101
|
Shi W, Hegeman MA, van Dartel DA, Tang J, Suarez M, Swarts H, van der Hee B, Arola L, Keijer J. Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet. Mol Nutr Food Res 2017; 61:1600878. [PMID: 28211258 PMCID: PMC5573990 DOI: 10.1002/mnfr.201600878] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 02/02/2023]
Abstract
SCOPE Metabolic flexibility is the ability to switch metabolism between carbohydrate oxidation (CHO) and fatty acid oxidation (FAO) and is a biomarker for metabolic health. The effect on metabolic health of nicotinamide riboside (NR) as an exclusive source of vitamin B3 is unknown and is examined here for a wide range of NR. DESIGN AND METHODS Nine-week-old male C57BL/6JRcc mice received a semi-purified mildly obesogenic (40 en% fat) diet containing 0.14% L-tryptophan and either 5, 15, 30, 180, or 900 mg NR per kg diet for 15 weeks. Body composition and metabolic parameters were analyzed. Metabolic flexibility was measured using indirect calorimetry. Gene expression in epididymal white adipose tissue (eWAT) was measured using qRT-PCR . RESULTS The maximum delta respiratory exchange ratio when switching from CHO to FAO (maxΔRERCHO1→FAO ) and when switching from FAO to CHO (maxΔRERFAO→CHO2 ) were largest in 30 mg NR per kg diet (30NR). In eWAT, the gene expression of Pparγ, a master regulator of adipogenesis, and of Sod2 and Prdx3, two antioxidant genes, were significantly upregulated in 30NR compared to 5NR. CONCLUSION 30NR is most beneficial for metabolic health, in terms of metabolic flexibility and eWAT gene expression, of mice on an obesogenic diet.
Collapse
Affiliation(s)
- Wenbiao Shi
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Maria A. Hegeman
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | | | - Jing Tang
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
- Institute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Manuel Suarez
- Department of Biochemistry and BiotechnologyUniversity Rovira VirgiliTarragonaSpain
| | - Hans Swarts
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Bart van der Hee
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Lluis Arola
- Department of Biochemistry and BiotechnologyUniversity Rovira VirgiliTarragonaSpain
- Nutrition and Health Research GroupTechnological Center of Nutrition and Health (CTNS)ReusSpain
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
102
|
Barrett TJ, Murphy AJ, Goldberg IJ, Fisher EA. Diabetes-mediated myelopoiesis and the relationship to cardiovascular risk. Ann N Y Acad Sci 2017; 1402:31-42. [PMID: 28926114 PMCID: PMC5659728 DOI: 10.1111/nyas.13462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
Diabetes is the greatest risk factor for the development of cardiovascular disease, which, in turn, is the most prevalent cause of mortality and morbidity in diabetics. These patients have elevations in inflammatory monocytes, a factor consistently reported to drive the development of atherosclerosis. In preclinical models of both type 1 and type 2 diabetes, studies have demonstrated that the increased production and activation of monocytes is driven by enhanced myelopoiesis, promoted by factors, including hyperglycemia, impaired cholesterol efflux, and inflammasome activation, that affect the proliferation of bone marrow precursor cells. This suggests that continued mechanistic investigations of the enhanced myelopoiesis and the generation of inflammatory monocytes are timely, from the dual perspectives of understanding more deeply the underlying bases of diabetes pathophysiology and identifying therapeutic targets to reduce cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Tessa J. Barrett
- Department of Medicine, Division of Cardiology, New York University
School of Medicine, New York, New York
| | - Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes
Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne,
Australia
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and
Metabolism, New York University School of Medicine, New York, New York
| | - Edward A. Fisher
- Department of Medicine, Division of Cardiology, New York University
School of Medicine, New York, New York
| |
Collapse
|
103
|
Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E, Pinho S, Magro F, Cavadas C, Rego AC, Costa V, Outeiro TF, Gomes P. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet 2017; 26:4105-4117. [DOI: 10.1093/hmg/ddx298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 01/11/2023] Open
|
104
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
105
|
Molecular Mechanisms of Sodium-Sensitive Hypertension in the Metabolic Syndrome. Curr Hypertens Rep 2017; 19:60. [DOI: 10.1007/s11906-017-0759-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
106
|
Suratt BT. Mouse Modeling of Obese Lung Disease. Insights and Caveats. Am J Respir Cell Mol Biol 2017; 55:153-8. [PMID: 27163945 DOI: 10.1165/rcmb.2016-0063ps] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the obesity epidemic has worsened, its impact on lung health and disease has become progressively evident. The interactions between obesity and the accompanying metabolic syndrome and diseases such as asthma, pneumonia, and acute respiratory distress syndrome (ARDS) have proven complex and often counterintuitive in human studies. Hence, there is a growing need for relevant experimental approaches to understand the interactions between obesity and the lung. To this end, researchers have increasingly exploited mouse models combining both obesity and lung diseases, including ARDS, pneumonia, and asthma. Such models have both complemented and advanced the understanding we have gained from clinical studies and have allowed elegant dissections of obesity's effects on the pathogenesis of lung disease. Yet these models come with several critically important caveats that we must reflect on when interpreting their results.
Collapse
Affiliation(s)
- Benjamin T Suratt
- University of Vermont College of Medicine, Department of Medicine, Burlington, Vermont
| |
Collapse
|
107
|
Abstract
The FATZO/Pco mouse is the result of a cross of the C57BL/6J and AKR/J strains. The crossing of these two strains and the selective inbreeding for obesity, insulin resistance and hyperglycemia has resulted in an inbred strain exhibiting obesity in the presumed presence of an intact leptin pathway. Routinely used rodent models for obesity and diabetes research have a monogenic defect in leptin signaling that initiates obesity. Given that obesity and its sequelae in humans are polygenic in nature and not associated with leptin signaling defects, the FATZO mouse may represent a more translatable rodent model for study of obesity and its associated metabolic disturbances. The FATZO mouse develops obesity spontaneously when fed a normal chow diet. Glucose intolerance with increased insulin levels are apparent in FATZO mice as young as 6 weeks of age. These progress to hyperglycemia/pre-diabetes and frank diabetes with decreasing insulin levels as they age. The disease in these mice is multi-faceted, similar to the metabolic syndrome apparent in obese individuals, and thus provides a long pre-diabetic state for determining the preventive value of new interventions. We have assessed the utility of this new model for the pre-clinical screening of agents to stop or slow progression of the metabolic syndrome to severe diabetes. Our assessment included: 1) characterization of the spontaneous development of disease, 2) comparison of metabolic disturbances of FATZO mice to control mice and 3) validation of the model with regard to the effectiveness of current and emerging anti-diabetic agents; rosiglitazone, metformin and semaglutide. CONCLUSION Male FATZO mice spontaneously develop significant metabolic disease when compared to normal controls while maintaining hyperglycemia in the presence of high leptin levels and hyperinsulinemia. The disease condition responds to commonly used antidiabetic agents.
Collapse
|
108
|
Graef F, Seemann R, Garbe A, Schmidt-Bleek K, Schaser KD, Keller J, Duda G, Tsitsilonis S. Impaired fracture healing with high non-union rates remains irreversible after traumatic brain injury in leptin-deficient mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:78-85. [PMID: 28574414 PMCID: PMC5492322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Patients with traumatic brain injury (TBI) and long-bone fractures can show increased callus formation. This effect has already been reproduced in wild-type (wt) mice. However, the mechanisms remain poorly understood. Leptin is significantly increased following TBI, while its role in bone healing remains unclear. The aim of this study was to evaluate fracture healing in leptin-deficient ob/ob mice and to measure any possible impact of TBI on callus formation. 138 female, 12 weeks old, ob/ob mice were divided into four groups: Control, fracture, TBI and combined trauma. Osteotomies were stabilized with an external fixator; TBI was induced with Controlled Cortical Impact Injury. Callus bridging was weekly evaluated with in vivo micro-CT. Biomechanical testing was performed ex vivo. Micro-CT showed high non-union rates after three and four weeks in the fracture and combined trauma group. No differences were observed in callus volume, density and biomechanical properties at any time point. This study shows that bony bridging is impaired in the present leptin-deficient trauma model. Furthermore, the phenomenon of increased callus formation after TBI could not be reproduced in ob/ob mice, as in wt mice. Our findings suggest that the increased callus formation after TBI may be dependent on leptin signaling.
Collapse
Affiliation(s)
- F. Graef
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Corresponding author: Frank Graef, MD, Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany E-mail:
| | - R. Seemann
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A. Garbe
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - K. Schmidt-Bleek
- Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,Julius Wolff Institute, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - K-D. Schaser
- University Center for Orthopedics and Trauma Surgery, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden
| | - J. Keller
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany
| | - G. Duda
- Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,Julius Wolff Institute, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S. Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
109
|
Kheder R, Hobkirk J, Saeed Z, Janus J, Carroll S, Browning MJ, Stover C. Vitamin D 3 supplementation of a high fat high sugar diet ameliorates prediabetic phenotype in female LDLR -/- and LDLR +/+ mice. Immun Inflamm Dis 2017; 5:151-162. [PMID: 28474500 PMCID: PMC5418139 DOI: 10.1002/iid3.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Fatty liver disease is prevalent in populations with high caloric intake. Nutritherapeutic approaches are being considered, such as supplementary Vitamin D3 , to improve aspects of metabolic syndrome, namely fatty liver disease, hyperlipidemia, and insulin resistance associated with obesity. METHODS We analyzed female LDLR-/- and LDLR+/+ mice on a 10-week diabetogenic diet for markers of fatty liver disease, metabolic strain, and inflammation. RESULTS The groups on a high fat high sugar diet with supplementary Vitamin D3 , in comparison with the groups on a high fat high sugar diet alone, showed improved transaminase levels, significantly less hypertriglyceridemia and hyperinsulinemia, and histologically, there was less pericentral hepatic steatosis. Levels of non-esterified fatty acids and lipid peroxidation products were significantly lower in the group supplemented with additional Vitamin D3 , as were systemic markers of inflammation (serum endotoxin and IL-6). M2 macrophage phenotype predominated in the group supplemented with additional Vitamin D3 . Beneficial changes were observed as early as five weeks' supplementation with Vitamin D3 and extended to restoration of high fat high sugar diet induced decrease of bone mineral density. CONCLUSION In summary, Vitamin D3 was a significantly beneficial dietary additive to blunt a prediabetic phenotype in diet-induced obesity of female LDLR-/- and LDLR+/+ mice.
Collapse
Affiliation(s)
- Ramiar Kheder
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- College of Nursing, University of Raparin, Kurdistan Region, Iraq
| | - James Hobkirk
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
| | - Zeayd Saeed
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nursing, Technical institute of Samawa, Iraq
| | - Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Sean Carroll
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Immunology, Leicester Royal Infirmary, Leicester, UK
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
110
|
Maugham ML, Thomas PB, Crisp GJ, Philp LK, Shah ET, Herington AC, Chen C, Gregory LS, Nelson CC, Seim I, Jeffery PL, Chopin LK. Insights from engraftable immunodeficient mouse models of hyperinsulinaemia. Sci Rep 2017; 7:491. [PMID: 28352127 PMCID: PMC5428450 DOI: 10.1038/s41598-017-00443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 -/-) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 -/-and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 -/- mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 -/- HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 -/- HFD-fed mice, but not in NOD/SCID mice. In Rag1 -/- HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 -/- mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.
Collapse
Affiliation(s)
- Michelle L Maugham
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Skeletal Biology and Forensic Anthropology Research Laboratory, Cancer Program, School of Biomedical Sciences, Translational Research Institute (TRI), Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrick B Thomas
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabrielle J Crisp
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa K Philp
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Esha T Shah
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adrian C Herington
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Laura S Gregory
- Skeletal Biology and Forensic Anthropology Research Laboratory, Cancer Program, School of Biomedical Sciences, Translational Research Institute (TRI), Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Penny L Jeffery
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia.
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Lisa K Chopin
- Ghrelin Research Group, Translational Research Institute, Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia.
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
111
|
Sodhi K, Srikanthan K, Goguet-Rubio P, Nichols A, Mallick A, Nawab A, Martin R, Shah PT, Chaudhry M, Sigdel S, El-Hamdani M, Liu J, Xie Z, Abraham NG, Shapiro JI. pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57Bl6 and ApoE Knockout Mice Fed a Western Diet. Sci Rep 2017; 7:193. [PMID: 28298638 PMCID: PMC5428305 DOI: 10.1038/s41598-017-00306-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that the α1 subunit of sodium potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a “western” diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted marked improvement in mitochondrial fatty acid oxidation, insulin sensitivity, dyslipidemia and aortic streaking in this mouse model. To further elucidate the effects of pNaKtide on atherosclerosis, similar studies were performed in ApoE knockout mice also exposed to the western diet. In these mice, pNaKtide not only improved steatohepatitis, dyslipidemia, and insulin sensitivity, but also ameliorated significant aortic atherosclerosis. Collectively, this study demonstrates that the Na/K-ATPase/ROS amplification loop contributes significantly to the development and progression of steatohepatitis and atherosclerosis. And furthermore, this study presents a potential treatment, the pNaKtide, for the metabolic syndrome phenotype.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Krithika Srikanthan
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Perrine Goguet-Rubio
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Alexandra Nichols
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Amrita Mallick
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Athar Nawab
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Rebecca Martin
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Preeya T Shah
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Muhammad Chaudhry
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Saroj Sigdel
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Mehiar El-Hamdani
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Zijian Xie
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Nader G Abraham
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA.,Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Joseph I Shapiro
- Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA.
| |
Collapse
|
112
|
von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metab 2017; 25:248-261. [PMID: 27916529 PMCID: PMC5484632 DOI: 10.1016/j.cmet.2016.11.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/26/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWASs) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWASs. In particular, of the 46 genes with strong association signals in CAD GWASs that were studied in mouse models, all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWASs with 263 from mouse studies and observed that the majority were consistent between the species.
Collapse
Affiliation(s)
- Moritz von Scheidt
- Deutsches Herzzentrum München, Technische Universität München, 80333 Munich, Germany
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lingyao Zeng
- Deutsches Herzzentrum München, Technische Universität München, 80333 Munich, Germany
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, 80333 Munich, Germany; Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
113
|
Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice ( Neotomodon alstoni). J Circadian Rhythms 2017; 15:1. [PMID: 30210555 PMCID: PMC5356206 DOI: 10.5334/jcr.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse Neotomodon alstoni is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in Neotomodon has effects on the neural mechanisms that regulate the circadian system.
Collapse
|
114
|
Naranjo MC, Bermudez B, Garcia I, Lopez S, Abia R, Muriana FJG, Montserrat-de la Paz S. Dietary fatty acids on aortic root calcification in mice with metabolic syndrome. Food Funct 2017; 8:1468-1474. [DOI: 10.1039/c7fo00143f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is associated with obesity, dyslipidemia, type 2 diabetes, and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Maria C. Naranjo
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Beatriz Bermudez
- Department of Cell Biology
- Faculty of Biology
- University of Seville
- 41012 Seville
- Spain
| | - Indara Garcia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | | | | |
Collapse
|
115
|
Nishijima Y, Akamatsu Y, Yang SY, Lee CC, Baran U, Song S, Wang RK, Tominaga T, Liu J. Impaired Collateral Flow Compensation During Chronic Cerebral Hypoperfusion in the Type 2 Diabetic Mice. Stroke 2016; 47:3014-3021. [PMID: 27834741 DOI: 10.1161/strokeaha.116.014882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/03/2016] [Accepted: 09/14/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE The presence of collaterals is associated with a reduced risk of stroke and transient ischemic attack in patients with steno-occlusive carotid artery disease. Although metabolic syndrome negatively impacts collateral status, it is unclear whether and to what extent type 2 diabetes mellitus affects cerebral collateral flow regulation during hypoperfusion. METHODS We examined the spatial and temporal changes of the leptomeningeal collateral flow and the flow dynamics of the penetrating arterioles in the distal middle cerebral artery and anterior cerebral artery branches over 2 weeks after unilateral common carotid artery occlusion (CCAO) using optical coherent tomography in db/+ and db/db mice. We also assessed the temporal adaptation of the circle of Willis after CCAO by measuring circle of Willis vessel diameters. RESULTS After unilateral CCAO, db/db mice exhibited diminished leptomeningeal collateral flow compensation compared with db/+ mice, which coincided with a reduced dilation of distal anterior cerebral artery branches, leading to reduced flow not only in pial vessels but also in penetrating arterioles bordering the distal middle cerebral artery and anterior cerebral artery. However, no apparent cell death was detected in either strain of mice during the first week after CCAO. db/db mice also experienced a more severe early reduction in the vessel diameters of several ipsilateral main feeding arteries in the circle of Willis, in addition to a delayed post-CCAO adaptive response by 1 to 2 weeks, compared with db/+ mice. CONCLUSIONS Type 2 diabetes mellitus is an additional risk factor for hemodynamic compromise during cerebral hypoperfusion, which may increase the severity and the risk of stroke or transient ischemic attack.
Collapse
Affiliation(s)
- Yasuo Nishijima
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Yosuke Akamatsu
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Shih Yen Yang
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Chih Cheng Lee
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Utku Baran
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Shaozhen Song
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Ruikang K Wang
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Teiji Tominaga
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.).
| |
Collapse
|
116
|
Montserrat-de la Paz S, Naranjo MC, Lopez S, Abia R, Muriana FJ, Bermudez B. Olive oil, compared to a saturated dietary fat, has a protective role on atherosclerosis in niacin-treated mice with metabolic syndrome. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
117
|
|
118
|
Christophersen DV, Jacobsen NR, Jensen DM, Kermanizadeh A, Sheykhzade M, Loft S, Vogel U, Wallin H, Møller P. Inflammation and Vascular Effects after Repeated Intratracheal Instillations of Carbon Black and Lipopolysaccharide. PLoS One 2016; 11:e0160731. [PMID: 27571356 PMCID: PMC5003393 DOI: 10.1371/journal.pone.0160731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inflammation and oxidative stress are considered the main drivers of vasomotor dysfunction and progression of atherosclerosis after inhalation of particulate matter. In addition, new studies have shown that particle exposure can induce the level of bioactive mediators in serum, driving vascular- and systemic toxicity. We aimed to investigate if pulmonary inflammation would accelerate nanoparticle-induced atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/-) mice. ApoE-/- mice were exposed to vehicle, 8.53 or 25.6 μg nanosized carbon black (CB) alone or spiked with LPS (0.2 μg/mouse/exposure; once a week for 10 weeks). Inflammation was determined by counting cells in bronchoalveolar lavage fluid. Serum Amyloid A3 (Saa3) expression and glutathione status were determined in lung tissue. Plaque progression was assessed in the aorta and the brachiocephalic artery. The effect of vasoactive mediators in plasma of exposed ApoE-/- mice was assessed in aorta rings isolated from naïve C57BL/6 mice. Pulmonary exposure to CB and/or LPS resulted in pulmonary inflammation with a robust influx of neutrophils. The CB exposure did not promote plaque progression in aorta or BCA. Incubation with 0.5% plasma extracted from CB-exposed ApoE-/- mice caused vasoconstriction in aorta rings isolated from naïve mice; this effect was abolished by the treatment with the serotonin receptor antagonist Ketanserin. In conclusion, repeated pulmonary exposure to nanosized CB and LPS caused lung inflammation without progression of atherosclerosis in ApoE-/- mice. Nevertheless, plasma extracted from mice exposed to nanosized CB induced vasoconstriction in aortas of naïve wild-type mice, an effect possibly related to increased plasma serotonin.
Collapse
Affiliation(s)
- Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | | | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Section of Molecular and Cellular Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Håkan Wallin
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
- * E-mail:
| |
Collapse
|
119
|
Gibbs-Bar L, Tempelhof H, Ben-Hamo R, Ely Y, Brandis A, Hofi R, Almog G, Braun T, Feldmesser E, Efroni S, Yaniv K. Autotaxin-Lysophosphatidic Acid Axis Acts Downstream of Apoprotein B Lipoproteins in Endothelial Cells. Arterioscler Thromb Vasc Biol 2016; 36:2058-67. [PMID: 27562917 DOI: 10.1161/atvbaha.116.308119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE As they travel through the blood stream, plasma lipoproteins interact continuously with endothelial cells (ECs). Although the focus of research has mostly been guided by the importance of lipoproteins as risk factors for atherosclerosis, thrombosis, and other cardiovascular diseases, little is known about the mechanisms linking lipoproteins and angiogenesis under physiological conditions, and particularly, during embryonic development. In this work, we performed global mRNA expression profiling of endothelial cells from hypo-, and hyperlipidemic zebrafish embryos with the goal of uncovering novel mediators of lipoprotein signaling in the endothelium. APPROACH AND RESULTS Microarray analysis was conducted on fluorescence-activated cell sorting-isolated fli1:EGFP(+) ECs from normal, hypo-, and hyperlipidemic zebrafish embryos. We found that opposed levels of apoprotein B lipoproteins result in differential expression of the secreted enzyme autotaxin in ECs, which in turn affects EC sprouting and angiogenesis. We further demonstrate that the effects of autotaxin in vivo are mediated by lysophosphatidic acid (LPA)-a well-known autotaxin activity product-and that LPA and LPA receptors participate as well in the response of ECs to lipoprotein levels. CONCLUSIONS Our findings provide the first in vivo gene expression profiling of ECs facing different levels of plasma apoprotein B lipoproteins and uncover a novel lipoprotein-autotaxin-LPA axis as regulator of EC behavior. These results highlight new roles for lipoproteins as signaling molecules, which are independent of their canonical function as cholesterol transporters.
Collapse
Affiliation(s)
- Liron Gibbs-Bar
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Hanoch Tempelhof
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Rotem Ben-Hamo
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Yona Ely
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Alexander Brandis
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Roy Hofi
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Gabriella Almog
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Tslil Braun
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Ester Feldmesser
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Sol Efroni
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E)
| | - Karina Yaniv
- From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E).
| |
Collapse
|
120
|
Ratner LD, Stevens G, Bonaventura MM, Lux-Lantos VA, Poutanen M, Calandra RS, Huhtaniemi IT, Rulli SB. Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice. J Endocrinol 2016; 230:157-69. [PMID: 27154336 DOI: 10.1530/joe-15-0528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/06/2016] [Indexed: 01/23/2023]
Abstract
The metabolic syndrome is a growing epidemic; it increases the risk for diabetes, cardiovascular disease, fatty liver, and several cancers. Several reports have indicated a link between hormonal imbalances and insulin resistance or obesity. Transgenic (TG) female mice overexpressing the human chorionic gonadotropin β-subunit (hCGβ+ mice) exhibit constitutively elevated levels of hCG, increased production of testosterone, progesterone and prolactin, and obesity. The objective of this study was to investigate the influence of hCG hypersecretion on possible alterations in the glucose and lipid metabolism of adult TG females. We evaluated fasting serum insulin, glucose, and triglyceride levels in adult hCGβ+ females and conducted intraperitoneal glucose and insulin tolerance tests at different ages. TG female mice showed hyperinsulinemia, hypertriglyceridemia, and dyslipidemia, as well as glucose intolerance and insulin resistance at 6 months of age. A 1-week treatment with the dopamine agonist cabergoline applied on 5-week-old hCGβ+ mice, which corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, effectively prevented the metabolic alterations. These data indicate a key role of the hyperprolactinemia-induced gonadal dysfunction in the metabolic disturbances of hCGβ+ female mice. The findings prompt further studies on the involvement of gonadotropins and prolactin on metabolic disorders and might pave the way for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Laura D Ratner
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Guillermina Stevens
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina Hospital General de Agudos J. M. Ramos MejíaBuenos Aires, Argentina
| | - Maria Marta Bonaventura
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Victoria A Lux-Lantos
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Matti Poutanen
- Department of PhysiologyInstitute of Biomedicine, University of Turku, Turku, Finland Turku Center for Disease ModelingUniversity of Turku, Turku, Finland
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Ilpo T Huhtaniemi
- Department of PhysiologyInstitute of Biomedicine, University of Turku, Turku, Finland Department of Surgery and CancerImperial College London, London, UK
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
121
|
Catry E, Neyrinck AM, Lobysheva I, Pachikian BD, Van Hul M, Cani PD, Dessy C, Delzenne NM. Nutritional depletion in n-3 PUFA in apoE knock-out mice: A new model of endothelial dysfunction associated with fatty liver disease. Mol Nutr Food Res 2016; 60:2198-2207. [PMID: 27136390 DOI: 10.1002/mnfr.201500930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
SCOPE Western diets are characterized by low intake of n-3 PUFA compensated by constant amounts of n-6 PUFA. Reduced intake of n-3 PUFA is associated with increased cardiovascular risk, as observed in nonalcoholic fatty liver disease patients. The study aimed to evaluating the impact of dietary n-3 PUFA depletion on endothelial function, an early key event of cardiovascular diseases. METHODS AND RESULTS C57Bl/6J or apolipoprotein E knock-out (apoE-/- ) were fed control (CT) or n-3 PUFA-depleted diets (DEF) for 12 wks. Mice fed n-3 DEF diet developed a hepatic steatosis, linked to changes in hepatic expression of genes controlled by Sterol Regulatory Element Binding Protein-1 and -2. Vascular function was assessed on second- and third-order mesenteric arteries and n-3 PUFA-depleted apoE-/- mice presented endothelial dysfunction characterized by decreased vasorelaxation in response of acetylcholine. The presence of a nitric oxide synthase (NOS) inhibitor blunted the relaxation in each groups and heme-nitrosylated hemoglobin blood (Hb-NO) level was significantly lower in n-3 PUFA-depleted apoE-/- mice. CONCLUSION Twelve weeks of n-3 DEF diet promote steatosis and accelerate the process of endothelial dysfunction in apoE-/- mice by a mechanism involving the NOS/NO pathway. We propose n-3 PUFA-depleted apoE-/- mice as a new model to study endothelial dysfunction related to hepatic steatosis independently of obesity.
Collapse
Affiliation(s)
- Emilie Catry
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Irina Lobysheva
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Barbara D Pachikian
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Chantal Dessy
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
122
|
Andres AM, Kooren JA, Parker SJ, Tucker KC, Ravindran N, Ito BR, Huang C, Venkatraman V, Van Eyk JE, Gottlieb RA, Mentzer RM. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance. Am J Physiol Heart Circ Physiol 2016; 311:H219-28. [PMID: 27199111 DOI: 10.1152/ajpheart.00041.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation.
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Joel A Kooren
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Sarah J Parker
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Kyle C Tucker
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Nandini Ravindran
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California
| | - Bruce R Ito
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California
| | - Chengqun Huang
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Vidya Venkatraman
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Jennifer E Van Eyk
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Roberta A Gottlieb
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Robert M Mentzer
- Cedars-Sinai Heart Institute and Department of Medicine, Los Angeles, California; Barbra Streisand Women's Heart Center of Cedars-Sinai Medical Center, Los Angeles, California; and
| |
Collapse
|
123
|
Cigarroa I, Lalanza JF, Caimari A, del Bas JM, Capdevila L, Arola L, Escorihuela RM. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats. PLoS One 2016; 11:e0153687. [PMID: 27099927 PMCID: PMC4839746 DOI: 10.1371/journal.pone.0153687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 12/12/2022] Open
Abstract
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.
Collapse
Affiliation(s)
- Igor Cigarroa
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Carrera de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, región del Bio-Bio, Chile
| | - Jaume F. Lalanza
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Caimari
- Grup de Recerca en Nutrició i Salut (GRNS). Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Josep M. del Bas
- Grup de Recerca en Nutrició i Salut (GRNS). Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Lluís Capdevila
- Laboratori de Psicologia de l’Esport, Departament de Psicologia Bàsica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Arola
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Rosa M. Escorihuela
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
124
|
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34:113-32. [PMID: 26914991 PMCID: PMC4834612 DOI: 10.1002/cbf.3173] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease.
Collapse
Affiliation(s)
- H G Tsang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - N A Rashdan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - C B A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - K M Summers
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - V E MacRae
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| |
Collapse
|
125
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
126
|
Miranda-Anaya M, Carmona-Alcocer V, Carmona-Castro A. Effects of obesity on circadian photic entrainment of locomotor activity in wild miceNeotomodon alstoni. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1158906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
127
|
Pan XH, Zhu L, Yao X, Liu JF, Li ZA, Yang JY, Pang RQ, Ruan GP. Development of a tree shrew metabolic syndrome model and use of umbilical cord mesenchymal stem cell transplantation for treatment. Cytotechnology 2016; 68:2449-2467. [PMID: 27000263 DOI: 10.1007/s10616-016-9966-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to establish a tree shrew metabolic syndrome model and demonstrate the utility of MSCs in treating metabolic syndrome. We used tree shrew umbilical cord mesenchymal stem cell (TS-UC-MSC) transplantation for the treatment of metabolic syndrome to demonstrate the clinical application of these stem cells and to provide a theoretical basis and reference methods for this treatment. Tree shrew metabolic syndrome model showed significant insulin resistance, high blood sugar, lipid metabolism disorders, and hypertension, consistent with the diagnostic criteria. TS-UC-MSC transplantation at 16 weeks significantly reduced blood sugar and lipid levels, improved insulin resistance and the regulation of insulin secretion, and reduced the expression levels of the pro-inflammatory cytokines IL-1 and IL-6 (P < 0.05). The transplanted TS-UC-MSCs targeted the liver, kidney and pancreas; reduced liver cell degeneration, necrosis, and inflammatory exudation; mitigated bleeding congestion and inflammatory cell infiltration in the kidney; and reduced islet cell degeneration and necrosis. We successfully developed a tree shrew metabolic syndrome model and showed that MSC migrate in diseased organs and can attenuate metabolic syndrome severity in a tree shrew model.
Collapse
Affiliation(s)
- Xing-Hua Pan
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Lu Zhu
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Xiang Yao
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Ju-Fen Liu
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Zi-An Li
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Jian-Yong Yang
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Rong-Qing Pang
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Guang-Ping Ruan
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China. .,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China. .,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
128
|
Abstract
The metabolic syndrome (MetS), a cluster of dyslipidemia, hypertension, and diabetes and an important contributor to cardiovascular morbidity and mortality, occurs in nearly 35% of adults and 50% of the aging population in the United States. However, the underlying mechanisms by which MetS orchestrates and amplifies cardiovascular events remain elusive. Furthermore, traditional therapeutic strategies addressing lifestyle modifications and individual components of MetS are often unsuccessful in decreasing morbidity due to MetS. The availability of an adequate experimental platform that mimics the complexity of MetS may allow development of novel management techniques. Swine models, including domestic pigs and minipigs, have made important contributions to our understanding of many aspects of MetS. Given their similarity to human anatomy and physiology, those models may have significant predictive power for elucidating the pathophysiology of MetS in a manner applicable to humans. Moreover, experimental maneuvers and drugs can be tested in these preclinical models before application in patients with MetS. This review highlights the utility of the pig as an animal model for metabolic disorders, which may play a crucial role in novel drug development to optimize management of MetS.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
129
|
Aliou Y, Liao MC, Zhao XP, Chang SY, Chenier I, Ingelfinger JR, Zhang SL. Post-weaning high-fat diet accelerates kidney injury, but not hypertension programmed by maternal diabetes. Pediatr Res 2016; 79:416-24. [PMID: 26571223 DOI: 10.1038/pr.2015.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of this study was to establish the underlying mechanisms by which a post-weaning high-fat diet (HFD) accelerates the perinatal programming of kidney injury occurring in the offspring of diabetic mothers. METHODS Male mice, offspring of nondiabetic and diabetic dams were fed with normal diet (ND) or HFD from 4 to 20 wk of age. Rat renal proximal tubular cells were used in vitro. RESULTS On ND, the offspring of dams with severe maternal diabetes had an intrauterine growth restriction (IUGR) phenotype and developed mild hypertension and evidence of kidney injury in adulthood. Exposing the IUGR offspring to HFD resulted in rapid weight gain, catch-up growth, and later to profound kidney injury with activation of renal TGFβ1 and collagen type IV expression, increased oxidative stress, and enhanced renal lipid deposition, but not systemic hypertension. Given our data, we speculate that HFD or free fatty acids may accelerate the process of perinatal programming of kidney injury, via increased CD36 and fatty acid-binding protein 4 expression, which may target reactive oxygen species, nuclear factor-kappa B, and TGFβ1 signaling in vivo and in vitro. CONCLUSION Early postnatal exposure to overnutrition with a HFD increases the risk of development of kidney injury, but not hypertension, in IUGR offspring of dams with maternal diabetes.
Collapse
Affiliation(s)
- Yessoufou Aliou
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Min-Chun Liao
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Shiao-Ying Chang
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Isabelle Chenier
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School Boston, Boston, Massachusetts
| | - Shao-Ling Zhang
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| |
Collapse
|
130
|
Sims-Robinson C, Bakeman A, Glasser R, Boggs J, Pacut C, Feldman EL. The role of endoplasmic reticulum stress in hippocampal insulin resistance. Exp Neurol 2016; 277:261-267. [PMID: 26775176 PMCID: PMC4802497 DOI: 10.1016/j.expneurol.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health.
Collapse
Affiliation(s)
- Catrina Sims-Robinson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Anna Bakeman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rebecca Glasser
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Janet Boggs
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
131
|
Ecelbarger CM. Metabolic syndrome, hypertension, and the frontier between. Am J Physiol Renal Physiol 2016; 310:F1175-7. [PMID: 26911845 DOI: 10.1152/ajprenal.00095.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
|
132
|
Tveden-Nyborg P, Birck MM, Ipsen DH, Thiessen T, Feldmann LDB, Lindblad MM, Jensen HE, Lykkesfeldt J. Diet-induced dyslipidemia leads to nonalcoholic fatty liver disease and oxidative stress in guinea pigs. Transl Res 2016; 168:146-160. [PMID: 26518991 DOI: 10.1016/j.trsl.2015.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Chronic dyslipidemia imposed by a high-fat and high-caloric dietary regime leads to debilitating disorders such as obesity, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. As disease rates surge, so does the need for high validity animal models to effectively study the causal relationship between diet and disease progression. The dyslipidemic guinea pig displays a high similarity with the human lipoprotein profile and may in this aspect be superior to other rodent models. This study investigated the effects of 2 long-term Westernized diets (0.35% cholesterol, 18.5% vegetable oil and either 15% or 20% sucrose) compared with isocaloric standard chow in adult guinea pigs. Biochemical markers confirmed dyslipidemia in agreement with dietary regimens; however, both high-fat groups displayed a decreased tissue fat percentage compared with controls. Macroscopic appearance, histopathologic evaluation, and plasma markers of liver function confirmed NAFLD in high-fat groups, supported by liver redox imbalance and markers suggesting hepatic endothelial dysfunction. Plasma markers indicated endothelial dysfunction in response to a high-fat diet, although atherosclerotic lesions were not evident. Evaluation of glucose tolerance showed no indication of insulin resistance. The 5% increase in sucrose between the 2 high-fat diets did not lead to significant differences between groups. In conclusion, we find the dyslipidemic guinea pig to be a valid model of diet imposed dyslipidemia, particularly with regards to hepatic steatosis and endothelial dysfunction. Furthermore, the absence of obesity supports the present study setup as targeting NAFLD in nonobese individuals.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Malene M Birck
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - David H Ipsen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Tina Thiessen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Linda de Bie Feldmann
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Maiken M Lindblad
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik E Jensen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
133
|
Montserrat-de la Paz S, Naranjo MC, Lopez S, Abia R, Muriana FJG, Bermudez B. Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome. Food Funct 2016; 7:2233-8. [DOI: 10.1039/c6fo00381h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation.
Collapse
Affiliation(s)
| | - Maria C. Naranjo
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | | | - Beatriz Bermudez
- Department of Pharmacology
- School of Pharmacy
- University of Seville
- 41012 Seville
- Spain
| |
Collapse
|
134
|
Sinasac DS, Riordan JD, Spiezio SH, Yandell BS, Croniger CM, Nadeau JH. Genetic control of obesity, glucose homeostasis, dyslipidemia and fatty liver in a mouse model of diet-induced metabolic syndrome. Int J Obes (Lond) 2015; 40:346-55. [PMID: 26381349 DOI: 10.1038/ijo.2015.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Both genetic and dietary factors contribute to the metabolic syndrome (MetS) in humans and animal models. Characterizing their individual roles as well as relationships among these factors is critical for understanding MetS pathogenesis and developing effective therapies. By studying phenotypic responsiveness to high-risk versus control diet in two inbred mouse strains and their derivatives, we estimated the relative contributions of diet and genetic background to MetS, characterized strain-specific combinations of MetS conditions, and tested genetic and phenotypic complexity on a single substituted chromosome. METHODS Ten measures of metabolic health were assessed in susceptible C57BL/6 J and resistant A/J male mice fed either a control or a high-fat, high-sucrose (HFHS) diet, permitting estimates of the relative influences of strain, diet and strain-diet interactions for each trait. The same traits were measured in a panel of C57BL/6 J (B6)-Chr(A/J) chromosome substitution strains (CSSs) fed the HFHS diet, followed by characterization of interstrain relationships, covariation among metabolic traits and quantitative trait loci (QTLs) on Chromosome 10. RESULTS We identified significant genetic contributions to nine of ten metabolic traits and significant dietary influence on eight. Significant strain-diet interaction effects were detected for four traits. Although a range of HFHS-induced phenotypes were observed among the CSSs, significant associations were detected among all traits but one. Strains were grouped into three clusters based on overall phenotype and specific CSSs were identified with distinct and reproducible trait combinations. Finally, several Chr10 regions were shown to control the severity of MetS conditions. CONCLUSIONS Generally strong genetic and dietary effects validate these CSSs as a multifactorial model of MetS. Although traits tended to segregate together, considerable phenotypic heterogeneity suggests that underlying genetic factors influence their co-occurrence and severity. Identification of multiple QTLs within and among strains highlights both the complexity of genetically regulated, diet-induced MetS and the ability of CSSs to prioritize candidate loci for mechanistic studies.
Collapse
Affiliation(s)
- D S Sinasac
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - J D Riordan
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | - S H Spiezio
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - B S Yandell
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - C M Croniger
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - J H Nadeau
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| |
Collapse
|
135
|
Kishida T, Ejima A, Yamamoto K, Tanaka S, Yamamoto T, Mazda O. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes. Stem Cell Reports 2015; 5:569-81. [PMID: 26365511 PMCID: PMC4624936 DOI: 10.1016/j.stemcr.2015.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022] Open
Abstract
Brown adipocytes (BAs) play important roles in body temperature regulation, energy balance, and carbohydrate and lipid metabolism. Activities of BAs are remarkably diminished in obese and diabetic patients, providing possibilities of transplanting functional BAs resulting in therapeutic benefit. Here, we show generation of functional BAs by cellular reprogramming procedures. Transduction of the PRDM16 gene into iPSC-derived embryoid bodies induced BA phenotypes (iBAs). Moreover, normal human fibroblasts were directly converted into BAs (dBAs) by C/EBP-β and C-MYC gene transduction. Approximately 90% of the fibroblasts were successfully converted within 12 days. The dBAs were highly active in mitochondrial biogenesis and oxidative metabolism. Mouse dBAs were induced by Prdm16, C/ebp-β, and L-myc genes, and after transplantation, they significantly reduced diet-induced obesity and insulin resistance in an UCP1-dependent manner. Thus, highly functional BAs can be generated by cellular reprogramming, suggesting a promising tailor-made cell therapy against metabolic disorders including type 2 diabetes mellitus. Transduction of PRDM16 into iPSC-derived embryoid body cells induces BA phenotypes Human fibroblasts are directly converted into BAs by C/EBP-β and c-Myc transduction The efficiency of direct conversion is approximately 90% Reprogrammed BAs are metabolically active and reduce obesity and type 2 diabetes
Collapse
Affiliation(s)
- Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | - Akika Ejima
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | - Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan; Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | - Seiji Tanaka
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan.
| |
Collapse
|
136
|
Dalbøge LS, Pedersen PJ, Hansen G, Fabricius K, Hansen HB, Jelsing J, Vrang N. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents. PLoS One 2015; 10:e0135634. [PMID: 26266945 PMCID: PMC4534139 DOI: 10.1371/journal.pone.0135634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
Aim Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO) and hypercholesterolemia Golden Syrian hamster model. Methods and Results Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS) for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days), normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin (3.0 mg/kg, PO, QD) also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day) or neuromedin U (NMU, 1.5 mg/kg/day), continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD) for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.
Collapse
|
137
|
Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet. Nutrients 2015; 7:6446-64. [PMID: 26247970 PMCID: PMC4555122 DOI: 10.3390/nu7085283] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/10/2015] [Accepted: 07/20/2015] [Indexed: 12/28/2022] Open
Abstract
Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.
Collapse
|
138
|
Proinflammatory and Metabolic Changes Facilitate Renal Crystal Deposition in an Obese Mouse Model of Metabolic Syndrome. J Urol 2015; 194:1787-96. [PMID: 26192255 DOI: 10.1016/j.juro.2015.07.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE To clarify metabolic syndrome induced stone formation mechanisms we investigated the metabolic and immunohistochemical characteristics associated with renal crystal deposition using a model of mice with metabolic syndrome administered a high fat diet and ethylene glycol. MATERIALS AND METHODS Ob/Ob mice with Leptin gene deficiencies and metabolic syndrome related characteristics were compared with wild heterozygous lean mice. Four study groups were fed standard food and water (control group), a high fat diet and normal water (high fat diet group), 1% ethylene glycol and standard food (ethylene glycol group) or a high fat diet and 1% ethylene glycol (high fat diet plus ethylene glycol group). Blood, urine and kidney samples were taken after 14 days. RESULTS Ob/Ob mice in the high fat diet plus ethylene glycol group showed diffuse renal crystal depositions. Lean and Ob/Ob mice in the high fat diet plus ethylene glycol group showed significant excretion of urinary calcium oxalate crystals. Ob/Ob mice had significant hypercalciuria, hyperphosphaturia and hyperlipidemia, massive lipid fragments in tubular lumina and fat droplets in renal tubular cells. Ob/Ob mice in the high fat diet plus ethylene glycol group had markedly increased expression of osteopontin, monocyte chemoattractant protein-1, interleukin-6 and tumor necrosis factor-α. In Ob/Ob mice the number of proinflammatory macrophages was considerably elevated. CONCLUSIONS We induced renal crystal deposition in mice with metabolic syndrome using a high fat diet and ethylene glycol. Increases in luminal mineral and lipid density, and proinflammatory adipocytokines and macrophages facilitated renal crystal formation in mice with metabolic syndrome.
Collapse
|
139
|
Johnson AR, Makowski L. Nutrition and metabolic correlates of obesity and inflammation: clinical considerations. J Nutr 2015; 145:1131S-1136S. [PMID: 25833891 PMCID: PMC4410497 DOI: 10.3945/jn.114.200758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/08/2014] [Indexed: 11/14/2022] Open
Abstract
Since 1980, the global prevalence of obesity has doubled; in the United States, it has almost tripled. Billions of people are overweight and obese; the WHO reports that >65% of the world's population die of diseases related to overweight rather than underweight. Obesity is a complex disease that can be studied from "metropolis to metabolite"—that is, beginning at the policy and the population level through epidemiology and intervention studies; to bench work including preclinical models, tissue, and cell culture studies; to biochemical assays; and to metabolomics. Metabolomics is the next research frontier because it provides a real-time snapshot of biochemical building blocks and products of cellular processes. This report comments on practical considerations when conducting metabolomics research. The pros and cons and important study design concerns are addressed to aid in increasing metabolomics research in the United States. The link between metabolism and inflammation is an understudied phenomenon that has great potential to transform our understanding of immunometabolism in obesity, diabetes, cancer, and other diseases; metabolomics promises to be an important tool in understanding the complex relations between factors contributing to such diseases.
Collapse
Affiliation(s)
- Amy R Johnson
- Department of Nutrition, Gillings School of Global Public Health, and
| | - Liza Makowski
- Department of Nutrition, Gillings School of Global Public Health, and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
140
|
Kraus BJ, Sartoretto JL, Polak P, Hosooka T, Shiroto T, Eskurza I, Lee SA, Jiang H, Michel T, Kahn BB. Novel role for retinol-binding protein 4 in the regulation of blood pressure. FASEB J 2015; 29:3133-40. [PMID: 25911613 DOI: 10.1096/fj.14-266064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
Elevated levels of serum retinol-binding protein 4 (RBP4) contribute to insulin resistance and correlate with increased prevalence of hypertension and myocardial infarction. We sought to determine whether lowering RBP4 would improve blood pressure (BP) and protect against obesity- or angiotensin (Ang)-II-induced hypertension. Systolic and diastolic BP were lower in the RBP4-knockout (RBP4-KO) mice and higher in the RBP4-overexpressing (RBP4-Tg) mice compared with BP in the wild-type (WT) littermates. Carbachol-induced vasodilatation was increased in arteries from the RBP4-KO compared with the WT mice and was impaired in the RBP4-Tg mice. Aortic eNOS(Ser1177) phosphorylation was enhanced ∼50% in the RBP4-KO mice, with no change in total eNOS protein. Feeding a high-fat diet increased BP in the RBP4-KO mice only to the level in the WT mice fed chow and had no effect on aortic eNOS(Ser1177) phosphorylation. Ang-II infusion resulted in 22 mmHg lower systolic BP in the RBP4-KO than in the WT mice, although the relative BP increase over saline infusion was ∼30% in both. Ang-II treatment decreased aortic eNOS(Ser1177) phosphorylation in the WT and RBP4-KO mice, but phosphorylation remained higher in the RBP4-KO mice. Cardiac hypertrophy with Ang-II treatment was diminished by 56% in the RBP4-KO mice. Thus, elevated serum RBP4 raises BP and lack of RBP4 reduces it, with commensurate changes in aortic eNOS(Ser1177) phosphorylation. Lowering RBP4 may reduce BP through enhanced eNOS-mediated vasodilatation and may be a novel therapeutic approach for hypertension.
Collapse
Affiliation(s)
- Bettina J Kraus
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Juliano L Sartoretto
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Pazit Polak
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Tetsuya Hosooka
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Takashi Shiroto
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Iratxe Eskurza
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Seung-Ah Lee
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Hongfeng Jiang
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Thomas Michel
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Barbara B Kahn
- *Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
141
|
Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis 2015; 18:265-81. [PMID: 25862671 DOI: 10.1007/s10456-015-9465-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
RATIONALE Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. OBJECTIVE We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. METHODS AND RESULTS Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. CONCLUSION Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.
Collapse
Affiliation(s)
- Scott M Moore
- Department of Cell Biology and Physiology, 6309 MBRB, University of North Carolina, Chapel Hill, NC, 27599-7545, USA
| | | | | | | | | |
Collapse
|
142
|
Milner JJ, Rebeles J, Dhungana S, Stewart DA, Sumner SCJ, Meyers MH, Mancuso P, Beck MA. Obesity Increases Mortality and Modulates the Lung Metabolome during Pandemic H1N1 Influenza Virus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:4846-59. [PMID: 25862817 DOI: 10.4049/jimmunol.1402295] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023]
Abstract
Obese individuals are at greater risk for hospitalization and death from infection with the 2009 pandemic H1N1 influenza virus (pH1N1). In this study, diet-induced and genetic-induced obese mouse models were used to uncover potential mechanisms by which obesity increases pH1N1 severity. High-fat diet-induced and genetic-induced obese mice exhibited greater pH1N1 mortality, lung inflammatory responses, and excess lung damage despite similar levels of viral burden compared with lean control mice. Furthermore, obese mice had fewer bronchoalveolar macrophages and regulatory T cells during infection. Obesity is inherently a metabolic disease, and metabolic profiling has found widespread usage in metabolic and infectious disease models for identifying biomarkers and enhancing understanding of complex mechanisms of disease. To further characterize the consequences of obesity on pH1N1 infection responses, we performed global liquid chromatography-mass spectrometry metabolic profiling of lung tissue and urine. A number of metabolites were perturbed by obesity both prior to and during infection. Uncovered metabolic signatures were used to identify changes in metabolic pathways that were differentially altered in the lungs of obese mice such as fatty acid, phospholipid, and nucleotide metabolism. Taken together, obesity induces distinct alterations in the lung metabolome, perhaps contributing to aberrant pH1N1 immune responses.
Collapse
Affiliation(s)
- J Justin Milner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny Rebeles
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Suraj Dhungana
- Systems and Translational Science Center, RTI International, Research Triangle Park, NC 27709; and
| | - Delisha A Stewart
- Systems and Translational Science Center, RTI International, Research Triangle Park, NC 27709; and
| | - Susan C J Sumner
- Systems and Translational Science Center, RTI International, Research Triangle Park, NC 27709; and
| | - Matthew H Meyers
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
143
|
Regnier SM, Kirkley AG, Ye H, El-Hashani E, Zhang X, Neel BA, Kamau W, Thomas CC, Williams AK, Hayes ET, Massad NL, Johnson DN, Huang L, Zhang C, Sargis RM. Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice. Endocrinology 2015; 156:896-910. [PMID: 25535829 PMCID: PMC4330315 DOI: 10.1210/en.2014-1668] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome.
Collapse
Affiliation(s)
- Shane M Regnier
- Committee on Molecular Metabolism and Nutrition (S.M.R., R.M.S.), Pritzker School of Medicine (S.M.R., R.M.S.), Kovler Diabetes Center (H.Y., E.E.-H., X.Z., C.C.T., N.L.M., R.M.S.), Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Committee on Molecular Pathogenesis and Molecular Medicine (A.G.K., B.A.N.), Department of Pathology (D.N.J.), Center for Research Informatics (L.H., C.Z.), and University of Chicago (S.M.R., A.G.K., H.Y., E.E.-H., X.Z., B.A.N., W.K., C.C.T., N.L.M., D.N.J., L.H., C.Z., R.M.S.), Chicago, Illinois 60637; Kennedy-King College (A.K.W.), Chicago, Illinois 60621; and Walter Payton College Preparatory High School (E.T.H.), Chicago, Illinois 60610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Zechner D, Radecke T, Amme J, Bürtin F, Albert AC, Partecke LI, Vollmar B. Impact of diabetes type II and chronic inflammation on pancreatic cancer. BMC Cancer 2015; 15:51. [PMID: 25885700 PMCID: PMC4336675 DOI: 10.1186/s12885-015-1047-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/28/2015] [Indexed: 12/24/2022] Open
Abstract
Background We explored if known risk factors for pancreatic cancer such as type II diabetes and chronic inflammation, influence the pathophysiology of an established primary tumor in the pancreas and if administration of metformin has an impact on tumor growth. Methods Pancreatic carcinomas were assessed in a syngeneic orthotopic pancreas adenocarcinoma model after injection of 6606PDA cells in the pancreas head of either B6.V-Lepob/ob mice exhibiting a type II diabetes-like syndrome or normoglycemic mice. Chronic pancreatitis was then induced by repetitive administration of cerulein. Cell proliferation, cell death, inflammation and the expression of cancer stem cell markers within the carcinomas was evaluated by immunohistochemistry. In addition, the impact of the antidiabetic drug, metformin, on the pathophysiology of the tumor was assessed. Results Diabetic mice developed pancreatic ductal adenocarcinomas with significantly increased tumor weight when compared to normoglycemic littermates. Diabetes caused increased proliferation of cancer cells, but did not inhibit cancer cell necrosis or apoptosis. Diabetes also reduced the number of Aldh1 expressing cancer cells and moderately decreased the number of tumor infiltrating chloracetate esterase positive granulocytes. The administration of metformin reduced tumor weight as well as cancer cell proliferation. Chronic pancreatitis significantly diminished the pancreas weight and increased lipase activity in the blood, but only moderately increased tumor weight. Conclusion We conclude that diabetes type II has a fundamental influence on pancreatic ductal adenocarcinoma by stimulating cancer cell proliferation, while metformin inhibits cancer cell proliferation. Chronic inflammation had only a minor effect on the pathophysiology of an established adenocarcinoma.
Collapse
Affiliation(s)
- Dietmar Zechner
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Tobias Radecke
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Jonas Amme
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Florian Bürtin
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Ann-Christin Albert
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| | - Lars Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Ernst-Moritz-Arndt-University, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany.
| |
Collapse
|
145
|
Park M, Yi JW, Kim EM, Yoon IJ, Lee EH, Lee HY, Ji KY, Lee KH, Jang JH, Oh SS, Yun CH, Kim SH, Lee KM, Song MG, Kim DH, Kang HS. Triggering receptor expressed on myeloid cells 2 (TREM2) promotes adipogenesis and diet-induced obesity. Diabetes 2015; 64:117-27. [PMID: 25114293 DOI: 10.2337/db13-1869] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is known to be involved in the anti-inflammatory response and osteoclast development. However, the role of TREM2 in adipogenesis or obesity has not yet been defined. The effect of TREM2 on adipogenesis and obesity was investigated in TREM2 transgenic (TG) mice on a high-fat diet (HFD). To block TREM2 signaling, a neutralizing fusion protein specific for TREM2 (TREM2-Ig) was used. TG mice were much more obese than wild-type mice after feeding with an HFD, independent of the quantity of food intake. These HFD-fed TG mice manifested adipocyte hypertrophy, glucose and insulin resistance, and hepatic steatosis. The expression of adipogenic regulator genes, such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α, was markedly increased in HFD-fed TG mice. Additionally, HFD-fed TG mice exhibited decreased Wnt10b expression and increased GSK-3β (glycogen synthase kinase-3β)-mediated β-catenin phosphorylation. In contrast, the blockade of TREM2 signaling using TREM2-Ig resulted in the inhibition of adipocyte differentiation in vitro and a reduction in body weight in vivo by downregulating the expression of adipogenic regulators. Our data demonstrate that TREM2 promotes adipogenesis and diet-induced obesity by upregulating adipogenic regulators in conjunction with inhibiting the Wnt10b/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Min Park
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Ja-Woon Yi
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Eun-Mi Kim
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Il-Joo Yoon
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Eun-Hee Lee
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Hwa-Youn Lee
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Kon-Young Ji
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Kwang-Ho Lee
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Ji-Hun Jang
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Seung-Su Oh
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Ki-Mo Lee
- Traditional Korean Medicine Converging Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mun-Gyu Song
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
146
|
Andrade DRM, Mendonça MH, Helm CV, Magalhães WLE, de Muniz GIB, Kestur SG. Assessment of Nano Cellulose from Peach Palm Residue as Potential Food Additive: Part II: Preliminary Studies. Journal of Food Science and Technology 2014; 52:5641-50. [PMID: 26344977 DOI: 10.1007/s13197-014-1684-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
Abstract
High consumption of dietary fibers in the diet is related to the reduction of the risk of non-transmitting of chronic diseases, prevention of the constipation etc. Rich diets in dietary fibers promote beneficial effects for the metabolism. Considering the above and recognizing the multifaceted advantages of nano materials, there have been many attempts in recent times to use the nano materials in the food sector including as food additive. However, whenever new product for human and animal consumption is developed, it has to be tested for their effectiveness regarding improvement in the health of consumers, safety aspects and side effects. However, before it is tried with human beings, normally such materials would be assessed through biological tests on a living organism to understand its effect on health condition of the consumer. Accordingly, based on the authors' finding reported in a previous paper, this paper presents body weight, biochemical (glucose, cholesterol and lipid profile in blood, analysis of feces) and histological tests carried out with biomass based cellulose nano fibrils prepared by the authors for its possible use as food additive. Preliminary results of the study with mice have clearly brought out potential of these fibers for the said purpose.
Collapse
Affiliation(s)
- Dayanne Regina Mendes Andrade
- Universidade Federal do Paraná, (UFPR), Curitiba, PR Brazil ; Embrapa Forestry, Estrada da Ribeira km 111, P.O. Box 319, 83411-000 Colombo, PR Brazil
| | | | - Cristiane Vieira Helm
- Embrapa Forestry, Estrada da Ribeira km 111, P.O. Box 319, 83411-000 Colombo, PR Brazil
| | | | - Graciela Ines Bonzon de Muniz
- Departamento de Engenharia e Tecnologia Florestal- DETF, Universidade Federal do Paraná, (UFPR), Curitiba, PR Brazil
| | - Satyanarayana G Kestur
- Embrapa Forestry, Estrada da Ribeira km 111, P.O. Box 319, 83411-000 Colombo, PR Brazil ; Poornaprajna Institute for Scientific Research, (PPISR), Bidalur Post, Devanahalli, Bangalore, 562 110 Karnataka India
| |
Collapse
|
147
|
Hopmans SN, Duivenvoorden WC, Werstuck GH, Klotz L, Pinthus JH. GnRH antagonist associates with less adiposity and reduced characteristics of metabolic syndrome and atherosclerosis compared with orchiectomy and GnRH agonist in a preclinical mouse model1Contributed equally and share first authorship. Urol Oncol 2014; 32:1126-34. [DOI: 10.1016/j.urolonc.2014.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 10/24/2022]
|
148
|
Averill MM, Kim EJ, Goodspeed L, Wang S, Subramanian S, Den Hartigh LJ, Tang C, Ding Y, Reardon CA, Getz GS, Chait A. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice. PLoS One 2014; 9:e109252. [PMID: 25286043 PMCID: PMC4186861 DOI: 10.1371/journal.pone.0109252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/08/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet. METHODS Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks. RESULTS Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis. CONCLUSION Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.
Collapse
Affiliation(s)
- Michelle M. Averill
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington, United States of America
| | - Eung Ju Kim
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Leela Goodspeed
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shari Wang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Savitha Subramanian
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Laura J. Den Hartigh
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yilei Ding
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Catherine A. Reardon
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Alan Chait
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
149
|
Hughey CC, Wasserman DH, Lee-Young RS, Lantier L. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mamm Genome 2014; 25:522-38. [PMID: 25074441 DOI: 10.1007/s00335-014-9533-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
Obesity and type 2 diabetes lessen the quality of life of those afflicted and place considerable burden on the healthcare system. Furthermore, the detrimental impact of these pathologies is expected to persist or even worsen. Diabetes is characterized by impaired insulin action and glucose homeostasis. This has led to a rapid increase in the number of mouse models of metabolic disease being used in the basic sciences to assist in facilitating a greater understanding of the metabolic dysregulation associated with obesity and diabetes, the identification of therapeutic targets, and the discovery of effective treatments. This review briefly describes the most frequently utilized models of metabolic disease. A presentation of standard methods and technologies on the horizon for assessing metabolic phenotypes in mice, with particular emphasis on glucose handling and energy balance, is provided. The article also addresses issues related to study design, selection and execution of metabolic tests of glucose metabolism, the presentation of data, and interpretation of results.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, 823 Light Hall, 2215 Garland Ave, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
150
|
Zhang J, Burrington CM, Davenport SK, Johnson AK, Horsman MJ, Chowdhry S, Greene MW. PKCδ regulates hepatic triglyceride accumulation and insulin signaling in Lepr(db/db) mice. Biochem Biophys Res Commun 2014; 450:1619-25. [PMID: 25035929 DOI: 10.1016/j.bbrc.2014.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023]
Abstract
PKCδ has been linked to key pathophysiological features of non-alcoholic fatty liver disease (NAFLD). Yet, our knowledge of PKCδ's role in NAFLD development and progression in obese models is limited. PKCδ(-/-)/Lepr(db)(/)(db) mice were generated to evaluate key pathophysiological features of NAFLD in mice. Hepatic histology, oxidative stress, apoptosis, gene expression, insulin signaling, and serum parameters were analyzed in Lepr(db)(/)(db) and PKCδ(-/-)/Lepr(db)(/)(db) mice. The absence of PKCδ did not abrogate the development of obesity in Lepr(db)(/)(db) mice. In contrast, serum triglyceride levels and epididymal white adipose tissue weight normalized to body weight were reduced in PKCδ(-/-)/Lepr(db)(/)(db) mice compared Lepr(db)(/)(db) mice. Analysis of insulin signaling in mice revealed that hepatic Akt and GSK3β phosphorylation were strongly stimulated by insulin in PKCδ(-/-)/Lepr(db)(/)(db) compared Lepr(db)(/)(db) mice. PKCδ may be involved in the development of obesity-associated NAFLD by regulating hepatic lipid metabolism and insulin signaling.
Collapse
Affiliation(s)
- Jian Zhang
- Boshell Diabetes and Metabolic Disease Research Program, Auburn University, Auburn, AL 36849, United States; College of Human Sciences, Auburn University, Auburn, AL 36849, United States
| | - Christine M Burrington
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Samantha K Davenport
- Department of Pathology, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Andrew K Johnson
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Melissa J Horsman
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Saleem Chowdhry
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Michael W Greene
- Boshell Diabetes and Metabolic Disease Research Program, Auburn University, Auburn, AL 36849, United States; College of Human Sciences, Auburn University, Auburn, AL 36849, United States; Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States.
| |
Collapse
|