101
|
Zhou X, Anderson KV. Development of head organizer of the mouse embryo depends on a high level of mitochondrial metabolism. Dev Biol 2010; 344:185-95. [PMID: 20450902 DOI: 10.1016/j.ydbio.2010.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 01/26/2023]
Abstract
Mouse genetic studies have defined a set of signaling molecules and transcription factors that are necessary to induce the forebrain. Here we describe an ENU-induced mouse mutation, nearly headless (nehe), that was identified based on the specific absence of most of the forebrain at midgestation. Positional cloning and genetic analysis show that, unlike other mouse mutants that disrupt specification of the forebrain, the nehe mutation disrupts mitochondrial metabolism. nehe is a hypomorphic allele of Lipoic acid Synthetase (Lias), the enzyme that catalyzes the synthesis of lipoic acid, an essential cofactor for several mitochondrial multienzyme complexes required for oxidative metabolism. The defect in forebrain development in nehe mutants is apparent as soon as the forebrain is specified, without a concomitant increase in apoptosis. Two tissues required for forebrain specification, the anterior visceral endoderm and the anterior definitive endoderm, develop normally in nehe mutants. However, a third head organizer tissue, the prechordal plate, fails to express markers of cell type determination and shows abnormal morphology in the mutants. We find that the level of phosphorylated (active) AMPK, a cellular energy sensor that affects cell polarity, is up-regulated in nehe mutants at the time when the prechordal plate is normally specified. The results suggest that the nehe phenotype arises because high levels of energy production are required for the specialized morphogenetic movements that generate the prechordal plate, which is required for normal development of the mammalian forebrain. We suggest that a requirement for high levels of ATP for early forebrain patterning may contribute to certain human microcephaly syndromes.
Collapse
Affiliation(s)
- Xin Zhou
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
102
|
McKnight KD, Hou J, Hoodless PA. Foxh1 and Foxa2 are not required for formation of the midgut and hindgut definitive endoderm. Dev Biol 2010; 337:471-81. [DOI: 10.1016/j.ydbio.2009.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/16/2022]
|
103
|
Abstract
Pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells have attractive attention as a source of cells for use in therapeutic application. However, as the in vitro differentiation culture does not provide usefully positional information for cell type definition, this system definitely requires visible markers to identify and monitor the intermediates that present on the way of differentiation. We have been developing the cell surface markers against the various types of mesoderm in the ES cell culture. Using it, we have identified the intermediates of mesoderm and dissected their differentiation pathways in ES cell differentiation. The method described here could be useful for inducing and purifying mesoderm cells from iPS as well as ES cell cultures.
Collapse
Affiliation(s)
- Takumi Era
- Division of Molecular Neurobiology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
104
|
Nowotschin S, Ferrer-Vaquer A, Hadjantonakis AK. Imaging mouse development with confocal time-lapse microscopy. Methods Enzymol 2010; 476:351-77. [PMID: 20691876 DOI: 10.1016/s0076-6879(10)76020-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The gene expression, signaling, and cellular dynamics driving mouse embryo development have emerged through embryology and genetic studies. However, since mouse development is a temporally regulated three-dimensional process, any insight needs to be placed in this context of real-time visualization. Live imaging using genetically encoded fluorescent protein reporters is pushing the envelope of our understanding by uncovering unprecedented insights into mouse development and leading to the formulation of quantitative accurate models.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, USA
| | | | | |
Collapse
|
105
|
Abstract
The kidney is a model developmental system for understanding mesodermal patterning and organogenesis, a process that requires regional specification along multiple body axes, the proliferation and differentiation of progenitor cells, and integration with other tissues. Recent progress in the field has highlighted the essential roles of intrinsic nuclear factors and secreted signaling molecules in specifying renal epithelial stem cells and their self-renewal, in driving the complex dynamics of epithelial cell branching morphogenesis, and in nephron patterning. How these developments influence and advance our understanding of kidney development is discussed.
Collapse
Affiliation(s)
- Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
106
|
Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol 2009; 29:2125-31. [PMID: 19797707 DOI: 10.1161/atvbaha.109.193185] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Arterial-venous specification in the embryo has been assumed to depend on the influence of fluid mechanical forces, but its cellular and molecular mechanisms are still poorly understood. Our previous in vitro study revealed that fluid shear stress induces endothelial cell (EC) differentiation by murine embryonic stem (ES) cells. In the present study we investigated whether shear stress regulates the arterial-venous specification of ES-cell-derived ECs. METHODS AND RESULTS When murine ES cell-derived VEGFR2(+) cells were exposed to shear stress, expression of the arterial EC marker protein ephrinB2 increased dose-dependently. The ephrinB2 mRNA levels also increased in response to shear stress, whereas the mRNA levels of the venous EC marker EphB4 decreased. Notch cleavage and translocation of the Notch intracellular domain (NICD) into the nucleus occurred as early as 30 minutes after the start of shear stress and increased with time. Gamma-Secretase inhibitors (DAPT and L685 458) and the recombinant extracellular domain of the Notch ligand DLL4 abolished the shear stress-induced NICD translocation, and that, in turn, blocked the shear stress-induced upregulation of ephrinB2 expression. In addition, the VEGF receptor kinase inhibitor SU1498 was found to suppress both the shear-stress-induced Notch cleavage and up-regulation of ephrinB2 expression. CONCLUSIONS Exposure to shear stress induces an increase in expression of ephrinB2 in murine ES cells via VEGF-Notch signaling pathways.
Collapse
Affiliation(s)
- Tomomi Masumura
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
107
|
Ukita K, Hirahara S, Oshima N, Imuta Y, Yoshimoto A, Jang CW, Oginuma M, Saga Y, Behringer RR, Kondoh H, Sasaki H. Wnt signaling maintains the notochord fate for progenitor cells and supports the posterior extension of the notochord. Mech Dev 2009; 126:791-803. [PMID: 19720144 PMCID: PMC2757446 DOI: 10.1016/j.mod.2009.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 11/15/2022]
Abstract
The notochord develops from notochord progenitor cells (NPCs) and functions as a major signaling center to regulate trunk and tail development. NPCs are initially specified in the node by Wnt and Nodal signals at the gastrula stage. However, the underlying mechanism that maintains the NPCs throughout embryogenesis to contribute to the posterior extension of the notochord remains unclear. Here, we demonstrate that Wnt signaling in the NPCs is essential for posterior extension of the notochord. Genetic labeling revealed that the Noto-expressing cells in the ventral node contribute the NPCs that reside in the tail bud. Robust Wnt signaling in the NPCs was observed during posterior notochord extension. Genetic attenuation of the Wnt signal via notochord-specific beta-catenin gene ablation resulted in posterior truncation of the notochord. In the NPCs of such mutant embryos, the expression of notochord-specific genes was down-regulated, and an endodermal marker, E-cadherin, was observed. No significant alteration of cell proliferation or apoptosis of the NPCs was detected. Taken together, our data indicate that the NPCs are derived from Noto-positive node cells, and are not fully committed to a notochordal fate. Sustained Wnt signaling is required to maintain the NPCs' notochordal fate.
Collapse
Affiliation(s)
- Kanako Ukita
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, Chuo, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Nowotschin S, Hadjantonakis AK. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC DEVELOPMENTAL BIOLOGY 2009; 9:49. [PMID: 19740427 PMCID: PMC2872819 DOI: 10.1186/1471-213x-9-49] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The use of genetically-encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and in doing so redefined our understanding of the dynamic morphogenetic processes that shape the embryo. With the advent of more accessible and sophisticated imaging technologies as well as an abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place in situ in living cells and tissues can now be probed. Photomodulatable fluorescent proteins are one of the emerging classes of genetically-encoded fluorescent proteins. RESULTS We have compared PA-GFP, PS-CFP2, Kaede and KikGR four readily available and commonly used photomodulatable fluorescent proteins for use in ES cells and mice. Our results suggest that the green-to-red photoconvertible fluorescent protein, Kikume Green-Red (KikGR), is most suitable for cell labeling and lineage studies in ES cells and mice because it is developmentally neutral, bright and undergoes rapid and complete photoconversion. We have generated transgenic ES cell lines and strains of mice exhibiting robust widespread expression of KikGR. By efficient photoconversion of KikGR we labeled subpopulations of ES cells in culture, and groups of cells within ex utero cultured mouse embryos. Red fluorescent photoconverted cells and their progeny could be followed for extended periods of time. CONCLUSION Transgenic ES cells and mice exhibiting widespread readily detectable expression of KikGR are indistinguishable from their wild type counterparts and are amenable to efficient photoconversion. They represent novel tools for non-invasive selective labeling specific cell populations and live imaging cell dynamics and cell fate. Genetically-encoded photomodulatable proteins such as KikGR represent emergent attractive alternatives to commonly used vital dyes, tissue grafts and genetic methods for investigating dynamic behaviors of individual cells, collective cell dynamics and fate mapping applications.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
109
|
Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation. Mol Biol Rep 2009; 37:2341-6. [PMID: 19688271 DOI: 10.1007/s11033-009-9739-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).
Collapse
|
110
|
Hansson M, Olesen DR, Peterslund JML, Engberg N, Kahn M, Winzi M, Klein T, Maddox-Hyttel P, Serup P. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells. Dev Biol 2009; 330:286-304. [PMID: 19358838 DOI: 10.1016/j.ydbio.2009.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 03/18/2009] [Accepted: 03/30/2009] [Indexed: 02/07/2023]
Abstract
Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing cells increases with increasing activin concentration while the highest number of T-expressing cells is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17(+) endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17(+) cells more effectively than activin-mediated induction. Notably, activin induction of Gsc-GFP(+) cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17(+) cells by activin while BMP4-induced T expression requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro.
Collapse
Affiliation(s)
- Mattias Hansson
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Downs KM, Inman KE, Jin DX, Enders AC. The Allantoic Core Domain: new insights into development of the murine allantois and its relation to the primitive streak. Dev Dyn 2009; 238:532-53. [PMID: 19191225 PMCID: PMC2966891 DOI: 10.1002/dvdy.21862] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The whereabouts and properties of the posterior end of the primitive streak have not been identified in any species. In the mouse, the streak's posterior terminus is assumed to be confined to the embryonic compartment, and to give rise to the allantois, which links the embryo to its mother during pregnancy. In this study, we have refined our understanding of the biology of the murine posterior primitive streak and its relation to the allantois. Through a combination of immunostaining and morphology, we demonstrate that the primitive streak spans the posterior extraembryonic and embryonic regions at the onset of the neural plate stage ( approximately 7.0 days postcoitum, dpc). Several hours later, the allantoic bud emerges from the extraembryonic component of the primitive streak (XPS). Then, possibly in collaboration with overlying allantois-associated extraembryonic visceral endoderm, the XPS establishes a germinal center within the allantois, named here the Allantoic Core Domain (ACD). Microsurgical removal of the ACD beyond headfold (HF) stages resulted in the formation of allantoic regenerates that lacked the ACD and failed to elongate; nevertheless, vasculogenesis and vascular patterning proceeded. In situ and transplantation fate mapping demonstrated that, from HF stages onward, the ACD's progenitor pool contributed to the allantois exclusive of the proximal flanks. By contrast, the posterior intraembryonic primitive streak (IPS) provided the flanks. Grafting the ACD into T(C)/T(C) hosts, whose allantoises are significantly foreshortened, restored allantoic elongation. These results revealed that the ACD is essential for allantoic elongation, but the cues required for vascularization lie outside of it. On the basis of these and previous findings, we conclude that the posterior primitive streak of the mouse conceptus is far more complex than was previously believed. Our results provide new directives for addressing the origin and development of the umbilical cord, and establish a novel paradigm for investigating the fetal/placental relationship.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Anatomy, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
112
|
Lee JD, Anderson KV. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn 2009; 237:3464-76. [PMID: 18629866 DOI: 10.1002/dvdy.21598] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Establishment of left-right asymmetry in the mouse embryo depends on leftward laminar fluid flow in the node, which initiates a signaling cascade that is confined to the left side of the embryo. Leftward fluid flow depends on two cellular processes: motility of the cilia that generate the flow and morphogenesis of the node, the structure where the cilia reside. Here, we provide an overview of the current understanding and unresolved questions about the regulation of ciliary motility and node structure. Analysis of mouse mutants has shown that the motile cilia must have a specific structure and length, and that they must point posteriorly to generate the necessary leftward fluid flow. However, the precise structure of the motile cilia is not clear and the mechanisms that position cilia on node cells have not been defined. The mouse node is a teardrop-shaped pit at the distal tip of the early embryo, but the morphogenetic events that create the mature node from cells derived from the primitive streak are only beginning to be characterized. Recent live imaging experiments support earlier scanning electron microscopy (SEM) studies and show that node assembly is a multi-step process in which clusters of node precursors appear on the embryo surface as overlying endoderm cells are removed. We present additional SEM and confocal microscopy studies that help define the transition stages during node morphogenesis. After the initiation of left-sided signaling, the notochordal plate, which is contiguous with the node, generates a barrier at the embryonic midline that restricts the cascade of gene expression to the left side of the embryo. The field is now poised to dissect the genetic and cellular mechanisms that create and organize the specialized cells of the node and midline that are essential for left-right asymmetry.
Collapse
Affiliation(s)
- Jeffrey D Lee
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
113
|
Tamplin OJ, Kinzel D, Cox BJ, Bell CE, Rossant J, Lickert H. Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. BMC Genomics 2008; 9:511. [PMID: 18973680 PMCID: PMC2605479 DOI: 10.1186/1471-2164-9-511] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/30/2008] [Indexed: 01/05/2023] Open
Abstract
Background The Spemann/Mangold organizer is a transient tissue critical for patterning the gastrula stage vertebrate embryo and formation of the three germ layers. Despite its important role during development, there are still relatively few genes with specific expression in the organizer and its derivatives. Foxa2 is a forkhead transcription factor that is absolutely required for formation of the mammalian equivalent of the organizer, the node, the axial mesoderm and the definitive endoderm (DE). However, the targets of Foxa2 during embryogenesis, and the molecular impact of organizer loss on the gastrula embryo, have not been well defined. Results To identify genes specific to the Spemann/Mangold organizer, we performed a microarray-based screen that compared wild-type and Foxa2 mutant embryos at late gastrulation stage (E7.5). We could detect genes that were consistently down-regulated in replicate pools of mutant embryos versus wild-type, and these included a number of known node and DE markers. We selected 314 genes without previously published data at E7.5 and screened for expression by whole mount in situ hybridization. We identified 10 novel expression patterns in the node and 5 in the definitive endoderm. We also found significant reduction of markers expressed in secondary tissues that require interaction with the organizer and its derivatives, such as cardiac mesoderm, vasculature, primitive streak, and anterior neuroectoderm. Conclusion The genes identified in this screen represent novel Spemann/Mangold organizer genes as well as potential Foxa2 targets. Further investigation will be needed to define these genes as novel developmental regulatory factors involved in organizer formation and function. We have placed these genes in a Foxa2-dependent genetic regulatory network and we hypothesize how Foxa2 may regulate a molecular program of Spemann/Mangold organizer development. We have also shown how early loss of the organizer and its inductive properties in an otherwise normal embryo, impacts on the molecular profile of surrounding tissues.
Collapse
Affiliation(s)
- Owen J Tamplin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
114
|
Nakanishi M, Kurisaki A, Hayashi Y, Warashina M, Ishiura S, Kusuda-Furue M, Asashima M. Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. FASEB J 2008; 23:114-22. [PMID: 18809738 DOI: 10.1096/fj.08-111203] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Formation of the primitive streak (PS) is the initial specification step that generates all the mesodermal and endodermal tissue lineages during early differentiation. Thus, a therapeutically compatible and efficient method for differentiation of the PS is crucial for regenerative medicine. In this study, we developed chemically defined serum-free culture conditions for the differentiation of embryonic stem (ES) cells into the PS-like cells. Cultures supplemented with Wnt showed induction of expression of a PS marker, the brachyury gene, followed by induction of the anterior PS markers goosecoid and foxa2, a posterior PS marker, evx1, and the endoderm marker sox17. Similar differentiation of PS by Wnt was also observed in human ES cells. Moreover, we revealed that the activation of the Wnt canonical pathway is essential for PS differentiation in mouse ES cells. These results demonstrated that Wnt is an essential and sufficient factor for the induction of the PS-like cells in vitro. These conditions of induction could constitute the initial step in generating therapeutically useful cells of the definitive endoderm lineage, such as hepatocytes and pancreatic endocrine cells, under chemically defined conditions.
Collapse
Affiliation(s)
- Mio Nakanishi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Embryonic stem (ES) cell differentiation can serve as a model to investigate early stages of development. Nishikawa and colleagues, in a recent issue of Stem Cells (Era et al., 2007), have used selectable markers to detect lineage-specific gene expression and dissect the induction of mesoderm subsets in ES cell cultures.
Collapse
Affiliation(s)
- Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut Street, R4-402e, Indianapolis, IN 46202, USA.
| |
Collapse
|
116
|
Sharma RK, Zhou Q, Netland PA. Effect of oxidative preconditioning on neural progenitor cells. Brain Res 2008; 1243:19-26. [PMID: 18761002 DOI: 10.1016/j.brainres.2008.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/11/2023]
Abstract
Neural progenitor cells (NPCs) have drawn attention because they offer possible treatment for neurodegenerative disorders in the form of regenerative therapy or transplantation. NPCs adapt and change in response to the cues in the pathological environment. We assessed the effect of pre-exposure to non-cytotoxic levels of oxidative stress, a common pathogenic factor in a number of neurological disorders, on the cell viability and neurosphere morphology of NPCs derived from the periventricular zone of mice brain. Neural progenitor cell viability and neurosphere morphology (neurosphere number, size and chain migration) were assessed in response to cytotoxic levels of oxidative stress in the presence or absence of preconditioning with non-cytotoxic doses of hydrogen peroxide (H(2)O(2)). Preconditioning with non-cytotoxic levels of H(2)O(2) provided significant protection against subsequent exposure to lethal doses of H(2)O(2). Preconditioning also modulated alteration in the neurosphere morphology in response to oxidative stress. Oxidative stress increased chain migration and neurosphere size while decreasing neurosphere numbers, specially in the cultures that were preconditioned with higher doses of H(2)O(2). Non-cytotoxic exposure to oxidative stress can evoke endogenous cytoprotection in NPCs. Redox signaling plays a role in other cellular functions of NPCs, namely the chain migration of NPCs from neurospheres, perhaps as a result of its effect on cell differentiation.
Collapse
Affiliation(s)
- Rajesh K Sharma
- Department of Ophthalmology and Hamilton Eye Institute, University of Tennessee Health Science Center, 930 Madison Ave, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
117
|
Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM. Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 2008; 17:2986-96. [PMID: 18617531 DOI: 10.1093/hmg/ddn197] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.
Collapse
Affiliation(s)
- Nicholas Warr
- Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire OX11 0RD, UK
| | | | | | | | | | | |
Collapse
|
118
|
Franklin V, Khoo PL, Bildsoe H, Wong N, Lewis S, Tam PPL. Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech Dev 2008; 125:587-600. [PMID: 18486455 DOI: 10.1016/j.mod.2008.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/28/2008] [Accepted: 04/07/2008] [Indexed: 11/19/2022]
Abstract
This fate-mapping study reveals that the progenitors of all major parts of the embryonic gut are already present in endoderm of the early-head-fold to early-somite stage (1-9 somites) mouse embryo. The anterior endoderm contributes primarily to the anterior intestinal portal of the early-organogenesis stage (16-19 somites) embryo. Endoderm cells around and lateral to the node are allocated to the open "midgut" region of the embryonic gut. The posterior (post-nodal) endoderm contributes not only to the posterior intestinal portal but also the open "midgut". Descendants of the posterior endoderm span a length of the gut from the level of the 3rd-5th somites to the posterior end of the embryonic gut. The formation of the anterior and posterior intestinal portals is accompanied by similar repertoires of morphogenetic tissue movement. We also discovered that cells on contralateral sides of the anterior endoderm are distributed asymmetrically to the dorsal and ventral sides of the anterior intestinal portal, heralding the acquisition of laterality by the embryonic foregut.
Collapse
Affiliation(s)
- Vanessa Franklin
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville, NSW 2145, Australia
| | | | | | | | | | | |
Collapse
|
119
|
Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132:661-80. [PMID: 18295582 DOI: 10.1016/j.cell.2008.02.008] [Citation(s) in RCA: 1231] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential to generate virtually any differentiated cell type from embryonic stem cells (ESCs) offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Embryology has offered important insights into key pathways regulating ESC differentiation, resulting in advances in modeling gastrulation in culture and in the efficient induction of endoderm, mesoderm, and ectoderm and many of their downstream derivatives. This has led to the identification of new multipotential progenitors for the hematopoietic, neural, and cardiovascular lineages and to the development of protocols for the efficient generation of a broad spectrum of cell types including hematopoietic cells, cardiomyocytes, oligodendrocytes, dopamine neurons, and immature pancreatic beta cells. The next challenge will be to demonstrate the functional utility of these cells, both in vitro and in preclinical models of human disease.
Collapse
Affiliation(s)
- Charles E Murry
- Departments of Pathology and Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
120
|
David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Müller-Höcker J, Kitajima S, Lickert H, Rupp R, Franz WM. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 2008; 10:338-45. [PMID: 18297060 DOI: 10.1038/ncb1696] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/28/2008] [Indexed: 12/22/2022]
Abstract
ES-cell-based cardiovascular repair requires an in-depth understanding of the molecular mechanisms underlying the differentiation of cardiovascular ES cells. A candidate cardiovascular-fate inducer is the bHLH transcription factor MesP1. As one of the earliest markers, it is expressed specifically in almost all cardiovascular precursors and is required for cardiac morphogenesis. Here we show that MesP1 is a key factor sufficient to induce the formation of ectopic heart tissue in vertebrates and increase cardiovasculogenesis by ES cells. Electrophysiological analysis showed all subtypes of cardiac ES-cell differentiation. MesP1 overexpression and knockdown experiments revealed a prominent function of MesP1 in a gene regulatory cascade, causing Dkk-1-mediated blockade of canonical Wnt-signalling. Independent evidence from ChIP and in vitro DNA-binding studies, expression analysis in wild-type and MesP knockout mice, and reporter assays confirm that Dkk-1 is a direct target of MesP1. Further analysis of the regulatory networks involving MesP1 will be required to preprogramme ES cells towards a cardiovascular fate for cell therapy and cardiovascular tissue engineering. This may also provide a tool to elicit cardiac transdifferentiation in native human adult stem cells.
Collapse
Affiliation(s)
- R David
- Medizinische Klinik und Poliklinik I, Klinikum Grosshadern der LMU, D-81377 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Satoh W, Matsuyama M, Takemura H, Aizawa S, Shimono A. Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 2008; 46:92-103. [PMID: 18257070 DOI: 10.1002/dvg.20369] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sfrp is a secreted Wnt antagonist that directly interacts with Wnt ligand. We show here that inactivation of Sfrp1, Sfrp2, and Sfrp5 leads to fused somites formation in early-somite mouse embryos, simultaneously resulting in defective convergent extension (CE), which causes severe shortening of the anteroposterior axis. These observations indicate the redundant roles of Sfrp1, Sfrp2, and Sfrp5 in early trunk formation. The roles of the Sfrps were genetically distinguished in terms of the regulation of Wnt pathways. Genetic analysis combining Sfrps mutants and Loop-tail mice revealed the involvement of Sfrps in CE through the regulation of the planar cell polarity pathway. Furthermore, Dkk1-deficient embryos carrying Sfrp1 homozygous and Sfrp2 heterozygous mutations display irregular somites and indistinct intersomitic boundaries, which indicates that Sfrps-mediated inhibition of the Wnt/beta-catenin pathway is necessary for somitogenesis. Our results suggest that Sfrps regulation of the canonical and noncanonical pathways is essential for proper trunk formation.
Collapse
Affiliation(s)
- Wataru Satoh
- Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Minatojima-Minami, Chuou-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|
122
|
Willems E, Leyns L. Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity. Differentiation 2008; 76:745-59. [PMID: 18177426 DOI: 10.1111/j.1432-0436.2007.00257.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.
Collapse
Affiliation(s)
- Erik Willems
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | |
Collapse
|
123
|
Strategies for differentiating embryonic stem cells (ESC) into insulin-producing cells and development of non-invasive imaging techniques using bioluminescence. Immunol Res 2008; 39:261-70. [PMID: 17917070 DOI: 10.1007/s12026-007-0070-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/22/2023]
Abstract
Diabetes is a chronic autoimmune disease that affects 4-5% of the world's population. If the present trends continue, diabetes would soon become a major/leading health problem worldwide. Hence there is an urgent need to develop novel approaches for the treatment of diabetes. While transplantation of the pancreas or that of isolated pancreatic islets can lead to the cure of the disease in some patients, immunological complications and the chronic shortage of donors makes it impossible to adequately treat all patients. Interestingly, embryonic stem cells (ESC) have emerged as a possible source of pluripotent cells that can be coaxed into insulin-producing cells (IPCs) that can be used to treat diabetes. However, until appropriate protocols have been established, this new technology will be difficult to tap into. Our laboratory is interested in developing new strategies for harnessing the pluripotency of ESC and differentiating them into IPCs that are stable and will continue to produce insulin in vivo. A second aspect is the non-availability of non-invasive imaging protocols. We show here that transcriptionally targeted luciferase expression can be used successfully to non-invasively monitor the transplanted cells in vivo.
Collapse
|
124
|
System for tamoxifen-inducible expression of cre-recombinase from the Foxa2 locus in mice. Dev Dyn 2007; 237:447-53. [DOI: 10.1002/dvdy.21415] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
125
|
Live Imaging and Genetic Analysis of Mouse Notochord Formation Reveals Regional Morphogenetic Mechanisms. Dev Cell 2007; 13:884-96. [DOI: 10.1016/j.devcel.2007.10.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/29/2007] [Indexed: 11/20/2022]
|
126
|
Era T, Izumi N, Hayashi M, Tada S, Nishikawa S, Nishikawa SI. Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells 2007; 26:401-11. [PMID: 17991917 DOI: 10.1634/stemcells.2006-0809] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the developing mouse, vascular endothelial cell (EC) and hematopoietic cell (HPC) lineages are two initial cell lineages that diverge from mesodermal cells, which have been roughly subdivided into three subtypes according to their geographical location: the organizer, embryonic mesoderm in the primitive streak, and extraembryonic mesoderm during gastrulation. Although the initial progenitors that become the two lineages appear in both vascular endothelial growth factor receptor 2(+) (VEGFR2(+)) lateral and extraembryonic mesoderm, little is known about the underlying molecular events that regulate the derivation of ECs and HPCs. Here, we describe an experimental system consisting of two types of embryonic stem cell lines capable of distinguishing between organizer and the middle section of the primitive streak region. Using this system, we were able to establish a defined culture condition that can separately induce distinct types of mesoderm. Although we were able to differentiate ECs from all mesoderm subsets, however, the potential of HPCs was restricted to the VEGFR2(+) cells derived from primitive streak-type mesodermal cells. We also show that the culture condition for the progenitors of primitive erythrocytes is separated from that for the progenitors of definitive erythrocytes. These results suggest the dominant role of extrinsic regulation during diversification of mesoderm.
Collapse
Affiliation(s)
- Takumi Era
- Laboratory for Stem Cell Biology, RIKEN Center for Development Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
127
|
Beckers A, Alten L, Viebahn C, Andre P, Gossler A. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc Natl Acad Sci U S A 2007; 104:15765-70. [PMID: 17884984 PMCID: PMC2000419 DOI: 10.1073/pnas.0704344104] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior-posterior patterning are apparently not compromised. In mutant embryos, left-right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3.
Collapse
Affiliation(s)
- Anja Beckers
- *Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Leonie Alten
- *Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Christoph Viebahn
- Zentrum Anatomie, Universität Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany; and
| | - Philipp Andre
- Institute of Zoology (220), University of Hohenheim, Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Achim Gossler
- *Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Li Y, Litingtung Y, Ten Dijke P, Chiang C. Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Dev Dyn 2007; 236:746-54. [PMID: 17260385 DOI: 10.1002/dvdy.21075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human foregut malformation known as esophageal atresia with tracheoesophageal fistula (EA/TEF) occurs in 1 in 4,000 live births with unknown etiology. We found that mice lacking Noggin (Nog(-/-)) displayed Type C EA/TEF, the most common form in humans, and notochordal defects strikingly similar to the adriamycin-induced rat EA/TEF model. In accord with esophageal atresia, Nog(-/-) embryos displayed reduction in the dorsal foregut endoderm, which was associated with reduced adhesion and disrupted basement membrane. However, significant apoptosis in the Nog(-/-) dorsal foregut was not observed. Instead, non-notochordal, likely endodermal, cells were found in Nog(-/-) notochord, suggesting that Noggin function is required in the notochordal plate for its proper delamination from the dorsal foregut. Notably, ablating Bmp7 function in Nog(-/-) embryos rescued EA/TEF and notochord branching defects, establishing a critical role of Noggin-mediated Bmp7 antagonism in EA/TEF pathogenesis.
Collapse
Affiliation(s)
- Yina Li
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
129
|
Frank DU, Elliott SA, Park EJ, Hammond J, Saijoh Y, Moon AM. System for inducible expression of cre-recombinase from the Foxa2 locus in endoderm, notochord, and floor plate. Dev Dyn 2007; 236:1085-92. [PMID: 17304540 DOI: 10.1002/dvdy.21093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We targeted the reverse tetracycline controlled transactivator (rtTA) to the Foxa2 locus (Foxa2(ITA)) to generate a system for regulating Cre-recombinase activity within Foxa2 expression domains, including the endoderm, notochord, and floor plate of early mouse embryos. The use of an internal ribosomal entry site to obtain rtTA expression preserves Foxa2 function of the targeted allele. Cre activity with this system reflects the level of endogenous Foxa2 activity and is also tightly controlled by doxycycline. The location of Cre activity within the broader Foxa2 expression domain can be restricted by altering the timing of doxycycline administration. Isolated floor plate expression can be obtained in this manner. This system will provide a useful tool for manipulating gene expression in endoderm, notochord, and floor plate, all of which are tissues with important structural and patterning functions during embryogenesis.
Collapse
Affiliation(s)
- Deborah U Frank
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
130
|
Naruse C, Fukusumi Y, Kakiuchi D, Asano M. A novel gene trapping for identifying genes expressed under the control of specific transcription factors. Biochem Biophys Res Commun 2007; 361:109-15. [PMID: 17644066 DOI: 10.1016/j.bbrc.2007.06.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Gene trapping is a powerful method for identifying novel genes and for analyzing their functions. It is, however, difficult to select trapped genes on the basis of their function. To identify genes regulated by transcription factors that are important in the mesodermal formation, we selected trapped ES clones by infection of adenoviral vectors expressing Pax1, Brachyury, and Foxa2. Among 366 trapped genes, seven seemed to be controlled by these transcription factors in the first screening. The trapped genes were identified by 5' RACE, and a Northern blotting revealed that expressions of three trapped genes were regulated by these transcription factors. Expression patterns of Cx43 and HP1gamma implicated their functional relationships to Foxa2 in the formation of the notochord and the neural tube. Furthermore, Wtap mutant mice derived from the trapped clone showed defects in the mesendoderm formation. Our results indicate that trapped ES clones could be selected effectively using transcription factors.
Collapse
Affiliation(s)
- Chie Naruse
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Takara-machi 13-1, Kanazawa 920-8640, Japan
| | | | | | | |
Collapse
|
131
|
Izzi L, Silvestri C, von Both I, Labbé E, Zakin L, Wrana JL, Attisano L. Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. EMBO J 2007; 26:3132-43. [PMID: 17568773 PMCID: PMC1914101 DOI: 10.1038/sj.emboj.7601753] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/21/2007] [Indexed: 01/10/2023] Open
Abstract
Mixl1 is a member of the Mix/Bix family of paired-like homeodomain proteins and is required for proper axial mesendoderm morphogenesis and endoderm formation during mouse development. Mix/Bix proteins are transcription factors that function in Nodal-like signaling pathways and are themselves regulated by Nodal. Here, we show that Foxh1 forms a DNA-binding complex with Smads to regulate transforming growth factor beta (TGFbeta)/Nodal-dependent Mixl1 gene expression. Whereas Foxh1 is commonly described as a transcriptional activator, we observed that Foxh1-null embryos exhibit expanded and enhanced Mixl1 expression during gastrulation, indicating that Foxh1 negatively regulates expression of Mixl1 during early mouse embryogenesis. We demonstrate that Foxh1 associates with the homeodomain-containing protein Goosecoid (Gsc), which in turn recruits histone deacetylases to repress Mixl1 gene expression. Ectopic expression of Gsc in embryoid bodies represses endogenous Mixl1 expression and this effect is dependent on Foxh1. As Gsc is itself induced in a Foxh1-dependent manner, we propose that Foxh1 initiates positive and negative transcriptional circuits to refine cell fate decisions during gastrulation.
Collapse
Affiliation(s)
- Luisa Izzi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Cristoforo Silvestri
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Ingo von Both
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Etienne Labbé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Lise Zakin
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Jeffrey L Wrana
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Liliana Attisano
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Room 1008, 160 College Street, Toronto, Ontario, Canada M5S 3E1. Tel.: +1 416 946 3129; Fax: +1 416 978 8287; E-mail:
| |
Collapse
|
132
|
Levine AJ, Brivanlou AH. Proposal of a model of mammalian neural induction. Dev Biol 2007; 308:247-56. [PMID: 17585896 PMCID: PMC2713388 DOI: 10.1016/j.ydbio.2007.05.036] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/20/2007] [Accepted: 05/24/2007] [Indexed: 11/28/2022]
Abstract
How does the vertebrate embryo make a nervous system? This complex question has been at the center of developmental biology for many years. The earliest step in this process - the induction of neural tissue - is intimately linked to patterning of the entire early embryo, and the molecular and embryological of basis these processes are beginning to emerge. Here, we analyze classic and cutting-edge findings on neural induction in the mouse. We find that data from genetics, tissue explants, tissue grafting, and molecular marker expression support a coherent framework for mammalian neural induction. In this model, the gastrula organizer of the mouse embryo inhibits BMP signaling to allow neural tissue to form as a default fate-in the absence of instructive signals. The first neural tissue induced is anterior and subsequent neural tissue is posteriorized to form the midbrain, hindbrain, and spinal cord. The anterior visceral endoderm protects the pre-specified anterior neural fate from similar posteriorization, allowing formation of forebrain. This model is very similar to the default model of neural induction in the frog, thus bridging the evolutionary gap between amphibians and mammals.
Collapse
Affiliation(s)
- Ariel J Levine
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
133
|
Blum M, Andre P, Muders K, Schweickert A, Fischer A, Bitzer E, Bogusch S, Beyer T, van Straaten HWM, Viebahn C. Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 2007; 75:133-46. [PMID: 17316383 DOI: 10.1111/j.1432-0436.2006.00124.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian node, the functional equivalent of the frog dorsal blastoporal lip (Spemann's organizer), was originally described by Viktor Hensen in 1876 in the rabbit embryo as a mass of cells at the anterior end of the primitive streak. Today, the term "node" is commonly used to describe a bilaminar epithelial groove presenting itself as an indentation or "pit" at the distal tip of the mouse egg cylinder, and cilia on its ventral side are held responsible for molecular laterality (left-right) determination. We find that Hensen's node in the rabbit is devoid of cilia, and that ciliated cells are restricted to the notochordal plate, which emerges from the node rostrally. In a comparative approach, we use the organizer marker gene Goosecoid (Gsc) to show that a region of densely packed epithelium-like cells at the anterior end of the primitive streak represents the node in mouse and rabbit and is covered ventrally by a hypoblast (termed "visceral endoderm" in the mouse). Expression of Nodal, a gene intricately involved in the determination of vertebrate laterality, delineates the wide plate-like posterior segment of the notochord in the rabbit and mouse, which in the latter is represented by the indentation frequently termed "the node." Similarly characteristic ciliation and nodal expression exists in Xenopus neurula embryos in the gastrocoel roof plate (GRP), i.e., at the posterior end of the notochord anterior to the blastoporal lip. Our data suggest that (1) a posterior segment of the notochord, here termed PNC (for posterior notochord), is characterized by features known to be involved in laterality determination, (2) the GRP in Xenopus is equivalent to the mammalian PNC, and (3) the mammalian node as defined by organizer gene expression is devoid of cilia and most likely not directly involved in laterality determination.
Collapse
Affiliation(s)
- Martin Blum
- Institute of Zoology, University of Hohenheim, D-70593 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
135
|
Depew MJ, Simpson CA. 21st century neontology and the comparative development of the vertebrate skull. Dev Dyn 2006; 235:1256-91. [PMID: 16598716 DOI: 10.1002/dvdy.20796] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Classic neontology (comparative embryology and anatomy), through the application of the concept of homology, has demonstrated that the development of the gnathostome (jawed vertebrate) skull is characterized both by a fidelity to the gnathostome bauplan and the exquisite elaboration of final structural design. Just as homology is an old concept amended for modern purposes, so are many of the questions regarding the development of the skull. With due deference to Geoffroy-St. Hilaire, Cuvier, Owen, Lankester et al., we are still asking: How are bauplan fidelity and elaboration of design maintained, coordinated, and modified to generate the amazing diversity seen in cranial morphologies? What establishes and maintains pattern in the skull? Are there universal developmental mechanisms underlying gnathostome autapomorphic structural traits? Can we detect and identify the etiologies of heterotopic (change in the topology of a developmental event), heterochronic (change in the timing of a developmental event), and heterofacient (change in the active capacetence, or the elaboration of capacity, of a developmental event) changes in craniofacial development within and between taxa? To address whether jaws are all made in a like manner (and if not, then how not), one needs a starting point for the sake of comparison. To this end, we present here a "hinge and caps" model that places the articulation, and subsequently the polarity and modularity, of the upper and lower jaws in the context of cranial neural crest competence to respond to positionally located epithelial signals. This model expands on an evolving model of polarity within the mandibular arch and seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. It relies upon a system for the establishment of positional information where pattern and placement of the "hinge" is driven by factors common to the junction of the maxillary and mandibular branches of the first arch and of the "caps" by the signals emanating from the distal-most first arch midline and the lamboidal junction (where the maxillary branch meets the frontonasal processes). In this particular model, the functional registration of jaws is achieved by the integration of "hinge" and "caps" signaling, with the "caps" sharing at some critical level a developmental history that potentiates their own coordination. We examine the evidential foundation for this model in mice, examine the robustness with which it can be applied to other taxa, and examine potential proximate sources of the signaling centers. Lastly, as developmental biologists have long held that the anterior-most mesendoderm (anterior archenteron roof or prechordal plate) is in some way integral to the normal formation of the head, including the cranial skeletal midlines, we review evidence that the seminal patterning influences on the early anterior ectoderm extend well beyond the neural plate and are just as important to establishing pattern within the cephalic ectoderm, in particular for the "caps" that will yield medial signaling centers known to coordinate jaw development.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom.
| | | |
Collapse
|
136
|
Lewis SL, Tam PPL. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn 2006; 235:2315-29. [PMID: 16752393 DOI: 10.1002/dvdy.20846] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endoderm is one of the primary germ layers but, in comparison to ectoderm and mesoderm, has received less attention. The definitive endoderm forms during gastrulation and replaces the extraembryonic visceral endoderm. It participates in the complex morphogenesis of the gut tube and contributes to the associated visceral organs. This review highlights the role of the definitive endoderm as a source of patterning cues for the morphogenesis of other germ-layer tissues, such as the anterior neurectoderm and the pharyngeal region, and also emphasizes the intricate patterning that the endoderm itself undergoes enabling the acquisition of regionalized cell fates.
Collapse
Affiliation(s)
- Samara L Lewis
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
137
|
Gadue P, Huber TL, Paddison PJ, Keller GM. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103:16806-11. [PMID: 17077151 PMCID: PMC1636536 DOI: 10.1073/pnas.0603916103] [Citation(s) in RCA: 423] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of the primitive streak and its derivative germ layers, mesoderm and endoderm, are prerequisite steps in the formation of many tissues. To model these developmental stages in vitro, an ES cell line was established that expresses CD4 from the foxa2 locus in addition to GFP from the brachyury locus. A GFP-Bry(+) population expressing variable levels of CD4-Foxa2 developed upon differentiation of this ES cell line. Analysis of gene-expression patterns and developmental potential revealed that the CD4-Foxa2(hi)GFP-Bry(+) population displays characteristics of the anterior primitive streak, whereas the CD4-Foxa2(lo)GFP-Bry(+) cells resemble the posterior streak. Using this model, we were able to demonstrate that Wnt and TGF-beta/nodal/activin signaling simultaneously were required for the generation of the CD4-Foxa2(+)GFP-Bry(+) population. Wnt or low levels of activin-induced a posterior primitive streak population, whereas high levels of activin resulted in an anterior streak fate. Finally, sustained activin signaling was found to stimulate endoderm commitment from the CD4-Foxa2(+)GFP-Bry(+) ES cell population. These findings demonstrate that the early developmental events involved in germ-layer induction in the embryo are recapitulated in the ES cell model and uncover insights into the signaling pathways involved in the establishment of mesoderm and endoderm.
Collapse
Affiliation(s)
- Paul Gadue
- *Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1496, New York, NY 10029; and
| | - Tara L. Huber
- *Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1496, New York, NY 10029; and
| | - Patrick J. Paddison
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Gordon M. Keller
- *Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1496, New York, NY 10029; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
138
|
Yang YP, Klingensmith J. Roles of organizer factors and BMP antagonism in mammalian forebrain establishment. Dev Biol 2006; 296:458-75. [PMID: 16839541 DOI: 10.1016/j.ydbio.2006.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
A critical question in mammalian development is how the forebrain is established. In amphibians, bone morphogenetic protein (BMP) antagonism emanating from the gastrula organizer is key. Roles of BMP antagonism and the organizer in mammals remain unclear. Anterior visceral endoderm (AVE) promotes early mouse head development, but its function is controversial. Here, we explore the timing and regulation of forebrain establishment in the mouse. Forebrain specification requires tissue interaction through the late streak stage of gastrulation. Foxa2(-/-) embryos lack both the organizer and its BMP antagonists, yet about 25% show weak forebrain gene expression. A similar percentage shows ectopic AVE gene expression distally. The distal VE may thus be a source of forebrain promoting signals in these embryos. In wild-type ectoderm explants, AVE promoted forebrain specification, while anterior mesendoderm provided maintenance signals. Embryological and molecular data suggest that the AVE is a source of active BMP antagonism in vivo. In prespecification ectoderm explants, exogenous BMP antagonists triggered forebrain gene expression and inhibited posterior gene expression. Conversely, BMP inhibited forebrain gene expression, an effect that could be antagonized by anterior mesendoderm, and promoted expression of some posterior genes. These results lead to a model in which BMP antagonism supplied by exogenous tissues promotes forebrain establishment and maintenance in the murine ectoderm.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710-3709, USA
| | | |
Collapse
|
139
|
Abstract
The establishment of left-right asymmetry in mammals is a good example of how multiple cell biological processes coordinate in the formation of a basic body plan. The leftward movement of fluid at the ventral node, called nodal flow, is the central process in symmetry breaking on the left-right axis. Nodal flow is autonomously generated by the rotation of cilia that are tilted toward the posterior on cells of the ventral node. These cilia are built by transport via the KIF3 motor complex. How nodal flow is interpreted to create left-right asymmetry has been a matter of debate. Recent evidence suggests that the leftward movement of membrane-sheathed particles, called nodal vesicular parcels (NVPs), may result in the activation of the non-canonical Hedgehog signaling pathway, an asymmetric elevation in intracellular Ca(2+) and changes in gene expression.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology & Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
140
|
Abstract
The embryonic head is populated by two robust mesenchymal populations, paraxial mesoderm and neural crest cells. Although the developmental histories of each are distinct and separate, they quickly establish intimate relations that are variably important for the histogenesis and morphogenesis of musculoskeletal components of the calvaria, midface and branchial regions. This review will focus first on the genesis and organization within nascent mesodermal and crest populations, emphasizing interactions that probably initiate or augment the establishment of lineages within each. The principal goal is an analysis of the interactions between crest and mesoderm populations, from their first contacts through their concerted movements into peripheral domains, particularly the branchial arches, and continuing to stages at which both the differentiation and the integrated three-dimensional assembly of vascular, connective and muscular tissues is evident. Current views on unresolved or contentious issues, including the relevance of head somitomeres, the processes by which crest cells change locations and constancy of cell-cell relations at the crest-mesoderm interface, are addressed.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca 14853, USA.
| | | |
Collapse
|
141
|
Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa SI. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 2005; 23:1542-50. [PMID: 16311587 DOI: 10.1038/nbt1167] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/20/2005] [Indexed: 12/31/2022]
Abstract
Preparation of specific lineages at high purities from embryonic stem (ES) cells requires both selective culture conditions and markers to guide and monitor the differentiation. In this study, we distinguished definitive and visceral endoderm by using a mouse ES cell line that bears the gfp and human IL2R alpha (also known as CD25) marker genes in the goosecoid (Gsc) and Sox17 loci, respectively. This cell line allowed us to monitor the generation of Gsc+ Sox17+ definitive endoderm and Gsc- Sox17+ visceral endoderm and to define culture conditions that differentially induce definitive and visceral endoderm. By comparing the gene expression profiles of definitive and visceral endoderm, we identified seven surface molecules that are expressed differentially in the two populations. One of the seven markers, Cxcr4, to which a monoclonal antibody is available allowed us to monitor and purify the Gsc+ population from genetically unmanipulated ES cells under the condition that selects definitive endoderm.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Basic Research Laboratory, Stem Cell Sciences KK, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Baron MH. Early patterning of the mouse embryo: Implications for hematopoietic commitment and differentiation. Exp Hematol 2005; 33:1015-20. [PMID: 16140149 DOI: 10.1016/j.exphem.2005.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prior to and during gastrulation, reciprocal interactions between embryonic and extraembryonic lineages are crucial for the correct patterning of the embryo. Several lines of investigation have underscored the importance of extraembryonic ectoderm and primitive endodermal in establishing the anterior-posterior axis of the embryo. Signals from these tissues help to position the primitive streak, from which mesoderm will emerge, within the epiblast (embryo proper). Molecules secreted by the visceral endoderm are required for activation of hematopoietic and endothelial cell development, but the pathways involved and their target tissue (e.g., posterior epiblast versus extraembryonic mesoderm) remain obscure. Recent evidence suggests that commitment of mesodermal progenitors to the hematopoietic and endothelial lineages begins earlier than previously anticipated, within or shortly after these cells emerge from the primitive streak.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
143
|
Naito AT, Akazawa H, Takano H, Minamino T, Nagai T, Aburatani H, Komuro I. Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ Res 2005; 97:144-51. [PMID: 15994435 DOI: 10.1161/01.res.0000175241.92285.f8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have recently reported that activation of phosphatidylinositol 3-kinase (PI3K) plays a critical role in the early stage of cardiomyocyte differentiation of P19CL6 cells. We here examined molecular mechanisms of how PI3K is involved in cardiomyocyte differentiation. DNA chip analysis revealed that expression levels of Wnt-3a were markedly increased and that the Wnt/beta-catenin pathway was activated temporally during the early stage of cardiomyocyte differentiation of P19CL6 cells. Activation of the Wnt/beta-catenin pathway during this period was required and sufficient for cardiomyocyte differentiation of P19CL6 cells. Inhibition of the PI3K/Akt pathway suppressed the Wnt/beta-catenin pathway by activation of glycogen synthase kinase-3beta (GSK-3beta) and degradation of beta-catenin. Suppression of cardiomyocyte differentiation by inhibiting the PI3K/Akt pathway was rescued by forced expression of a nonphosphorylated, constitutively active form of beta-catenin. These results suggest that the PI3K pathway regulates cardiomyocyte differentiation through suppressing the GSK-3beta activity and maintaining the Wnt/beta-catenin activity.
Collapse
Affiliation(s)
- Atsuhiko T Naito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
144
|
Zilinski C, Brownell I, Hashimoto R, Medina-Martinez O, Swindell EC, Jamrich M. Expression of FoxE4 and Rx Visualizes the Timing and Dynamics of Critical Processes Taking Place during Initial Stages of Vertebrate Eye Development. Dev Neurosci 2005; 26:294-307. [PMID: 15855758 DOI: 10.1159/000082271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 08/20/2004] [Indexed: 01/26/2023] Open
Abstract
Several transcription factors have a critical function during initial stages of vertebrate eye formation. In this paper, we discuss the role of the Rx subfamily of homeobox-containing genes in retinal development, and the role of the Foxe3 and FoxE4 subfamily of forkhead box-containing genes in lens development. Rx genes are expressed in the initial stages of retinal development and they play a critical role in eye formation. Elimination of Rx function in mice results in lack of eye formation. Abnormal eye development observed in the mouse mutation eyeless (ey1), the medakatemperature-sensitive mutation eyeless (el), and the zebrafish mutation chokh are caused by abnormal regulation or function of Rx genes. In humans, a mutation in Rx leads to anophthalmia. In contrast, Foxe3 and FoxE4 genes are expressed in the lens and they play an essential role in its formation. Mutations in the Foxe3 gene are the cause of the mouse mutation dysgenetic lens (dyl) and in humans, mutation in FOXE3 leads to anterior segment dysgenesis and cataracts. Since Rx and FoxE4 are expressed in the earliest stages of retina and lens development, their expression visualizes the timing and dynamics of the crucial processes that comprise eye formation. In this paper we present a model of eye development based on the expression pattern of these two genes.
Collapse
Affiliation(s)
- Carolyn Zilinski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylot Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
The class mammalia is composed of approximately 4800 extant species. This class is divided into three subclasses, the prototheria (monotremes), metatheria (marsupials), and eutheria. Surprisingly, there is relatively little knowledge about germ layer and axis formation in mammalian species. Most knowledge about these embryonic processes has been obtained from one species, the mouse, Mus musculus. Here we discuss major variations in germ layer and axis formation among mammals. We suggest that more studies of embryonic development in diverse mammalian species are required for an understanding of germ layer and axis formation to provide insights into human biology and disease.
Collapse
Affiliation(s)
- Guy S Eakin
- Program in Developmental Biology, Baylor College of Medicine and Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | |
Collapse
|
146
|
Tam PPL, Khoo PL, Wong N, Tsang TE, Behringer RR. Regionalization of cell fates and cell movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. Dev Biol 2004; 274:171-87. [PMID: 15355796 DOI: 10.1016/j.ydbio.2004.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 07/01/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
Investigation of the developmental fates of cells in the endodermal layer of the early bud stage mouse embryo revealed a regionalized pattern of distribution of the progenitor cells of the yolk sac endoderm and the embryonic gut. By tracing the site of origin of cells that are allocated to specific regions of the embryonic gut, it was found that by late gastrulation, the respective endodermal progenitors are already spatially organized in anticipation of the prospective mediolateral and anterior-posterior destinations. The fate-mapping data further showed that the endoderm in the embryonic compartment of the early bud stage gastrula still contains cells that will colonize the anterior and lateral parts of the extraembryonic yolk sac. In the Lhx1(Lim1)-null mutant embryo, the progenitors of the embryonic gut are confined to the posterior part of the endoderm. In particular, the prospective anterior endoderm was sequestered to a much smaller distal domain, suggesting that there may be fewer progenitor cells for the anterior gut that is poorly formed in the mutant embryo. The deficiency of gut endoderm is not caused by any restriction in endodermal potency of the mutant epiblast cells but more likely the inadequate allocation of the definitive endoderm. The inefficient movement of the anterior endoderm, and the abnormal differentiation highlighted by the lack of Sox17 and Foxa2 expression, may underpin the malformation of the head of Lhx1 mutant embryos.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
147
|
Abstract
Embryonic patterning of the mouse during gastrulation and early organogenesis engenders the specification of anterior versus posterior structures and body laterality by the interaction of signalling and modulating activities. A group of cells in the mouse gastrula, characterised by the expression of a repertoire of "organiser" genes, acts as a source and the conduit for allocation of the axial mesoderm, floor plate and definitive endoderm. The organiser and its derivatives provide the antagonistic activity that modulates WNT and TGFbeta signalling. Recent findings show that the organiser activity is augmented by morphogenetic activity of the extraembryonic and embryonic endoderm, suggesting embryonic patterning is not solely the function of the organiser.
Collapse
Affiliation(s)
- Lorraine Robb
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic. 3050, Australia
| | | |
Collapse
|
148
|
Niehrs C. Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 2004; 5:425-34. [PMID: 15153995 DOI: 10.1038/nrg1347] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
149
|
Abdelkhalek HB, Beckers A, Schuster-Gossler K, Pavlova MN, Burkhardt H, Lickert H, Rossant J, Reinhardt R, Schalkwyk LC, Müller I, Herrmann BG, Ceolin M, Rivera-Pomar R, Gossler A. The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Genes Dev 2004; 18:1725-36. [PMID: 15231714 PMCID: PMC478193 DOI: 10.1101/gad.303504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The floating head (flh) gene in zebrafish encodes a homeodomain protein, which is essential for notochord formation along the entire body axis. flh orthologs, termed Not genes, have been isolated from chick and Xenopus, but no mammalian ortholog has yet been identified. Truncate (tc) is an autosomal recessive mutation in mouse that specifically disrupts the development of the caudal notochord. Here, we demonstrate that truncate arose by a mutation in the mouse Not gene. The truncate allele (Nottc) contains a point mutation in the homeobox of Not that changes a conserved Phenylalanine residue in helix 1 to a Cysteine (F20C), and significantly destabilizes the homeodomain. Reversion of F20C in one allele of homozygous tc embryonic stem (ES) cells is sufficient to restore normal notochord formation in completely ES cell-derived embryos. We have generated a targeted mutation of Not by replacing most of the Not coding sequence, including the homeobox with the eGFP gene. The phenotype of NoteGFP/eGFP, NoteGFP/tc, and Nottc/tc embryos is very similar but slightly more severe in NoteGFP/eGFP than in Nottc/tc embryos. This confirms allelism of truncate and Not, and indicates that tc is not a complete null allele. Not expression is abolished in Foxa2 and T mutant embryos, suggesting that Not acts downstream of both genes during notochord development. This is in contrast to zebrafish embryos, in which flh interacts with ntl (zebrafish T) in a regulatory loop and is essential for development of the entire notochord, and suggests that different genetic control circuits act in different vertebrate species during notochord formation.
Collapse
Affiliation(s)
- Hanaa Ben Abdelkhalek
- Institute for Molecular Biology OE5250, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
del Barco Barrantes I, Davidson G, Gröne HJ, Westphal H, Niehrs C. Dkk1 and noggin cooperate in mammalian head induction. Genes Dev 2003; 17:2239-44. [PMID: 12952897 PMCID: PMC196461 DOI: 10.1101/gad.269103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth factor antagonists play important roles in mediating the inductive effects of the Spemann organizer in amphibian embryos and its equivalents in other vertebrates. Dual inhibition of Wnt and BMP signals has been proposed to confer head organizer activity. We tested the requirement of this coinhibition in Xenopus and mice. In Xenopus, simultaneous reduction of the BMP antagonists chordin and noggin, and the Wnt antagonist dickkopf1 (dkk1) leads to anterior truncations. In mice, compound mutants for dkk1 and noggin display severe head defects, with deletion of all head structures anterior to the mid-hindbrain boundary. These defects arise as a result of a failure in anterior specification at the gastrula stage. The results provide genetic evidence for the dual inhibition model and indicate that dkk1 and noggin functionally cooperate in the head organizer.
Collapse
Affiliation(s)
- Ivan del Barco Barrantes
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|