101
|
Sun D, Cao H, Shi Y, Huang P, Dong B, Liu X, Lin F, Lu J. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1075-1088. [PMID: 27434465 PMCID: PMC6638216 DOI: 10.1111/mpp.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnaporthe oryzae is a cereal pathogen causing 20%-30% rice yield losses. Regulatory factor X transcription factors are highly conserved proteins with diverse functions among organisms. Here, we show that MoRfx1 is required for cell division, development and pathogenicity in M. oryzae. Deletion of MoRFX1 resulted in reduced growth and conidiation, decreased appressorium turgor and impaired virulence. ΔMorfx1 displayed increased sensitivity to UV light, four DNA-damaging agents and three cell wall-perturbing compounds. However, ΔMorfx1 showed decreased sensitivity to bleomycin, a DNA/cell wall-damaging agent, and increased chitin content of the cell wall in vegetative mycelium. In addition, cell division speed was reduced in ΔMorfx1, and ΔMorfx1 did not produce three-celled conidia. RNA-sequencing and quantitative polymerase chain reaction analyses suggested that MoRfx1 has bipartite functions in the control of the expression of genes required for cell division and chitin metabolism, not only as a transcriptional repressor, but also as a transcriptional activator. In particular, the expression of chitin deacetylase genes MoCDA2 and MoCDA1 was greatly down-regulated in ΔMorfx1, and deletion of MoCDA2 and MoCDA1, similar to ΔMorfx1, increased resistance to bleomycin. Taken together, our results indicate that MoRFX1 regulates development and pathogenicity by modulating the expression of genes involved in cell division and cell wall integrity.
Collapse
Affiliation(s)
- Dandan Sun
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| | - Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
- State Key Laboratory for Rice BiologyBiotechnology Institute, Zhejiang UniversityHangzhouZhejiang Province310058China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhouZhejiang Province310021China
| | - Xiaohong Liu
- State Key Laboratory for Rice BiologyBiotechnology Institute, Zhejiang UniversityHangzhouZhejiang Province310058China
| | - Fucheng Lin
- State Key Laboratory for Rice BiologyBiotechnology Institute, Zhejiang UniversityHangzhouZhejiang Province310058China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life SciencesZhejiang UniversityHangzhouZhejiang Province310058China
| |
Collapse
|
102
|
Chen Y, Le X, Sun Y, Li M, Zhang H, Tan X, Zhang D, Liu Y, Zhang Z. MoYcp4 is required for growth, conidiogenesis and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1001-1011. [PMID: 27377363 PMCID: PMC6638285 DOI: 10.1111/mpp.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
The transcription factor MoAP1 has been shown previously to be required for pathogenicity in Magnaporthe oryzae via mediation of the oxidative stress response. In the serial analysis gene expression database, it was found that expression of MoYcp4, a homologue of the Saccharomyces cerevisiae flavodoxin-like protein ScYcp4, was affected by MoAP1. Transcriptional analysis demonstrated that MoYCP4 was significantly up-regulated during conidiation, appressorium formation and infection. The growth rate of a ΔMoycp4 mutant was reduced slightly, but conidial production was increased significantly (more than 10-fold), compared with the wild-type strain. Although the rate of appressorium formation was unaffected, the appressorial turgor was abnormal and the ability to infect rice and barley was reduced, resulting in decreased pathogenicity. In summary, MoYcp4, a target of MoAP1, is involved in the growth, conidiogenesis and pathogenicity of M. oryzae. Our studies provide a comprehensive analysis of flavodoxin-like proteins and will aid in the study of pathogen-related molecular mechanisms.
Collapse
Affiliation(s)
- Yue Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyi Le
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yi Sun
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Mengying Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinqiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
| | - Deyong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
103
|
Tiwari IM, Jesuraj A, Kamboj R, Devanna BN, Botella JR, Sharma TR. Host Delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Sci Rep 2017; 7:7521. [PMID: 28790353 PMCID: PMC5548729 DOI: 10.1038/s41598-017-07749-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/04/2017] [Indexed: 01/10/2023] Open
Abstract
Rhizoctonia solani, the causal agent of rice sheath blight disease, causes significant losses worldwide as there are no cultivars providing absolute resistance to this fungal pathogen. We have used Host Delivered RNA Interference (HD-RNAi) technology to target two PATHOGENICITY MAP KINASE 1 (PMK1) homologues, RPMK1-1 and RPMK1-2, from R. solani using a hybrid RNAi construct. PMK1 homologues in other fungal pathogens are essential for the formation of appressorium, the fungal infection structures required for penetration of the plant cuticle, as well as invasive growth once inside the plant tissues and overall viability of the pathogen within the plant. Evaluation of transgenic rice lines revealed a significant decrease in fungal infection levels compared to non-transformed controls and the observed delay in disease symptoms was further confirmed through microscopic studies. Relative expression levels of the targeted genes, RPMK1-1 and RPMK1-2, were determined in R. solani infecting either transgenic or control lines with significantly lower levels observed in R. solani infecting transgenic lines carrying the HD-RNAi constructs. This is the first report demonstrating the effectiveness of HD-RNAi against sheath blight and offers new opportunities for durable control of the disease as it does not rely on resistance conferred by major resistance genes.
Collapse
Affiliation(s)
- Ila Mukul Tiwari
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arun Jesuraj
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Richa Kamboj
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - B N Devanna
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Jose R Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - T R Sharma
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India, 160071.
| |
Collapse
|
104
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|
105
|
Zhang S, Liu X, Li L, Yu R, He J, Zhang H, Zheng X, Wang P, Zhang Z. The ArfGAP protein MoGlo3 regulates the development and pathogenicity of Magnaporthe oryzae. Environ Microbiol 2017; 19:3982-3996. [PMID: 28504350 DOI: 10.1111/1462-2920.13798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 01/21/2023]
Abstract
The ADP ribosylation factor (Arf) and the coat protein complex I (COPI) are involved in vesicle transport. Together with GTPase-activating proteins (ArfGAPs) and guanine exchange factors (ArfGEFs) that regulate the activity of Arf, they govern vesicle formation, COPI trafficking and the maintenance of the Golgi complex. In an ongoing effort to study the role of membrane trafficking in pathogenesis of the rice blast fungus Magnaporthe oryzae, we identified MoGlo3 as an ArfGAP protein that is homologous to Glo3p of the budding yeast Saccharomyces cerevisiae. As suspected, MoGlo3 partially complements the function of yeast Glo3p. Consistent with findings in S. cerevisiae, MoGlo3 is localized to the Golgi, and that the localization is dependent on the conserved BoCCS domain. We found that MoGlo3 is highly expressed during conidiation and early infection stages and is required for vegetative growth, conidial production and sexual development. We further found that the ΔMoglo3 mutant is defective in endocytosis, scavenging of the reactive oxygen species, and in the response to endoplasmic reticulum (ER) stress. The combined effects result in failed appressorium function and decreased pathogenicity. Moreover, we provided evidence showing that the domains including the GAP, BoCCS and GRM are all important for normal MoGlo3 functions. Our studies further illustrate the importance of normal membrane trafficking in the physiology and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Shengpei Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Xiu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Jialiang He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| | - Ping Wang
- Departments of Pediatrics and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, People's Republic of China
| |
Collapse
|
106
|
Random mutagenesis analysis and identification of a novel C 2H 2-type transcription factor from the nematode-trapping fungus Arthrobotrys oligospora. Sci Rep 2017; 7:5640. [PMID: 28717216 PMCID: PMC5514059 DOI: 10.1038/s41598-017-06075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/12/2017] [Indexed: 01/04/2023] Open
Abstract
Arthrobotrys oligospora is a typical nematode-trapping fungus. In this study, 37 transformants of A. oligospora were obtained by REMI (restriction enzyme mediated integration) method and phenotypic properties of nine transformants were analyzed. The nine transformants showed differences in growth, conidiation, trap formation, stress tolerance, and/or pathogenicity among each other and with those of the parental wild-type strain (WT). The insertional sites of the hph cassette were identified in transformants X5 and X13. In X5, the cassette was inserted in the non-coding region between AOL_s00076g273 (76g273) and AOL_s00076g274 (76g274) and the transcription of 76g274, but not 76g273, was enhanced in X5. 76g274p had two conserved domains and was predicted as a nucleoprotein, which we confirmed by its nuclear localization in Saccharomyces cerevisiae using the green fluorescent protein-fused 76g274p. The transcription of 76g274 was stimulated or inhibited by several environmental factors. The sporulation yields of 76g274-deficient mutants were decreased by 70%, and transcription of several sporulation-related genes was severely diminished compared to the WT during the conidiation. In summary, a method for screening mutants was established in A. oligospora and using the method, we identified a novel C2H2-type transcription factor that positively regulates the conidiation of A. oligospora.
Collapse
|
107
|
Yue X, Que Y, Deng S, Xu L, Oses-Ruiz M, Talbot NJ, Peng Y, Wang Z. The cyclin dependent kinase subunit Cks1 is required for infection-associated development of the rice blast fungusMagnaporthe oryzae. Environ Microbiol 2017; 19:3959-3981. [DOI: 10.1111/1462-2920.13796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaofeng Yue
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Yawei Que
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Shuzhen Deng
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Lin Xu
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Miriam Oses-Ruiz
- School of Biosciences; University of Exeter, Geoffrey Pope Building; Exeter EX4 4QD UK
| | - Nicholas J. Talbot
- School of Biosciences; University of Exeter, Geoffrey Pope Building; Exeter EX4 4QD UK
| | - Youliang Peng
- State Key Laboratory of Agribiotechnology and MOA Key Laboratory of Plant Pathology; China Agricultural University; Beijing 100193, People's Republic of China
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| |
Collapse
|
108
|
Selvaraj P, Tham HF, Ramanujam R, Naqvi NI. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast. Mol Microbiol 2017; 105:484-504. [PMID: 28544028 DOI: 10.1111/mmi.13713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 02/03/2023]
Abstract
The cAMP-dependent PKA signalling plays a central role in growth, asexual development and pathogenesis in fungal pathogens. Here, we functionally characterised RPKA, the regulatory subunit of cAMP/PKA and studied the dynamics and organisation of the PKA subunits in the rice blast pathogen Magnaporthe oryzae. The RPKA subunit was essential for proper vegetative growth, asexual sporulation and surface hydrophobicity in M. oryzae. A spontaneous suppressor mutation, SMR19, that restored growth and conidiation in the RPKA deletion mutant was isolated and characterised. SMR19 enhanced conidiation and appressorium formation but failed to suppress the pathogenesis defects in rpkAΔ. The PKA activity was undetectable in the mycelial extracts of SMR19, which showed a single mutation (val242leu) in the highly conserved active site of the catalytic subunit (CPKA) of cAMP/PKA. The two subunits of cAMP/PKA showed different subcellular localisation patterns with RpkA being predominantly nucleocytoplasmic in conidia, while CpkA was largely cytosolic and/or vesicular. The CpkA anchored RpkA in cytoplasmic vesicles, and localisation of PKA in the cytoplasm was governed by CpkA in a cAMP-dependant or independent manner. We show that there exists a tight regulation of PKA subunits at the level of transcription, and the cAMP signalling is differentially compartmentalised in a stage-specific manner in rice blast.
Collapse
Affiliation(s)
- Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Hong Fai Tham
- School of Applied Science, Temasek Polytechnic, Singapore
| | - Ravikrishna Ramanujam
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
109
|
Sabnam N, Roy Barman S. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus. Fungal Genet Biol 2017; 105:37-51. [PMID: 28576657 DOI: 10.1016/j.fgb.2017.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 11/26/2022]
Abstract
We have selected and characterized a unique Conserved Fungal-specific Extra-cellular Membrane-spanning (CFEM) domain containing PTH11 like G-protein coupled receptor (GPCR), which is responsible for Water wettability, Infection, Surface sensing and Hyper-conidiation (WISH). The pathogenicity gene WISH is predicted to encode a novel seven transmembrane protein in the rice blast fungus, Magnaporthe oryzae, one of the deadliest pathogens of rice. We generated knockout mutants through a homologous recombination-based method to understand the function of the gene. These mutants are nonpathogenic due to a defect in sensing hydrophobic surface and appressorium differentiation. The mutant failed to undergo early events of pathogenesis, and appressorium development is diminished on inductive hydrophobic surface and was unable to penetrate susceptible rice leaves. The Δwish mutant did not develop any appressorium, suggesting that WISH protein is required for appressorium morphogenesis and is also involved in host surface recognition. We examined various aspects of pathogenesis and the results indicated involvement of WISH in preventing autolysis of vegetative hyphae, determining surface hydrophobicity and maintenance of cell-wall integrity. WISH gene from M. oryzae strain B157 complemented the Δwish mutant, indicating functional authenticity. Exogenous activation of cellular signaling failed to suppress the defects in Δwish mutants. These findings suggest that WISH GPCR senses diverse extracellular signals to play multiple roles and might have effects on PTH11 and MPG1 genes especially as an upstream effector of appressorium differentiation. It is for the first time that a typical GPCR containing seven transmembrane helices involved in the early events of plant pathogenesis of M. oryzae has been functionally characterized.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
110
|
Guo M, Tan L, Nie X, Zhang Z. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Virulence 2017; 8:1335-1354. [PMID: 28448785 DOI: 10.1080/21505594.2017.1323156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In eukaryotic organisms, myosin proteins are the major ring components that are involved in cytokinesis. To date, little is known about the biologic functions of myosin proteins in Magnaporthe oryzae. In this study, insertional mutagenesis conducted in M. oryzae led to identification of Momyo2, a pathogenicity gene predicted to encode a class-II myosin protein homologous to Saccharomyces cerevisiae Myo1. According to qRT-PCR, Momyo2 is highly expressed during early infectious stage. When this gene was disrupted, the resultant mutant isolates were attenuated in virulence on rice and barley. These were likely caused by defective mycelial growth and frequent emergence of branch hyphae and septum. The Momyo2 mutants were also defective in conidial and appressorial development, characterized by abnormal conidia and appressoria. These consequently resulted in plant tissue penetration defects that the wild type strain lacked, and mutants being less pathogenic. Cytorrhysis assay, CFW staining of appressorium and monitoring of protoplast release suggested that appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, impairments in conidial germination, glycogen metabolites, tolerance to exogenous stresses and scavenging of host-derived reactive oxygen species were associated with defects on appressorium mediated penetration, and therefore attenuated the virulence of Momyo2 mutants. Taken together, these results suggest that Momyo2 plays pleiotropic roles in fungal development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Leyong Tan
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Xiang Nie
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Zhengguang Zhang
- b Department of Plant Pathology , College of Plant Protection, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
111
|
The glycogen synthase kinase MoGsk1, regulated by Mps1 MAP kinase, is required for fungal development and pathogenicity in Magnaporthe oryzae. Sci Rep 2017; 7:945. [PMID: 28424497 PMCID: PMC5430414 DOI: 10.1038/s41598-017-01006-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
Magnaporthe oryzae, the causal agent of blast disease, is one of the most destructive plant pathogens, causing significant yield losses on staple crops such as rice and wheat. The fungus infects plants with a specialized cell called an appressorium, whose development is tightly regulated by MAPK signaling pathways following the activation of upstream sensors in response to environmental stimuli. Here, we show the expression of the Glycogen synthase kinase 3 (GSK3) MoGSK1 in M. oryzae is regulated by Mps1 MAP kinase, particularly under the stressed conditions. Thus, MoGSK1 is functionally characterized in this study. MoGsk1 is functionally homologues to the Saccharomyces cerevisiae GSK3 homolog MCK1. Gene replacement of MoGSK1 caused significant delay in mycelial growth, complete loss of conidiation and inability to penetrate the host surface by mycelia-formed appressorium-like structures, consequently resulting in loss of pathogenicity. However, the developmental and pathogenic defects of Δmogsk1 are recovered via the heterologous expression of Fusarium graminearum GSK3 homolog gene FGK3, whose coding products also shows the similar cytoplasmic localization as MoGsk1 does in M. oryzae. By contrast, overexpression of MoGSK1 produced deformed appressoria in M. oryzae. In summary, our results suggest that MoGsk1, as a highly conservative signal modulator, dictates growth, conidiation and pathogenicity of M. oryzae.
Collapse
|
112
|
Huh A, Dubey A, Kim S, Jeon J, Lee YH. MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2017; 33:193-205. [PMID: 28381966 PMCID: PMC5378440 DOI: 10.5423/ppj.oa.11.2016.0244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 05/04/2023]
Abstract
Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ΔMojmj1 restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.
Collapse
Affiliation(s)
- Aram Huh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Akanksha Dubey
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541,
Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541,
Korea
- Co-corresponding authors. J Jeon Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail) . YH Lee, Phone) +82-2-880-4674, FAX) +82-2-873-2317, E-mail)
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
- Center for Fungal Genetic Resources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Co-corresponding authors. J Jeon Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail) . YH Lee, Phone) +82-2-880-4674, FAX) +82-2-873-2317, E-mail)
| |
Collapse
|
113
|
Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics 2017; 18:266. [PMID: 28356071 PMCID: PMC5372324 DOI: 10.1186/s12864-017-3642-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. Results Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. Conclusions The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. napus by S. sclerotiorum and provides information for further characterization of genes involved in the S. sclerotiorum-host plant interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3642-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shirin Seifbarghi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M Hossein Borhan
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
114
|
Matheis S, Yemelin A, Scheps D, Andresen K, Jacob S, Thines E, Foster A. Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation. Microbiol Res 2017; 196:106-117. [DOI: 10.1016/j.micres.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/26/2022]
|
115
|
Liu X, Cai Y, Zhang X, Zhang H, Zheng X, Zhang Z. Carbamoyl Phosphate Synthetase Subunit MoCpa2 Affects Development and Pathogenicity by Modulating Arginine Biosynthesis in Magnaporthe oryzae. Front Microbiol 2016; 7:2023. [PMID: 28066349 PMCID: PMC5166579 DOI: 10.3389/fmicb.2016.02023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023] Open
Abstract
Arginine is a semi-essential amino acid that affects physiological and biochemical functions. The CPA2 gene in yeast encodes a large subunit of arginine-specific carbamoyl phosphate synthetase (CPS) and is involved in arginine biosynthesis. Here, an ortholog of yeast CPA2 was identified in the rice blast fungus Magnaporthe oryzae, and was named MoCPA2. MoCpa2 is an 1180-amino acid protein which contains an ATP grasp domain and two CPSase domains. Targeted deletion of MoCPA2 supported its role in de novo arginine biosynthesis in M. oryzae as mutant phenotypes were complemented by arginine but not ornithine. The ΔMocpa2 mutant exhibited defects in asexual development and pathogenicity but not appressorium formation. Further examination revealed that the invasive hyphae of the ΔMocpa2 mutant were restricted mainly to the primary infected cells. In addition, the ΔMocpa2 mutant was unable to induce a plant defense response and had the ability to scavenge ROS during pathogen-plant interactions. Structure analysis revealed that the ATP grasp domain and each CPS domain were indispensable for the proper localization and full function of MoCpa2. In summary, our results indicate that MoCpa2 plays an important role in arginine biosynthesis, and affects growth, conidiogenesis, and pathogenicity. These results suggest that research into metabolism and processes that mediate amino acid synthesis are valuable for understanding M. oryzae pathogenesis.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Yongchao Cai
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Haifeng Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Xiaobo Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| | - Zhengguang Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
116
|
Luo X, Mao H, Wei Y, Cai J, Xie C, Sui A, Yang X, Dong J. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2016; 17:1364-1381. [PMID: 26857810 PMCID: PMC6638448 DOI: 10.1111/mpp.12367] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 05/05/2023]
Abstract
Verticillium dahliae is a soil-borne, hemibiotrophic phytopathogenic fungus that causes wilting in crop plants. Here, we constructed a random insertional mutant library using Agrobacterium tumefaciens-mediated transformation to study the pathogenicity and regulatory mechanisms of V. dahliae. The fungal-specific transcription factor-encoding gene Vdpf was shown to be associated with vegetative growth and virulence, with the highest transcript expression occurring during conidia formation in the V991 strain. The deletion mutants (ΔVdpf) and insertion mutants (IMΔVdpf) produced fewer conidia than did the wild-type (WT) fungi, which contributed to the reduced virulence. Unlike the WT, the complemented strains and IMΔVdpf, ΔVdpf formed swollen, thick-walled and hyaline mycelium rather than melanized microsclerotia. The ΔVdpf mutants were melanin deficient, with undetectable expression of melanin biosynthesis-related genes (Brn1, Brn2 and Scd1). The melanin deficiency was related to cyclic adenosine monophosphate (cAMP) and the G-protein-coupled signalling pathways in this study. Similar to the WT and complemented strains, the ΔVdpf and IMΔVdpf mutants could also successfully penetrate into cotton and tobacco roots, but displayed reduced virulence because of lower biomass in the plant roots and significantly reduced expression of pathogenicity-related genes in V. dahliae. In conclusion, these results provide insights into the role of Vdpf in melanized microsclerotia formation, conidia production and pathogenicity.
Collapse
Affiliation(s)
- Xiumei Luo
- The School of Life ScienceSouthwest UniversityChongqing400715China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Hongqiang Mao
- The School of Life ScienceSouthwest UniversityChongqing400715China
| | - Yunming Wei
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Jie Cai
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Anping Sui
- The School of Life ScienceSouthwest UniversityChongqing400715China
| | - Xingyong Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Jinyan Dong
- The School of Life ScienceSouthwest UniversityChongqing400715China
| |
Collapse
|
117
|
Zhu X, Zhou T, Chen L, Zheng S, Chen S, Zhang D, Li G, Wang Z. Arf6 controls endocytosis and polarity during asexual development of Magnaporthe oryzae. FEMS Microbiol Lett 2016; 363:fnw248. [PMID: 27810885 DOI: 10.1093/femsle/fnw248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/27/2016] [Accepted: 10/28/2016] [Indexed: 01/03/2023] Open
Abstract
Asexual development of phytopathogenic fungi such as Magnaporthe oryzae involves morphological changes that require spatiotemporal regulation of polarized growth. ADP-ribosylation factor 6 (Arf6) is a small GTPase known to regulate membrane trafficking and organization of the actin cytoskeleton at the cell surface, and consequently has an impact on cell morphology and polarity. In this study, we have functionally characterized the Arf6 homolog in M. oryzae, showing that ▵arf6 exhibits hyperbranching at hyphal tips and morphologically abnormal conidia as a result of defective polarized growth. ▵arf6 hyphae are also defective in endocytosis as evidenced by a significant delay of FM4-64 uptake. Most ▵arf6 conidia display reduced conidial length, and have defects in conidial septum formation and nuclear distribution. Furthermore, ▵arf6 conidia show a disorganized actin cytoskeleton with random distribution of actin patches at the cell cortex and reduced accumulation of tropomyosin. Arf6-GFP is found to concentrate at the septum area and possibly in endocytic vesicles. Taken together, our data indicate that Arf6 plays an essential role in endocytosis and polarity establishment during asexual development of M. oryzae.
Collapse
Affiliation(s)
- Xiaohan Zhu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tengsheng Zhou
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China .,Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liqiong Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shiqin Zheng
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shaohua Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongmei Zhang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China .,Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
118
|
Secreted Alpha-N-Arabinofuranosidase B Protein Is Required for the Full Virulence of Magnaporthe oryzae and Triggers Host Defences. PLoS One 2016; 11:e0165149. [PMID: 27764242 PMCID: PMC5072668 DOI: 10.1371/journal.pone.0165149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/09/2016] [Indexed: 12/23/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most devastating fungal diseases of rice and results in a huge loss of rice productivity worldwide. During the infection process, M. oryzae secretes a large number of glycosyl hydrolase proteins into the host apoplast to digest the cell wall and facilitate fungal ingression into host tissues. In this study, we identified a novel arabinofuranosidase-B (MoAbfB) protein that is secreted by M. oryzae during fungal infection. Deletion of MoAbfB from M. oryzae resulted in reduced disease severity in rice. Biochemical assays revealed that the MoAbfB protein exhibited arabinofuranosidase activity and caused degradation of rice cell wall components. Interestingly, pre-treatment of rice with the MoAbfB protein inhibited fungal infection by priming defence gene expression. Our findings suggest that MoAbfB secretion affects M. oryzae pathogenicity by breaking down the host cell wall, releasing oligosaccharides that may be recognized by the host to trigger innate immune responses.
Collapse
|
119
|
Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2016; 211:1035-51. [PMID: 27041000 DOI: 10.1111/nph.13948] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/24/2016] [Indexed: 05/21/2023]
Abstract
The Cys2 -His2 (C2H2) zinc finger protein family is the second-largest family of transcription factors (TFs) in Magnaporthe oryzae, the causal fungus responsible for the destructive rice blast disease. However, little is known about the roles of most C2H2 TFs in the development and pathogenicity of M. oryzae. The roles of 47 C2H2 genes in development and pathogenicity were investigated by gene deletion in M. oryzae. The TF-dependent genes in mycelia or appressoria were analyzed with RNA sequencing and quantitative PCR (qPCR). Forty-four C2H2 genes are involved in growth (20 genes), conidiation (28 genes), appressorium formation (four genes) and pathogenicity (22 genes) in M. oryzae. Of these, MGG_14931, named as VRF1, is required for pathogenicity, specifically controlling appressorium maturation by affecting the expression of genes related to appressorial structure and function, including melanin biosynthesis, chitin catabolism, lipid metabolism, proteolysis, transmembrane transport, and response to oxidative stress; MGG_01776, named as VRF2, is required for plant penetration and invasive growth; conidiation-related gene CON7 is required for conidial differentiation; and MoCREA, encoding a carbon catabolite repression protein, is a novel repressor of lipid catabolism when glucose obtainable in M. oryzae. This study provides many insights into the regulation of growth, asexual development, appressorium formation, and pathogenicity by C2H2 TFs in M. oryzae.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lilin Zhang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dandan Sun
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang Province, 31006, China
| | - John Hugh Snyder
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, 450001, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
120
|
Pennington HG, Li L, Spanu PD. Identification and selection of normalization controls for quantitative transcript analysis in Blumeria graminis. MOLECULAR PLANT PATHOLOGY 2016; 17:625-33. [PMID: 26238194 PMCID: PMC5102671 DOI: 10.1111/mpp.12300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The investigation of obligate biotrophic pathogens, for example Blumeria graminis, presents a number of challenges. The sensitivity of many assays is reduced because of the presence of host material. Furthermore, the fungal structures inside and outside of the plant possess very different characteristics. Normalization genes are used in quantitative real-time polymerase chain reaction (qPCR) to compensate for changes as a result of the quantity and quality of template material. Such genes are used as references against which genes of interest are compared, enabling true quantification. Here, we identified six potential B. graminis and five barley genes for qPCR normalization. The relative changes in abundance of the transcripts were assayed across an infection time course in barley epidermis, in B. graminis epiphytic structures and haustoria. The B. graminis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT) and histone 3 (H3) genes and the barley GAPDH, ubiquitin (UBI) and α-tubulin 2B (TUBA2B) genes were optimal normalization controls for qPCR during the infection cycle. These genes were then used for normalization in the quantification of the members of a Candidate Secreted Effector Protein (CSEP) family 21, a conidia-specific gene and barley genes encoding putative interactors of CSEP0064. The analysis demonstrates the importance of identifying which reference genes are appropriate for each investigation.
Collapse
Affiliation(s)
- Helen G Pennington
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Linhan Li
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
121
|
Martin-Urdiroz M, Oses-Ruiz M, Ryder LS, Talbot NJ. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2016; 90:61-68. [DOI: 10.1016/j.fgb.2015.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
122
|
Wang Y, Wu J, Kim SG, Tsuda K, Gupta R, Park SY, Kim ST, Kang KY. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:299-312. [PMID: 26780420 DOI: 10.1094/mpmi-12-15-0266-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Magnaporthe oryzae snodprot1 homolog (MSP1), secreted by M. oryzae, is a cerato-platanin family protein. msp1-knockout mutants have reduced virulence on barley leaves, indicating that MSP1 is required for the pathogenicity of rice blast fungus. To investigate the functional roles of MSP1 and its downstream signaling in rice, recombinant MSP1 was produced in Escherichia coli and was assayed for its functionality. Application of MSP1 triggered cell death and elicited defense responses in rice. MSP1 also induced H2O2 production and autophagic cell death in both suspension-cultured cells and rice leaves. One or more protein kinases triggered cell death, jasmonic acid and abscisic acid enhanced cell death, while salicylic acid suppressed it. We demonstrated that the secretion of MSP1 into the apoplast is a prerequisite for triggering cell death and activating defense-related gene expression. Furthermore, pretreatment of rice with a sublethal MSP1 concentration potentiated resistance to the pathogen. Taken together, our results showed that MSP1 induces a high degree of cell death in plants, which might be essential for its virulence. Moreover, rice can recognize MSP1, resulting in the induction of pathogen-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Yiming Wang
- 1 Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
- 2 Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Jingni Wu
- 2 Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
- 3 Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, Korea
| | - Sang Gon Kim
- 1 Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Kenichi Tsuda
- 2 Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Ravi Gupta
- 4 Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea; and
| | - Sook-Young Park
- 5 Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sun Tae Kim
- 4 Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea; and
| | - Kyu Young Kang
- 1 Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
- 3 Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, Korea
| |
Collapse
|
123
|
MoCps1 is important for conidiation, conidial morphology and virulence in Magnaporthe oryzae. Curr Genet 2016; 62:861-871. [DOI: 10.1007/s00294-016-0593-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
|
124
|
Comparative transcriptome analysis of fruiting body and sporulating mycelia of Villosiclava virens reveals genes with putative functions in sexual reproduction. Curr Genet 2016; 62:575-84. [DOI: 10.1007/s00294-015-0563-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
125
|
Yue X, Que Y, Xu L, Deng S, Peng Y, Talbot NJ, Wang Z. ZNF1 Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:22-35. [PMID: 26441322 DOI: 10.1094/mpmi-09-15-0201-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rice blast fungus Magnaporthe oryzae forms specialized infection structures called appressoria which are essential for gaining entry to plant tissue. Here, we report the identification of a novel nonpathogenic T-DNA-tagged mutant XF696 of M. oryzae with a single insertion in the promoter of ZNF1, which encodes a putative transcription factor (TF). Targeted gene deletion mutants of ZNF1 are nonpathogenic and unable to develop appressoria. However, Δznf1 mutants still respond to exogenous cyclic AMP on hydrophilic surfaces and can sense hydrophobic surfaces, initiating the differentiation of germ tubes. Interestingly, Δznf1 mutants also produce significantly more conidia compared with the isogenic wild-type strain. Quantitative reverse-transcription polymerase chain reaction analysis and green fluorescent protein fusion experiments revealed that expression of ZNF1 was highly induced during germination and appressorium development in M. oryzae and potentially regulated by the Pmk1 mitogen-activated protein kinase pathway. We observed that Δznf1 mutants are affected in mitosis and impaired in mobilization and degradation of lipid droplets and glycogen reserves during appressorium differentiation. Site-directed mutagenesis confirmed that three of the four C2H2 zinc-finger domains are essential for the function of Znf1. Taken together, we conclude that a C2H2 zinc-finger TF encoded by ZNF1 is essential for appressorium development by the rice blast fungus.
Collapse
Affiliation(s)
- Xiaofeng Yue
- 1 State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Yawei Que
- 1 State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Lin Xu
- 1 State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Shuzhen Deng
- 1 State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Youliang Peng
- 2 State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Nicholas J Talbot
- 3 School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, United Kingdom
| | - Zhengyi Wang
- 1 State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| |
Collapse
|
126
|
Ghosh AK, Wangsanut T, Fonzi WA, Rolfes RJ. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans. FEMS Yeast Res 2015; 15:fov093. [PMID: 26472755 PMCID: PMC4705307 DOI: 10.1093/femsyr/fov093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen and can cause life-threatening infections. Filamentous growth is critical in the pathogenicity of C. albicans, as the transition from yeast to hyphal forms is linked to virulence and is also a pivotal process in fungal biofilm development. Homeodomain-containing transcription factors have been linked to developmental processes in fungi and other eukaryotes. We report here on GRF10, a homeobox transcription factor-encoding gene that plays a role in C. albicans filamentation. Deletion of the GRF10 gene, in both C. albicans SN152 and BWP17 strain backgrounds, results in mutants with strongly decreased hyphal growth. The mutants are defective in chlamydospore and biofilm formation, as well as showing dramatically attenuated virulence in a mouse infection model. Expression of the GRF10 gene is highly induced during stationary phase and filamentation. In summary, our study emphasizes a new role for the homeodomain-containing transcription factor in morphogenesis and pathogenicity of C. albicans.
Collapse
Affiliation(s)
- Anup K Ghosh
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | - William A Fonzi
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
127
|
Chen Y, Zhai S, Sun Y, Li M, Dong Y, Wang X, Zhang H, Zheng X, Wang P, Zhang Z. MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2015; 16:799-810. [PMID: 25583028 PMCID: PMC6638498 DOI: 10.1111/mpp.12235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The general transcriptional repressor Tup1 proteins play important regulatory roles in the growth and development of fungi. In this report, we characterized MoTup1, a protein homologous to Tup1 of Saccharomyces cerevisiae, from M. oryzae. Disruption of MoTUP1 resulted in severe mycelial growth reduction and a defect in conidiogenesis. We found that MoTup1 is required for the maintenance of cell wall integrity by regulating the expression of the genes involved in cell wall biosynthesis. Pathogenicity assays indicated that the ΔMotup1 mutants lost the ability to invade both rice and barley hosts. Moreover, observation of rice epidermis penetration showed that the hyphal tips of the mutants could still form appressorium-like structures, but were unable to invade host cells. Taken together, our results demonstrate that M. oryzae MoTup1 is an important regulatory factor in fungal growth, development and pathogenesis on hosts.
Collapse
Affiliation(s)
- Yue Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Su Zhai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yi Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Mengying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ping Wang
- Department of Pediatrics and the Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
128
|
Han JH, Lee HM, Shin JH, Lee YH, Kim KS. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol 2015; 17:4672-89. [PMID: 26248223 DOI: 10.1111/1462-2920.13010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
Conidiation and appressorium differentiation are key processes for polycyclic dissemination and infection in many pathogens. Our previous study using DNA microarray led to the discovery of the MoYAK1 gene in Magnaporthe oryzae that is orthologous to YAK1 in Saccharomyces cerevisiae. Although the mechanistic roles of YAK1 in S. cerevisiae have been described, roles of MoYAK1 in M. oryzae, a phytopathogenic fungus responsible for rice blast, remain uncharacterized. Targeted disruption of MoYAK1 results in pleiotropic defects in M. oryzae development and pathogenicity. The ΔMoyak1 mutant exhibits a severe reduction in aerial hyphal formation and conidiation. Conidia in the ΔMoyak1 are delayed in germination and demonstrate decreased glycogen content in a conidial age-dependent manner. The expression of hydrophobin-coding genes is dramatically changed in the ΔMoyak1 mutant, leading to a loss of surface hydrophobicity. Unlike the complete inability of the ΔMoyak1 mutant to develop appressoria on an inductive surface, the mutant forms appressoria of abnormal morphology in response to exogenous cyclic adenosine-5'-monophosphate and host-driven signals, which are all defective in penetrating host tissues due to abnormalities in glycogen and lipid metabolism, turgor generation and cell wall integrity. These data indicate that MoYAK1 is a protein kinase important for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Joon-Hee Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Hye-Min Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Jong-Hwan Shin
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Kyoung Su Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.,BioHerb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea
| |
Collapse
|
129
|
MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Appl Microbiol Biotechnol 2015; 99:8075-88. [DOI: 10.1007/s00253-015-6820-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/01/2015] [Accepted: 07/05/2015] [Indexed: 12/17/2022]
|
130
|
Khan IA, Ning G, Liu X, Feng X, Lin F, Lu J. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae. Microbiol Res 2015; 178:51-8. [PMID: 26302847 DOI: 10.1016/j.micres.2015.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/06/2015] [Accepted: 06/07/2015] [Indexed: 01/21/2023]
Abstract
The mitochondrial fission protein Fis1 regulates yeast mitochondrial fission and is required for ethanol-induced mitochondrial fragmentation and apoptosis. To examine the function of Fis1 in a plant pathogenic fungus, we cloned the MoFIS1 gene, a homolog of Saccharomyces cerevisiae FIS1, from Magnaporthe oryzae and characterized its function by targeted gene deletion and mutant phenotypic analysis. MoFIS1 deletion mutants were unaltered in conidial germination, appressorium formation, and mating tests, but were severely defective in colony growth, conidiation, virulence on rice and barley, growth under nitrogen and glucose deficiency, and growth under osmotic stress. Blast lesions on rice leaves caused by the ΔMofis1 strain were significantly reduced, were non-proliferating, and were less coalesced as compared to the highly coalesced and proliferating lesions resulting from infection with the wild-type strain. The defects in growth, conidiation, and virulence of the mutant were restored in a complementation strain of ΔMofis1. A MoFis1-GFP fusion protein co-localized with Mitotracker red in mitochondria. These results show that MoFIS1 encodes a mitochondrial protein that regulates fungal growth, conidiation, and virulence in M. oryzae.
Collapse
Affiliation(s)
- Irshad Ali Khan
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Guoao Ning
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaoxiao Feng
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, Henan Province, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
131
|
Mir AA, Park SY, Abu Sadat M, Kim S, Choi J, Jeon J, Lee YH. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Sci Rep 2015; 5:11831. [PMID: 26134974 PMCID: PMC4488832 DOI: 10.1038/srep11831] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/04/2015] [Indexed: 11/14/2022] Open
Abstract
Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus.
Collapse
Affiliation(s)
- Albely Afifa Mir
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Sook-Young Park
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Md Abu Sadat
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Junhyun Jeon
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
132
|
Jacob S, Foster AJ, Yemelin A, Thines E. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal Biol 2015; 119:580-94. [DOI: 10.1016/j.funbio.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
|
133
|
Gowda M, Shirke MD, Mahesh H, Chandarana P, Rajamani A, Chattoo BB. Genome analysis of rice-blast fungus Magnaporthe oryzae field isolates from southern India. GENOMICS DATA 2015; 5:284-91. [PMID: 26484270 PMCID: PMC4583678 DOI: 10.1016/j.gdata.2015.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
The Indian subcontinent is the center of origin and diversity for rice (Oryza sativa L.). The O. sativa ssp. indica is a major food crop grown in India, which occupies the first and second position in area and production, respectively. Blast disease caused by Magnaporthe oryzae is a major constraint to rice production. Here, we report the analysis of genome architecture and sequence variation of two field isolates, B157 and MG01, of the blast fungus from southern India. The 40 Mb genome of B157 and 43 Mb genome of MG01 contained 11,344 and 11,733 predicted genes, respectively. Genomic comparisons unveiled a large set of SNPs and several isolate specific genes in the Indian blast isolates. Avr genes were analyzed in several sequenced Magnaporthe strains; this analysis revealed the presence of Avr-Pizt and Avr-Ace1 genes in all the sequenced isolates. Availability of whole genomes of field isolates from India will contribute to global efforts to understand genetic diversity of M. oryzae population and to track the emergence of virulent pathotypes. The first genomic study of Magnaporthe from Indian subcontinent Provided information about genomic variations in terms of SNPs, InDels and ICVs due to transposable elements Identified novel genes specific to Indian isolates Genome wide antisense transcripts identified from this study Identified Magnaporthe specific pathogenicity genes that are absent in non-pathogenic Ascomycetes fungi
Collapse
Affiliation(s)
- Malali Gowda
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, Bangalore 560065, India
- Corresponding authors. Tel.: + 91 80 67185113.
| | - Meghana D. Shirke
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, Bangalore 560065, India
| | - H.B. Mahesh
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, Bangalore 560065, India
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bangalore, India
| | - Pinal Chandarana
- Centre for Genome Research, Department of Microbiology and Biotechnology Centre, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | | | - Bharat B. Chattoo
- Centre for Genome Research, Department of Microbiology and Biotechnology Centre, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, India
- Corresponding authors. Tel.: + 91 80 67185113.
| |
Collapse
|
134
|
Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathog 2015; 11:e1004801. [PMID: 25837042 PMCID: PMC4383609 DOI: 10.1371/journal.ppat.1004801] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. Genetic variations in pathogens, such as the causal agent of rice blast Magnaporthe oryzae, often lead to circumvention of disease-resistance cultivars. Previous genome-wide analyses of model organisms suggest that pathogen effectors are also rapidly evolving, especially in regions with high genome plasticity. However, genetic variations among different isolates remain largely unknown in M. oryzae, particularly at the genome and transcriptome levels. In this study, we provided a systematic genomic and interaction transcriptome profile for a dominant rice blast field isolate, resulting in identification of 134 candidate effectors. Two effectors, Iug6 and Iug9, and one pathogenicity-related (PaR) gene product, Iug18, were subjected to functional characterization. We found that Iug6 and Iug9 are located in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, while Iug18 appears to be a novel PaR protein. Our studies support the hypothesis that isolate-unique genes may serve as a source of genetic variability in the M. oryzae population encountering different environments. Our studies also facilitate further understanding of effectors and genomic variations in pathogenicity of M. oryzae.
Collapse
|
135
|
Phylogenic analysis revealed an expanded C₂H₂-homeobox subfamily and expression profiles of C₂H₂ zinc finger gene family in Verticillium dahliae. Gene 2015; 562:169-79. [PMID: 25725127 DOI: 10.1016/j.gene.2015.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/26/2023]
Abstract
C2H2 zinc finger (CZF) proteins are a major class of transcription factors that play crucial roles in fungal growth, development, various stress responses, and virulence. Little genome-wide data is available regarding the roles of CZF proteins in Verticillium dahliae, a destructive pathogen that causes vascular wilt disease in more than 200 plant species. We identified a total of 79 typical CZF genes in V. dahliae. Comparative analysis revealed that four plant pathogenic fungi, V. dahliae, Fusarium oxysporum, Magnaporthe oryzae, and Botrytis cinerea, have comparable numbers of predicted CZF genes with similar characteristics. Phylogenetic analysis identified a C2H2-homeobox subfamily in V. dahliae containing seven genes with similar gene structures. V. dahliae and F. oxysporum (Hypocreomycetidae) have more genes of this subfamily than M. oryzae (Sordariomycetidae) and B. cinerea (Leotiomycetes). Furthermore, gene-expression analysis of the smoke tree wilt fungus V. dahliae strain XS11 using digital gene-expression profiling and RT-qPCR revealed that a number of CZF genes were differentially expressed during microsclerotia formation, nutritional starvation, and simulated in planta conditions. Furthermore, the expression profiles revealed that some CZF genes were overrepresented during multiple stages, indicating that they might play diverse roles. Our results provide useful information concerning the functions of CZF genes in microsclerotia formation, nutritional stress responses, and pathogenicity in V. dahliae, and form a basis for future functional studies of these genes.
Collapse
|
136
|
Dong Y, Zhao Q, Liu X, Zhang X, Qi Z, Zhang H, Zheng X, Zhang Z. MoMyb1 is required for asexual development and tissue-specific infection in the rice blast fungus Magnaporthe oryzae. BMC Microbiol 2015; 15:37. [PMID: 25885817 PMCID: PMC4336695 DOI: 10.1186/s12866-015-0375-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/04/2015] [Indexed: 11/28/2022] Open
Abstract
Background The Myb super-family of proteins contain a group of functionally diverse transcriptional activators found in plant, animal and fungus. Myb proteins are involved in cell proliferation, differentiation and apoptosis, and have crucial roles in telomeres. The purpose of this study was to characterize the biological function of Myb1 protein in the rice blast fungus Magnaporthe oryzae. Results We identified the Saccharomyces cerevisiae BAS1 homolog MYB1 in M. oryzae, named MoMyb1. MoMyb1 encodes a protein of 322 amino acids and has two SANT domains and is well conserved in various organisms. Targeted gene deletion of MoMYB1 resulted in a significant reduction in vegetative growth and showed defects in conidiation and conidiophore development. Quantitative RT-PCR analysis revealed that the transcription levels of several conidiophore-related genes were apparently decreased in the ΔMomyb1 mutant. Inoculation with mycelia mats displayed that the virulence of the ΔMomyb1 mutant was not changed on rice leaves but was non-pathogenic on rice roots in comparison to the wild type Guy11. In addition, ∆Momyb1 mutants showed increased resistance to osmotic stresses but more sensitive to cell wall stressor calcofluor white (CFW). Further analysis revealed that MoMyb1 has an important role in the cell wall biosynthesis pathway. Conclusion This study provides the evidence that MoMyb1 is a key regulator involved in conidiogenesis, stress response, cell wall integrity and pathogenesis on rice roots in the filamentous phytopathogen M. oryzae. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0375-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Qian Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xiaofang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| |
Collapse
|
137
|
Gao J, Cao M, Ye W, Li H, Kong L, Zheng X, Wang Y. PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean. MOLECULAR PLANT PATHOLOGY 2015; 16:61-70. [PMID: 24889742 PMCID: PMC6638454 DOI: 10.1111/mpp.12163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean.
Collapse
Affiliation(s)
- Jian Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
138
|
Kong S, Park SY, Lee YH. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol 2014; 17:1425-43. [PMID: 25314920 DOI: 10.1111/1462-2920.12633] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/26/2023]
Abstract
Regulatory roles of the basic leucine zipper (bZIP) transcription factors (TFs) in fungi have been identified in diverse cellular processes such as development, nutrient utilization and various stress responses. In this study, the 22 Magnaporthe oryzae genes encoding bZIP TFs were systematically characterized. Phylogenetic analysis of fungal bZIP TFs revealed that seven MobZIPs are Magnaporthe-specific, while others belongs to 15 clades of orthologous Ascomycota genes. Expression patterns of MobZIPs under various conditions showed that they are highly stress responsive. We generated deletion mutants for 13 MobZIPs: nine with orthologues in other fungal species and four Magnaporthe-specific ones. Seven of them exhibited defects in mycelial growth, development and/or pathogenicity. Consistent with the conserved functions of the orthologues, MobZIP22 and MobZIP13 played a role in sulfur metabolism and iron homeostasis respectively. Along with MobZIP22 and MobZIP13, one Magnaporthe-specific gene, MobZIP11 is essential for pathogenicity in a reactive oxygen species-dependent manner. Taken together, our results will contribute to understanding the regulatory mechanisms of the bZIP TF gene family in fungal development, adaptation to environmental stresses and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
139
|
Shin JH, Han JH, Kim KS. Genome-wide analyses of DNA-binding proteins harboring AT-hook motifs and their functional roles in the rice blast pathogen, Magnaporthe oryzae. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
140
|
Lee Y, Min K, Son H, Park AR, Kim JC, Choi GJ, Lee YW. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1344-1355. [PMID: 25083910 DOI: 10.1094/mpmi-05-14-0145-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fusarium graminearum is an important fungal plant pathogen that causes serious losses in cereal crop yields and mycotoxicoses in humans and livestock. In this study, we characterized an insertion mutant, Z39R9282, with pleiotropic defects in sexual development and virulence. We determined that the insertion occurred in a gene encoding an ortholog of yeast elongator complex protein 3 (ELP3). Deletion of elp3 led to significant defects in sexual and asexual development in F. graminearum. In the elp3 deletion mutant, the number of perithecia formed was reduced and maturation of perithecia was delayed. This mutant also produced morphologically abnormal ascospores and conidia. Histone acetylation in the elp3 deletion mutant was reduced compared with the wild type, which likely caused the developmental defects. Trichothecenes were not produced at detectable levels, and expression of trichothecene biosynthesis genes were significantly reduced in the elp3 deletion mutant. Infection of wheat heads revealed that the elp3 deletion mutant was unable to spread from inoculated florets to neighboring spikelets. Furthermore, the elp3 deletion mutant was more sensitive to oxidative stress than the wild type, and the expression of putative catalase genes was reduced. We demonstrate that elp3 functions in sexual and asexual development, virulence, and the oxidative stress response of F. graminearum by regulating the expression of genes involved in these various developmental processes.
Collapse
|
141
|
He Y, Deng YZ, Naqvi NI. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation inMagnaporthe oryzae. Autophagy 2014; 9:1818-27. [DOI: 10.4161/auto.26057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
142
|
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 2014; 10:e1004432. [PMID: 25299517 PMCID: PMC4192604 DOI: 10.1371/journal.ppat.1004432] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2)Cys(6) transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2)Cys(6)TF genes. A large variation in biological functions of Zn(2)Cys(6)TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2)Cys(6) TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Jianping Lu
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| | - Huijuan Cao
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lilin Zhang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Pengyun Huang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fucheng Lin
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, China
| |
Collapse
|
143
|
Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 2014; 17:1377-96. [PMID: 25186614 DOI: 10.1111/1462-2920.12618] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
The basic leucine zipper (bZIP) domain-containing transcription factors (TFs) function as key regulators of cellular growth and differentiation in eukaryotic organisms including fungi. We have previously identified MoAp1 and MoAtf1 as bZIP TFs in Magnaporthe oryzae and demonstrated that they regulate the oxidative stress response and are critical in conidiogenesis and pathogenicity. Studies of bZIP proteins could provide a novel strategy for controlling rice blast, but a systematic examination of the bZIP proteins has not been carried out. Here, we identified 19 additional bZIP TFs and characterized their functions. We found that the majority of these TFs exhibit active functions, most notably, in conidiogenesis. We showed that MoHac1 regulates the endoplasmic reticulum stress response through a conserved unfolded protein response pathway, MoMetR controls amino acid metabolism to govern growth and differentiation, and MoBzip10 governs appressorium function and invasive hyphal growth. Moreover, MoBzip5 participates in appressorium formation through a pathway distinct from that MoBzip10, and MoMeaB appears to exert a regulatory role through nutrient uptake and nitrogen utilization. Collectively, our results provide insights into shared and specific functions associated with each of these TFs and link the regulatory roles to the fungal growth, conidiation, appressorium formation, host penetration and pathogenicity.
Collapse
Affiliation(s)
- Wei Tang
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Jeon J, Rho H, Kim S, Kim KS, Lee YH. Role of MoAND1-mediated nuclear positioning in morphogenesis and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 2014; 69:43-51. [DOI: 10.1016/j.fgb.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
145
|
BZcon1, a SANT/Myb-type gene involved in the conidiation of Cochliobolus carbonum. G3-GENES GENOMES GENETICS 2014; 4:1445-53. [PMID: 24898708 PMCID: PMC4132175 DOI: 10.1534/g3.114.012286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fungal pathogen Cochliobolus carbonum (anamorph, Bipolaris zeicola) causes Northern Leaf Spot, leading to a ubiquitous and devastating foliar disease of corn in Yunnan Province, China. Asexual spores (conidia) play a major role in both epidemics and pathogenesis of Northern Leaf Spot, but the molecular mechanism of conidiation in C. carbonum has remained elusive. Here, using a map-based cloning strategy, we cloned a single dominant gene, designated as BZcon1 (for Bipolaris zeicola conidiation), which encodes a predicted unknown protein containing 402 amino acids, with two common conserved SANT/Myb domains in N-terminal. The BZcon1 knockout mutant completely lost the capability to produce conidiophores and conidia but displayed no effect on hyphal growth and sexual reproduction. The introduced BZcon1 gene fully complemented the BZcon1 null mutation, restoring the capability for sporulation. These data suggested that the BZcon1 gene is essential for the conidiation of C. carbonum.
Collapse
|
146
|
Park J, Kong S, Kim S, Kang S, Lee YH. Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2014; 30:136-50. [PMID: 25288996 PMCID: PMC4174854 DOI: 10.5423/ppj.oa.02.2014.0018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 05/24/2023]
Abstract
Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.
Collapse
Affiliation(s)
- Jaejin Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Seryun Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
147
|
Kim HJ, Han JH, Kim KS, Lee YH. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 2014; 66:33-43. [DOI: 10.1016/j.fgb.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
|
148
|
Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:446-60. [PMID: 24405033 DOI: 10.1094/mpmi-09-13-0271-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mitogen-activated protein kinase MoOsm1-mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a protein that interacts with MoOsm1 in vivo. Disruption of the MoMSN2 gene resulted in defects in aerial hyphal growth, conidial production, and infection of host plants. Quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of several genes involved in conidiophore formation was reduced in ΔMomsn2, suggesting that MoMsn2 might function as a transcriptional regulator of these genes. Subsequently, MoCos1 was identified as one of the MoMsn2 targets through yeast one-hybrid analysis in which MoMsn2 binds to the AGGGG and CCCCT motif of the MoCOS1 promoter region. Phenotypic characterization showed that MoMsn2 was required for appressorium formation and penetration and pathogenicity. Although the ΔMomsn2 mutant was tolerant to the cell-wall stressor Calcofluor white, it was sensitive to common osmotic stressors. Further analysis suggests that MoMsn2 is involved in the regulation of the cell-wall biosynthesis pathway. Finally, transcriptome data revealed that MoMsn2 modulates numerous genes participating in conidiation, infection, cell-wall integrity, and stress response. Collectively, our results led to a model in which MoMsn2 mediates a series of downstream genes that control aerial hyphal growth, conidiogenesis, appressorium formation, cell-wall biosynthesis, and infection and that also offer potential targets for the development of new disease management strategies.
Collapse
|
149
|
Saitoh H, Hirabuchi A, Fujisawa S, Mitsuoka C, Terauchi R, Takano Y. MoST1 encoding a hexose transporter-like protein is involved in both conidiation and mycelial melanization of Magnaporthe oryzae. FEMS Microbiol Lett 2014; 352:104-13. [PMID: 24372780 DOI: 10.1111/1574-6968.12369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022] Open
Abstract
In a large-scale gene disruption screen of Magnaporthe oryzae, a gene MoST1 encoding a protein belonging to the hexose transporter family was identified as a gene required for conidiation and culture pigmentation. The gene MoST1 located on chromosome V of the M. oryzae genome was predicted to be 1892 bp in length with two introns encoding a 547-amino-acid protein with 12 putative transmembrane domains. Targeted gene disruption of MoST1 resulted in a mutant (most1) with extremely poor conidiation and defects in colony melanization. These phenotypes were complemented by re-introduction of an intact copy of MoST1. We generated a transgenic line harboring a vector containing the MoST1 promoter fused with a reporter protein gene mCherry. The mCherry fluorescence was observed in mycelia, conidia, germ tubes, and appressoria in M. oryzae. There are 66 other hexose transporter-like genes in M. oryzae, and we performed complementation assay with three genes most closely related to MoST1. However, none of them complemented the most1 mutant in conidiation and melanization, indicating that the homologs do not complement the function of MoST1. These results suggest that MoST1 has a specific role for conidiation and mycelial melanization, which is not shared by other hexose transporter family of M. oryzae.
Collapse
|
150
|
Du Y, Zhang H, Hong L, Wang J, Zheng X, Zhang Z. Acetolactate synthases MoIlv2 and MoIlv6 are required for infection-related morphogenesis in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2013; 14:870-884. [PMID: 23782532 PMCID: PMC6638861 DOI: 10.1111/mpp.12053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amino acids are important components in the metabolism of a variety of pathogens, plants and animals. Acetolactate synthase (ALS) catalyses the first common step in leucine, isoleucine and valine biosynthesis, and is the target of several classes of inhibitors. Here, MoIlv2, an orthologue of the Saccharomyces cerevisiae ALS catalytic subunit Ilv2, and MoIlv6, an orthologue of the S. cerevisiae ALS regulatory subunit Ilv6, were identified. To characterize MoILV2 and MoILV6 functions, we generated the deletion mutants ΔMoilv2 and ΔMoilv6. Phenotypic analysis showed that both mutants were auxotrophic for leucine, isoleucine and valine, and were defective in conidial morphogenesis, appressorial penetration and pathogenicity. Further studies suggested that MoIlv2 and MoIlv6 play a critical role in maintaining the balance of intracellular amino acid levels. MoIlv2 and MoIlv6 are both localized to the mitochondria and the signal peptide of MoIlv6 is critical for its localization. In summary, our evidence indicates that MoIlv2 plays a crucial role in isoleucine and valine biosynthesis, whereas MoIlv6 contributes to isoleucine and leucine biosynthesis; both genes are required for fungal pathogenicity. This study indicates the potential of targeting branched-chain amino acid biosynthesis for anti-rice blast management.
Collapse
Affiliation(s)
- Yan Du
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|