101
|
Immunomodulatory effects of environmental endocrine disrupting chemicals. Kaohsiung J Med Sci 2012; 28:S37-42. [PMID: 22871600 DOI: 10.1016/j.kjms.2012.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 03/15/2012] [Indexed: 02/03/2023] Open
Abstract
During recent decades more than 100,000 new chemicals have been introduced as common consumer products into our environment. Among these chemicals, endocrine-disrupting chemicals (EDCs) are of particular concern owing to their toxicity in animal studies and their impacts on human health. EDCs are ubiquitous in the environment, including the air, water, and soil. The endocrine-disrupting effect of EDCs has been found to imitate the action of steroid hormones and promote several endocrine and reproductive disorders in both animal and human studies. In the present review, we focus on the effects of EDCs on the immune system. EDCs interfere with the synthesis of cytokines, immunoglobulins, and inflammatory mediators, and they also affect the activation and survival of immune cells. The dysfunction of the immune system caused by EDCs may lead to the attenuation of immunity (immunodeficiency) against infection or hyperreactivity of immune responses (allergy and autoimmune disease). In this review, we summarize epidemiologic, animal, and cell studies to demonstrate the potential effects of EDCs on immunity, allergy, and autoimmune diseases. We also address the impact of EDCs on epigenetic regulation.
Collapse
|
102
|
Chang LL, Wun WSA, Wang PS. In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. First generation rats (F(1)). Toxicology 2012; 301:40-9. [PMID: 22765982 DOI: 10.1016/j.tox.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/17/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
Abstract
Nonylphenol (NP) is an endocrine disruptor (ENDR). It is a chemical associated with the production and degradation of nonylphenol ethoxylates (NPE). NPE is widely used as nonionic surfactants. Previously, we observed that NP increased the production of corticosterone and aldosterone from zona fasciculata-reticularis, and zona glomerulosa cells, respectively. By the "fetal origins adult diseases" (Barker hypothesis), we examined the possible impact of NP exposure during developmental (in utero and neonatal) period with focus on disturbed adrenal function and related hyperadrenal syndrome, i.e. Cushings syndrome/metabolic syndrome. In this study, female rats drink NP water during pregnancy and lactation conferred F(1) generation: (1) increase the corticosterone, aldosterone concentration in plasma; (2) increase 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity in liver and adipose tissue; (3) increase aldosterone synthase activity in adrenal for adult offspring. Furthermore, it can increase body weight, adrenocorticotropin (ACTH) concentration in plasma, 11β-HSD1 protein expression in liver, steroidogenic acute regulatory (StAR) protein expression and 11β-hydroxylase activity in adrenal for male adult offspring. In summary, NP exposure during developmental period bestowed F(1) generation with hyperadrenalism and its consequence of metabolic syndrome.
Collapse
Affiliation(s)
- Ling-Ling Chang
- Department of Chemical and Materials Engineering, Chinese Culture University, Taipei 11114, Taiwan, ROC.
| | | | | |
Collapse
|
103
|
Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh YM, Wright RO, Christiani DC. Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1061-6. [PMID: 22466225 PMCID: PMC3404653 DOI: 10.1289/ehp.1104173] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 03/30/2012] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arsenic is an epigenetic toxicant and could influence fetal developmental programming. OBJECTIVES We evaluated the association between arsenic exposure and DNA methylation in maternal and umbilical cord leukocytes. METHODS Drinking-water and urine samples were collected when women were at ≤ 28 weeks gestation; the samples were analyzed for arsenic using inductively coupled plasma mass spectrometry. DNA methylation at CpG sites in p16 (n = 7) and p53 (n = 4), and in LINE-1 and Alu repetitive elements (3 CpG sites in each), was quantified using pyrosequencing in 113 pairs of maternal and umbilical blood samples. We used general linear models to evaluate the relationship between DNA methylation and tertiles of arsenic exposure. RESULTS Mean (± SD) drinking-water arsenic concentration was 14.8 ± 36.2 μg/L (range: < 1-230 μg/L). Methylation in LINE-1 increased by 1.36% [95% confidence interval (CI): 0.52, 2.21%] and 1.08% (95% CI: 0.07, 2.10%) in umbilical cord and maternal leukocytes, respectively, in association with the highest versus lowest tertile of total urinary arsenic per gram creatinine. Arsenic exposure was also associated with higher methylation of some of the tested CpG sites in the promoter region of p16 in umbilical cord and maternal leukocytes. No associations were observed for Alu or p53 methylation. CONCLUSIONS Exposure to higher levels of arsenic was positively associated with DNA methylation in LINE-1 repeated elements, and to a lesser degree at CpG sites within the promoter region of the tumor suppressor gene p16. Associations were observed in both maternal and fetal leukocytes. Future research is needed to confirm these results and determine if these small increases in methylation are associated with any health effects.
Collapse
Affiliation(s)
- Molly L Kile
- Oregon State University, College of Public Health and Human Sciences, Corvallis, Oregon 97331, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Pérez-Fernández GA. La arbitrariedad de los puntos de corte. Una reflexión desde la perspectiva de la pre-enfermedad. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2012; 82:260-1. [DOI: 10.1016/j.acmx.2012.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 10/27/2022] Open
|
105
|
Wang D, Liu X, Zhou Y, Xie H, Hong X, Tsai HJ, Wang G, Liu R, Wang X. Individual variation and longitudinal pattern of genome-wide DNA methylation from birth to the first two years of life. Epigenetics 2012; 7:594-605. [PMID: 22522910 DOI: 10.4161/epi.20117] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prenatal development and early childhood are critical periods for establishing the tissue-specific epigenome, and may have a profound impact on health and disease in later life. However, epigenomic profiles at birth and in early childhood remain largely unexplored. The focus of this report is to examine the individual variation and longitudinal pattern of genome-wide DNA methylation levels from birth through the first two years of life in 105 Black children (59 males and 46 females) enrolled at the Boston Medical Center. We performed epigenomic mapping of cord blood at birth and venous blood samples from the same set of children within the first two years of life using Illumina Infinium Humanmethylation27 BeadChip. We observed a wide range of inter-individual variations in genome-wide methylation at each time point including lower levels at CpG islands, TSS200, 5'UTR and 1st Exon locations, but significantly higher levels in CpG shores, shelves, TSS1500, gene body and 3'UTR. We identified CpG sites with significant intra-individual longitudinal changes in the first two years of life throughout the genome. Specifically, we identified 159 CpG sites in males and 149 CpG sites in females with significant longitudinal changes defined by both statistical significance and magnitude of changes. These significant CpG sites appeared to be located within genes with important biological functions including immunity and inflammation. Further studies are needed to replicate our findings, including analysis by specific cell types, and link those individual variations and longitudinal changes with specific health outcomes in early childhood and later life.
Collapse
Affiliation(s)
- Deli Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Pesticide exposure and Parkinson's disease: epidemiological evidence of association. Neurotoxicology 2012; 33:947-71. [PMID: 22627180 DOI: 10.1016/j.neuro.2012.05.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
It has been suggested that exposure to pesticides might be involved in the etiology of Parkinson's disease (PD). We conducted an updated systematic review of the epidemiologic literature over the past decade on the relationship between pesticide exposure and PD, using the MEDLINE database. Despite methodological differences, a significantly increased PD risk was observed in 13 out of 23 case-control studies that considered overall exposure to pesticides (risk estimates of 1.1-2.4) and in 10 out of 12 studies using other research designs (risk estimates of 2 or higher). Various studies found stronger associations in genetically susceptible individuals. Among a growing number of studies on the effects of exposure to specific pesticides (n=20), an increased PD risk has been associated with insecticides, especially chlorpyrifos and organochlorines, in six studies (odds ratios of 1.8-4.4), and with the herbicide paraquat, the fungicide maneb or the combination of both. Findings considerably strengthen the evidence that exposure to pesticides in well water may contribute to PD, whereas studies of farming and rural residence found inconsistent or little association with the disease. Taken together, this comprehensive set of results suggests that the hypothesis of an association between pesticide exposure and PD cannot be ruled out. However, inadequate data on consistent responses to exposure hinder the establishment of a causal relationship with PD. Given the extensive worldwide use of many pesticides, further studies are warranted in larger populations that include detailed quantitative data on exposure and determination of genetic polymorphisms.
Collapse
|
107
|
Can the battle against tuberculosis gain from epigenetic research? Trends Microbiol 2012; 20:220-6. [PMID: 22464289 DOI: 10.1016/j.tim.2012.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
Abstract
A healthy immune system needs to be highly plastic to cope with host defense and surveillance. What mechanisms provide this plasticity? Considering the threat of infectious diseases to a large part of the world's population, can these mechanisms possibly be of use in the ongoing battle against infectious diseases? Against the backdrop of the pandemic nature of tuberculosis, we discuss whether and how epigenetic mechanisms can shed light on our understanding of infectious disease, and if epigenetic marks can be employed to monitor latent infection, disease reactivation or treatment response.
Collapse
|
108
|
Finalism in Darwinian and Lamarckian Evolution: Lessons from Epigenetics and Developmental Biology. Evol Biol 2012. [DOI: 10.1007/s11692-012-9163-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
109
|
Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 2012; 27:1401-10. [PMID: 22381621 DOI: 10.1093/humrep/des038] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Changes in DNA methylation may play an important role in the deleterious reproductive effects reported in association with exposure to environmental pollutants. In this pilot study, we identify candidate methylation changes associated with exposure to pollutants in women undergoing in vitro fertilization (IVF). METHODS Blood and urine were collected from women on the day of oocyte retrieval. Whole blood was analyzed for mercury and lead, and urine for cadmium using inductively coupled plasma mass spectrometry. Unconjugated bisphenol A (BPA) was analyzed in serum using high-performance liquid chromatography with Coularray detection. Participants were dichotomized as higher or lower exposure groups by median concentrations. Using the Illumina GoldenGate Methylation Cancer Panel I, DNA methylation in whole blood from 43 women was assessed at 1505 CpG sites for association with exposure levels of each pollutant. Candidate CpG sites were identified using a Diff Score >|13| (P< 0.05) and an absolute difference >10% which were confirmed using bisulfite pyrosequencing. RESULTS Methylation of the GSTM1/5 promoter was increased for women with higher mercury exposure (P= 0.04); however, no correlation was observed (r= 0.17, P= 0.27). Reduced methylation was detected in the COL1A2 promoter in women with higher exposure to lead (P= 0.004), and an inverse correlation was observed (r = - 0.45, P= 0.03). Lower methylation of a promoter CpG site at the TSP50 gene was detected in women with higher BPA exposure (P= 0.005), and again an inverse correlation was identified (r = - 0.51, P= 0.001). CONCLUSIONS Altered DNA methylation at various CpG sites was associated with exposure to mercury, lead or BPA, providing candidates to be investigated using a larger study sample, as the results may reflect an independently associated predictor (e.g. socioeconomic status, diet, genetic variants, altered blood cell composition). Further studies accommodating variations in these factors will be needed to confirm these associations and identify their underlying causes.
Collapse
Affiliation(s)
- Courtney W Hanna
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Sarraj MA, Drummond AE. Mammalian foetal ovarian development: consequences for health and disease. Reproduction 2012; 143:151-63. [DOI: 10.1530/rep-11-0247] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of a normal ovary during foetal life is essential for the production and ovulation of a high-quality oocyte in adult life. Early in embryogenesis, the primordial germ cells (PGCs) migrate to and colonise the genital ridges. Once the PGCs reach the bipotential gonad, the absence of the sex-determining region on the Y chromosome (SRY) gene and the presence of female-specific genes ensure that the indifferent gonad takes the female pathway and an ovary forms. PGCs enter into meiosis, transform into oogonia and ultimately give rise to oocytes that are later surrounded by granulosa cells to form primordial follicles. Various genes and signals are implicated in germ and somatic cell development, leading to successful follicle formation and normal ovarian development. This review focuses on the differentiation events, cellular processes and molecular mechanisms essential for foetal ovarian development in the mice and humans. A better understanding of these early cellular and morphological events will facilitate further study into the regulation of oocyte development, manifestation of ovarian disease and basis of female infertility.
Collapse
|
111
|
Warner J, Osuch JR, Karmaus W, Landgraf JR, Taffe B, O'Keefe M, Mikucki D, Haan P. Common classification schemes for PCB congeners and the gene expression of CYP17, CYP19, ESR1 and ESR2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:81-9. [PMID: 22119029 DOI: 10.1016/j.scitotenv.2011.10.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Reliable techniques to measure polychlorinated biphenyl (PCB) congeners make the clearer definition of their effects on human health possible. Given that PCBs are classified as endocrine disrupters, we sought to explore the expression of some key genes involved in sex steroid metabolism. OBJECTIVES To examine common classification schemes of PCB congeners and determine whether exposure to groups classified by mechanism of action alter the gene expression (GE) of CYP17, CYP19, and ESR1 and ESR2. METHODS GE and exposure to various classifications of lipid-adjusted PCB congeners were examined in 139 daughters of the Michigan Fisheaters' Cohort. Using mixed models analyses and adjusting for age, menopausal status, and current use of oral contraceptives and hormone replacement therapy, GE data were regressed on exposure to PCB congener groupings based on mechanism of action. RESULTS Three novel findings are elucidated: first, that up-regulation of CYP19 expression is associated with exposure to PCB groupings containing dioxin-like, potentially anti-estrogenic, immunotoxic congeners, including PCB IUPAC #74, #105, #118, #138, #156, #157, #158, #167, and #170 from this cohort. Second, that exposure to similar congeners (PCB IUPAC #105, #156, #157, #158, and #167 in this cohort) but using a classification based solely on hormonal mechanisms of action is associated with increased expression of ESR2. Third, that increased expression of CYP17 is of borderline significance when associated with exposure to PCB IUPAC #118, #138, and #156. CONCLUSIONS These findings are both counter-intuitive and intriguing. Rather than exhibiting anti-estrogenic effects alone, they suggest that these congeners up-regulate the major enzyme involved in estrogen synthesis and tend to confirm previous findings of links between AhR and ER signaling pathways. Replication of these findings, expansion of the number of genes examined, exploration of mixtures of environmental chemicals, and subsequent study of health outcomes in a larger cohort are future priorities.
Collapse
Affiliation(s)
- Jillian Warner
- Wayne State University School of Medicine, Detroit, MI, United States
| | | | | | | | | | | | | | | |
Collapse
|
112
|
The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis. Reprod Toxicol 2012; 33:106-15. [DOI: 10.1016/j.reprotox.2011.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 12/11/2022]
|
113
|
Abstract
There is an evidential link between diet, mood and behaviour, but a shortage of formalised educational literature covering the role of nutritional science and its application in the care and treatment of mental health problems. In the U.K., a limited amount of a few types of fruit and vegetables, few wholegrains and little oily fish are consumed. Instead, large quantities of refined carbohydrates, altered fats, intensively reared meat and dairy products are eaten, along with unknown combinations of synthetic chemicals and residues. In some individuals, specific nutritional and environmental factors generate physiological responses which may influence mood, promote anti-social behaviour and trigger overwhelming cravings for certain foods or substances. Nutritional Therapists are not currently part of the multidisciplinary team assessing people suffering from mental health problems. They generally work in private practice with clients on an individual basis. Their role is to improve diet and identify potential food intolerances, hormone imbalances, blood sugar issues, enzyme deficiencies, compromised gut immunity, increased nutrient requirements, a toxic metal burden or chemical sensitivities. Each case is examined on its own merits, given the variety of genetic and environmental differences among individuals. The considerable challenge for the nutritional therapist remains to intervene safely and effectively in mental health conditions which involve multiple complex and interacting mechanisms.
Collapse
|
114
|
Bastonini E, Verdone L, Morrone S, Santoni A, Settimo G, Marsili G, La Fortezza M, Di Mauro E, Caserta M. Transcriptional modulation of a human monocytic cell line exposed to PM(10) from an urban area. ENVIRONMENTAL RESEARCH 2011; 111:765-774. [PMID: 21741637 DOI: 10.1016/j.envres.2011.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/30/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
Insight into the mechanisms by which ambient air particulate matter mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating an association between PM(10) exposure and increased morbidity and mortality. In vitro studies of the effects of air pollution on human cells help to establish conditions for the analysis of cause-effect relationships. One of the major challenges is to test native atmosphere in its complexity, rather than the various components individually. We have developed an in vitro system in which human monocyte-macrophage U937 cells are directly exposed to filters containing different amounts of PM(10) collected in the city of Rome. Transcriptional profiling obtained after short exposure (1h) of cells to a filter containing 1666μg PM(10) (77.6μg/cm(2)) using a macroarray panel of 1176 genes reveals a significant change in the mRNA level (>2 fold) for 87 genes relative to cells exposed to a control filter. Overall, 9 out of 87 modulated genes were annotated as "lung cancer". qRT-PCR confirmed the induction of relevant genes involved in DNA repair and apoptosis, specifically: ERCC1, TDG, DAD1 and MCL1. In cells exposed for 10min, 1h and 3h to different amounts of PM(10), transcription of TNFα and TRAP1, which code for a key pro-inflammatory cytokine and a mitochondrial protein involved in cell protection from oxidative stress, respectively, was shown to be modulated in a time-dependent, but not a dose-dependent manner. Taken together, these data indicate that it is possible to analyze the effects of untreated particulate matter on human cells by the direct-exposure approach we have developed, possibly providing new clues to traffic-related health hazard.
Collapse
Affiliation(s)
- Emanuela Bastonini
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 2011; 32:586-95. [PMID: 21777615 DOI: 10.1016/j.neuro.2011.05.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/22/2011] [Accepted: 05/23/2011] [Indexed: 11/15/2022]
Abstract
Environmental neurotoxic exposure to agrochemicals has been implicated in the etiopathogenesis of Parkinson's disease (PD). The widely used herbicide paraquat is among the few environmental chemicals potentially linked with PD. Since epigenetic changes are beginning to emerge as key mechanisms in neurodegenerative diseases, herein we examined the effects of paraquat on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodeling, cell survival and cell death. Exposure of N27 dopaminergic cells to paraquat induced histone H3 acetylation in a time-dependent manner. However, paraquat did not alter acetylation of another core histone H4. Paraquat-induced histone acetylation was associated with decreased total histone deacetylase (HDAC) activity and HDAC4 and 7 protein expression levels. To determine if histone acetylation plays a role in paraquat-induced apoptosis, the novel HAT inhibitor anacardic acid was used. Anacardic acid treatment significantly attenuated paraquat-induced caspase-3 enzyme activity, suppressed proteolytic activation and kinase activity of protein kinase C delta (PKCδ) and also blocked paraquat-induced cytotoxicity. Together, these results demonstrate that the neurotoxic agent paraquat induced acetylation of core histones in cell culture models of PD and that the inhibition of HAT activity by anacardic acid protects against apoptotic cell death, indicating that histone acetylation may represent key epigenetic changes in dopaminergic neuronal cells during neurotoxic insults.
Collapse
Affiliation(s)
- C Song
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
116
|
Pozharny Y, Lambertini L, Clunie G, Ferrara L, Lee MJ. Epigenetics in women's health care. ACTA ACUST UNITED AC 2011; 77:225-35. [PMID: 20309920 DOI: 10.1002/msj.20176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetics refers to structural modifications to genes that do not change the nucleotide sequence itself but instead control and regulate gene expression. DNA methylation, histone modification, and RNA regulation are some of the mechanisms involved in epigenetic modification. Epigenetic changes are believed to be a result of changes in an organism's environment that result in fixed and permanent changes in most differentiated cells. Some environmental changes that have been linked to epigenetic changes include starvation, folic acid, and various chemical exposures. There are periods in an organism's life cycle in which the organism is particularly susceptible to epigenetic influences; these include fertilization, gametogenesis, and early embryo development. These are also windows of opportunity for interventions during the reproductive life cycle of women to improve maternal-child health. New data suggest that epigenetic influences might be involved in the regulation of fetal development and the pathophysiology of adult diseases such as cancer, diabetes, obesity, and neurodevelopmental disorders. Various epigenetic mechanisms may also be involved in the pathogenesis of preeclampsia and intrauterine growth restriction. Additionally, environmental exposures are being held responsible for causing epigenetic changes that lead to a disease process. Exposure to heavy metals, bioflavonoids, and endocrine disruptors, such as bisphenol A and phthalates, has been shown to affect the epigenetic memory of an organism. Their long-term effects are unclear at this point, but many ongoing studies are attempting to elucidate the pathophysiological effects of such gene-environment interactions.
Collapse
|
117
|
Geneletti S, Gallo V, Porta M, Khoury MJ, Vineis P. Assessing causal relationships in genomics: From Bradford-Hill criteria to complex gene-environment interactions and directed acyclic graphs. Emerg Themes Epidemiol 2011; 8:5. [PMID: 21658235 PMCID: PMC3141807 DOI: 10.1186/1742-7622-8-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 06/09/2011] [Indexed: 12/16/2022] Open
Abstract
Observational studies of human health and disease (basic, clinical and epidemiological) are vulnerable to methodological problems -such as selection bias and confounding- that make causal inferences problematic. Gene-disease associations are no exception, as they are commonly investigated using observational designs. A rich body of knowledge exists in medicine and epidemiology on the assessment of causal relationships involving personal and environmental causes of disease; it includes seminal causal criteria developed by Austin Bradford Hill and more recently applied directed acyclic graphs (DAGs). However, such knowledge has seldom been applied to assess causal relationships in clinical genetics and genomics, even in studies aimed at making inferences relevant for human health. Conversely, incorporating genetic causal knowledge into clinical and epidemiological causal reasoning is still a largely unexplored area. As the contribution of genetics to the understanding of disease aetiology becomes more important, causal assessment of genetic and genomic evidence becomes fundamental. The method we develop in this paper provides a simple and rigorous first step towards this goal. The present paper is an example of integrative research, i.e., research that integrates knowledge, data, methods, techniques, and reasoning from multiple disciplines, approaches and levels of analysis to generate knowledge that no discipline alone may achieve.
Collapse
Affiliation(s)
- Sara Geneletti
- Department of Statistics, London School of Economics, Houghton Street, London, UK.
| | | | | | | | | |
Collapse
|
118
|
Scherb H, Voigt K. Adverse genetic effects induced by chemical or physical environmental pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:695-696. [PMID: 20390368 DOI: 10.1007/s11356-010-0332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/23/2010] [Indexed: 05/29/2023]
|
119
|
Lancaster KJ, Bermudez OI. Beginning a discussion of nutrition and health disparities. Am J Clin Nutr 2011; 93:1161S-2S. [PMID: 21389176 DOI: 10.3945/ajcn.110.003459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Kristie J Lancaster
- Department of Nutrition, Food Studies and Public Health, New York University, New York, NY 10012, USA.
| | | |
Collapse
|
120
|
Abstract
Molecular Epidemiology was originally conceived as a preventive approach, providing a valuable tool for investigating risk factors for cancer in vulnerable populations. Biomarkers can be used as early indicators of risk for preventative purposes and risk assessment. The present contribution mainly refers to in utero exposures to carcinogens, since humans are especially vulnerable during fetal development. Environmental exposures in utero can increase risks for both childhood and adult cancers; their interactions with genetic and nutritional susceptibility factors may further increase risk. Thus, the early developmental period represents an important window for cancer prevention.
Collapse
Affiliation(s)
- Frederica Perera
- Mailman School of Public Health, Columbia University, 100 Haven Avenue, Tower 3, #25F, New York, NY 10032, USA.
| |
Collapse
|
121
|
Murcray CE, Lewinger JP, Conti DV, Thomas DC, Gauderman WJ. Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol 2011; 35:201-10. [PMID: 21308767 DOI: 10.1002/gepi.20569] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 11/07/2022]
Abstract
Many complex diseases are likely to be a result of the interplay of genes and environmental exposures. The standard analysis in a genome-wide association study (GWAS) scans for main effects and ignores the potentially useful information in the available exposure data. Two recently proposed methods that exploit environmental exposure information involve a two-step analysis aimed at prioritizing the large number of SNPs tested to highlight those most likely to be involved in a GE interaction. For example, Murcray et al. ([2009] Am J Epidemiol 169:219–226) proposed screening on a test that models the G-E association induced by an interaction in the combined case-control sample. Alternatively, Kooperberg and LeBlanc ([2008] Genet Epidemiol 32:255–263) suggested screening on genetic marginal effects. In both methods, SNPs that pass the respective screening step at a pre-specified significance threshold are followed up with a formal test of interaction in the second step. We propose a hybrid method that combines these two screening approaches by allocating a proportion of the overall genomewide significance level to each test. We show that the Murcray et al. approach is often the most efficient method, but that the hybrid approach is a powerful and robust method for nearly any underlying model. As an example, for a GWAS of 1 million markers including a single true disease SNP with minor allele frequency of 0.15, and a binary exposure with prevalence 0.3, the Murcray, Kooperberg and hybrid methods are 1.90, 1.27, and 1.87 times as efficient, respectively, as the traditional case-control analysis to detect an interaction effect size of 2.0.
Collapse
Affiliation(s)
- Cassandra E Murcray
- Department of Preventive Medicine, University of Southern California, Los Angeles, California 90089-9010, USA.
| | | | | | | | | |
Collapse
|
122
|
Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011; 31:363-73. [PMID: 21256208 DOI: 10.1016/j.reprotox.2010.12.055] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
This review summarizes recent evidence that prenatal exposure to diverse environmental chemicals dysregulates the fetal epigenome, with potential consequences for subsequent developmental disorders and disease manifesting in childhood, over the lifecourse, or even transgenerationally. The primordial germ cells, embryo, and fetus are highly susceptible to epigenetic dysregulation by environmental chemicals, which can thereby exert multiple adverse effects. The data reviewed here on environmental contaminants have potential implications for risk assessment although more data are needed on individual susceptibility to epigenetic alterations and their persistence before this information can be used in formal risk assessments. The findings discussed indicate that identification of environmental chemicals that dysregulate the prenatal epigenome should be a priority in health research and disease prevention.
Collapse
Affiliation(s)
- Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | | |
Collapse
|
123
|
ARAI Y, OHGANE J, YAGI S, ITO R, IWASAKI Y, SAITO K, AKUTSU K, TAKATORI S, ISHII R, HAYASHI R, IZUMI SI, SUGINO N, KONDO F, HORIE M, NAKAZAWA H, MAKINO T, SHIOTA K. Epigenetic Assessment of Environmental Chemicals Detected in Maternal Peripheral and Cord Blood Samples. J Reprod Dev 2011; 57:507-17. [DOI: 10.1262/jrd.11-034a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yoshikazu ARAI
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Laboratory of Developmental Engineering, Department of Life Science, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
- Laboratory of Genomic Function Engineering, Department of Life Science, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Jun OHGANE
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Laboratory of Genomic Function Engineering, Department of Life Science, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Shintaro YAGI
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Rie ITO
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Yusuke IWASAKI
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Koichi SAITO
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Kazuhiko AKUTSU
- Division of Food Chemistry, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan
| | - Satoshi TAKATORI
- Division of Food Chemistry, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan
| | - Rie ISHII
- Saitama Prefectural Institute of Public Health, Saitama 338-0824, Japan
| | - Rumiko HAYASHI
- Department of Toxicology, Aichi Prefectural Institute of Public Health, Nagoya 462-8576, Japan
| | - Shun-Ichiro IZUMI
- Department of Obstetrics and Gynecology, School of Medicine, Tokai University, Kanagawa 259-1193, Japan
| | - Norihiro SUGINO
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Fumio KONDO
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Masakazu HORIE
- Saitama Prefectural Institute of Public Health, Saitama 338-0824, Japan
| | - Hiroyuki NAKAZAWA
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | | | - Kunio SHIOTA
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
124
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
125
|
Iannitti T, Capone S, Gatti A, Capitani F, Capitani F, Cetta F, Palmieri B. Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int J Nanomedicine 2010; 5:955-60. [PMID: 21187947 PMCID: PMC3010157 DOI: 10.2147/ijn.s14363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A 25-year-old man had complained of sudden fever spikes for two years and his blood tests were within the normal range. In 1993, a surgical biopsy of swollen left inguinal lymph nodes was negative for malignancy, but showed reactive lymphadenitis and widespread sinus histiocytosis. A concomitant needle biopsy of the periaortic lymph nodes and a bone marrow aspirate were also negative. In 1994, after an emergency hospital admission because of a sport-related thoracic trauma, a right inguinal lymph node biopsy demonstrated Hodgkin’s lymphoma Stage IVB (scleronodular mixed cell subtype). Although it was improved by chemotherapy, the disease suddenly relapsed, and a further lymph node biopsy was performed in 1998 confirming the same diagnosis. Despite further treatment, the patient died of septic shock in 2004, at the age of 38 years. Retrospective analysis of the various specimens showed intracellular heavy metal nanoparticles within lymph node, bone marrow, and liver samples by field emission gun environmental scanning electron microscopy and energy dispersive spectroscopy. Heavy metals from environmental pollution may accumulate in sites far from the entry route and, in genetically conditioned individuals with tissue specificity, may act as cofactors for chronic inflammation or even malignant transformation. The present anecdotal report highlights the need for further pathologic ultrastructural investigations using serial samples and the possible role of intracellular nanoparticles in human disease.
Collapse
Affiliation(s)
- Tommaso Iannitti
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
126
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 2010; 31:337-43. [PMID: 21055462 DOI: 10.1016/j.reprotox.2010.10.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | | | | |
Collapse
|
127
|
Yang I, Fortin MC, Richardson JR, Buckley B. Fused-core silica column ultra-performance liquid chromatography-ion trap tandem mass spectrometry for determination of global DNA methylation status. Anal Biochem 2010; 409:138-43. [PMID: 20950581 DOI: 10.1016/j.ab.2010.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/08/2010] [Indexed: 10/19/2022]
Abstract
Epigenetic modifications, such as DNA methylation, play key roles in transcriptional regulation of gene expression. More recently, global DNA methylation levels have been documented to be altered in several diseases, including cancer, and as the result of exposure to environmental toxicants. Based on the potential use of global DNA methylation status as a biomarker of disease status and exposure to environmental toxicants, we sought to develop a rapid, sensitive, and precise analytical method for the quantitative measurement of global DNA methylation status using ultra-performance liquid chromatography with detection by ion trap tandem mass spectrometry. Using a fused-core silica column, 2'-deoxyguanosine (2dG) and 5-methyl-2'-deoxycytidine (5mdC) were resolved in less than 1 min with detection limits of 0.54 and 1.47 fmol for 5mdC and 2dG, respectively. The accuracy of detection was 95% or higher, and the day-to-day coefficient of variation was found to be 3.8%. The method was validated by quantification of global DNA methylation status following treatment of cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, which reduced DNA methylation from 3.1% in control cells to 1.1% in treated cells. The sensitivity and high throughput of this method rend it suitable for large-scale analysis of epidemiological and clinical DNA samples.
Collapse
Affiliation(s)
- Ill Yang
- Environmental and Occupational Health Sciences Institute, A Joint Institute of Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
128
|
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010; 5. [PMID: 20927350 PMCID: PMC2948035 DOI: 10.1371/journal.pone.0013100] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022] Open
Abstract
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Matthew Settles
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ben Lucker
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
129
|
Andia DC, de Oliveira NF, Casarin RC, Casati MZ, Line SR, de Souza AP. DNA Methylation Status of theIL8Gene Promoter in Aggressive Periodontitis. J Periodontol 2010; 81:1336-41. [DOI: 10.1902/jop.2010.100082] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
130
|
Rhind SM, Evans NP, Bellingham M, Sharpe RM, Cotinot C, Mandon-Pepin B, Loup B, Sinclair KD, Lea RG, Pocar P, Fischer B, van der Zalm E, Hart K, Schmidt JS, Amezaga MR, Fowler PA. Effects of environmental pollutants on the reproduction and welfare of ruminants. Animal 2010; 4:1227-1239. [PMID: 20582145 PMCID: PMC2888112 DOI: 10.1017/s1751731110000595] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 02/02/2010] [Indexed: 12/27/2022] Open
Abstract
Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare.
Collapse
Affiliation(s)
- S. M. Rhind
- Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - N. P. Evans
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
| | - M. Bellingham
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
| | - R. M. Sharpe
- MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C. Cotinot
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - B. Mandon-Pepin
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - B. Loup
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - K. D. Sinclair
- Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - R. G. Lea
- Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - P. Pocar
- Department of Animal Science, Division of Veterinary Anatomy and Histology, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - B. Fischer
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - E. van der Zalm
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - K. Hart
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - J.-S. Schmidt
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - M. R. Amezaga
- Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - P. A. Fowler
- Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
131
|
Ziech D, Franco R, Pappa A, Malamou-Mitsi V, Georgakila S, Georgakilas AG, Panayiotidis MI. The role of epigenetics in environmental and occupational carcinogenesis. Chem Biol Interact 2010; 188:340-9. [PMID: 20599843 DOI: 10.1016/j.cbi.2010.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/20/2010] [Indexed: 02/07/2023]
Abstract
Over the last few years there has been an increasing effort in identifying environmental and occupational carcinogenic agents and linking them to the incidence of a variety of human cancers. The carcinogenic process itself is multistage and rather complex involving several different mechanisms by which various carcinogenic agents exert their effect. Amongst them are epigenetic mechanisms often involving silencing of tumor suppressor genes and/or activation of proto-oncogenes, respectively. These alterations in gene expression are considered critical during carcinogenesis and have been observed in many environmental- and occupational-induced human cancers. Some of the underlying mechanisms proposed to account for such differential gene expression include alterations in DNA methylation and/or histone modifications. Throughout this article, we aim to provide a current account of our understanding on how the epigenetic pathway is involved in contributing to an altered gene expression profile during human carcinogenesis that ultimately will allow us for better cancer diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Dominique Ziech
- Nevada Center for Ethics and Health Policy, University of Nevada, Reno, 89557, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Choudhuri S, Cui Y, Klaassen CD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 2010; 245:378-93. [PMID: 20381512 DOI: 10.1016/j.taap.2010.03.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 12/31/2022]
Abstract
The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.
Collapse
Affiliation(s)
- Supratim Choudhuri
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review, College Park, MD, USA.
| | | | | |
Collapse
|
133
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 2010; 21:214-22. [PMID: 20074974 PMCID: PMC2848884 DOI: 10.1016/j.tem.2009.12.007] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
The ability of environmental factors to promote a phenotype or disease state not only in the individual exposed but also in subsequent progeny for successive generations is termed transgenerational inheritance. The majority of environmental factors such as nutrition or toxicants such as endocrine disruptors do not promote genetic mutations or alterations in DNA sequence. However, these factors do have the capacity to alter the epigenome. Epimutations in the germline that become permanently programmed can allow transmission of epigenetic transgenerational phenotypes. This review provides an overview of the epigenetics and biology of how environmental factors can promote transgenerational phenotypes and disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
134
|
Kovatsi L, Leda K, Georgiou E, Elisavet G, Ioannou A, Antrea I, Haitoglou C, Costas H, Tzimagiorgis G, George T, Tsoukali H, Helen T, Kouidou S, Sofia K. p16 promoter methylation in Pb2+ -exposed individuals. Clin Toxicol (Phila) 2010; 48:124-8. [PMID: 20199129 DOI: 10.3109/15563650903567091] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND One of the principle symptoms of lead poisoning is the development of neurological disorders. Neuronal response is closely related to DNA methylation changes. Aim. In this study, we estimated p16 methylation in nine individuals exposed to lead using methylation-specific polymerase chain reaction followed by analysis of the methylated cytosine content of the product by thermal denaturation. RESULTS We found that, based on lead blood concentration, lead-exposed individuals were divided into two groups. Among highly exposed individuals (blood Pb(2+) concentration = 51-100 microg/dL), we observed complete CpG methylation, whereas for low Pb(2+) concentrations (blood Pb(2+) concentration = 6-11 microg/dL), we observed partial methylation. CONCLUSION Our results show that among lead-overexposed individuals, p16 methylation is frequent and extensive, and suggest that DNA methylation could be involved in the mechanism by which lead induces neurotoxicity.
Collapse
Affiliation(s)
- Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Bernstein PS, Merkatz IR. A Life Course Perspective on Women's Reproductive Health and the Outcome of Pregnancy. J Womens Health (Larchmt) 2010; 19:555-60. [DOI: 10.1089/jwh.2009.1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Peter S. Bernstein
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Irwin R. Merkatz
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
136
|
Montes Nieto R, García-Barrera T, Gómez-Ariza JL, López-Barea J. Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:401-408. [PMID: 19815320 DOI: 10.1016/j.envpol.2009.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
Element load, conventional biomarkers and altered protein expression profiles were studied in Carcinus maenas crabs, to assess contamination of "Domingo Rubio" stream, an aquatic ecosystem that receives pyritic metals, industrial contaminants, and pesticides. Lower antioxidative activities - glucose-6-phosphate and 6-phosphogluconate dehydrogenases, catalase - were found in parallel to higher levels of damaged biomolecules - malondialdehyde, oxidized glutathione -, due to oxidative lesions promoted by contaminants, as the increased levels of essential - Zn, Cu, Co - and nonessential - Cr, Ni, Cd - elements. Utility of Proteomics to assess environmental quality was confirmed, especially after considering the six proteins identified by de novo sequencing through capLC-muESI-ITMS/MS and homology search on databases. They include tripartite motif-containing protein 11 and ATF7 transcription factor (upregulated), plus CBR-NHR-218 nuclear hormone receptor, two components of the ABC transporters and aldehyde dehydrogenase (downregulated). These proteins could be used as novel potential biomarkers of the deleterious effects of pollutants present in the area.
Collapse
Affiliation(s)
- Rafael Montes Nieto
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
137
|
Rhind SM. Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond B Biol Sci 2010; 364:3391-401. [PMID: 19833650 DOI: 10.1098/rstb.2009.0122] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens.
Collapse
Affiliation(s)
- S M Rhind
- Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
138
|
Lee DH, Jacobs DR, Porta M. Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1799-802. [PMID: 20049195 PMCID: PMC2799450 DOI: 10.1289/ehp.0900741] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/08/2009] [Indexed: 05/04/2023]
Abstract
BACKGROUND Although both nutrition and chemicals are important environmental factors modulating epigenetic changes, they are commonly studied separately by researchers in different fields. However, these two environmental factors cannot be separated from each other in the real world because a number of chemical agents contaminate food chains. OBJECTIVE We propose a unifying mechanism that can link epigenetic alterations in relation to DNA hypomethylation due to chemical agents and to nutrient deficiency or imbalance, emphasizing the importance of an integrative approach in the field of environmental epidemiology. DISCUSSION Methyl groups from S-adenosylmethionine (SAM) are needed for DNA methylation. Diets low in sources of methyl groups can lead to global DNA hypomethylation by impairing synthesis of SAM. However, even without nutritional deficiency, enhanced need to synthesize glutathi-one (GSH) can impair synthesis of SAM and perturb DNA methylation, because the methylation cycle and the GSH synthesis pathways are biochemically linked. Exposure to environmental chemicals is a common situation in which the need for GSH synthesis is enhanced, because GSH is consumed to conjugate diverse chemicals. Given that GSH conjugation happens at any chemical dose, this hypothesis is relevant even at exposures below the high doses that cause toxicologic responses. CONCLUSION At present, general populations are exposed to a large number of chemicals, each at a very low dose. Thus, DNA hypomethylation due to chemical exposure may be common in modern societies and can synergistically interact with nutrition-induced DNA hypomethylation.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine and Health Promotion Research Center, School of Medicine, Kyungpook National University, Daegu, Korea.
| | | | | |
Collapse
|
139
|
Vargas AO. Did Paul Kammerer discover epigenetic inheritance? A modern look at the controversial midwife toad experiments. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:667-78. [DOI: 10.1002/jez.b.21319] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
140
|
Skinner MK, Guerrero-Bosagna C. Environmental signals and transgenerational epigenetics. Epigenomics 2009; 1:111-117. [PMID: 20563319 DOI: 10.2217/epi.09.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of an environmental factor or toxicant to promote a phenotype or disease state not only in the individual exposed, but also in subsequent progeny for multiple generations, is termed transgenerational inheritance. The majority of environmental agents do not promote genetic mutations or alterations in DNA sequence, but do have the capacity to alter the epigenome. Although most environmental exposures will influence somatic cells and not allow the transgenerational transmission of a phenotype, the ability of an environmental factor to reprogram the germline epigenome can promote a transgenerational inheritance of phenotypes and disease states. A limited number of critical developmental periods exist when environmental signals can produce a significant epigenetic reprogramming of the germline. In this review, the ability of environmental factors or toxicants to promote epigenetic transgenerational phenotypes is reviewed.
Collapse
|
141
|
Esterhuyse MM, Venter M, Veldhoen N, Helbing CC, van Wyk JH. Characterization of vtg-1 mRNA expression during ontogeny in Oreochromis mossambicus (PETERS). J Steroid Biochem Mol Biol 2009; 117:42-9. [PMID: 19615445 DOI: 10.1016/j.jsbmb.2009.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 02/08/2023]
Abstract
The yolk-precursor lipoprotein, vitellogenin (VTG) has been widely recognized as a biomarker for the detection of estrogenic activity in water-borne chemical pollutants. We characterized the expression status of this important constituent of reproduction in the Mozambique tilapia (Oreochromis mossambicus), a tilapiine freshwater fish species indigenous to Southern Africa, and investigated its utility in detection of exposure to estrogen using a quantitative real-time polymerase chain reaction (QPCR) assay. We initially isolated a 3kb upstream promoter region of the vtg gene and identified putative binding sites for several regulatory factors including estrogen receptor (ESR). Evidence for the expression of several splice-site vtg mRNA variants was found in a number of tissue types. A quantitative real-time polymerase chain reaction (QPCR) assay was subsequently developed based upon a specific primer pair (OMV6/9) that selectively amplified the liver-enriched transcript. The level of this transcript in liver tissue was high in females and lower, but detectable, in males and was significantly increased in male fish following laboratory exposure to 17beta-estradiol (E(2)). This study further established that juvenile whole body homogenates (WBHs) contained extremely low levels of liver-specific vtg mRNA between 5 and 110 days post-fertilization (dpf) compared to adult male liver. Subsequent exposure of 20 dpf juveniles to E(2) showed a substantial increase in this transcript within hours, and when compared to classic male model under same conditions, the juveniles were remarkably more sensitive. We therefore conclude that the quantification, using QPCR methodology, of vtg mRNA expression in 20 dpf O. mossambicus juveniles has promise for assessing estrogenic EDC activity in aquatic sources.
Collapse
Affiliation(s)
- M M Esterhuyse
- Ecophysiology Laboratory, Department of Botany and Zoology, Private Bag X1, Matieland, University of Stellenbosch, Nature Sciences Building, Stellenbosch 7602, South Africa.
| | | | | | | | | |
Collapse
|
142
|
Wang X, Song Y, Song M, Wang Z, Li T, Wang H. Fluorescence Polarization Combined Capillary Electrophoresis Immunoassay for the Sensitive Detection of Genomic DNA Methylation. Anal Chem 2009; 81:7885-91. [DOI: 10.1021/ac901681k] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Yuling Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Zhixin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Tao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| |
Collapse
|
143
|
Geard N, Willadsen K. Dynamical approaches to modeling developmental gene regulatory networks. ACTA ACUST UNITED AC 2009; 87:131-42. [PMID: 19530129 DOI: 10.1002/bdrc.20150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The network of interacting regulatory signals within a cell comprises one of the most complex and powerful computational systems in biology. Gene regulatory networks (GRNs) play a key role in transforming the information encoded in a genome into morphological form. To achieve this feat, GRNs must respond to and integrate environmental signals with their internal dynamics in a robust and coordinated fashion. The highly dynamic nature of this process lends itself to interpretation and analysis in the language of dynamical models. Modeling provides a means of systematically untangling the complicated structure of GRNs, a framework within which to simulate the behavior of reconstructed systems and, in some cases, suites of analytic tools for exploring that behavior and its implications. This review provides a general background to the idea of treating a regulatory network as a dynamical system, and describes a variety of different approaches that have been taken to the dynamical modeling of GRNs.
Collapse
Affiliation(s)
- Nicholas Geard
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | |
Collapse
|
144
|
Guerrero-Bosagna CM, Skinner MK. Epigenetic transgenerational effects of endocrine disruptors on male reproduction. Semin Reprod Med 2009; 27:403-8. [PMID: 19711250 DOI: 10.1055/s-0029-1237428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype.
Collapse
Affiliation(s)
- Carlos M Guerrero-Bosagna
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | |
Collapse
|
145
|
Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 2009; 262:184-91. [PMID: 19539684 DOI: 10.1016/j.tox.2009.06.006] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 11/22/2022]
Abstract
Glyphosate-based herbicides are the most widely used across the world; they are commercialized in different formulations. Their residues are frequent pollutants in the environment. In addition, these herbicides are spread on most eaten transgenic plants, modified to tolerate high levels of these compounds in their cells. Up to 400 ppm of their residues are accepted in some feed. We exposed human liver HepG2 cells, a well-known model to study xenobiotic toxicity, to four different formulations and to glyphosate, which is usually tested alone in chronic in vivo regulatory studies. We measured cytotoxicity with three assays (Alamar Blue, MTT, ToxiLight), plus genotoxicity (comet assay), anti-estrogenic (on ERalpha, ERbeta) and anti-androgenic effects (on AR) using gene reporter tests. We also checked androgen to estrogen conversion by aromatase activity and mRNA. All parameters were disrupted at sub-agricultural doses with all formulations within 24h. These effects were more dependent on the formulation than on the glyphosate concentration. First, we observed a human cell endocrine disruption from 0.5 ppm on the androgen receptor in MDA-MB453-kb2 cells for the most active formulation (R400), then from 2 ppm the transcriptional activities on both estrogen receptors were also inhibited on HepG2. Aromatase transcription and activity were disrupted from 10 ppm. Cytotoxic effects started at 10 ppm with Alamar Blue assay (the most sensitive), and DNA damages at 5 ppm. A real cell impact of glyphosate-based herbicides residues in food, feed or in the environment has thus to be considered, and their classifications as carcinogens/mutagens/reprotoxics is discussed.
Collapse
Affiliation(s)
- Céline Gasnier
- University of Caen, Institute of Biology, Lab. Biochemistry EA2608, Esplanade de la Paix, 14032 Caen cedex, France
| | | | | | | | | | | |
Collapse
|
146
|
Landau-Ossondo M, Rabia N, Jos-Pelage J, Marquet LM, Isidore Y, Saint-Aimé C, Martin M, Irigaray P, Belpomme D. Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer. Biomed Pharmacother 2009; 63:383-95. [PMID: 19570649 DOI: 10.1016/j.biopha.2009.04.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/15/2009] [Indexed: 12/13/2022] Open
Abstract
Prostate and breast cancers have become very frequent in Martinique. We previously conducted a multifactorial analysis in the French Caribbean Island, Martinique, in order to elucidate the aetiology of prostate cancer. Using a linear regression analysis, we found that the growth curves of incidence rates for Martinique and metropolitan France have been significantly diverging since 1983. Although a Caribbean genetic susceptibility factor may be involved in prostate carcinogenesis: this factor, because it could not have changed during the observation period, cannot per se account for the growing incidence of this cancer in the island. We therefore suggested that among possible environmental factors, the intensive and prolonged exposure to Carcinogenic, Mutagenic and/or Reprotoxic (CMR) or presumed CMR pesticides may account for the observed growing incidence of prostate cancer and thus may be involved in prostate carcinogenesis. In this study, we further attempt to show that due to their carcinogenic properties, pesticides and especially organochlorine pesticides may in fact be causally implicated in the growing incidence of prostate cancer in Martinique. Also, we suggest that CMR or presumed CMR pesticides may be causally involved in the growing incidence of breast cancer through a common endocrine disruption mechanism. We therefore propose that protective medical recommendations should be immediately set up and carried out by general practitioners, paediatricians, obstetricians, gynaecologists and urologists; and that public health measures of primary precaution and prevention should be urgently taken in close collaboration with health professionals in order to protect population, more especially pregnant women and children, with the final objective perhaps that these medical recommendations and public health measures will stop Martinique's cancer epidemic.
Collapse
Affiliation(s)
- M Landau-Ossondo
- Anatomopathology Laboratory, Centre Hospitalier Universitaire de Fort de France, French West Indies, Fort de France, Martinique
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Mishra PK, Gorantla VR, Akhtar N, Tamrakar P, Jain SK, Maudar KK. Analysis of cellular response to isocyanate using N-succinimidyl N-methylcarbamate exposure in cultured mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:328-336. [PMID: 19197993 DOI: 10.1002/em.20469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Isocyanates (R--N==C==O), one of the highly reactive industrial intermediates, possess the capability to modulate the bio-molecules by forming toxic metabolites and adducts which may cause adverse health effects. Some of their toxic degradations have previously been unknown and overlooked; of which, molecular repercussions underlying their genetic hazards upon occupational/accidental exposures still remain as an intricate issue and are hitherto unknown. To assess the genotoxic potential of methyl isocyanate in cultured mammalian cells after in vitro exposure, we performed a study in three different normal cell lines MM55.K (mouse kidney epithelial), B/CMBA.Ov (mouse ovarian epithelial), and NIH/3T3 (primary mouse embryonic fibroblast). Cellular DNA damage response was studied for qualitative phosphorylation states of ATM, gammaH2AX proteins and quantitative state of p53 phosphorylation; DNA cell cycle analysis and measure of cellular apoptotic index before and after treatment were also investigated. Our results demonstrate that methyl isocyanate by negatively regulating the DNA damage response pathway, might promote cell cycle arrest, and apoptosis in cultured mammalian cells suggestive of causing genetic alterations. We anticipate that these data along with other studies reported in the literature would help to design better approaches in risk assessment of occupational and accidental exposure to isocyanates. We also predict that increasing knowledge on DNA damage-triggered signaling leading to cell death could provide new strategies for investigating the effects of DNA repair disorders and decreased repair capacity on the toxicity and carcinogenic properties of environmental toxins.
Collapse
Affiliation(s)
- Pradyumna Kumar Mishra
- Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal-462 038, Madhya Pradesh, India.
| | | | | | | | | | | |
Collapse
|
148
|
Mansouri MT, Cauli O. Motor alterations induced by chronic lead exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:307-313. [PMID: 21783958 DOI: 10.1016/j.etap.2009.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/15/2008] [Accepted: 01/18/2009] [Indexed: 05/31/2023]
Abstract
Lead (Pb) as other environmental neurotoxicants substances has the capability to interfere with many biochemical events present in cells throughout the body and it can produce a wide spectrum of alterations in many organs and systems. Among that alterations induced by Pb exposure in adults and children those involving motor system dysfunction represent a common public health problem. The review summarizes the sources of lead exposures in both occupational and residential environments and motor deficits induced by chronic Pb exposure taking in account the last literature in the field. We wish to focus on the current state of knowledge concerning the long-lasting neurological effects of Pb in motor functions and to correlate the neurological deficits induced by Pb exposure in animal models with those reported in humans. The great interest in whether exposure to Pb can cause long-term, progressive declines in central nervous system (CNS) function have revealed that Pb exposure is involved in chronic CNS diseases such Parkinson's and poor motor coordination in children.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- Department of Pharmacology, Physiology Research Center, School of Medicine, Ahwaz Jondishapour University of Medical Sciences (AJUMS), Ahwaz, Iran; Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avda Autopista del Saler, 16, 46013, Valencia, Spain
| | | |
Collapse
|
149
|
Bråbäck L, Forsberg B. Does traffic exhaust contribute to the development of asthma and allergic sensitization in children: findings from recent cohort studies. Environ Health 2009; 8:17. [PMID: 19371435 PMCID: PMC2674435 DOI: 10.1186/1476-069x-8-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/16/2009] [Indexed: 04/14/2023]
Abstract
The aim of this review was to assess the evidence from recent prospective studies that long-term traffic pollution could contribute to the development of asthma-like symptoms and allergic sensitization in children. We have reviewed cohort studies published since 2002 and found in PubMed in Oct 2008. In all, 13 papers based on data from 9 cohorts have evaluated the relationship between traffic exposure and respiratory health. All surveys reported associations with at least some of the studied respiratory symptoms. The outcome varied, however, according to the age of the child. Nevertheless, the consistency in the results indicates that traffic exhaust contributes to the development of respiratory symptoms in healthy children. Potential effects of traffic exhaust on the development of allergic sensitization were only assessed in the four European birth cohorts. Long-term exposure to outdoor air pollutants had no association with sensitization in ten-year-old schoolchildren in Norway. In contrast, German, Dutch and Swedish preschool children had an increased risk of sensitization related to traffic exhaust despite fairly similar levels of outdoor air pollution as in Norway. Traffic-related effects on sensitization could be restricted to individuals with a specific genetic polymorphism. Assessment of gene-environment interactions on sensitization has so far only been carried out in a subgroup of the Swedish birth cohort. Further genetic association studies are required and may identify individuals vulnerable to adverse effects from traffic-related pollutants. Future studies should also evaluate effects of traffic exhaust on the development and long term outcome of different phenotypes of asthma and wheezing symptoms.
Collapse
Affiliation(s)
- Lennart Bråbäck
- Occupational & Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Public Health and Research, Sundsvall Hospital, Sundsvall, Sweden
| | - Bertil Forsberg
- Occupational & Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
150
|
Ross CM. Epigenetics, traffic and firewood. Schizophr Res 2009; 109:193. [PMID: 19217264 DOI: 10.1016/j.schres.2009.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|