101
|
Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte - cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne) 2014; 5:169. [PMID: 25352833 PMCID: PMC4196552 DOI: 10.3389/fendo.2014.00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami,1580 NW 10th Ave, Batchelor Bldg, Room 628, Miami, FL 33136, USA e-mail:
| | - Christopher E. Pedigo
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Armando J. Mendez
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
102
|
Cologna SM, Cluzeau CV, Yanjanin NM, Blank PS, Dail MK, Siebel S, Toth CL, Wassif CA, Lieberman AP, Porter FD. Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. J Inherit Metab Dis 2014; 37:83-92. [PMID: 23653225 PMCID: PMC3877698 DOI: 10.1007/s10545-013-9610-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 02/01/2023]
Abstract
Niemann-Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post-mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C-X-C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL-3, IL-10 and IL-13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.
Collapse
Affiliation(s)
- Stephanie M. Cologna
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Celine V.M. Cluzeau
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Nicole M. Yanjanin
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Paul S. Blank
- Program in Physical Biology, Section on Membrane & Cellular Biophysics, NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Michelle K. Dail
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Stephan Siebel
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Cynthia L. Toth
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Christopher A. Wassif
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | | | - Forbes D. Porter
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| |
Collapse
|
103
|
Merscher-Gomez S, Guzman J, Pedigo CE, Lehto M, Aguillon-Prada R, Mendez A, Lassenius MI, Forsblom C, Yoo T, Villarreal R, Maiguel D, Johnson K, Goldberg R, Nair V, Randolph A, Kretzler M, Nelson RG, Burke GW, Groop PH, Fornoni A. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 2013; 62:3817-27. [PMID: 23835338 PMCID: PMC3806621 DOI: 10.2337/db13-0399] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) remains the most common cause of end-stage kidney disease despite multifactorial intervention. We demonstrated that increased cholesterol in association with downregulation of ATP-binding cassette transporter ABCA1 occurs in normal human podocytes exposed to the sera of patients with type 1 diabetes and albuminuria (DKD(+)) when compared with diabetic patients with normoalbuminuria (DKD(-)) and similar duration of diabetes and lipid profile. Glomerular downregulation of ABCA1 was confirmed in biopsies from patients with early DKD (n = 70) when compared with normal living donors (n = 32). Induction of cholesterol efflux with cyclodextrin (CD) but not inhibition of cholesterol synthesis with simvastatin prevented podocyte injury observed in vitro after exposure to patient sera. Subcutaneous administration of CD to diabetic BTBR (black and tan, brachiuric) ob/ob mice was safe and reduced albuminuria, mesangial expansion, kidney weight, and cortical cholesterol content. This was followed by an improvement of fasting insulin, blood glucose, body weight, and glucose tolerance in vivo and improved glucose-stimulated insulin release in human islets in vitro. Our data suggest that impaired reverse cholesterol transport characterizes clinical and experimental DKD and negatively influences podocyte function. Treatment with CD is safe and effective in preserving podocyte function in vitro and in vivo and may improve the metabolic control of diabetes.
Collapse
Affiliation(s)
- Sandra Merscher-Gomez
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Johanna Guzman
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Christopher E. Pedigo
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Robier Aguillon-Prada
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Armando Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mariann I. Lassenius
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - TaeHyun Yoo
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Rodrigo Villarreal
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Dony Maiguel
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Kevin Johnson
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ronald Goldberg
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Viji Nair
- University of Michigan, Ann Arbor, Michigan
| | | | | | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - George W. Burke
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
- Department of Surgery, University of Miami, Miami, Florida
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Alessia Fornoni
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
- Corresponding author: Alessia Fornoni,
| | | |
Collapse
|
104
|
|
105
|
Helquist P, Maxfield FR, Wiech NL, Wiest O. Treatment of Niemann--pick type C disease by histone deacetylase inhibitors. Neurotherapeutics 2013; 10:688-97. [PMID: 24048860 PMCID: PMC3805865 DOI: 10.1007/s13311-013-0217-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a devastating, recessive, inherited disorder that causes accumulation of cholesterol and other lipids in late endosomes and lysosomes. Mutations in 2 genes, NPC1 and NPC2, are responsible for the disease, which affects about 1 in 120,000 live births. About 95% of patients have mutations in NPC1, a large polytopic membrane protein that is normally found in late endosomes. More than 200 missense mutations in NPC1 have been found in NPC patients. The disease is progressive, typically leading to death before the age of 20 years, although some affected individuals live well into adulthood. The disease affects peripheral organs, including the liver, spleen, and lungs, but the most severe symptoms are associated with neurological disease. There are some palliative treatments that slow progression of NPC disease. Recently, it was found that histone deacetylase (HDAC) inhibitors that are effective against HDACs 1, 2, and 3 can reduce the cholesterol accumulation in fibroblasts derived from NPC patients with mutations in NPC1. One example is vorinostat. As vorinostat is a Food and Drug Administration-approved drug for treatment of cutaneous T-cell lymphoma, this opens up the possibility that HDAC inhibitors could be repurposed for treatment of this rare disease. The mechanism of action of the HDAC inhibitors requires further study, but these drugs increase the level of the NPC1 protein. This may be due to post-translational stabilization of the NPC1 protein, allowing it to be transported out of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Helquist
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
| | | | | | - Olaf Wiest
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
- />Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
106
|
Ontogenic changes in lung cholesterol metabolism, lipid content, and histology in mice with Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:54-61. [PMID: 24076310 DOI: 10.1016/j.bbalip.2013.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022]
Abstract
Niemann-Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1(-/-) mice (Npc1(nih)) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70days of age). Similar measurements were made in Npc2(-/-) mice at 70days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1(-/-) mice and remained so at 70days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1(-/-) mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1(-/-) mice starting as early as 28days. Similar metabolic and histologic changes were evident in the lungs of the Npc2(-/-) mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.
Collapse
|
107
|
Hawkins-Salsbury JA, Parameswar AR, Jiang X, Schlesinger PH, Bongarzone E, Ory DS, Demchenko AV, Sands MS. Psychosine, the cytotoxic sphingolipid that accumulates in globoid cell leukodystrophy, alters membrane architecture. J Lipid Res 2013; 54:3303-11. [PMID: 24006512 DOI: 10.1194/jlr.m039610] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Globoid cell leukodystrophy (GLD) is a neurological disease caused by deficiency of the lysosomal enzyme galactosylceramidase (GALC). In the absence of GALC, the cytotoxic glycosphingolipid, psychosine (psy), accumulates in the nervous system. Psychosine accumulation preferentially affects oligodendrocytes, leading to progressive demyelination and infiltration of activated monocytes/macrophages into the CNS. GLD is characterized by motor defects, cognitive deficits, seizures, and death by 2-5 years of age. It has been hypothesized that psychosine accumulation, primarily within lipid rafts, results in the pathogenic cascade in GLD. However, the mechanism of psychosine toxicity has yet to be elucidated. Therefore, we synthesized the enantiomer of psychosine (ent-psy) to use as a probe to distinguish between protein-psy (stereo-specific enantioselective) or membrane-psy (stereo-insensitive nonenantioselective) interactions. The enantiomer of psychosine has equal or greater toxicity compared with psy, suggesting that psy exerts its toxicity through a nonenantioselective mechanism. Finally, in this study we demonstrate that psy and ent-psy localize to lipid rafts, perturb natural and artificial membrane integrity, and inhibit protein Kinase C translocation to the plasma membrane. Although other mechanisms may play a role in disease, these data strongly suggest that psy exerts its effects primarily through membrane perturbation rather than through specific protein-psy interactions.
Collapse
|
108
|
Roszell BR, Tao JQ, Yu KJ, Gao L, Huang S, Ning Y, Feinstein SI, Vite CH, Bates SR. Pulmonary abnormalities in animal models due to Niemann-Pick type C1 (NPC1) or C2 (NPC2) disease. PLoS One 2013; 8:e67084. [PMID: 23843985 PMCID: PMC3699545 DOI: 10.1371/journal.pone.0067084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Niemann-Pick C (NPC) disease is due to loss of NPC1 or NPC2 protein function that is required for unesterified cholesterol transport from the endosomal/lysosomal compartment. Though lung involvement is a recognized characteristic of Niemann-Pick type C disease, the pathological features are not well understood. We investigated components of the surfactant system in both NPC1 mutant mice and felines and in NPC2 mutant mice near the end of their expected life span. Histological analysis of the NPC mutant mice demonstrated thickened septae and foamy macrophages/leukocytes. At the level of electron microscopy, NPC1-mutant type II cells had uncharacteristically larger lamellar bodies (LB, mean area 2-fold larger), while NPC2-mutant cells had predominantly smaller lamellar bodies (mean area 50% of normal) than wild type. Bronchoalveolar lavage from NPC1 and NPC2 mutant mice had an approx. 4-fold and 2.5-fold enrichment in phospholipid, respectively, and an approx. 9-fold and 35-fold enrichment in cholesterol, consistent with alveolar lipidosis. Phospholipid and cholesterol also were elevated in type II cell LBs and lung tissue while phospholipid degradation was reduced. Enrichment of surfactant protein-A in the lung and surfactant of the mutant mice was found. Immunocytochemical results showed that cholesterol accumulated in the LBs of the type II cells isolated from the affected mice. Alveolar macrophages from the NPC1 and NPC2 mutant mice were enlarged compared to those from wild type mice and were enriched in phospholipid and cholesterol. Pulmonary features of NPC1 mutant felines reflected the disease described in NPC1 mutant mice. Thus, with the exception of lamellar body size, the lung phenotype seen in the NPC1 and NPC2 mutant mice were similar. The lack of NPC1 and NPC2 proteins resulted in a disruption of the type II cell surfactant system contributing to pulmonary abnormalities.
Collapse
Affiliation(s)
- Blair R. Roszell
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jian-Qin Tao
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin J. Yu
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ling Gao
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shaohui Huang
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yue Ning
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sheldon I. Feinstein
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charles H. Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra R. Bates
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
109
|
Matsuo M, Arima H, Irie T. Reply: lung toxicity of hydroxyl-β-cyclodextrin infusion. Mol Genet Metab 2013; 109:233. [PMID: 23660393 DOI: 10.1016/j.ymgme.2013.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
|
110
|
Fu R, Wassif CA, Yanjanin NM, Watkins-Chow DE, Baxter LL, Incao A, Liscum L, Sidhu R, Firnkes S, Graham M, Ory DS, Porter FD, Pavan WJ. Efficacy of N-acetylcysteine in phenotypic suppression of mouse models of Niemann-Pick disease, type C1. Hum Mol Genet 2013; 22:3508-23. [PMID: 23666527 DOI: 10.1093/hmg/ddt206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1), which arises from a mutation in the NPC1 gene, is characterized by abnormal cellular storage and transport of cholesterol and other lipids that leads to hepatic disease and progressive neurological impairment. Oxidative stress has been hypothesized to contribute to the NPC1 disease pathological cascade. To determine whether treatments reducing oxidative stress could alleviate NPC1 disease phenotypes, the in vivo effects of the antioxidant N-acetylcysteine (NAC) on two mouse models for NPC1 disease were studied. NAC was able to partially suppress phenotypes in both antisense-induced (NPC1ASO) and germline (Npc1-/-) knockout genetic mouse models, confirming the presence of an oxidative stress-related mechanism in progression of NPC1 phenotypes and suggesting NAC as a potential molecule for treatment. Gene expression analyses of NAC-treated NPC1ASO mice suggested NAC affects pathways distinct from those initially altered by Npc1 knockdown, data consistent with NAC achieving partial disease phenotype suppression. In a therapeutic trial of short-term NAC administration to NPC1 patients, no significant effects on oxidative stress in these patients were identified other than moderate improvement of the fraction of reduced CoQ10, suggesting limited efficacy of NAC monotherapy. However, the mouse model data suggest that the distinct antioxidant effects of NAC could provide potential treatment of NPC1 disease, possibly in concert with other therapeutic molecules at earlier stages of disease progression. These data also validated the NPC1ASO mouse as an efficient model for candidate NPC1 drug screening, and demonstrated similarities in hepatic phenotypes and genome-wide transcript expression patterns between the NPC1ASO and Npc1-/- models.
Collapse
Affiliation(s)
- Rao Fu
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Collins CJ, McCauliff LA, Hyun SH, Zhang Z, Paul LN, Kulkarni A, Zick K, Wirth M, Storch J, Thompson DH. Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick type C fibroblasts. Biochemistry 2013; 52:3242-53. [PMID: 23560535 DOI: 10.1021/bi3010889] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several lines of evidence suggest that β-cyclodextrin (β-CD) derivatives initiate the efflux of accumulated, unesterified cholesterol from the late endosomal/lysosomal compartment in Niemann Pick C (NPC) disease models. Unfortunately, repeated injections or continuous infusions of current β-CD therapies are required to sustain suppression of symptoms and prolong life. In an effort to make CD treatment a more viable option by boosting efficacy and improving pharmacokinetics, a library of Pluronic surfactant-based β-CD polyrotaxanes has been developed using biocompatible poly(ethylene glycol) (PEG)-polypropylene glycol (PPG)-PEG triblock copolymers. These compounds carry multiple copies of β-CD as shown by (1)H NMR, 2D nuclear Overhouser effect spectroscopy, gel permeation chromatography/multiangle light scattering, analytical ultracentrifugation analysis, matrix assisted laser desorption/ionization mass spectrometry, and diffusion-ordered spectroscopy. Analyses of free β-cyclodextrin contamination in the compounds were made by reverse phase high pressure liquid chromatography and hydrophilic interaction liquid chromatography. Dethreading kinetics were studied by reverse phase high pressure liquid chromatography, UV/vis, and (1)H NMR analysis. Filipin staining studies using npc2(-/-) fibroblasts show significant reversal of cholesterol accumulation after treatment with polyrotaxane compounds. The rate and efficacy of reversal is similar to that achieved by equivalent amounts of monomeric β-CD alone.
Collapse
Affiliation(s)
- Christopher J Collins
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47904, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
|
113
|
Crumling MA, Liu L, Thomas PV, Benson J, Kanicki A, Kabara L, Hälsey K, Dolan D, Duncan RK. Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl-β-cyclodextrin. PLoS One 2012; 7:e53280. [PMID: 23285273 PMCID: PMC3532434 DOI: 10.1371/journal.pone.0053280] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/28/2012] [Indexed: 11/18/2022] Open
Abstract
Cyclodextrins are sugar compounds that are increasingly finding medicinal uses due to their ability to complex with hydrophobic molecules. One cyclodextrin in particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is used as a carrier to solubilize lipophilic drugs and is itself being considered as a therapeutic agent for treatment of Niemann-Pick Type C disease, due to its ability to mobilize cholesterol. Results from toxicological studies suggest that HPβCD is generally safe, but a recent study has found that it causes hearing loss in cats. Whether the hearing loss occurred via death of cochlear hair cells, rendering it permanent, was unexplored. In the present study, we examined peripheral auditory function and cochlear histology in mice after subcutaneous injection of HPβCD to test for hearing loss and correlate any observed auditory deficits with histological findings. On average, auditory brainstem response thresholds were elevated at 4, 16, and 32 kHz in mice one week after treatment with 8,000 mg/kg. In severely affected mice all outer hair cells were missing in the basal half of the cochlea. In many cases, surviving hair cells in the cochlear apex exhibited abnormal punctate distribution of the motor protein prestin, suggesting long term changes to membrane composition and integrity. Mice given a lower dose of 4,000 mg/kg exhibited hearing loss only after repeated doses, but these threshold shifts were temporary. Therefore, cyclodextrin-induced hearing loss was complex, involving cell death and other more subtle influences on cochlear physiology.
Collapse
Affiliation(s)
- Mark A. Crumling
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Liqian Liu
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul V. Thomas
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Benson
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ariane Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karin Hälsey
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - R. Keith Duncan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
114
|
Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF. Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. ACTA ACUST UNITED AC 2012; 209:2501-13. [PMID: 23209315 PMCID: PMC3526350 DOI: 10.1084/jem.20121239] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To be added There is extensive evidence that cholesterol and membrane lipids play a key role in Alzheimer disease (AD) pathogenesis. Cyclodextrins (CD) are cyclic oligosaccharide compounds widely used to bind cholesterol. Because CD exerts significant beneficial effects in Niemann-Pick type C disease, which shares neuropathological features with AD, we examined the effects of hydroxypropyl-β-CD (HP-β-CD) in cell and mouse models of AD. Cell membrane cholesterol accumulation was detected in N2a cells overexpressing Swedish mutant APP (SwN2a), and the level of membrane cholesterol was reduced by HP-β-CD treatment. HP-β-CD dramatically lowered the levels of Aβ42 in SwN2a cells, and the effects were persistent for 24 h after withdrawal. 4 mo of subcutaneous HP-β-CD administration significantly improved spatial learning and memory deficits in Tg19959 mice, diminished Aβ plaque deposition, and reduced tau immunoreactive dystrophic neurites. HP-β-CD lowered levels of Aβ42 in part by reducing β cleavage of the APP protein, and it also up-regulated the expression of genes involved in cholesterol transport and Aβ clearance. This is the first study to show neuroprotective effects of HP-β-CD in a transgenic mouse model of AD, both by reducing Aβ production and enhancing clearance mechanisms, which suggests a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
115
|
Totenhagen JW, Yoshimaru ES, Erickson RP, Trouard TP. (1) H magnetic resonance spectroscopy of neurodegeneration in a mouse model of niemann-pick type C1 disease. J Magn Reson Imaging 2012; 37:1195-201. [PMID: 23165972 DOI: 10.1002/jmri.23902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/18/2012] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate brain metabolite levels as in vivo indicators of disease progression in a widely studied mouse model of Niemann-Pick type C1 (NPC1) disease with quantitative (1) H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS Single voxel MRS experiments were carried out in vivo in a mouse model of NPC1 disease and in control mice in two brain regions (central and posterior) at two timepoints (presymptomatic and endstage) to examine changes in metabolite levels in NPC1 disease. Concentrations of nine metabolites were quantified by fitting a simulated basis set of metabolite signals to the acquired spectra. RESULTS The only differences found in brain metabolite levels between NPC1 disease model and control mice were increased myo-inositol and decreased taurine in the posterior region of the brain at the endstage of the disease. Metabolite changes reported in past clinical MRS studies of NPC disease were not found in the current study of the mouse model. CONCLUSIONS The (1) H spectra obtained from NPC1 mice and control mice were very similar, even at endstages of the disease. Although differences in two metabolites associated with neurodegenerative diseases were found and could inform future studies of the disease model, it appears that MRS in this mouse model of NPC1 disease does not have the sensitivity desired for a biomarker.
Collapse
Affiliation(s)
- John W Totenhagen
- Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
116
|
Alam MS, Getz M, Safeukui I, Yi S, Tamez P, Shin J, Velázquez P, Haldar K. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder. PLoS One 2012; 7:e48273. [PMID: 23094108 PMCID: PMC3477142 DOI: 10.1371/journal.pone.0048273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1−/− mice relative to Npc1+/− at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher’s disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1−/− as well as Balb/c Npc1nmf164 mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1−/− mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1−/− spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto not associated with NPC) suggests their role in pathophysiology and disease exacerbation.
Collapse
Affiliation(s)
- Md. Suhail Alam
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michelle Getz
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Innocent Safeukui
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sue Yi
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pamela Tamez
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jenny Shin
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Peter Velázquez
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Kasturi Haldar
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
117
|
Klünemann HH, Santosh PJ, Sedel F. Treatable metabolic psychoses that go undetected: what Niemann-Pick type C can teach us. Int J Psychiatry Clin Pract 2012; 16:162-9. [PMID: 22746831 DOI: 10.3109/13651501.2012.687451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The objective of this review is to raise awareness of the prevalence of inborn errors of metabolism, in particular NP-C, in psychiatric populations. METHODS This review summarises research presented at a satellite symposium held on 28 August 2010 at the 23rd European College of Neuropsychopharmacology (ECNP) meeting. RESULTS AND CONCLUSION Organic causes of psychoses may have an unrecognised yet notable prevalence, particularly in adolescent or adult patients. Several inherited metabolic disorders can present with psychiatric signs. In some disorders, such as Niemann-Pick type C (NP-C), the disease may remain unrecognised for many years due to a heterogeneous and subtle clinical presentation. In patients presenting with psychoses, subtle signs such as vertical supranuclear gaze palsy, ataxia and splenomegaly should raise the suspicion of NP-C. Miglustat is so far the only approved treatment for NP-C. Miglustat can stabilise neurological disease, particularly in adolescent or adult-onset patients who are detected as early as possible, before irreversible neurological damage occurs.
Collapse
Affiliation(s)
- Hans-Hermann Klünemann
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie der Universität Regensburg am Bezirksklinikum, Regensburg, Germany.
| | | | | |
Collapse
|
118
|
Taylor AM, Liu B, Mari Y, Liu B, Repa JJ. Cyclodextrin mediates rapid changes in lipid balance in Npc1-/- mice without carrying cholesterol through the bloodstream. J Lipid Res 2012; 53:2331-42. [PMID: 22892156 DOI: 10.1194/jlr.m028241] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An injection of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to mice lacking Niemann Pick type C (NPC) protein results in delayed neurodegeneration, decreased inflammation, and prolonged lifespan. Changes in sterol balance observed in Npc1(-/-) mice 24 h after HP-β-CD administration suggest that HP-β-CD facilitates the release of accumulated lysosomal cholesterol, the molecular hallmark of this genetic disorder. Current studies were performed to evaluate the time course of HP-β-CD effects. Within 3 h after HP-β-CD injection, decreases in cholesterol synthesis rates and increases in cholesteryl ester levels were detected in tissues of Npc1(-/-) mice. The levels of RNAs for target genes of sterol-sensing transcription factors were altered by 6 h in liver, spleen, and ileum. Despite the cholesterol-binding capacity of HP-β-CD, there was no evidence of increased cholesterol in plasma or urine of treated Npc1(-/-) mice, suggesting that HP-β-CD does not carry sterol from the lysosome into the bloodstream for ultimate urinary excretion. Similar changes in sterol balance were observed in cultured cells from Npc1(-/-) mice using HP-β-CD and sulfobutylether-β-CD, a variant that can interact with sterol but not facilitate its solubilization. Taken together, our results demonstrate that HP-β-CD works in cells of Npc1(-/-) mice by rapidly liberating lysosomal cholesterol for normal sterol processing within the cytosolic compartment.
Collapse
Affiliation(s)
- Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | | | | | | | | |
Collapse
|
119
|
Maulik M, Ghoshal B, Kim J, Wang Y, Yang J, Westaway D, Kar S. Mutant human APP exacerbates pathology in a mouse model of NPC and its reversal by a β-cyclodextrin. Hum Mol Genet 2012; 21:4857-75. [PMID: 22869680 DOI: 10.1093/hmg/dds322] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick type C (NPC) disease, an autosomal recessive disorder caused primarily by loss-of-function mutations in NPC1 gene, is characterized neuropathologically by intracellular cholesterol accumulation, gliosis and neuronal loss in selected brain regions. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease (AD), including the presence of tau-positive neurofibrillary tangles (NFTs) and β-amyloid (Aβ)-related peptides in vulnerable brain regions. Since enhanced cholesterol level, which acts as a risk factor for AD, can increase Aβ production by regulating amyloid precursor protein (APP) metabolism, it is possible that APP overexpression can influence cholesterol-regulated NPC pathology. We have addressed this issue in a novel bigenic mice (ANPC) generated by crossing heterozygous Npc1-deficient mice with mutant human APP transgenic mice. These mice exhibited decreased lifespan, early object memory and motor impairments, and exacerbated glial pathology compared with other littermates. Neurodegeneration observed in the cerebellum of ANPC mice was found to be accelerated along with a selective increase in the phosphorylation/cleavage of tau protein. Additionally, enhanced levels/activity of cytosolic cathepsin D together with cytochrome c and Bcl-2-associated X protein suggest a role for the lysosomal enzyme in the caspase-induced degeneration of neurons in ANPC mice. The reversal of cholesterol accretion by 2-hydroxypropyl-β-cyclodextrin (2-HPC) treatment increased longevity and attenuated behavioral/pathological abnormalities in ANPC mice. Collectively, our results reveal that overexpression of APP in Npc1-deficient mice can negatively influence longevity and a wide spectrum of behavioral/neuropathological abnormalities, thus raising the possibility that APP and NPC1 may interact functionally to regulate the development of AD and NPC pathologies.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
120
|
Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab 2012; 106:330-44. [PMID: 22572546 DOI: 10.1016/j.ymgme.2012.03.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/18/2022]
Abstract
Niemann-Pick disease type C (NP-C) is a rare inherited neurovisceral disease caused by mutations in either the NPC1 (in 95% of cases) or the NPC2 gene (in around 5% of cases), which lead to impaired intracellular lipid trafficking and accumulation of cholesterol and glycosphingolipids in the brain and other tissues. Characteristic neurological manifestations of NP-C include saccadic eye movement (SEM) abnormalities or vertical supranuclear gaze palsy (VSGP), cerebellar signs (ataxia, dystonia/dysmetria, dysarthria and dysphagia) and gelastic cataplexy. Epileptic seizures are also common in affected patients. Typically, neurological disease onset occurs during childhood, although an increasing number of cases are being detected and diagnosed during adulthood based on late-onset neurological signs and psychiatric manifestations. Categorization of patients according to age at onset of neurological manifestations (i.e. early-infantile, late-infantile, juvenile and adolescent/adult-onset) can be useful for the evaluation of disease course and treatment responses. The first international guidelines for the clinical management of NP-C in children and adults were published in 2009. Since that time a significant amount of data regarding the epidemiology, detection/diagnosis, and treatment of NP-C has been published. Here, we report points of consensus among experts in the diagnosis and treatment of NP-C based on a follow-up meeting in Paris, France in September 2011. This article serves as an update to the original guidelines providing, among other things, further information on detection/diagnostic methods, potential new methods of monitoring disease progression, and therapy. Treatment goals and the application of disease-specific therapy with miglustat are also re-evaluated.
Collapse
|
121
|
Liu B. Therapeutic potential of cyclodextrins in the treatment of Niemann-Pick type C disease. ACTA ACUST UNITED AC 2012; 7:289-301. [PMID: 25152773 DOI: 10.2217/clp.12.31] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive neurovisceral lipid and storage disorder characterized by abnormal sequestration of unesterified cholesterol within the late endosomal/lysosomal compartment of all cells in the body. This disease primarily affects children and is characterized by hepatic and pulmonary dysfunction, neurodegeneration and death at an early age. Currently, there is no effective treatment for NPC disease. It was recently discovered that 2-hydroxypropyl-β-cyclodextrin (2HPBCD), when administered systemically to a murine model of either NPC1 or NPC2 disease, significantly reduced lysosomal cholesterol accumulation in almost every organ, delayed the progression of neurodegeneration and significantly prolonged lifespan by allowing trapped cholesterol within the late endosome/lysosome to be released. When 2HPBCD was administered directly into the CNS of Npc1-/- mice, neurodegeneration was completely prevented. This review will explore the pathophysiology of NPC disease and the use of 2HPBCD as a possible therapeutic modality.
Collapse
Affiliation(s)
- Benny Liu
- The University of Texas Southwestern Medical Center, Department of Internal Medicine, 5323 Harry Hines Blvd, Dallas, TX 75390-9151, USA, Tel.: +1 214 648 3447, ,
| |
Collapse
|
122
|
Cluzeau CVM, Watkins-Chow DE, Fu R, Borate B, Yanjanin N, Dail MK, Davidson CD, Walkley SU, Ory DS, Wassif CA, Pavan WJ, Porter FD. Microarray expression analysis and identification of serum biomarkers for Niemann-Pick disease, type C1. Hum Mol Genet 2012; 21:3632-46. [PMID: 22619379 DOI: 10.1093/hmg/dds193] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-β-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.
Collapse
Affiliation(s)
- Celine V M Cluzeau
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Lopez ME, Klein AD, Hong J, Dimbil UJ, Scott MP. Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C. Hum Mol Genet 2012; 21:2946-60. [PMID: 22493001 PMCID: PMC3373242 DOI: 10.1093/hmg/dds126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic systemic inflammation is thought to be a major contributor to metabolic and neurodegenerative diseases. Since inflammatory components are shared among different disorders, targeting inflammation is an attractive option for mitigating disease. To test the significance of inflammation in the lipid storage disorder (LSD) Niemann-Pick C (NPC), we deleted the macrophage inflammatory gene Mip1a/Ccl3 from NPC diseased mice. Deletion of Ccl3 had been reported to delay neuronal loss in Sandhoff LSD mice by inhibiting macrophage infiltration. For NPC mice, in contrast, deleting Ccl3 did not retard neurodegeneration and worsened the clinical outcome. Depletion of visceral tissue macrophages also did not alter central nervous system (CNS) pathology and instead increased liver injury, suggesting a limited macrophage infiltration response into the CNS and a beneficial role of macrophage activity in visceral tissue. Prevention of neuron loss or liver injury, even at late stages in the disease, was achieved through specific rescue of NPC disease in neurons or in liver epithelial cells, respectively. Local epithelial cell correction was also sufficient to reduce the macrophage-associated pathology in lung tissue. These results demonstrate that elevated inflammation and macrophage activity does not necessarily contribute to neurodegeneration and tissue injury, and LSD defects in immune cells may not preclude an appropriate inflammatory response. We conclude that inflammation remains secondary to neuronal and epithelial cell dysfunction and does not irreversibly contribute to the pathogenic cascade in NPC disease. Without further exploration of possible beneficial roles of inflammatory mediators, targeting inflammation may not be therapeutically effective at ameliorating disease severity.
Collapse
Affiliation(s)
- Manuel E Lopez
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine Clark Center, 318 Campus Drive, Stanford, CA 94305-5439, USA
| | | | | | | | | |
Collapse
|
124
|
Lee CY, Ruel I, Denis M, Genest J, Kiss RS. Cholesterol trapping in Niemann-Pick disease type B fibroblasts can be relieved by expressing the phosphotyrosine binding domain of GULP. J Clin Lipidol 2012; 7:153-64. [PMID: 23415435 DOI: 10.1016/j.jacl.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Impairment of acid sphingomyelinase (SMase) results in accumulation of sphingomyelin (SM) and cholesterol in late endosomes, the hallmarks of a lysosomal storage disease. OBJECTIVE We describe cellular lipid metabolism in fibroblasts from two patients with novel compound heterozygote mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene manifesting as Niemann-Pick disease type B (NPB) and demonstrate mechanisms to overcome the storage defect. METHODS Using biochemical assays and confocal microscopy, we provide evidence that accumulated lysosomal SM and cholesterol can be released by different treatments. RESULTS Defective SMase activity in these fibroblasts results in a 2.5-fold increased cellular mass of SM and cholesterol, increased de novo endogenous cholesterol synthesis, and decreased cholesterol esterification, demonstrating impaired intracellular cholesterol homeostasis. Depletion of exogenous addition of cholesterol for 24 hours or addition of the cholesterol acceptor apolipoprotein A-I are sufficient to restore normal homeostatic responses. In an effort to correct the lysosomal storage phenotype of NPB, we infected the fibroblasts with a lentivirus expressing the phosphotyrosine binding domain of the adapter protein GULP (PTB-GULP). We have previously shown that expression of PTB-GULP in Chinese hamster ovary cells promotes intracellular cholesterol trafficking and ABCA1-mediated cholesterol efflux. We find that expression of PTB-GULP in NPB fibroblasts results in increased ABCA1 expression, increased cellular cholesterol efflux and lysosomal cholesterol redistribution, independent of the impaired SMase and cholesterol presence. CONCLUSION We provide extensive functional characterization of a novel compound heterozygote mutation and provide a novel functional mechanism to overcome lysosomal storage disease defects.
Collapse
Affiliation(s)
- Ching Yin Lee
- Cardiovascular Sciences Research Laboratories, Division of Cardiology, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
125
|
Xiong H, Bao XH, Zhang YH, Xu YN, Qin J, Shi HP, Wu XR. Niemann-Pick disease type C: analysis of 7 patients. World J Pediatr 2012; 8:61-6. [PMID: 21633862 DOI: 10.1007/s12519-011-0284-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/13/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C), derived from mutation of the NPC1 or NPC2 gene, is one of the recessive lysosomal lipid storage disorders that are difficult to diagnose and treat. Since NP-C has been rarely reported in China, we reviewed 7 patients with NP-C. METHODS The 7 patients had been diagnosed with NP-C from 2007 to 2010 at our department and their laboratory and clinical data were analyzed. RESULTS The 7 patients, 5 males and 2 females, included 4 patients of late infantile subtype and 3 patients of juvenile subtype, in which patients 2 and 3 were siblings. Their clinical symptoms occurred from 4 to 10 years of age, exhibiting as progressive cognitive and language impairment as well as motor retrogression. Six patients were caught by focal or generalized seizures from 1 to 4 years after the onset of the disease. Vertical supranuclear gaze palsy, dysarthria, dysphagia, internal rotation and adduction of bilateral hands and splenomegaly occurred following the progress of clinical symptoms. Five patients had laughter-cataplexy. MRI showed mild brain atrophy in 6 patients. Reduction of total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol occurred in 6 patients. Sea-blue cells and Niemann-Pick cells were found in bone marrow smears. The activity of acid sphingomyelin enzyme was normal or only slightly lower. Supporting or symptomatic treatment improved common clinical symptoms. CONCLUSIONS NP-C is a rare autosomal recessive inherited lysosomal storage disease that affects the intellectual development of children and may lead to dementia, vegetative state or death. Clinical features of this disease include vertical supranuclear gaze palsy, seizures and cataplexy. Laboratory features include abnormal plasma cholesterol level, and sea-blue cells and Niemann-Pick cells in bone marrow smears. The treatments of the disease include supporting or symptomatic administration.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | | | | | | | | | | | | |
Collapse
|
126
|
Fedida-Metula S, Feldman B, Koshelev V, Levin-Gromiko U, Voronov E, Fishman D. Lipid rafts couple store-operated Ca 2+ entry to constitutive activation of PKB/Akt in a Ca 2+ /calmodulin-, Src- and PP2A-mediated pathway and promote melanoma tumor growth. Carcinogenesis 2012; 33:740-50. [DOI: 10.1093/carcin/bgs021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
127
|
Peake KB, Vance JE. Normalization of cholesterol homeostasis by 2-hydroxypropyl-β-cyclodextrin in neurons and glia from Niemann-Pick C1 (NPC1)-deficient mice. J Biol Chem 2012; 287:9290-8. [PMID: 22277650 DOI: 10.1074/jbc.m111.326405] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick C (NPC) disease is an inherited, progressive neurodegenerative disorder caused by mutations in the NPC1 or NPC2 gene that result in an accumulation of unesterified cholesterol in late endosomes/lysosomes (LE/L) and impaired export of cholesterol from LE/L to the endoplasmic reticulum (ER). Recent studies demonstrate that administration of cyclodextrin (CD) to Npc1(-/-) mice eliminates cholesterol sequestration in LE/L of many tissues, including the brain, delays neurodegeneration, and increases lifespan of the mice. We have now investigated cholesterol homeostasis in NPC1-deficient cells of the brain in response to CD. Primary cultures of neurons and glial cells from Npc1(-/-) mice were incubated for 24 h with 0.1 to 10 mm CD after which survival and cholesterol homeostasis were monitored. Although 10 mm CD was profoundly neurotoxic, and altered astrocyte morphology, 0.1 and 1 mm CD were not toxic but effectively mobilized stored cholesterol from the LE/L as indicated by filipin staining. However, 0.1 and 1 mm CD altered cholesterol homeostasis in opposite directions. The data suggest that 0.1 mm CD releases cholesterol trapped in LE/L of neurons and astrocytes and increases cholesterol availability at the ER, whereas 1 mm CD primarily extracts cholesterol from the plasma membrane and reduces ER cholesterol. These studies in Npc1(-/-) neurons and astrocytes establish a dose of CD (0.1 mm) that would likely be beneficial in NPC disease. The findings are timely because treatment of NPC disease patients with CD is currently being initiated.
Collapse
Affiliation(s)
- Kyle B Peake
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
128
|
Nielsen GK, Dagnaes-Hansen F, Holm IE, Meaney S, Symula D, Andersen NT, Heegaard CW. Protein replacement therapy partially corrects the cholesterol-storage phenotype in a mouse model of Niemann-Pick type C2 disease. PLoS One 2011; 6:e27287. [PMID: 22073306 PMCID: PMC3207855 DOI: 10.1371/journal.pone.0027287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023] Open
Abstract
Niemann-Pick type C2 (NPC2) disease is a fatal autosomal recessive neurovisceral degenerative disorder characterized by late endosomal-lysosomal sequestration of low-density lipoprotein derived cholesterol. The breach in intracellular cholesterol homeostasis is caused by deficiency of functional NPC2, a soluble sterol binding protein targeted to the lysosomes by binding the mannose-6-phosphate receptor. As currently there is no effective treatment for the disorder, we have investigated the efficacy of NPC2 replacement therapy in a murine gene-trap model of NPC2-disease generated on the 129P2/OlaHsd genetic background. NPC2 was purified from bovine milk and its functional competence assured in NPC2-deficient fibroblasts using the specific cholesterol fluorescent probe filipin. For evaluation of phenotype correction in vivo, three-week-old NPC2−/− mice received two weekly intravenous injections of 5 mg/kg NPC2 until trial termination 66 days later. Whereas the saline treated NPC2−/− mice exhibited massive visceral cholesterol storage as compared to their wild-type littermates, administration of NPC2 caused a marked reduction in cholesterol build up. The histological findings, indicating an amelioration of the disease pathology in liver, spleen, and lungs, corroborated the biochemical results. Little or no difference in the overall cholesterol levels was observed in the kidneys, blood, cerebral cortex and hippocampus when comparing NPC2−/− and wild type mice. However, cerebellum cholesterol was increased about two fold in NPC2−/− mice compared with wild-type littermates. Weight gain performance was slightly improved as a result of the NPC2 treatment but significant motor coordination deficits were still observed. Accordingly, ultrastructural cerebellar abnormalities were detected in both saline treated and NPC2 treated NPC2−/− animals 87 days post partum. Our data indicate that protein replacement may be a beneficial therapeutic approach in the treatment of the visceral manifestations in NPC2 disease and further suggest that neurodegeneration is not secondary to visceral dysfunction.
Collapse
Affiliation(s)
- Gitte Krogh Nielsen
- Department of Molecular Biology, Aarhus University, Aarhus, Denmark
- * E-mail: (GKN); (CWH)
| | | | - Ida Elisabeth Holm
- Experimental Neuropathology Laboratory, Department of Pathology, Randers Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Steve Meaney
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - Derek Symula
- Wadsworth Center, Albany, New York, United States of America
| | | | | |
Collapse
|
129
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
130
|
Xie X, Brown MS, Shelton JM, Richardson JA, Goldstein JL, Liang G. Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc Natl Acad Sci U S A 2011; 108:15330-5. [PMID: 21896731 PMCID: PMC3174677 DOI: 10.1073/pnas.1112751108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Substitution mutations in adjacent amino acids of the N-terminal domain of NPC1, a lysosomal membrane protein, abolish its cholesterol binding activity and impair its ability to export cholesterol from lysosomes of cultured cells lacking npc1 [Kwon HJ, et al. (2009) Cell 137:1213-1224]. Here, we show that the same two mutations (proline-202 and phenylalanine-203, both changed to alanine) reproduce the phenotype of complete NPC1 deficiency when knocked into the mouse npc1 gene by homologous recombination. Homozygous npc1(pf/pf) mice exhibited neurodegeneration beginning at day 49 and died at a median age of 84 d, as previously reported for mice that lack npc1. Liver and other organs of the npc1(pf/pf) mice accumulated excess cholesterol in lysosomes. In liver, mRNAs encoding several lysosomal proteins were elevated, including NPC1 and NPC2 and several digestive enzymes (acid lipase, β-glucuronidase, and cathepsins B and D). Weekly treatment with hydroxypropyl-β-cyclodextrin (HPCD) beginning at 7 wk reduced hepatic cholesterol accumulation and diminished the lysosomal mRNAs. We conclude that the cholesterol binding site in the N-terminal domain of NPC1 is essential for cholesterol export from lysosomes in living animals as it is in cultured cells. The HPCD-mediated reduction of excess lysosomal enzymes may contribute to the ability of this drug to delay the progression of NPC disease in mice.
Collapse
Affiliation(s)
| | | | - John M. Shelton
- Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - James A. Richardson
- Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | | | | |
Collapse
|
131
|
Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci 2011; 31:9404-13. [PMID: 21697390 DOI: 10.1523/jneurosci.1317-11.2011] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While unesterified cholesterol (C) is essential for remodeling neuronal plasma membranes, its role in certain neurodegenerative disorders remains poorly defined. Uptake of sterol from pericellular fluid requires processing that involves two lysosomal proteins, lysosomal acid lipase, which hydrolyzes C esters, and NPC1 (Niemann-Pick type C1). In systemic tissues, inactivation of either protein led to sterol accumulation and cell death, but in the brain, inactivation of only NPC1 caused C sequestration and neurodegeneration. When injected into the CNS of the npc1(-/-) mouse, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), a compound known to prevent this C accumulation, diffused throughout the brain and was excreted with a t(½) of 6.5 h. This agent caused suppression of C synthesis, elevation of C esters, suppression of sterol regulatory-binding protein 2 (SREBP2) target genes, and activation of liver X receptor-controlled genes. These findings indicated that HP-β-CD promoted movement of the sequestered C from lysosomes to the metabolically active pool of C in the cytosolic compartment of cells in the CNS. The ED(50) for this agent in the brain was ∼0.5 mg/kg, and the therapeutic effect lasted >7 d. Continuous infusion of HP-β-CD into the ventricular system of npc1(-/-) animals between 3 and 7 weeks of age normalized the biochemical abnormalities and completely prevented the expected neurodegeneration. These studies support the concept that neurons continuously acquire C from interstitial fluid to permit plasma membrane turnover and remodeling. Inactivation of NPC1 leads to lysosomal C sequestration and neurodegeneration, but this is prevented by the continuous, direct administration of HP-β-CD into the CNS.
Collapse
|
132
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent findings on the mechanism of action of the Niemann-Pick type C (NPC) proteins and their bypass by cyclodextrin. RECENT FINDINGS NPC disease is caused by dysfunction in either the NPC1 or NPC2 protein. These proteins function in the same pathway for the removal of unesterified cholesterol from late endosomes/lysosomes. In NPC-deficient cells, cholesterol derived from the endocytosis of LDLs becomes sequestered in the late endosomes/lysosomes. Recent studies have indicated that these two cholesterol-binding proteins act in tandem in mediating the egress of cholesterol from the late endosomes/lysosomes. Patches of amino acids on NPC1 and NPC2 appear to interact so that the hydrophobic transfer of cholesterol from NPC2 to NPC1 is achieved. Although no effective treatment for NPC disease is currently available, exciting new studies have shown that treatment of NPC-deficient mice with the cholesterol-binding compound, cyclodextrin, reduces the neurodegeneration and markedly extends the life span of Npc1-/- mice, suggesting a potential therapeutic approach for the treatment of individuals with NPC disease. SUMMARY Experimental data are consistent with a model for the sequential action of the NPC1 and NPC2 proteins in moving cholesterol out of the late endosomes/lysosomes. Recent data demonstrate that treatment of NPC-deficient mice with cyclodextrin extends their life span, thereby suggesting a potential therapy for NPC patients.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
133
|
Muralidhar A, Borbon IA, Esharif DM, Ke W, Manacheril R, Daines M, Erickson RP. Pulmonary function and pathology in hydroxypropyl-beta-cyclodextin-treated and untreated Npc1⁻/⁻ mice. Mol Genet Metab 2011; 103:142-7. [PMID: 21459030 PMCID: PMC3107736 DOI: 10.1016/j.ymgme.2011.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/19/2022]
Abstract
Lung dysfunction is an important part of the pathology of the neurodegenerative disorder, Niemann-Pick C1 (NPC1). We have studied the pulmonary disease in the Npc1(NIH/NIH) mouse model. On histology, we find large numbers of alveolar foamy macrophages but no alveolar proteinosis. Lung weight as percent of body weight was markedly increased; using the flexiVent small animal ventilator (SCIREQ, Inc.), we find inspiratory capacity, elastance and hysterisivity to be increased while resistance was not changed. Cholesterol measurements show a doubling of lung cholesterol levels. Collagen is also increased. Treatment of Npc1(-/-) mice with hydroxypropyl-β-cyclodextrin (HPBCD), despite efficacious effects in brain and liver, results in little difference from age-matched controls (using a CNS-expressed transgene to extend the life expectancy of the Npc1(-/-) mice) for these variables.
Collapse
Affiliation(s)
| | - Ivan A Borbon
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724
| | | | - Wangjing Ke
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724
| | - Rinu Manacheril
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724
| | - Michael Daines
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724
- Arizona Respiratory Center, University of Arizona, Tucson, AZ, 85724
| | - Robert P Erickson
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724
- Dept of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85724
| |
Collapse
|
134
|
Ramirez CM, Liu B, Aqul A, Taylor AM, Repa JJ, Turley SD, Dietschy JM. Quantitative role of LAL, NPC2, and NPC1 in lysosomal cholesterol processing defined by genetic and pharmacological manipulations. J Lipid Res 2011; 52:688-98. [PMID: 21289032 DOI: 10.1194/jlr.m013789] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED₅₀ values for this reversal varied from ~40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2(-/-) and npc1(-/-) mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment.
Collapse
Affiliation(s)
- Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Rosenbaum AI, Maxfield FR. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 2011; 116:789-95. [PMID: 20807315 DOI: 10.1111/j.1471-4159.2010.06976.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholesterol is an important lipid of mammalian cells. Its unique physicochemical properties modulate membrane behavior and it serves as the precursor for steroid hormones, oxysterols and vitamin D. Cholesterol is effluxed from the late endosomes/lysosomes via the concerted action of at least two distinct proteins: Niemann-Pick C (NPC)1 and NPC2. Mutations in these two proteins manifest as NPC disease - a very rare, usually fatal, autosomal, recessive, neurovisceral, lysosomal storage disorder. In this review, we discuss the possible mechanisms of action for NPC1 and NPC2 in mediating cholesterol efflux, as well as the different therapeutic approaches being pursued for the treatment of this lipid storage disorder.
Collapse
Affiliation(s)
- Anton I Rosenbaum
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA
| | | |
Collapse
|