Musculoskeletal Science, Nuffield Orthopaedic Centre, Oxford OX3 7HE, UK.
| | - Nigel Loveridge
- Orthopaedic Research Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Human Nutrition Research, Cambridge, UK.
| |
Collapse
|
132
|
Sheng MHC, Lau KHW, Baylink DJ. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone. J Bone Metab 2014; 21:41-54. [PMID: 24707466 PMCID: PMC3970294 DOI: 10.11005/jbm.2014.21.1.41] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/22/2023] Open
Abstract
The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibroblast growth factor (FGF)-23. Osteocytes secrete large amounts of insulin-like growth factor (IGF)-I in bone. Although IGF-I produced locally by other bone cells, such as osteoblasts and chondrocytes, has been shown to play important regulatory roles in bone turnover and developmental bone growth, the functional role of osteocyte-derived IGF-I in the bone and mineral metabolism has not been investigated and remains unclear. However, results of recent studies in osteocyte Igf1 conditional knockout transgenic mice have suggested potential regulatory roles of osteocyte-derived IGF-I in various aspects of bone and mineral metabolism. In this review, evidence supporting a regulatory role for osteocyte-derived IGF-I in the osteogenic response to mechanical loading, the developmental bone growth, the bone response to dietary calcium depletion and repletion, and in fracture repair is discussed. A potential coordinated regulatory relationship between the effect of osteocyte-derived IGF-I on bone size and the internal organ size is also proposed.
Collapse
Affiliation(s)
- Matilda H C Sheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - K H William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA. ; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
133
|
Cui C, Wang S, Myneni VD, Hitomi K, Kaartinen MT. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures. Bone 2014; 59:127-38. [PMID: 24246248 DOI: 10.1016/j.bone.2013.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
Abstract
Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis using EDA-FN blocking antibody showed that it regulated preosteoblast proliferation whereas pFN depletion from the serum had no effect on this process. In conclusion, our study shows that pFN assembly into bone matrix in vitro requires FXIIIA transglutaminase activity making pFN assembly an active, osteoblast-mediated process.
Collapse
Affiliation(s)
- Cui Cui
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Shuai Wang
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Kiyotaka Hitomi
- Department of Applied Molecular Biosciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
134
|
Roy B, Das T, Mishra D, Maiti TK, Chakraborty S. Oscillatory shear stress induced calcium flickers in osteoblast cells. Integr Biol (Camb) 2014; 6:289-99. [PMID: 24445362 DOI: 10.1039/c3ib40174j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The dynamic physical microenvironment of bone affects the activity of osteoblast cells, yet little is known about how osteoblast mechanotransduction depends on different features of a dynamic stimulus. Here we investigated the effect of physiologically relevant oscillatory flow shear stress on the calcium mobility in osteoblast cells within a microfluidic platform that mimics the confined environment of bone matrix. We characterized the spatiotemporal evolution of intracellular calcium 'flickers', an important signature of cell activation, in response to steady, pulsatile, and oscillatory shear stress. We found that oscillatory flow induces surprisingly higher flicker activity than other flow types. We could further attribute this phenomenon to the opening of a stretch activated ion channel, namely TRPM7. We also found that localization of TRPM7 within the cholesterol-enriched lipid raft domains of plasma membranes is essential for its activity. Collectively our findings elucidated a candidate mechanism for the flow mediated stimulation of osteoblast cells. They therefore have implications towards unveiling various facets of bone formation and remodelling in healthy and diseased conditions, including bone-metastasis of various cancer types, diabetes, and inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Bibhas Roy
- Department of Biotechnology, Indian Institute for Technology Kharagpur, Kharagpur - 721302, India
| | | | | | | | | |
Collapse
|
135
|
Kühnisch J, Seto J, Lange C, Schrof S, Stumpp S, Kobus K, Grohmann J, Kossler N, Varga P, Osswald M, Emmerich D, Tinschert S, Thielemann F, Duda G, Seifert W, el Khassawna T, Stevenson DA, Elefteriou F, Kornak U, Raum K, Fratzl P, Mundlos S, Kolanczyk M. Multiscale, converging defects of macro-porosity, microstructure and matrix mineralization impact long bone fragility in NF1. PLoS One 2014; 9:e86115. [PMID: 24465906 PMCID: PMC3897656 DOI: 10.1371/journal.pone.0086115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 01/01/2023] Open
Abstract
Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions.
Collapse
Affiliation(s)
- Jirko Kühnisch
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (JK); (MK)
| | - Jong Seto
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | - Claudia Lange
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
- Institut für Physiologische Chemie, MTZ, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Schrof
- Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Stumpp
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karolina Kobus
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Grohmann
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nadine Kossler
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Varga
- Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Osswald
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Denise Emmerich
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sigrid Tinschert
- Division für Humangenetik, Medizinische Universität Innsbruck, Innsbruck, Austria
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Falk Thielemann
- Klinik für Orthopädie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Georg Duda
- Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Wenke Seifert
- Institute for Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thaqif el Khassawna
- Laboratory of Experimental Trauma Surgery Giessen, Justus-Liebig University Giessen, Giessen, Germany
| | - David A. Stevenson
- University of Utah, Department of Pediatrics, Division of Medical Genetics, Salt Lake City, Utah, United States of America
| | - Florent Elefteriou
- Department of Medicine, Pharmacology and Cancer Biology, Center for Bone Biology, Vanderbilt University - Medical Center, Nashville, Tennessee, United States of America
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kay Raum
- Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Mateusz Kolanczyk
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (JK); (MK)
| |
Collapse
|
136
|
A Robust 3D Finite Element Simulation of Human Proximal Femur Progressive Fracture Under Stance Load with Experimental Validation. Ann Biomed Eng 2013; 41:2515-27. [DOI: 10.1007/s10439-013-0864-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/06/2013] [Indexed: 01/22/2023]
|
137
|
Lau KHW, Baylink DJ, Zhou XD, Rodriguez D, Bonewald LF, Li Z, Ruffoni D, Müller R, Kesavan C, Sheng MHC. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab 2013; 305:E271-81. [PMID: 23715728 DOI: 10.1152/ajpendo.00092.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study sought to determine whether deficient Igf1 expression in osteocytes would affect loading-induced osteogenic response. Tibias of osteocyte Igf1 conditional knockout (KO) mice (generated by cross-breeding Igf1 floxed mice with Dmp1-Cre transgenic mice) and wild-type (WT) littermates were subjected to four-point bending for 2 wk. Microcomputed tomography confirmed that the size of tibias of conditional mutants was smaller. Loading with an equivalent loading strain increased periosteal woven bone and endosteal lamellar bone formation in WT mice but not in conditional KO mice. Consistent with the lack of an osteogenic response, the loading failed to upregulate expression of early mechanoresponsive genes (Igf1, Cox-2, c-fos) or osteogenic genes (Cbfa-1, and osteocalcin) in conditional KO bones. The lack of osteogenic response was not due to reduced osteocyte density or insufficient loading strain. Deficient osteocyte Igf1 expression reduced the loading-induced upregulation of expression of canonical Wnt signaling genes (Wnt10b, Lrp5, Dkk1, sFrp2). The loading also reduced (by 40%) Sost expression in WT mice, but the loading not only did not reduce but upregulated (~1.5-fold) Sost expression in conditional KO mice. Conditional disruption of Igf1 in osteocytes also abolished the loading-induced increase in the bone β-catenin protein level. These findings suggest an impaired response in the loading-induced upregulation of the Wnt signaling in conditional KO mice. In summary, conditional disruption of Igf1 in osteocytes abolished the loading-induced activation of the Wnt signaling and the corresponding osteogenic response. In conclusion, osteocyte-derived IGF-I plays a key determining role in bone mechanosensitivity.
Collapse
Affiliation(s)
- K-H William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wu Y, Zhang P, Dai Q, Yang X, Fu R, Jiang L, Fang B. Effect of mechanical stretch on the proliferation and differentiation of BMSCs from ovariectomized rats. Mol Cell Biochem 2013; 382:273-82. [PMID: 23842623 DOI: 10.1007/s11010-013-1744-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/19/2013] [Indexed: 01/08/2023]
Abstract
Osteoporosis is characterized by a broken balance between bone formation and bone resorption. Mechanical stress has been considered to be an important factor in bone modeling and remodeling. However, biological responses of stromal cells in osteoporosis to mechanical stimuli remain unknown. To explore the correlation between mechanical stress and osteoblastic differentiation of bone mesenchymal stem cells (BMSCs) in osteoporosis, we built an osteoporosis model in ovariectomized (OVX) rats, and then investigated proliferation, alkaline phosphatase (ALP) activity, and the expression of osteoblastic genes in BMSCs under mechanical stress of 5 and 10% elongation, using the Flexercell Strain system. The proliferation of BMSCs was detected using alamarBlue. The expression of osteoblastic genes was analyzed by real-time quantitative polymerase chain reaction. Protein expression was examined by Western blotting. BMSCs (OVX) and BMSCs (Sham-operated, Sham in short) proliferations were inhibited at 5 and 10% elongation at day 3, compared with the un-stretched group, while BMSCs (OVX) proliferation was slower than BMSCs (Sham). ALP activity increased significantly at 10% elongation in both cells, but it was less active in BMSCs (OVX) than BMSCs (Sham). At days 3 and 7, the mRNA expression of osteoblastic genes was unregulated by mechanical stretch (5 and 10 % elongation); however, osteoblastic gene expression in BMSCs (OVX) was less than that in BMSCs (Sham). The mRNA and protein expression of Runx2 showed similar trends in BMSCs (OVX) under mechanical stretch. These results indicate that the mechanical stretch stimulates osteoblastic differentiation of BMSCs (OVX); however, this differentiation was weaker than that of BMSCs (Sham).
Collapse
Affiliation(s)
- Yuqiong Wu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Room 405, Building 1, No. 639, Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
139
|
Reference point indentation study of age-related changes in porcine femoral cortical bone. J Biomech 2013; 46:1689-96. [PMID: 23676290 DOI: 10.1016/j.jbiomech.2013.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/30/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
Abstract
The reference point indentation (RPI) method is a microindentation technique involving successive indentation cycles. We employed RPI to measure average stiffness (Ave US), indentation distance increase (IDI), total indentation distance (TID), average energy dissipated (Ave ED), and creep indentation distance (CID) of swine femoral cortical bone (mid-diaphysis) as a function of age (1, 3.5, 6, 14.5, 24, and 48 months) and loading directions (longitudinal and transverse). The Ave US increases with animal age, while the IDI, TID, Ave ED, and CID decrease with age, for both longitudinal (transverse surface) and transverse (periosteal surface) loading directions. Longitudinal measurements generally give higher Ave US and lower IDI and TID values compared to transverse measurements. The RPI measurements show similar trends to those obtained using nanoindentation test, and ash and water content tests.
Collapse
|
140
|
Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:457052. [PMID: 23762138 PMCID: PMC3666393 DOI: 10.1155/2013/457052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol's effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg) and ovariectomized treated with formononetin (10 mg/kg). Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads) and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place). Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content).
To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.
Collapse
|
141
|
Currey JD, Shahar R. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties. J Struct Biol 2013; 183:107-22. [PMID: 23664869 DOI: 10.1016/j.jsb.2013.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/12/2023]
Abstract
Bone includes cavities in various length scales, from nanoporosities occurring between the collagen fibrils and the mineral crystals all the way to macrocavities like the medullary cavity. In particular, bone is permeated by a vast number of channels (the lacunar-canalicular system), that reduce the stiffness and, more importantly, the strength of the bone that they permeate. These consequences are presumably a price worth paying for the ability of the lacunar-canalicular system to detect changes in the strain environment within the bone material and, when deleterious, to trigger processes like modeling or remodeling which 'rectify' it. Here we review the size and density of the various types of cavities in bone, and discuss their effect on the mechanical properties of cortical bone. In this respect the bones of advanced teleost fish species (probably the majority of all vertebrate species) are an unsolved conundrum because they lack bone cells (and therefore lacunae and canaliculi) in their skeleton. Yet, despite being acellular, some of these fish can undergo considerable remodeling in at least some parts of their skeleton. We address, but do not solve this mystery.
Collapse
Affiliation(s)
- John D Currey
- Department of Biology, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
142
|
Wong KK, Piert M. Dynamic Bone Imaging with 99mTc-Labeled Diphosphonates and 18F-NaF: Mechanisms and Applications. J Nucl Med 2013; 54:590-9. [DOI: 10.2967/jnumed.112.114298] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
143
|
The effects of damage accumulation on the tensile strength and toughness of compact bovine bone. J Biomech 2013; 46:964-72. [DOI: 10.1016/j.jbiomech.2012.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022]
|
144
|
Baker JF, Davis M, Alexander R, Zemel BS, Mostoufi-Moab S, Shults J, Sulik M, Schiferl DJ, Leonard MB. Associations between body composition and bone density and structure in men and women across the adult age spectrum. Bone 2013; 53:34-41. [PMID: 23238122 PMCID: PMC3552077 DOI: 10.1016/j.bone.2012.11.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/06/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE The objective of this study was to identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. METHODS This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21-78years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p<0.05). RESULTS Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). CONCLUSIONS These data highlight age-, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age-, sex- and race-related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition.
Collapse
Affiliation(s)
- Joshua F Baker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Stein EM, Rosete F, Young P, Kamanda-Kosseh M, McMahon DJ, Luo G, Kaufman JJ, Shane E, Siffert RS. Clinical assessment of the 1/3 radius using a new desktop ultrasonic bone densitometer. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:388-95. [PMID: 23312957 PMCID: PMC3570600 DOI: 10.1016/j.ultrasmedbio.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
The objectives of this study were to evaluate the capability of a novel ultrasound device to clinically estimate bone mineral density (BMD) at the 1/3 radius. The device rests on a desktop and is portable, and permits real-time evaluation of the radial BMD. The device measures two net time delay (NTD) parameters, NTD(DW) and NTD(CW). NTD(DW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue, cortex and medullary cavity, and the transit time through soft tissue only of equal overall distance. NTD(CW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue and cortex only, and the transit time through soft tissue only again of equal overall distance. The square root of the product of these two parameters is a measure of the radial BMD at the 1/3 location as measured by dual-energy X-ray absorptiometry (DXA). A clinical IRB-approved study measured ultrasonically 60 adults at the 1/3 radius. BMD was also measured at the same anatomic site and time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.93 (p < 0.001). These results are consistent with previously reported simulation and in vitro studies. In conclusion, although X-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here should enable significant expansion of diagnosis and monitoring of osteoporosis through a desktop device that ultrasonically assesses bone mass at the 1/3 radius.
Collapse
Affiliation(s)
- Emily M Stein
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Mendonça ML, Pereira FA, Nogueira-Barbosa MH, Monsignore LM, Teixeira SR, Watanabe PCA, Maciel LMZ, de Paula FJA. Increased vertebral morphometric fracture in patients with postsurgical hypoparathyroidism despite normal bone mineral density. BMC Endocr Disord 2013; 13:1. [PMID: 23286605 PMCID: PMC3546901 DOI: 10.1186/1472-6823-13-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mechanism behind parathyroid hormone (PTH) activation of bone remodeling is intimately dependent on the time of exposure of bone cells to hormone levels. Sustained high PTH levels trigger catabolism, while transitory elevations induce anabolism. The effects of hypoparathyroidism (PhPT) on bone are unknown. The objective was to study the impact of PhPT on bone mineral density (BMD), on the frequency of subclinical vertebral fracture and on mandible morphometry. METHODS The study comprised thirty-three postmenopausal women, 17 controls (CG) and 16 with PhPT (PhPTG) matched for age, weight and height. Bone mineral density (BMD) of lumbar spine, total hip and 1/3 radius, radiographic evaluation of vertebral morphometry, panoramic radiography of the mandible, and biochemical evaluation of mineral metabolism and bone remodeling were evaluated in both groups. RESULTS There were no significant differences in lumbar spine or total hip BMD between groups. There was marked heterogeneity of lumbar spine BMD in PhPTG (high = 4, normal = 9, osteopenia = 1, and osteoporosis = 2 patients). BMD was decreased in the 1/3 radius in PhPTG P < 0.005). The PhPTG group exhibited an increased frequency of morphometric vertebral fractures and decreased mandible cortical thickness. CONCLUSION The study suggests that vertebral fragility occurs in PhPT despite normal or even high BMD. The current results encourage further studies to evaluate the use of panoramic radiography in the identification of osteometabolic disorders, such as PhPT and the development of a more physiological treatment for PhPT.
Collapse
Affiliation(s)
- Maira L Mendonça
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Francisco A Pereira
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lucas M Monsignore
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sara R Teixeira
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Plauto CA Watanabe
- Department of Radiology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lea MZ Maciel
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Francisco JA de Paula
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
147
|
Abstract
The diagnosis and management of osteoporosis have been improved by the development of new quantitative methods of skeletal assessment and by the availability of an increasing number of therapeutic options, respectively. A number of imaging methods exist and all have advantages and disadvantages. Dual-energy X-ray absorptiometry (DXA) is the most widely available and commonly utilized method for clinical diagnosis of osteoporosis and will remain so for the foreseeable future. The WHO 10-year fracture risk assessment tool (FRAX(®)) will improve clinical use of DXA and the cost-effectiveness of therapeutic intervention. Improved reporting of radiographic features that suggest osteoporosis and the presence of vertebral fracture, which are powerful predictors of future fractures, could increase the frequency of appropriate DXA referrals. Quantitative CT remains predominantly a research tool, but has advantages over DXA--allowing measurement of volumetric density, separate measures of cortical and trabecular bone density, and evaluation of bone shape and size. High resolution imaging, using both CT and MRI, has been introduced to measure trabecular and cortical bone microstructure. Although these methods provide detailed insights into the effects of disease and therapies on bone, they are technically challenging and not widely available, so they are unlikely to be used in clinical practice.
Collapse
Affiliation(s)
- Judith E Adams
- Manchester Academic Health Science Centre, The Royal Infirmary and University of Manchester, Department of Radiology, The Royal Infirmary, Manchester M13 9WL, UK.
| |
Collapse
|
148
|
Abstract
PURPOSE OF REVIEW To give an overview of advanced in-vivo imaging techniques for assessing bone quality beyond bone mineral density that have considerably advanced in recent years. RECENT FINDINGS Quantitative computed tomography and finite element analysis improve fracture risk prediction at the spine, and help to better understand the pathophysiology of skeletal diseases and response to therapy by quantifying bone mineral density in different bone compartments, determining bone strength, and assessing bone geometry. With new high-resolution techniques, trabecular structure at the spine, forearm, and tibia, and cortical porosity at the forearm and tibia can be measured. Hip structure analysis and trabecular bone score have extended the usefulness of dual X-ray absorptiometry. SUMMARY New advanced three-dimensional imaging techniques to quantify bone quality are mature and have proven to be complimentary methods to dual X-ray absorptiometry enhancing our understanding of bone metabolism and treatment.
Collapse
Affiliation(s)
- Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Erlangen, Germany.
| |
Collapse
|
149
|
Fechner R, Stratmann M, Gössling R, Sverdlova N. The functional role of the ischiopubic membrane for the mechanical loading of the pubis in the domestic fowl (Gallus gallus). J Anat 2012; 222:305-12. [PMID: 23171269 DOI: 10.1111/joa.12015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 10/27/2022] Open
Abstract
Soft tissues other than muscles are supposed to be of mechanical importance, yet they are rarely integrated into finite element models. Here, we investigate the functional role of the ischiopubic membrane for the loading of the pubis of the domestic fowl using 2D finite element analysis. For this purpose, a specimen of the domestic fowl was dissected and soft tissues attaching to the pubis were studied in great detail. Muscles were removed and measurements taken. For the 2D finite element model, the outline was taken from the dissected specimen. Two 2D finite element models were generated: one without and one with ischiopubic membrane. The same muscular loading based on own measurements and electromyographic data was applied to both models. The model without ischiopubic membrane shows anteroventral bending deformation of the scapus pubis, resulting in high compressive and tensile principal stresses at the level of ultimate bone stress values. The model with ischiopubic membrane shows low compressive principal stresses in the pubis consistent with the levels of steady state remodelling of bone. Based on these results, the ischiopubic membrane of the domestic fowl potentially establishes a physiological loading of the pubis and therefore might be of great mechanical significance for the loading of the bone.
Collapse
Affiliation(s)
- Regina Fechner
- Biomechanics Research Group, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
150
|
Zhang Y, Madhu V, Dighe AS, Irvine JN, Cui Q. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors 2012; 30:333-43. [PMID: 23017019 DOI: 10.3109/08977194.2012.720574] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exogenous addition of three factors-mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF), and bone morphogenetic proteins (BMPs)-has proven to be more beneficial than delivery of any single factor for fracture repair in animal models. We studied the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in the presence of VEGF, BMP-6, or VEGF plus BMP-6 to better understand their enhancement of osteoblastic differentiation of MSCs. The VEGF plus BMP-6 group demonstrated an additive effect on the enhancement of mineralization and expression of ALP and Msx2 genes. Unlike VEGF or BMP-6 alone, the combination of VEGF and BMP-6 significantly enhanced the expression of COL1A1, osterix, and Dlx5 genes. The data indicate that a cross-talk between VEGF and BMP-6 signaling pathways enhances osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|