101
|
Hua M, Liu J, Du P, Liu X, Li M, Wang H, Chen C, Xu X, Jiang Y, Wang Y, Zeng H, Li A. The novel outer membrane protein from OprD/Occ family is associated with hypervirulence of carbapenem resistant Acinetobacter baumannii ST2/KL22. Virulence 2021; 12:1-11. [PMID: 33258407 PMCID: PMC7781578 DOI: 10.1080/21505594.2020.1856560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
Acinetobacter baumannii has become a major healthcare threat that causes nosocomial infections, especially in critically ill patients. The spread of carbapenem-resistant A. baumannii (CRAB) strains has long been a clinical concern. It is important to study the epidemiology and virulence characteristics of different CRAB isolates in order to tailor infection prevention and antibiotic prescribing. In this study, a total of 71 CRAB isolates were collected in the hospital, and clinical characteristics of infections were analyzed. The genomic characteristics and phylogenetic relationships were elucidated based on genome sequencing and analysis. The isolates were assigned to three sequence types (STs, Pasteur) and nine capsular polysaccharide (KL) types, among which ST2/KL22 was the most prevalent CRAB in the hospital. Even though all the ST2/KL22 isolates contained the same reported virulence genes, one specific clade of ST2/KL22 showed more pathogenic in mouse infection model. Complete genomic analysis revealed differences at the oprD locus between the low- and high-virulent isolates. More specifically, a premature stop codon in the low-virulence strains resulted in truncated OprD expression. By evaluating pathogenicity in C57BL/6 J mice, knock-out of oprD in high-virulent isolate resulted in virulence attenuation, and complementing the avirulent strain with full-length oprD from high-virulent isolate enhanced virulence of the former. The oprD gene may be associated with the enhanced virulence of the specific ST2/KL22 clone, which provides a potential molecular marker for screening the hypervirulent A. baumannii strains.
Collapse
Affiliation(s)
- Mingxi Hua
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing
| | - Xinzhe Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing
| | - Min Li
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huizhu Wang
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing
| | - Xinmin Xu
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Jiang
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, Beijing
| | - Yajie Wang
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing
| | - Ang Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing
| |
Collapse
|
102
|
Ababneh Q, Aldaken N, Jaradat Z, Al Sbei S, Alawneh D, Al-Zoubi E, Alhomsi T, Saadoun I. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolated from three major hospitals in Jordan. Int J Clin Pract 2021; 75:e14998. [PMID: 34714567 DOI: 10.1111/ijcp.14998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND In the last decade, incidences of carbapenem-resistant Acinetobacter baumannii have been increasingly reported worldwide. Consequently, A. baumannii was included in the World Health Organization's new list of critical pathogens, for which new drugs are desperately needed. The objective of this research was to study the molecular epidemiology and antimicrobial susceptibility of clinical carbapenem-resistant A. baumannii isolated from Jordanian hospitals. METHODS A total of 78 A. baumannii and 8 Acinetobacter spp. isolates were collected from three major hospitals in Jordan during 2018. Disc diffusion and microdilution methods were used to test their susceptibility against 19 antimicrobial agents. Multilocus sequence typing (MLST) was performed using the Pasteur scheme, followed by eBURST analysis for all isolates. PCR was used to detect β-lactam resistance genes, blaOXA-23-like , blaOXA-51-like , and blaNDM-1 . RESULTS Of the 86 tested isolates, 78 (90.6%) exhibited resistance to carbapenems, whereas no resistance was recorded to tigecycline or polymyxins. Based on the resistance profiles, 10.4% and 84.8% of isolates were classified into multidrug resistant (MDR) or extensively drug resistant (XDR), respectively. The most prevalent carbapenems resistance genes amongst isolates were blaOXA-51-Like (89.5%), followed by blaOXA-23-Like (88.3%) and blaNDM-1 (10.4%). MLST revealed the presence of 19 sequence types (STs), belonging to eight different international complexes. The most commonly detected clonal complex (CC) was CC2, representing 64% of all typed isolates. CONCLUSIONS This is the first study to report the clonal diversity of A. baumannii isolates in Jordan. A high incidence of carbapenem resistance was detected in the isolates investigated. In addition, our findings provided evidence for the widespread of blaOXA-23-like harbouring carbapenem-resistant A. baumannii and belonging to CC2. The number of XDR isolates identified in this study is alarming. Thus, periodic surveillance and molecular epidemiological studies of resistance factors are important to improve treatment outcomes and prevent the spread of A. baumannii infections.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Neda'a Aldaken
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sara Al Sbei
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Dua'a Alawneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Esra'a Al-Zoubi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Tasnim Alhomsi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ismail Saadoun
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
103
|
Yang JL, Yang CJ, Chuang YC, Sheng WH, Chen YC, Chang SC. Association of capsular polysaccharide locus 2 with prognosis of Acinetobacter baumannii bacteraemia. Emerg Microbes Infect 2021; 11:83-90. [PMID: 34825848 PMCID: PMC8725928 DOI: 10.1080/22221751.2021.2011624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acinetobacter baumannii causes healthcare-associated infections worldwide. Capsular polysaccharide (CPS) is shown an important virulence factor of A. baumannii both in vitro and in vivo. Capsule locus 2 (KL2) for CPS is the most common KL type and is associated with carbapenem resistance. It is unclear whether KL2 is related to the clinical outcome of invasive A. baumannii infection. Here we had followed patients with A. baumannii bacteraemia prospectively between 2009 and 2014. One-third of the unduplicated blood isolates were randomly selected each year for microbiological and clinical studies. The KL2 gene cluster was identified using polymerase chain reaction. A total of 148 patients were enrolled randomly. Eighteen isolates (12.2%) carried KL2, and 130 isolates (87.8%) didn’t. Compared with non-KL2 isolates, KL2 isolates had significantly higher resistance to imipenem, sulbactam, and tigecycline. Compared with the non-KL group, in the KL2 group, the hospital stay before development of bacteraemia was longer (P < 0.001), a higher percentage had pneumonia (P = 0.004), and the white blood cell count was lower (P = 0.03). Infection with KL2 A. baumannii predicted mortality (adjusted hazard ratio [aHR], 2.03; 95% confidence interval [CI], 1.09–3.78; P = 0.03), independently of the Pitt bacteraemia score (aHR, 1.34; 95% CI, 1.23–1.46; P < 0.001) and leucopenia (aHR, 2.16; 95% CI, 1.30–3.57; P = 0.003). Thrombocytopenia contributed to the effect of KL2 on mortality in bacteraemia (Sobel test P = 0.01). Large-scale studies are warranted to confirm these findings and the underlying mechanisms deserve further investigation.
Collapse
Affiliation(s)
- Jia-Ling Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
104
|
Kasimova AA, Cahill SM, Shpirt AM, Dudnik AG, Shneider MM, Popova AV, Shelenkov AA, Mikhailova YV, Chizhov AO, Kenyon JJ, Knirel YA. The K139 capsular polysaccharide produced by Acinetobacter baumannii MAR17-1041 belongs to a group of related structures including K14, K37 and K116. Int J Biol Macromol 2021; 193:2297-2303. [PMID: 34793811 DOI: 10.1016/j.ijbiomac.2021.11.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022]
Abstract
Capsular polysaccharide (CPS) is a key target for bacteriophage and vaccine therapies currently being developed for treatment of infections caused by the extensively antibiotic resistant bacterial species, Acinetobacter baumannii. Identification of new CPS structures and the genetics that drive their synthesis underpins tailored treatment strategies. A novel CPS biosynthesis gene cluster, designated KL139, was identified in the whole genome sequence of a multiply antibiotic resistant clinical isolate, A. baumannii MAR-17-1041, recovered in Russia in 2017. CPS material extracted from A. baumannii MAR-17-1041 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy, and the structure was found to include a branched pentasaccharide repeating unit containing neutral carbohydrates. This structure closely resembles the topology of the A. baumannii K14 CPS but differs in the presence of d-Glcp in place of a d-Galp sugar in the repeat-unit main chain. The difference was attributed to a change in the sequence for two glycosyltransferases. These two proteins are also encoded by the A. baumannii KL37 gene cluster, and a multiple sequence alignment of KL139 with KL14 and KL37 revealed a hybrid relationship. The global distribution of KL139 was also assessed by probing 9065 A. baumannii genomes available in the NCBI non-redundant and WGS databases for the KL139 gene cluster. KL139 was found in 16 genomes from four different countries. Eleven of these isolates belong to the multidrug resistant global lineage, ST25.
Collapse
Affiliation(s)
- Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sarah M Cahill
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anna M Shpirt
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Anastasiya V Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | | | | | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
105
|
Adjei AY, Vasaikar SD, Apalata T, Okuthe EG, Songca SP. Phylogenetic analysis of carbapenem-resistant Acinetobacter baumannii isolated from different sources using Multilocus Sequence Typing Scheme. INFECTION GENETICS AND EVOLUTION 2021; 96:105132. [PMID: 34775079 DOI: 10.1016/j.meegid.2021.105132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
The emergence and worldwide distribution of carbapenem-resistant Acinetobacter baumannii strains has become a major public health threat. The objective of this study was to investigate the clonal relatedness of A. baumannii isolates collected from clinical and extra-hospital environments in Mthatha, South Africa. Forty carbapenem-resistant isolates comprising of clinical (20) and extra-hospital (20) were identified and tested for antimicrobial susceptibility. Detection of carbapenemase encoding genes was performed by Real-time PCR. The clonal relationship of clinical isolates relative to extra-hospital isolates was determined via multilocus sequence typing (MLST). All isolates (clinical and extra-hospital) were resistant to most common antibiotics including carbapenems (imipenem; MIC ≥32 μg/mL and meropenem; MIC ≥32 μg/mL) with the only exception being amikacin (with 3 isolates susceptible), tigecycline (14 isolates susceptible) and colistin (all isolates susceptible). The bla OXA-23-like and the intrinsic bla OXA-51 -like genes were detected in all the isolates tested. The bla OXA-58-like and bla IMP-type genes were detected in 2 clinical isolates whilst the bla OXA-24-like, bla VIM-type, bla NDM-1, bla SIM, and bla AmpC were not detected. The bla OXA-24-like, bla OXA-58-like, bla IMP-type, bla VIM-type, bla NDM-1, bla SIM, and bla AmpC were negative in the extra-hospital isolates. Co-occurrence of bla OXA-23 -like, bla OXA-58-like and bla IMP-type was observed in 2 clinical isolates. The MLST performed on 33 isolates identified 5 existing sequence types (ST) (ST1, ST2, ST25, ST85 and ST215) in clinical isolates and 2 existing STs (ST1 and ST2) in extra-hospital isolates. The most dominant ST was ST2 accounting for 68.8% of the clinical isolates and 82.4% of the extra-hospital isolates. The study demonstrated high prevalence and potential clonal spread of globally-disseminated clonal complex 2 carrying bla OXA-23-like within our local settings. However, ST25 might be an emerging lineage carrying the bla OXA-23-like . Continuous monitoring is important in limiting the spread of these strains in other healthcare settings and the community.
Collapse
Affiliation(s)
- Anane Yaw Adjei
- Water Research Institute, Council for Scientific and Industrial Research-CSIR-Ghana, P. O. Box M 32. Accra Ghana 2nd CSIR Close, Accra, Ghana.
| | - Sandeep D Vasaikar
- Division of Medical Microbiology, Department of Laboratory Medicine & Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha - 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa..
| | - Teke Apalata
- Division of Medical Microbiology, Department of Laboratory Medicine & Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha - 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa..
| | - Emily Grace Okuthe
- Department of Biological and Environmental Sciences, Walter Sisulu University, Private Bag: X1, Mthatha - 5117 Eastern Cape Province, South Africa.
| | - Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, 2nd floor, Francis Stock Building, Howard College campus, UKZN, Durban 4041, South Africa.
| |
Collapse
|
106
|
Higgins PG, Kniel M, Rojak S, Balczun C, Rohde H, Frickmann H, Hagen RM. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Strains Isolated at the German Military Field Laboratory in Mazar-e Sharif, Afghanistan. Microorganisms 2021; 9:microorganisms9112229. [PMID: 34835355 PMCID: PMC8622437 DOI: 10.3390/microorganisms9112229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022] Open
Abstract
The study was performed to provide an overview of the molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in Afghanistan isolated by the German military medical service during the Afghanistan conflict. A total of 18 isolates were collected between 2012 and 2018 at the microbiological laboratory of the field hospital in Camp Marmal near Mazar-e Sharif, Afghanistan, from Afghan patients. The isolates were subjected to phenotypic and genotypic differentiation and antimicrobial susceptibility testing as well as to a core genome multi-locus sequence typing (cgMLST) approach based on whole-genome next-generation sequence (wgNGS) data. Next to several sporadic isolates, four transmission clusters comprising strains from the international clonal lineages IC1, IC2, and IC9 were identified. Acquired carbapenem resistance was due to blaOXA-23 in 17/18 isolates, while genes mediating resistance against sulfonamides, macrolides, tetracyclines, and aminoglycosides were frequently identified as well. In conclusion, the assessment confirmed both the frequent occurrence of A. baumannii associated with outbreak events and a variety of different clones in Afghanistan. The fact that acquired carbapenem resistance was almost exclusively associated with blaOXA-23 may facilitate molecular resistance screening based on rapid molecular assays targeting this resistance determinant.
Collapse
Affiliation(s)
- Paul G. Higgins
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Meret Kniel
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
| | - Sandra Rojak
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
| | - Carsten Balczun
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
- Correspondence: ; Tel.: +49-261-896-77200
| |
Collapse
|
107
|
Javkar K, Rand H, Hoffmann M, Luo Y, Sarria S, Thirunavukkarasu N, Pillai CA, McGann P, Johnson JK, Strain E, Pop M. Whole-Genome Assessment of Clinical Acinetobacter baumannii Isolates Uncovers Potentially Novel Factors Influencing Carbapenem Resistance. Front Microbiol 2021; 12:714284. [PMID: 34659144 PMCID: PMC8518998 DOI: 10.3389/fmicb.2021.714284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Carbapenems-one of the important last-line antibiotics for the treatment of gram-negative infections-are becoming ineffective for treating Acinetobacter baumannii infections. Studies have identified multiple genes (and mechanisms) responsible for carbapenem resistance. In some A. baumannii strains, the presence/absence of putative resistance genes is not consistent with their resistance phenotype-indicating the genomic factors underlying carbapenem resistance in A. baumannii are not fully understood. Here, we describe a large-scale whole-genome genotype-phenotype association study with 349 A. baumannii isolates that extends beyond the presence/absence of individual antimicrobial resistance genes and includes the genomic positions and pairwise interactions of genes. Ten known resistance genes exhibited statistically significant associations with resistance to imipenem, a type of carbapenem: blaOXA-23, qacEdelta1, sul1, mphE, msrE, ant(3")-II, aacC1, yafP, aphA6, and xerD. A review of the strains without any of these 10 genes uncovered a clade of isolates with diverse imipenem resistance phenotypes. Finer resolution evaluation of this clade revealed the presence of a 38.6 kbp conserved chromosomal region found exclusively in imipenem-susceptible isolates. This region appears to host several HTH-type DNA binding transcriptional regulators and transporter genes. Imipenem-susceptible isolates from this clade also carried two mutually exclusive plasmids that contain genes previously known to be specific to imipenem-susceptible isolates. Our analysis demonstrates the utility of using whole genomes for genotype-phenotype correlations in the context of antibiotic resistance and provides several new hypotheses for future research.
Collapse
Affiliation(s)
- Kiran Javkar
- Department of Computer Science, University of Maryland, College Park, MD, United States.,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, United States
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Saul Sarria
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Nagarajan Thirunavukkarasu
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Christine A Pillai
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Patrick McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
108
|
An Outbreak of tet(X6)-Carrying Tigecycline-Resistant Acinetobacter baumannii Isolates with a New Capsular Type at a Hospital in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10101239. [PMID: 34680819 PMCID: PMC8532604 DOI: 10.3390/antibiotics10101239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Dissemination of multidrug-resistant, particularly tigecycline-resistant, Acinetobacter baumannii is of critical importance, as tigecycline is considered a last-line antibiotic. Acquisition of tet(X), a tigecycline-inactivating enzyme mostly found in strains of animal origin, imparts tigecycline resistance to A. baumannii. Herein, we investigated the presence of tet(X) variants among 228 tigecycline-non-susceptible A. baumannii isolates from patients at a Taiwanese hospital via polymerase chain reaction using a newly designed universal primer pair. Seven strains (3%) carrying tet(X)-like genes were subjected to whole genome sequencing, revealing high DNA identity. Phylogenetic analysis based on the PFGE profile clustered the seven strains in a clade, which were thus considered outbreak strains. These strains, which were found to co-harbor the chromosome-encoded tet(X6) and the plasmid-encoded blaOXA-72 genes, showed a distinct genotype with an uncommon sequence type (Oxford ST793/Pasteur ST723) and a new capsular type (KL129). In conclusion, we identified an outbreak clone co-carrying tet(X6) and blaOXA-72 among a group of clinical A. baumannii isolates in Taiwan. To the best of our knowledge, this is the first description of tet(X6) in humans and the first report of a tet(X)-like gene in Taiwan. These findings identify the risk for the spread of tet(X6)-carrying tigecycline- and carbapenem-resistant A. baumannii in human healthcare settings.
Collapse
|
109
|
Chilam J, Argimón S, Limas MT, Masim ML, Gayeta JM, Lagrada ML, Olorosa AM, Cohen V, Hernandez LT, Jeffrey B, Abudahab K, Hufano CM, Sia SB, Holden MT, Stelling J, Aanensen DM, Carlos CC. Genomic surveillance of Acinetobacter baumannii in the Philippines, 2013-2014. Western Pac Surveill Response J 2021; 12:1-15. [PMID: 35251744 PMCID: PMC8873916 DOI: 10.5365/wpsar.2021.12.4.863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Acinetobacter baumannii is an opportunistic nosocomial pathogen that has increasingly become resistant to carbapenems worldwide. In the Philippines, rates of carbapenem resistance and multidrug resistance are above 50%. We undertook a genomic study of carbapenem-resistant A. baumannii in the Philippines to characterize the population diversity and antimicrobial resistance mechanisms. METHODS We sequenced the whole genomes of 117 A. baumannii isolates recovered by 16 hospitals in the Philippines between 2013 and 2014. From the genome sequences, we determined the multilocus sequence type, presence of acquired determinants of antimicrobial resistance and relatedness between isolates. We also compared the phenotypic and genotypic resistance results. RESULTS Carbapenem resistance was mainly explained by acquisition of the class-D β-lactamase gene blaOXA-23. The concordance between phenotypic and genotypic resistance to imipenem was 98.15%, and it was 94.97% overall for the seven antibiotics analysed. Twenty-two different sequence types were identified, including 7 novel types. The population was dominated by the high-risk international clone 2 (i.e. clonal complex 92), in particular by ST195 and ST208 and their single locus variants. Using whole-genome sequencing, we identified local clusters representing potentially undetected nosocomial outbreaks, as well as multihospital clusters that indicated interhospital dissemination. Comparison with global genomes suggested that the establishment of carbapenem-resistant international clone 2 in the Philippines is likely the result of clonal expansion and geographical dissemination, and at least partly explained by inadequate hospital infection control and prevention. DISCUSSION This is the first extensive genomic study of carbapenem-resistant A. baumannii in the Philippines, and it underscores the importance of hospital infection control and prevention measures to contain high-risk clones.
Collapse
Affiliation(s)
- Jeremiah Chilam
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
- These authors contributed equally to this work
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
- These authors contributed equally to this work
| | - Marilyn T. Limas
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Melissa L. Masim
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - June M. Gayeta
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Marietta L. Lagrada
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Agnettah M. Olorosa
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Victoria Cohen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
| | - Lara T. Hernandez
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Benjamin Jeffrey
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
| | - Charmian M. Hufano
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Sonia B. Sia
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | | | | | - David M. Aanensen
- Big Data Institute, University of Oxford, Oxford, England
- These authors contributed equally to this work
| | - Celia C. Carlos
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
- These authors contributed equally to this work
| | - on behalf of the Philippines Antimicrobial Resistance Surveillance Program
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
- University of St Andrews School of Medicine, St Andrews, Scotland
- Brigham and Women’s Hospital, Boston, MA, USA
- Big Data Institute, University of Oxford, Oxford, England
- These authors contributed equally to this work
- These authors contributed equally to this work
| |
Collapse
|
110
|
Short FL, Liu Q, Shah B, Clift HE, Naidu V, Li L, Prity FT, Mabbutt BC, Hassan KA, Paulsen IT. The Acinetobacter baumannii disinfectant resistance protein, AmvA, is a spermidine and spermine efflux pump. Commun Biol 2021; 4:1114. [PMID: 34552198 PMCID: PMC8458285 DOI: 10.1038/s42003-021-02629-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial resistance genes, including multidrug efflux pumps, evolved long before the ubiquitous use of antimicrobials in medicine and infection control. Multidrug efflux pumps often transport metabolites, signals and host-derived molecules in addition to antibiotics or biocides. Understanding their ancestral physiological roles could inform the development of strategies to subvert their activity. In this study, we investigated the response of Acinetobacter baumannii to polyamines, a widespread, abundant class of amino acid-derived metabolites, which led us to identify long-chain polyamines as natural substrates of the disinfectant efflux pump AmvA. Loss of amvA dramatically reduced tolerance to long-chain polyamines, and these molecules induce expression of amvA through binding to its cognate regulator AmvR. A second clinically-important efflux pump, AdeABC, also contributed to polyamine tolerance. Our results suggest that the disinfectant resistance capability that allows A. baumannii to survive in hospitals may have evolutionary origins in the transport of polyamine metabolites.
Collapse
Affiliation(s)
- Francesca L. Short
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia ,grid.1002.30000 0004 1936 7857Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - Qi Liu
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| | - Bhumika Shah
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| | - Heather E. Clift
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia ,grid.280427.b0000 0004 0434 015XPresent Address: Versiti Blood Research Institute, Milwaukee, WI USA
| | - Varsha Naidu
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| | - Liping Li
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| | - Farzana T. Prity
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| | - Bridget C. Mabbutt
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| | - Karl A. Hassan
- grid.266842.c0000 0000 8831 109XSchool of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW Australia
| | - Ian T. Paulsen
- grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| |
Collapse
|
111
|
Ambrose SJ, Hall RM. Origin of the dfrA44 trimethoprim resistance gene. J Antimicrob Chemother 2021; 76:3312-3314. [PMID: 34529792 DOI: 10.1093/jac/dkab330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
112
|
Abdollahi A, Aliramezani A, Salehi M, Norouzi Shadehi M, Ghourchian S, Douraghi M. Co-infection of ST2 IP carbapenem-resistant Acinetobacter baumannii with SARS-CoV-2 in the patients admitted to a Tehran tertiary referral hospital. BMC Infect Dis 2021; 21:927. [PMID: 34496774 PMCID: PMC8423834 DOI: 10.1186/s12879-021-06642-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is among the most concerning cause of healthcare-associated infections (HAI) due to its high level of antibiotic resistance and high mortality. In the era of the COVID-19 pandemic, the key priority of infection control committees is to contain the dissemination of antibiotic resistant Gram-negative bacteria. Here, we aimed to timely recognize the emergence of CRAB in COVID-19 cases admitted to the wards of a tertiary referral hospital and to identify the genetic relatedness of the isolates. METHODS From 30 March to 30 May 2020, a total of 242 clinical samples from COVID-19 cases were screened for CRAB isolates using standard microbiologic and antibiotic susceptibility tests. The PCRs targeting oxa23, oxa24, oxa58, blaTEM and blaNDM-1 genes were performed. Two multiplex PCRs for identifying the global clones (GC) of A. baumannii were also performed. The sequence type of CRABs was determined using Institut Pasteur (IP) multilocus sequence typing (MLST) scheme. RESULTS Eighteen CRAB isolates were recovered from COVID-19 patients with the mean age of 63.94 ± 13.8 years. All but 4 COVID-19 patients co-infected with CRAB were suffering from an underlying disease. Death was recorded as the outcome in ICUs for 9 (50%) COVID-19 patients co-infected with CRAB. The CRAB isolates belong to GC2 and ST2IP and carried the oxa23 carbapenem resistance gene. CONCLUSION This study demonstrated the co-infection of CRAB isolates and SARS-CoV-2 in the patients admitted to different ICUs at a referral hospital in Tehran. The CRAB isolates were found to belong to ST2IP, share the oxa23 gene and to have caused several outbreaks in the wards admitting COVID-19 patients.
Collapse
Affiliation(s)
- Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Aliramezani
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infectious Disease, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Norouzi Shadehi
- Department of Infectious Disease, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran.
| |
Collapse
|
113
|
Colistin and Carbapenem-Resistant Acinetobacter baumannii Aci46 in Thailand: Genome Analysis and Antibiotic Resistance Profiling. Antibiotics (Basel) 2021; 10:antibiotics10091054. [PMID: 34572636 PMCID: PMC8468411 DOI: 10.3390/antibiotics10091054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the last-line antibiotics against invasive Gram-negative bacterial infection is a rising concern in public health. Multidrug resistant (MDR) Acinetobacter baumannii Aci46 can resist colistin and carbapenems with a minimum inhibitory concentration of 512 µg/mL as determined by microdilution method and shows no zone of inhibition by disk diffusion method. These phenotypic characteristics prompted us to further investigate the genotypic characteristics of Aci46. Next generation sequencing was applied in this study to obtain whole genome data. We determined that Aci46 belongs to Pasture ST2 and is phylogenetically clustered with international clone (IC) II as the predominant strain in Thailand. Interestingly, Aci46 is identical to Oxford ST1962 that previously has never been isolated in Thailand. Two plasmids were identified (pAci46a and pAci46b), neither of which harbors any antibiotic resistance genes but pAci46a carries a conjugational system (type 4 secretion system or T4SS). Comparative genomics with other polymyxin and carbapenem-resistant A. baumannii strains (AC30 and R14) identified shared features such as CzcCBA, encoding a cobalt/zinc/cadmium efflux RND transporter, as well as a drug transporter with a possible role in colistin and/or carbapenem resistance in A. baumannii. Single nucleotide polymorphism (SNP) analyses against MDR ACICU strain showed three novel mutations i.e., Glu229Asp, Pro200Leu, and Ala138Thr, in the polymyxin resistance component, PmrB. Overall, this study focused on Aci46 whole genome data analysis, its correlation with antibiotic resistance phenotypes, and the presence of potential virulence associated factors.
Collapse
|
114
|
Diversity of International High-Risk Clones of Acinetobacter baumannii Revealed in a Russian Multidisciplinary Medical Center during 2017-2019. Antibiotics (Basel) 2021; 10:antibiotics10081009. [PMID: 34439060 PMCID: PMC8389025 DOI: 10.3390/antibiotics10081009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii is a dangerous bacterial pathogen possessing the ability to persist on various surfaces, especially in clinical settings, and to rapidly acquire the resistance to a broad spectrum of antibiotics. Thus, the epidemiological surveillance of A. baumannii within a particular hospital, region, and across the world is an important healthcare task that currently usually includes performing whole-genome sequencing (WGS) of representative isolates. During the past years, the dissemination of A. baumannii across the world was mainly driven by the strains belonging to two major groups called the global clones or international clones (ICs) of high risk (IC1 and IC2). However, currently nine ICs are already considered. Although some clones were previously thought to spread in particular regions of the world, in recent years this is usually not the case. In this study, we determined five ICs, as well as three isolates not belonging to the major ICs, in one multidisciplinary medical center within the period 2017-2019. We performed WGS using both short- and long-read sequencing technologies of nine representative clinical A. baumannii isolates, which allowed us to determine the antibiotic resistance and virulence genomic determinants, reveal the CRISPR/Cas systems, and obtain the plasmid structures. The phenotypic and genotypic antibiotic resistance profiles are compared, and the possible ways of isolate and resistance spreading are discussed. We believe that the data obtained will provide a better understanding of the spreading and resistance acquisition of the ICs of A. baumannii and further stress the necessity for continuous genomic epidemiology surveillance of this problem-causing bacterial species.
Collapse
|
115
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
116
|
Cameranesi MM, Kurth D, Repizo GD. Acinetobacter defence mechanisms against biological aggressors and their use as alternative therapeutic applications. Crit Rev Microbiol 2021; 48:21-41. [PMID: 34289313 DOI: 10.1080/1040841x.2021.1939266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several Acinetobacter strains are important nosocomial pathogens, with Acinetobacter baumannii being the species of greatest worldwide concern due to its multi-drug resistance and the recent appearance of hyper-virulent strains in the clinical setting. Colonisation of this environment is associated with a multitude of bacterial factors, and the molecular features that promote environmental persistence in abiotic surfaces, including intrinsic desiccation resistance, biofilm formation and motility, have been previously addressed. On the contrary, mechanisms enabling Acinetobacter spp. survival when faced against other biological competitors are starting to be characterised. Among them, secretion systems (SS) of different types, such as the T5bSS (Contact-dependent inhibition systems) and the T6SS, confer adaptive advantages against bacterial aggressors. Regarding mechanisms of defence against bacteriophages, such as toxin-antitoxin, restriction-modification, Crispr-Cas and CBASS, among others, have been identified but remain poorly characterised. In view of this, we aimed to summarise the present knowledge on defence mechanisms that enable niche establishment in members of the Acinetobacter genus. Different proposals are also described for the use of some components of these systems as molecular tools to treat Acinetobacter infections.
Collapse
Affiliation(s)
- María Marcela Cameranesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), San Miguel de Tucumán, Argentina
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
117
|
Abstract
Acinetobacter baumannii has become one of the most important multidrug-resistant nosocomial pathogens all over the world. Nonetheless, very little is known about the diversity of A. baumannii lineages coexisting in hospital settings. Here, using whole-genome sequencing, epidemiological data, and antimicrobial susceptibility tests, we uncover the transmission dynamics of extensive and multidrug-resistant A. baumannii in a tertiary hospital over a decade. Our core genome phylogeny of almost 300 genomes suggests that there were several introductions of lineages from international clone 2 into the hospital. The molecular dating analysis shows that these introductions happened in 2006, 2007, and 2013. Furthermore, using the accessory genome, we show that these lineages were extensively disseminated across many wards in the hospital. Our results demonstrate that accessory genome variation can be a very powerful tool for conducting genomic epidemiology. We anticipate future studies employing the accessory genome along with the core genome as a powerful phylogenomic strategy to track bacterial transmissions over very short microevolutionary scales. IMPORTANCE Whole-genome sequencing for epidemiological investigations (genomic epidemiology) has been of paramount importance to understand the transmission dynamics of many bacterial (and nonbacterial) pathogens. Commonly, variation in the core genome, single nucleotide polymorphisms (SNPs), is employed to carry out genomic epidemiology. However, at very short periods of time, the core genome might not have accumulated enough variation (sufficient SNPs) to tell apart isolates. In this scenario, gene content variation in the accessory genome can be an option to conduct genomic epidemiology. Here, we used the accessory genome, as well as the core genome, to uncover the transmission dynamics of extensive and multidrug-resistant A. baumannii in a tertiary hospital for a decade. Our study shows that accessory genome variation can be a very powerful tool for conducting genomic epidemiology.
Collapse
|
118
|
Chen HY, Chuang CC, Chou YC, Hsu WJ, Lin IC, Action Study Group, Sun JR. Rapid typing of carbapenem-resistant Acinetobacter baumannii and Acinetobacter nosocomialis by multiplex Pan- and OXA-PCR assays. J Med Microbiol 2021; 70. [PMID: 34236300 DOI: 10.1099/jmm.0.001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Outbreaks of carbapenem-resistant A. baumannii and A. nosocomialis have occurred worldwide in healthcare settings. Rapid and reliable molecular typing of bacterial isolates is vital for the effective surveillance of institutional outbreaks. The Pan-PCR and OXA-PCR assays are two multiplex PCR-based assays for the molecular typing of Acinetobacter species.Gap statement. However, few studies have investigated the discriminatory power of two multiplex PCR assays in in the genotyping of Acinetobacter species.Aim. We aimed to evaluate the efficacies of the Pan-PCR and OXA-PCR assays for molecular typing of A. baumannii and A. nosocomialis.Methodology. A total of 105 carbapenem-resistant A. baumannii isolates (CRABs) and 93 carbapenem-resistant A. nosocomialis isolates (CRANs) obtained from blood cultures were used for molecular typing by the Pan-PCR and OXA-PCR assays and two multilocus sequence typing (MLST) schemes.Results. The isolates were individually divided into 12 and 21 different sequence types via the Pasteur and Oxford MLST schemes, respectively. Additionally, these isolates were distinguished into 18 different types by the Pan-PCR and OXA-PCR assays. The results of the Pan-PCR and OXA-PCR assays distinguished CRABs and CRANs with a sensitivity of 98.13 % and a specificity of 100 %.Conclusion. The Pan-PCR and OXA-PCR assays are promising alternative methods for rapid molecular typing of CRABs and CRANs in a routine laboratory setting.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan, ROC
| | - Chuan-Chung Chuang
- School of Dentistry and Graduate Institute of Dental Science, National defense medical center, Taipei, Taiwan, ROC.,Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wei-Jane Hsu
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan, ROC
| | - I-Chieh Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
119
|
Tóth H, Buchholcz G, Fésüs A, Balázs B, Nagy JB, Majoros L, Szarka K, Kardos G. Evolution of the Gram-Negative Antibiotic Resistance Spiral over Time: A Time-Series Analysis. Antibiotics (Basel) 2021; 10:antibiotics10060734. [PMID: 34204497 PMCID: PMC8234935 DOI: 10.3390/antibiotics10060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
We followed up the interplay between antibiotic use and resistance over time in a tertiary-care hospital in Hungary. Dynamic relationships between monthly time-series of antibiotic consumption data (defined daily doses per 100 bed-days) and of incidence densities of Gram-negative bacteria (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii) resistant to cephalosporins or carbapenems were followed using vector autoregressive models sequentially built of time-series ending in 2015, 2016, 2017, 2018, and 2019. Relationships with Gram-negative bacteria as a group were fairly stable across years. At species level, association of cephalosporin use and cephalosporin resistance of E. coli was shown in 2015–2017, leading to increased carbapenem use in these years. Association of carbapenem use and carbapenem resistance, as well as of carbapenem resistance and colistin use in case of A. baumannii, were consistent throughout; associations in case of Klebsiella spp. were rarely found; associations in case of P. aeruginosa varied highly across years. This highlights the importance of temporal variations in the interplay between changes in selection pressure and occurrence of competing resistant species.
Collapse
Affiliation(s)
- Hajnalka Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Ostalb Klinikum, Im Kälblesrain 1, D-73430 Aalen, Germany
| | - Gyula Buchholcz
- Central Clinical Pharmacy, Clinical Center, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Adina Fésüs
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Central Clinical Pharmacy, Clinical Center, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Bence Balázs
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Department of Metagenomics, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - József Bálint Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Krisztina Szarka
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Gábor Kardos
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (H.T.); (A.F.); (B.B.); (J.B.N.); (L.M.); (K.S.)
- Department of Metagenomics, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-5225-5425
| |
Collapse
|
120
|
Ilsan NA, Lee YJ, Kuo SC, Lee IH, Huang TW. Antimicrobial Resistance Mechanisms and Virulence of Colistin- and Carbapenem-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Taiwan. Microorganisms 2021; 9:microorganisms9061295. [PMID: 34198665 PMCID: PMC8232278 DOI: 10.3390/microorganisms9061295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter baumannii, a Gram-negative bacterium, is an important nosocomial pathogen. Colistin-resistant A. baumannii is becoming a new concern, since colistin is one of the last-line antibiotics for infections by carbapenem-resistant A. baumannii. From 452 carbapenem-resistant isolates collected in a teaching hospital in Taipei, Taiwan, we identified seven that were resistant to colistin. Carbapenem resistance in these isolates is attributed to the presence of carbapenemase gene blaOXA-23 in their genomes. Colistin resistance is presumably conferred by mutations in the sensor kinase domain of PmrB found in these isolates, which are known to result in modification of colistin target lipid A via the PmrB-PmrA-PmrC signal transduction pathway. Overexpression of pmrC, eptA, and naxD was observed in all seven isolates. Colistin resistance mediated by pmrB mutations has never been reported in Taiwan. One of the seven isolates contained three mutations in lpxD and exhibited an altered lipopolysaccharide profile, which may contribute to its colistin resistance. No significant difference in growth rates was observed between the isolates and the reference strain, suggesting no fitness cost of colistin resistance. Biofilm formation abilities of the isolates were lower than that of the reference. Interestingly, one of the isolates was heteroresistant to colistin. Four of the isolates were significantly more virulent to wax moth larvae than the reference.
Collapse
Affiliation(s)
- Noor Andryan Ilsan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yuarn-Jang Lee
- Department of Internal Medicine, Division of Infectious Diseases, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - I-Hui Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel./Fax: +886-2-2736-1661 (ext. 3925); (ext. 3921)
| |
Collapse
|
121
|
Gajic I, Jovicevic M, Milic M, Kekic D, Opavski N, Zrnic Z, Dacic S, Pavlovic L, Mijac V. Clinical and molecular characteristics of OXA-72-producing Acinetobacter baumannii ST636 outbreak at a neonatal intensive care unit in Serbia. J Hosp Infect 2021; 112:54-60. [DOI: 10.1016/j.jhin.2021.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022]
|
122
|
Molecular Characterization of German Acinetobacter baumannii Isolates and Multilocus Sequence Typing (MLST) Analysis Based on WGS Reveals Novel STs. Pathogens 2021; 10:pathogens10060690. [PMID: 34206118 PMCID: PMC8229575 DOI: 10.3390/pathogens10060690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/14/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a major cause of severe nosocomial infections worldwide. The emergence of infections associated with A. baumannii poses a significant health risk in Germany. A. baumannii is part of the ACB complex and is difficult to distinguish from other species phenotypically, necessitating its reliable identification. The current study analyzed 89 A. baumannii strains from human and non-human origins by matrix-assisted laser desorption/ionization (MALDI–TOF) and PCR detection of intrinsic blaOXA-51-like carbapenemase, blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, and ISAba 1 genes. Whole-genome sequencing (WGS) was applied for species confirmation and strain type determination. Combining the molecular detection of the intrinsic blaOXA-51-like carbapenemase gene together with MALDI–TOF with a score value of >2.300 proved to be a suitable tool for A. baumannii identification. WGS data for all of the sequenced strains confirmed the identity of all A. baumannii strains. The Pasteur scheme successfully assigned 79.7% of the strains into distinct STs, while the Oxford scheme succeeded in allocating only 42.7% of isolates. Multilocus sequence typing (MLST) analysis based on the Pasteur scheme identified 16 STs. ST/241 was the most prevalent in samples from non-human origin, whereas ST/2 was predominant in human samples. Furthermore, eight isolates of non-human origin were allocated to seven new STs (ST/1410, ST/1414, ST/1416, ST/1417, ST/1418, ST/1419, and ST/1421). Ten isolates from non-human origin could not be typed since new alleles were observed in the loci Pas_cpn60, Pas_rpoB, and Pas_gltA. MLST analysis based on the Pasteur scheme was more appropriate than the Oxford scheme for the current group of A. baumannii.
Collapse
|
123
|
Jun SH, Lee DE, Hwang HR, Kim N, Kim HJ, Lee YC, Kim YK, Lee JC. Clonal change of carbapenem-resistant Acinetobacter baumannii isolates in a Korean hospital. INFECTION GENETICS AND EVOLUTION 2021; 93:104935. [PMID: 34029723 DOI: 10.1016/j.meegid.2021.104935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
The expansion of specific carbapenem-resistant Acinetobacter baumannii (CRAB) clones is a global concern due to its therapeutic difficulty and epidemicity. To understand the prevalence of CRAB isolates in a Korean hospital, we investigated the epidemiological characteristics of 96 CRAB isolates between 2016 and 2018, including the sequence types (STs), antimicrobial susceptibility, and genetic background of resistance to carbapenems and aminoglycosides. Six STs were identified using the Oxford multilocus sequence typing scheme; ST191 (n = 8), ST208 (n = 12), ST229 (n = 11), and ST369 (n = 21) were previously identified clones in the study hospital, whereas gpi variants of ST208, ST451 (n = 34) and ST784 (n = 10), were emerging clones. ST208 isolates exhibited higher resistance rates to minocycline than other ST isolates, whereas ST369 isolates exhibited lower resistance rates to aminoglycosides and trimethoprim/sulfamethoxazole than other ST isolates. All CRAB isolates previously isolated in the study hospital carried ISAbaI-blaOXA-23 for carbapenem resistance, but 10 ST229 isolates carried only ISAbaI-blaOXA-51. The carriage of armA was lower in ST369 isolates (38%) than in other ST isolates (≥83%). The frequency and diversity of aminoglycoside-modifying enzyme genes were decreased among the CRAB isolates between 2016 and 2018 compared with CRAB isolates between 2013 and 2015 at the study hospital. In conclusion, clonal complex 208 CRAB isolates are predominant in the study hospital. This study demonstrates the evolutionary change of CRAB isolates in the study hospital in relation to the emergence of new STs and selection of resistant genes.
Collapse
Affiliation(s)
- So Hyun Jun
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Hye Ryeong Hwang
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyo Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yoo Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
124
|
Pan-Resistome Insights into the Multidrug Resistance of Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10050596. [PMID: 34069870 PMCID: PMC8157372 DOI: 10.3390/antibiotics10050596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Acinetobacter baumannii is an important Gram-negative opportunistic pathogen that is responsible for many nosocomial infections. This etiologic agent has acquired, over the years, multiple mechanisms of resistance to a wide range of antimicrobials and the ability to survive in different environments. In this context, our study aims to elucidate the resistome from the A. baumannii strains based on phylogenetic, phylogenomic, and comparative genomics analyses. In silico analysis of the complete genomes of A. baumannii strains was carried out to identify genes involved in the resistance mechanisms and the phylogenetic relationships and grouping of the strains based on the sequence type. The presence of genomic islands containing most of the resistance gene repertoire indicated high genomic plasticity, which probably enabled the acquisition of resistance genes and the formation of a robust resistome. A. baumannii displayed an open pan-genome and revealed a still constant genetic permutation among their strains. Furthermore, the resistance genes suggest a specific profile within the species throughout its evolutionary history. Moreover, the current study performed screening and characterization of the main genes present in the resistome, which can be used in applied research to develop new therapeutic methods to control this important bacterial pathogen.
Collapse
|
125
|
WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics (Basel) 2021; 10:antibiotics10050563. [PMID: 34064958 PMCID: PMC8150915 DOI: 10.3390/antibiotics10050563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (A. baumannii, CRAb) is an emerging global threat for healthcare systems, particularly in Southeast Asia. Next-generation sequencing (NGS) technology was employed to map genes associated with antimicrobial resistance (AMR) and to identify multilocus sequence types (MLST). Eleven strains isolated from humans in Vietnam were sequenced, and their AMR genes and MLST were compared to published genomes of strains originating from Southeast Asia, i.e., Thailand (n = 49), Myanmar (n = 38), Malaysia (n = 11), Singapore (n = 4) and Taiwan (n = 1). Ten out of eleven Vietnamese strains were CRAb and were susceptible only to colistin. All strains harbored ant(3")-IIa, armA, aph(6)-Id and aph(3") genes conferring resistance to aminoglycosides, and blaOXA-51 variants and blaADC-25 conferring resistance to ß-lactams. More than half of the strains harbored genes that confer resistance to tetracyclines, sulfonamides and macrolides. The strains showed high diversity, where six were assigned to sequence type (ST)/2, and two were allocated to two new STs (ST/1411-1412). MLST analyses of 108 strains from Southeast Asia identified 19 sequence types (ST), and ST/2 was the most prevalent found in 62 strains. A broad range of AMR genes was identified mediating resistance to ß-lactams, including cephalosporins and carbapenems (e.g., blaOXA-51-like, blaOXA-23, blaADC-25, blaADC-73, blaTEM-1, blaNDM-1), aminoglycosides (e.g., ant(3")-IIa, aph(3")-Ib, aph(6)-Id, armA and aph(3')-Ia), phenicoles (e.g., catB8), tetracyclines (e.g., tet.B and tet.39), sulfonamides (e.g., sul.1 and sul.2), macrolides and lincosamide (e.g., mph.E, msr.E and abaF). MLST and core genome MLST (cgMLST) showed an extreme diversity among the strains. Several strains isolated from different countries clustered together by cgMLST; however, different clusters shared the same ST. Developing an action plan on AMR, increasing awareness and prohibiting the selling of antibiotics without prescription must be mandatory for this region. Such efforts are critical for enforcing targeted policies on the rational use of carbapenem compounds and controlling AMR dissemination and emergence in general.
Collapse
|
126
|
McConnell MJ, Martín-Galiano AJ. Designing Multi-Antigen Vaccines Against Acinetobacter baumannii Using Systemic Approaches. Front Immunol 2021; 12:666742. [PMID: 33936107 PMCID: PMC8085427 DOI: 10.3389/fimmu.2021.666742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines and monoclonal antibodies are promising approaches for preventing and treating infections caused by multidrug resistant Acinetobacter baumannii. However, only partial protection has been achieved with many previously tested protein antigens, which suggests that vaccines incorporating multiple antigens may be necessary in order to obtain high levels of protection. Several aspects that use the wealth of omic data available for A. baumannii have not been fully exploited for antigen identification. In this study, the use of fractionated proteomic and computational data from ~4,200 genomes increased the number of proteins potentially accessible to the humoral response to 8,824 non-redundant proteins in the A. baumannii panproteome. Among them, 59% carried predicted B-cell epitopes and T-cell epitopes recognized by two or more alleles of the HLA class II DP supertype. Potential cross-reactivity with human proteins was detected for 8.9% of antigens at the protein level and 2.7% at the B-cell epitope level. Individual antigens were associated with different infection types by genomic, transcriptomic or functional analyses. High intra-clonal genome density permitted the identification of international clone II as a “vaccitype”, in which 20% of identified antigens were specific to this clone. Network-based centrality measurements were used to identify multiple immunologic nodes. Data were formatted, unified and stored in a data warehouse database, which was subsequently used to identify synergistic antigen combinations for different vaccination strategies. This study supports the idea that integration of multi-omic data and fundamental knowledge of the pathobiology of drug-resistant bacteria can facilitate the development of effective multi-antigen vaccines against these challenging infections.
Collapse
Affiliation(s)
- Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
127
|
Lavrinenko A, Sheck E, Kolesnichenko S, Azizov I, Turmukhambetova A. Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan. Antibiotics (Basel) 2021; 10:antibiotics10040382. [PMID: 33916831 PMCID: PMC8065490 DOI: 10.3390/antibiotics10040382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to determine the prevalence of A. baumannii antibiotic-resistant strains in Kazakhstan and to characterize genotypes related to epidemic “high-risk” clones. Two hundred and twenty four A. baumannii isolates from four cities of Kazakhstan in 2011–2019 were studied. Antibiotic susceptibility testing was performed by using broth microdilutions method according to EUCAST (v 11.0) recommendations. The presence of blaOXA-23-like, blaOXA-24/40-like,blaOXA-58-like,blaVIM,blaIMP, and blaNDM genes was determined by PCR. Genotyping was performed using high-throughput real-time PCR detection of 21 SNPs at 10 chromosomal loci used in existing MLST schemes. Resistance rates to imipenem, meropenem, amikacin, gentamicin, and ciprofloxacin were 81.3%, 78.6%, 79.9%, 65.2%, and 89.3%, respectively. No colistin resistant isolates were detected. The values of the MIC 50% and the MIC 90% of tigecycline were 0.125 mg/L, only four isolates (1.8%) had the ECOFF value >0.5 mg/L. The presence of acquired carbapenemase genes was found in 82.2% strains, including blaOXA-23-like (78.6%) or blaOXA-58-like (3.6%) genes. The spreading of carbapenem resistant A. baumannii strains in Kazakhstan was associated with epidemic “high-risk” clonal groups, predominantly, CG208(92)OXF/CG2PAS (80.8%) and less often CG231(109)OXF/CG1PAS (1.8%).
Collapse
Affiliation(s)
- Alyona Lavrinenko
- Share Resource Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan; (A.L.); (A.T.)
| | - Eugene Sheck
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214014 Smolensk, Russia; (E.S.); (I.A.)
| | - Svetlana Kolesnichenko
- Share Resource Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan; (A.L.); (A.T.)
- Correspondence: ; Tel.: +7-721-251-3479
| | - Ilya Azizov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214014 Smolensk, Russia; (E.S.); (I.A.)
| | - Anar Turmukhambetova
- Share Resource Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan; (A.L.); (A.T.)
| |
Collapse
|
128
|
Cabral BG, Brasiliense DM, Furlaneto IP, Rodrigues YC, Lima KVB. Surgical Site Infection Following Caesarean Section by Acinetobacter Species: A Report from a Hyperendemic Setting in the Brazilian Amazon Region. Microorganisms 2021; 9:microorganisms9040743. [PMID: 33918140 PMCID: PMC8067217 DOI: 10.3390/microorganisms9040743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Surgical site infection (SSI) following caesarean section is associated with increased morbidity, mortality, and significant health care costs. This study evaluated the epidemiological, clinical, and microbiological features of Acinetobacter spp. in women with SSIs who have undergone caesarean section at a referral hospital in the Brazilian Amazon region. This study included 69 women with post-caesarean SSI by Acinetobacter spp. admitted to the hospital between January 2012 and May 2015. The 69 Acinetobacter isolates were subjected to molecular species identification, antimicrobial susceptibility testing, detection of carbapenemase-encoding genes, and genotyping. The main complications of post-caesarean SSI by Acinetobacter were inadequate and prolonged antibiotic therapy, sepsis, prolonged hospitalization, and re-suture procedures. A. baumannii, A. nosocomialis and A. colistiniresistens species were identified among the isolates. Carbapenem resistance was associated with OXA-23-producing A. baumannii isolates and IMP-1-producing A. nosocomialis isolate. Patients with multidrug-resistant A. baumannii infection showed worse clinical courses. Dissemination of persistent epidemic clones was observed, and the main clonal complexes (CC) for A. baumannii were CC231 and CC236 (Oxford scheme) and CC1 and CC15 (Pasteur scheme). This is the first report of a long-term Acinetobacter spp. outbreak in women who underwent caesarean section at a Brazilian hospital. This study demonstrates the impact of multidrug resistance on the clinical course of post-caesarean infections.
Collapse
Affiliation(s)
- Blenda Gonçalves Cabral
- Parasitic Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil; (B.G.C.); (Y.C.R.); (K.V.B.L.)
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
- Correspondence: ; Tel.: +55-9132-1421-16
| | | | - Yan Corrêa Rodrigues
- Parasitic Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil; (B.G.C.); (Y.C.R.); (K.V.B.L.)
| | - Karla Valéria Batista Lima
- Parasitic Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil; (B.G.C.); (Y.C.R.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
129
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
130
|
Khuntayaporn P, Kanathum P, Houngsaitong J, Montakantikul P, Thirapanmethee K, Chomnawang MT. Predominance of international clone 2 multidrug-resistant Acinetobacter baumannii clinical isolates in Thailand: a nationwide study. Ann Clin Microbiol Antimicrob 2021; 20:19. [PMID: 33743736 PMCID: PMC7980754 DOI: 10.1186/s12941-021-00424-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as one of the common multidrug resistance pathogens causing hospital-acquired infections. This study was conducted to elucidate the distribution of antimicrobial resistance genes in the bacterial population in Thailand. Multidrug-resistant A. baumannii (MDR A. baumannii) isolates were characterized phenotypically, and the molecular epidemiology of clinical isolates in 11 tertiary hospitals was investigated at a country-wide level. METHODS A total of 135 nonrepetitive MDR A. baumannii isolates collected from tertiary care hospitals across 5 regions of Thailand were examined for antibiotic susceptibility, resistance genes, and sequence types. Multilocus sequence typing (MLST) was performed to characterize the spread of regional lineages. RESULTS ST2 belonging to IC2 was the most dominant sequence type in Thailand (65.19%), and to a lesser extent, there was also evidence of the spread of ST164 (10.37%), ST129 (3.70%), ST16 (2.96%), ST98 (2.96%), ST25 (2.96%), ST215 (2.22%), ST338 (1.48%), and ST745 (1.48%). The novel sequence types ST1551, ST1552, ST1553, and ST1557 were also identified in this study. Among these, the blaoxa-23 gene was by far the most widespread in MDR A. baumannii, while the blaoxa-24/40 and blaoxa-58 genes appeared to be less dominant in this region. The results demonstrated that the predominant class D carbapenemase was blaOXA-23, followed by the class B carbapenemase blaNDM-like, while the mcr-1 gene was not observed in any isolate. Most of the MDR A. baumannii isolates were resistant to ceftazidime (99.23%), gentamicin (91.85%), amikacin (82.96%), and ciprofloxacin (97.78%), while all of them were resistant to carbapenems. The results suggested that colistin could still be effective against MDR A. baumannii in this region. CONCLUSION This is the first molecular epidemiological analysis of MDR A. baumannii clinical isolates at the national level in Thailand to date. Studies on the clonal relatedness of MDR A. baumannii isolates could generate useful data to understand the local epidemiology and international comparisons of nosocomial outbreaks.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Pohnvipa Kanathum
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Jantana Houngsaitong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Preecha Montakantikul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
131
|
Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates from Northern Africa and the Middle East. Antibiotics (Basel) 2021; 10:antibiotics10030291. [PMID: 33799540 PMCID: PMC8002098 DOI: 10.3390/antibiotics10030291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
At the Bundeswehr Hospitals of Hamburg and Westerstede, patients repatriated from subtropical war and crisis zones of Northern Africa and the Middle East were medically treated, including microbiological assessment. Within a six-year interval, 16 Acinetobacter spp. strains, including 14 Acinetobacter baumannii (Ab) isolates with resistance against carbapenems and origins in Afghanistan (n = 4), Iraq (n = 2), Libya (n = 2), and Syria (n = 8) were collected. While clonal relationships of Libyan and Syrian strains had been assessed by superficial next generation sequencing (NGS) and “DiversiLab” repetitive elements sequence-based (rep-)PCR so far, this study provides core genome-based sequence typing and thus more detailed epidemiological information. In detail, sequencing allowed a definitive species identification and comparison with international outbreak-associated Ab strains by core genome multi locus sequence typing (cgMLST) and the identification of MLST lineages, as well as the identification of known resistance genes. The sequence analysis allowed for the confirmation of outbreak-associated clonal clusters among the Syrian and Afghan Ab isolates, indicating likely transmission events. The identified acquired carbapenem resistance genes comprised blaOXA-23, blaOXA-58, blaNDM-1, and blaGES-11, next to other intrinsic and acquired, partly mobile resistance-associated genes. Eleven out of 14 Ab isolates clustered with the previously described international clonal lineages IC1 (4 Afghan strains), IC2 (6 Syrian strains), and IC7 (1 Syrian strain). Identified Pasteur sequence types of the 14 Ab strains comprised ST2 (Syrian), ST25 (Libyan), ST32 (Iraqi), ST81 (Afghan), ST85 (Libyan), and ST1112 (Syrian), respectively. In conclusion, the study revealed a broad spectrum of resistance genes in Ab isolated from war-injured patients from Northern Africa and the Middle East, thereby broadening the scarcely available data on locally abundant clonal lineages and resistance mechanisms.
Collapse
|
132
|
Pulami D, Schauss T, Eisenberg T, Wilharm G, Blom J, Goesmann A, Kämpfer P, Glaeser SP. Acinetobacter baumannii in manure and anaerobic digestates of German biogas plants. FEMS Microbiol Ecol 2021; 96:5896450. [PMID: 32832994 DOI: 10.1093/femsec/fiaa176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Studies considering environmental multidrug-resistant Acinetobacter spp. are scarce. The application of manure on agricultural fields is one source of multidrug-resistant bacteria from livestock into the environment. Here, Acinetobacter spp. were quantified by quantitative polymerase chain reaction in manure applied to biogas plants and in the output of the anaerobic digestion, and Acinetobacter spp. isolated from those samples were comprehensively characterized. The concentration of Acinetobacter 16S ribosomal ribonucleic acid (rRNA) gene copies per g fresh weight was in range of 106-108 in manure and decreased (partially significantly) to a still high concentration (105-106) in digestates. 16S rRNA, gyrB-rpoB and blaOXA51-like gene sequencing identified 17 different Acinetobacter spp., including six A. baumannii strains. Multilocus sequence typing showed no close relation of the six strains with globally relevant clonal complexes; however, they represented five novel sequence types. Comparative genomics and physiological tests gave an explanation how Acinetobacter could survive the anaerobic biogas process and indicated copper resistance and the presence of intrinsic beta-lactamases, efflux-pump and virulence genes. However, the A. baumannii strains lacked acquired resistance against carbapenems, colistin and quinolones. This study provided a detailed characterization of Acinetobacter spp. including A. baumannii released via manure through mesophilic or thermophilic biogas plants into the environment.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Thorsten Schauss
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), D-35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
133
|
Roberts LW, Forde BM, Hurst T, Ling W, Nimmo GR, Bergh H, George N, Hajkowicz K, McNamara JF, Lipman J, Permana B, Schembri MA, Paterson D, Beatson SA, Harris PNA. Genomic surveillance, characterization and intervention of a polymicrobial multidrug-resistant outbreak in critical care. Microb Genom 2021; 7:mgen000530. [PMID: 33599607 PMCID: PMC8190620 DOI: 10.1099/mgen.0.000530] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/24/2021] [Indexed: 02/01/2023] Open
Abstract
Background. Infections caused by carbapenem-resistant Acinetobacter baumannii (CR-Ab) have become increasingly prevalent in clinical settings and often result in significant morbidity and mortality due to their multidrug resistance (MDR). Here we present an integrated whole-genome sequencing (WGS) response to a persistent CR-Ab outbreak in a Brisbane hospital between 2016-2018.Methods. A. baumannii, Klebsiella pneumoniae, Serratia marcescens and Pseudomonas aeruginosa isolates were sequenced using the Illumina platform primarily to establish isolate relationships based on core-genome SNPs, MLST and antimicrobial resistance gene profiles. Representative isolates were selected for PacBio sequencing. Environmental metagenomic sequencing with Illumina was used to detect persistence of the outbreak strain in the hospital.Results. In response to a suspected polymicrobial outbreak between May to August of 2016, 28 CR-Ab (and 21 other MDR Gram-negative bacilli) were collected from Intensive Care Unit and Burns Unit patients and sent for WGS with a 7 day turn-around time in clinical reporting. All CR-Ab were sequence type (ST)1050 (Pasteur ST2) and within 10 SNPs apart, indicative of an ongoing outbreak, and distinct from historical CR-Ab isolates from the same hospital. Possible transmission routes between patients were identified on the basis of CR-Ab and K. pneumoniae SNP profiles. Continued WGS surveillance between 2016 to 2018 enabled suspected outbreak cases to be refuted, but a resurgence of the outbreak CR-Ab mid-2018 in the Burns Unit prompted additional screening. Environmental metagenomic sequencing identified the hospital plumbing as a potential source. Replacement of the plumbing and routine drain maintenance resulted in rapid resolution of the secondary outbreak and significant risk reduction with no discernable transmission in the Burns Unit since.Conclusion. We implemented a comprehensive WGS and metagenomics investigation that resolved a persistent CR-Ab outbreak in a critical care setting.
Collapse
Affiliation(s)
- Leah W. Roberts
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Brian M. Forde
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Trish Hurst
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- Infection Monitoring and Prevention Service, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- Unit of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Weiping Ling
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
| | - Graeme R. Nimmo
- Pathology Queensland, Central Laboratory, Brisbane, QLD, Australia
| | - Haakon Bergh
- Pathology Queensland, Central Laboratory, Brisbane, QLD, Australia
| | - Narelle George
- Pathology Queensland, Central Laboratory, Brisbane, QLD, Australia
| | - Krispin Hajkowicz
- Unit of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - John F. McNamara
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
| | - Jeffrey Lipman
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- Nimes University Hospital, University of Montpellier, Nimes, France
| | - Budi Permana
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - David Paterson
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- Unit of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Patrick N. A. Harris
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- Pathology Queensland, Central Laboratory, Brisbane, QLD, Australia
| |
Collapse
|
134
|
Molecular characterization and antibiotic resistance of Acinetobacter baumannii in cerebrospinal fluid and blood. PLoS One 2021; 16:e0247418. [PMID: 33617547 PMCID: PMC7899338 DOI: 10.1371/journal.pone.0247418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/07/2021] [Indexed: 01/22/2023] Open
Abstract
The increasing prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB) caused nosocomial infections generate significant comorbidity and can cause death among patients. Current treatment options are limited. These infections pose great difficulties for infection control and clinical treatment. To identify the antimicrobial resistance, carbapenemases and genetic relatedness of Acinetobacter baumannii isolates from cerebrospinal fluid (CSF) and blood, a total of 50 nonrepetitive CSF isolates and 44 blood isolates were collected. The resistance phenotypes were determined, and polymerase chain reaction (PCR) was performed to examine the mechanisms of carbapenem resistance. Finally, multilocus sequence typing (MLST) was conducted to determine the genetic relatedness of these isolates. It was observed that 88 of the 94 collected isolates were resistant to imipenem or meropenem. Among them, the blaOXA-23 gene was the most prevalent carbapenemase gene, with an observed detection rate of 91.5% (86/94), followed by the blaOXA-24 gene with a 2.1% detection rate (2/94). Among all carbapenem-resistant Acinetobacter baumannii (CRAB) observations, isolates with the blaOXA-23 gene were resistant to both imipenem and meropenem. Interestingly, isolates positive for the blaOXA-24 gene but negative for the blaOXA-23 gene showed an imipenem-sensitive but meropenem-resistant phenotype. The MLST analysis identified 21 different sequence types (STs), with ST195, ST540 and ST208 most frequently detected (25.5%, 12.8% and 11.7%, respectively). 80 of the 94 isolates (85.1%) were clustered into CC92 which showed a carbapenem resistance phenotype (except AB13). Five novel STs were detected, and most of them belong to CRAB. In conclusion, these findings provide additional observations and epidemiological data of CSF and blood A. baumannii strains, which may improve future infection-control measures and aid in potential clinical treatments in hospitals and other clinical settings.
Collapse
|
135
|
Karah N, Wai SN, Uhlin BE. CRISPR-based subtyping to track the evolutionary history of a global clone of Acinetobacter baumannii. INFECTION GENETICS AND EVOLUTION 2021; 90:104774. [PMID: 33618003 DOI: 10.1016/j.meegid.2021.104774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Acinetobacter baumannii global clone 1 (GC1) is the second most common clone in the global population of A. baumannii isolates and a key cause of hospital-acquired infections. In this study, comparative analysis of the clustered regularly interspaced short palindromic repeats (CRISPR)-based sequence types (CST) was performed to determine the genetic relatedness and track patterns of descent among 187 GC1 isolates, as a complement to the evolutionary inferences from their multilocus sequence types and genome-wide single nucleotide polymorphism (SNP)-based phylogeny. The CST2 cluster, CST2 and all the CSTs descending from CST2, corresponded to GC1 lineage 1. This cluster included 143 of the 187 isolates showing a prevalent geographical distribution worldwide. A well-demarcated group of 13 CSTs, accounting for 33 of the 187 isolates, corresponded to GC1 lineage 2. All the CSTs of this group were characterized by the absence of spacer Ab-18. Many of the GC1 lineage 2 isolates had an epidemiological link to the Middle East and/or were obtained in military healthcare facilities. GC1 lineage 3 was a novel lineage that has so far been limited to Afghanistan, Pakistan and India. Diversification of A. baumannii GC1 into lineages and clades has probably been related to a dynamic expansion after passing a migration bottleneck to enter the hospital environment. We conclude that CRISPR-based subtyping is a convenient method to trace the evolutionary history of particular bacterial clones, such as A. baumannii GC1.
Collapse
Affiliation(s)
- Nabil Karah
- Department of Molecular Biology, the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Sun Nyunt Wai
- Department of Molecular Biology, the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology, the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
136
|
Grisold AJ, Luxner J, Bedenić B, Diab-Elschahawi M, Berktold M, Wechsler-Fördös A, Zarfel GE. Diversity of Oxacillinases and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii from Austria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042171. [PMID: 33672170 PMCID: PMC7926329 DOI: 10.3390/ijerph18042171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii is a significant health problem worldwide. A multicenter study on A. baumannii was performed to investigate the molecular epidemiology and genetic background of carbapenem resistance of A. baumannii isolates collected from 2014–2017 in Austria. In total, 117 non-repetitive Acinetobacter spp. assigned to A. baumannii (n = 114) and A. pittii (n = 3) were collected from four centers in Austria. The isolates were uniformly resistant to piperacillin/tazobactam, ceftazidime, and carbapenems, and resistance to imipenem and meropenem was 97.4% and 98.2%, respectively. The most prominent OXA-types were OXA-58-like (46.5%) and OXA-23-like (41.2%), followed by OXA-24-like (10.5%), with notable regional differences. Carbapenem-hydrolyzing class D carbapenemases (CHDLs) were the only carbapenemases found in A.baumannii isolates in Austria since no metallo-β-lactamases (MBLs) nor KPC or GES carbapenemases were detected in any of the isolates. One-third of the isolates harbored multiple CHDLs. The population structure of A. baumannii isolates from Austria was found to be very diverse, while a total of twenty-three different sequence types (STs) were identified. The most frequent was ST195 found in 15.8%, followed by ST218 and ST231 equally found in 11.4% of isolates. Two new ST types, ST2025 and ST2026, were detected. In one A. pittii isolate, blaOXA-143-like was detected for the first time in Austria.
Collapse
Affiliation(s)
- Andrea J. Grisold
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria; (J.L.); (G.E.Z.)
- Correspondence: ; Tel.: +43-316-385-73630
| | - Josefa Luxner
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria; (J.L.); (G.E.Z.)
| | - Branka Bedenić
- Department of Microbiology, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Magda Diab-Elschahawi
- Department of Infection Control and Hospital Epidemiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael Berktold
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria;
| | | | - Gernot E. Zarfel
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria; (J.L.); (G.E.Z.)
| |
Collapse
|
137
|
Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. PLoS One 2021; 16:e0246937. [PMID: 33617559 PMCID: PMC7899328 DOI: 10.1371/journal.pone.0246937] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria.
Collapse
|
138
|
Pulami D, Schauss T, Eisenberg T, Blom J, Schwengers O, Bender JK, Wilharm G, Kämpfer P, Glaeser SP. Acinetobacter stercoris sp. nov. isolated from output source of a mesophilic german biogas plant with anaerobic operating conditions. Antonie van Leeuwenhoek 2021; 114:235-251. [PMID: 33591460 PMCID: PMC7902594 DOI: 10.1007/s10482-021-01517-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023]
Abstract
The Gram-stain-negative, oxidase negative, catalase positive strain KPC-SM-21T, isolated from a digestate of a storage tank of a mesophilic German biogas plant, was investigated by a polyphasic taxonomic approach. Phylogenetic identification based on the nearly full-length 16S rRNA gene revealed highest gene sequence similarity to Acinetobacter baumannii ATCC 19606T (97.0%). Phylogenetic trees calculated based on partial rpoB and gyrB gene sequences showed a distinct clustering of strain KPC-SM-21T with Acinetobacter gerneri DSM 14967T = CIP 107464T and not with A. baumannii, which was also supported in the five housekeeping genes multilocus sequence analysis based phylogeny. Average nucleotide identity values between whole genome sequences of strain KPC-SM-21T and next related type strains supported the novel species status. The DNA G + C content of strain KPC-SM-21T was 37.7 mol%. Whole-cell MALDI-TOF MS analysis supported the distinctness of the strain to type strains of next related Acinetobacter species. Predominant fatty acids were C18:1 ω9c (44.2%), C16:0 (21.7%) and a summed feature comprising C16:1 ω7c and/or iso-C15:0 2-OH (15.3%). Based on the obtained genotypic, phenotypic and chemotaxonomic data we concluded that strain KPC-SM-21T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter stercoris sp. nov. is proposed. The type strain is KPC-SM-21T (= DSM 102168T = LMG 29413T).
Collapse
Affiliation(s)
- Dipen Pulami
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Thorsten Schauss
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Giessen, 35392, Giessen, Germany
| | - Oliver Schwengers
- Institute for Bioinformatics and Systems Biology, Giessen, 35392, Giessen, Germany
| | - Jennifer K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Robert Koch Institute, 38855, Wernigerode, Germany
| | - Gottfried Wilharm
- Project group P2, Wernigerode Branch, Robert Koch Institute, 38855, Wernigerode, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany.
| |
Collapse
|
139
|
Genomic and Phenotypic Analysis of Multidrug-Resistant Acinetobacter baumannii Clinical Isolates Carrying Different Types of CRISPR/Cas Systems. Pathogens 2021; 10:pathogens10020205. [PMID: 33668622 PMCID: PMC7918744 DOI: 10.3390/pathogens10020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen being one of the most important causative agents of a wide range of nosocomial infections associated with multidrug resistance and high mortality rate. This study presents a multiparametric and correlation analyses of clinical multidrug-resistant A. baumannii isolates using short- and long-read whole-genome sequencing, which allowed us to reveal specific characteristics of the isolates with different CRISPR/Cas systems. We also compared antibiotic resistance and virulence gene acquisition for the groups of the isolates having functional CRISPR/Cas systems, just CRISPR arrays without cas genes, and without detectable CRISPR spacers. The data include three schemes of molecular typing, phenotypic and genotypic antibiotic resistance determination, as well as phylogenetic analysis of full-length cas gene sequences, predicted prophage sequences and CRISPR array type determination. For the first time the differences between the isolates carrying Type I-F1 and Type I-F2 CRISPR/Cas systems were investigated. A. baumannii isolates with Type I-F1 system were shown to have smaller number of reliably detected CRISPR arrays, and thus they could more easily adapt to environmental conditions through acquisition of antibiotic resistance genes, while Type I-F2 A. baumannii might have stronger “immunity” and use CRISPR/Cas system to block the dissemination of these genes. In addition, virulence factors abaI, abaR, bap and bauA were overrepresented in A. baumannii isolates lacking CRISPR/Cas system. This indicates the role of CRISPR/Cas in fighting against phage infections and preventing horizontal gene transfer. We believe that the data presented will contribute to further investigations in the field of antimicrobial resistance and CRISPR/Cas studies.
Collapse
|
140
|
Aung MS, Hlaing MS, San N, Aung MT, Mar TT, Kobayashi N. Clonal diversity of Acinetobacter baumannii clinical isolates in Myanmar: identification of novel ST1407 harbouring blaNDM-1. New Microbes New Infect 2021; 40:100847. [PMID: 33732472 PMCID: PMC7944022 DOI: 10.1016/j.nmni.2021.100847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Recent Acinetobacter baumannii clinical isolates in a teaching hospital in Myanmar comprised three major sequence types (ST2, ST16 and ST23) and two sporadic STs, showing a high resistance rate to carbapenem associated with blaOXA-23 . The NDM-1 encoding gene was identified in only one isolate exhibiting novel ST1407 (a triple-locus variant of ST16).
Collapse
Affiliation(s)
- M S Aung
- Sapporo Medical University School of Medicine, Sapporo, Japan
| | - M S Hlaing
- University of Medicine 2, Yangon, Myanmar
| | - N San
- University of Medicine 2, Yangon, Myanmar
| | - M T Aung
- North Okkalapa General and Teaching Hospital, Yangon, Myanmar
| | - T T Mar
- University of Medicine 1, Yangon, Myanmar
| | - N Kobayashi
- Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
141
|
Szczypta A, Talaga-Ćwiertnia K, Kielar M, Krzyściak P, Gajewska A, Szura M, Bulanda M, Chmielarczyk A. Investigation of Acinetobacter baumannii Activity in Vascular Surgery Units through Epidemiological Management Based on the Analysis of Antimicrobial Resistance, Biofilm Formation and Genotyping. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041563. [PMID: 33562194 PMCID: PMC7915860 DOI: 10.3390/ijerph18041563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Background/Objectives: The genus Acinetobacter demonstrates resistance to antibiotics and has been shown to spread in the hospital environment causing epidemic outbreaks among hospitalized patients. The objectives of the present study was to investigate the antibiotic resistance, biofilm formation, and clonality among Acinetobacter baumannii strains. Materials and Methods: The study involved 6 (I Outbreak) and 3 (II Outbreak) A. baumannii strains isolated from patients hospitalized in vascular surgery unit. Results: All tested A. baumannii strains were extensively drug resistant (XDR) and all the isolates were carbapenem-resistant and among them, all carried the blaOXA-51 gene, the blaOXA-24 gene, as well as the blaOXA-23 gene. All of the investigated strains had the ability to form a biofilm, but all of them produced less biofilm than the reference strain. Multi-locus sequence typing (MLST) showed that all strains belonged to the ST2 clone. Pulsed-field gel electrophoresis (PFGE) divided the tested outbreak strains into two clones (A and B). Conclusion: This study shows a nosocomial spread of XDR A. baumannii ST2 having the blaOXA-51 gene, the blaOXA-24 gene, as well as the blaOXA-23 gene, low biofilm formers, that was prevalent in the vascular surgery unit. To identify the current situation of vascular surgery departments targeted epidemiological investigation was needed. Effective implementation of infection control prevented the spread of the epidemic outbreaks.
Collapse
Affiliation(s)
- Anna Szczypta
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Kraków, Poland;
- The Bonifratri Order Hospital of St. John Grande, 31-061 Kraków, Poland;
| | - Katarzyna Talaga-Ćwiertnia
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Infection Control and Mycology, 31-008 Kraków, Poland; (P.K.); (M.B.)
- Correspondence: ; Tel.: +48-12-633-0877 (ext. 231)
| | - Małgorzata Kielar
- Medical Diagnostic Laboratory with a Bacteriological Unit, St. Louis Regional Specialised Children’s Hospital, 31-503 Kraków, Poland;
| | - Paweł Krzyściak
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Infection Control and Mycology, 31-008 Kraków, Poland; (P.K.); (M.B.)
| | | | - Mirosław Szura
- The Bonifratri Order Hospital of St. John Grande, 31-061 Kraków, Poland;
- Jagiellonian University Medical College, Department of Clinical and Experimental Surgery, 31-008 Kraków, Poland
| | - Małgorzata Bulanda
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Infection Control and Mycology, 31-008 Kraków, Poland; (P.K.); (M.B.)
| | - Agnieszka Chmielarczyk
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Bacteriology, Microbial Ecology and Parasitology, 31-008 Kraków, Poland;
| |
Collapse
|
142
|
Hwang SM, Cho HW, Kim TY, Park JS, Jung J, Song KH, Lee H, Kim ES, Kim HB, Park KU. Whole-Genome Sequencing for Investigating a Health Care-Associated Outbreak of Carbapenem-Resistant Acinetobacter baumannii. Diagnostics (Basel) 2021; 11:diagnostics11020201. [PMID: 33573077 PMCID: PMC7910894 DOI: 10.3390/diagnostics11020201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) outbreaks in hospital settings challenge the treatment of patients and infection control. Understanding the relatedness of clinical isolates is important in distinguishing outbreak isolates from sporadic cases. This study investigated 11 CRAB isolates from a hospital outbreak by whole-genome sequencing (WGS), utilizing various bioinformatics tools for outbreak analysis. The results of multilocus sequence typing (MLST), single nucleotide polymorphism (SNP) analysis, and phylogenetic tree analysis by WGS through web-based tools were compared, and repetitive element polymerase chain reaction (rep-PCR) typing was performed. Through the WGS of 11 A. baumannii isolates, three clonal lineages were identified from the outbreak. The coexistence of blaOXA-23, blaOXA-66, blaADC-25, and armA with additional aminoglycoside-inactivating enzymes, predicted to confer multidrug resistance, was identified in all isolates. The MLST Oxford scheme identified three types (ST191, ST369, and ST451), and, through whole-genome MLST and whole-genome SNP analyses, different clones were found to exist within the MLST types. wgSNP showed the highest discriminatory power with the lowest similarities among the isolates. Using the various bioinformatics tools for WGS, CRAB outbreak analysis was applicable and identified three discrete clusters differentiating the separate epidemiologic relationships among the isolates.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (S.M.H.); (J.S.P.)
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
| | - Hee Won Cho
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul 06351, Korea;
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (S.M.H.); (J.S.P.)
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
| | - Jongtak Jung
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Kyoung-Ho Song
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Hyunju Lee
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Eu Suk Kim
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Hong Bin Kim
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (S.M.H.); (J.S.P.)
- College of Medicine, Seoul National University, Seoul 03080, Korea; (H.W.C.); (J.J.); (K.-H.S.); (H.L.); (E.S.K.); (H.B.K.)
- Correspondence: ; Tel.: +82-2740-8005
| |
Collapse
|
143
|
Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: Its Clinical Significance in Human and Veterinary Medicine. Pathogens 2021; 10:pathogens10020127. [PMID: 33513701 PMCID: PMC7911418 DOI: 10.3390/pathogens10020127] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen, causing severe infections difficult to treat. The A. baumannii infection rate has increased year by year in human medicine and it is also considered as a major cause of nosocomial infections worldwide. This bacterium, also well known for its ability to form biofilms, has a strong environmental adaptability and the characteristics of multi-drug resistance. Indeed, strains showing fully resistant profiles represent a worrisome problem in clinical therapeutic treatment. Furthermore, A. baumannii-associated veterinary nosocomial infections has been reported in recent literature. Particularly, carbapenem-resistant A. baumannii can be considered an emerging opportunistic pathogen in human medicine as well as in veterinary medicine.
Collapse
Affiliation(s)
- Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence:
| |
Collapse
|
144
|
Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Cleary DW, Clarke SC, Yeo CC. Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. mSphere 2021; 6:e01076-20. [PMID: 33504662 PMCID: PMC7885321 DOI: 10.1128/msphere.01076-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes blaNDM-1 and blaOXA-58 in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The blaNDM-1 gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas blaOXA-58 was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmed Ghazi Alattraqchi
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Farahiyah Mohd Rani
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Nor Iza A Rahman
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Salwani Ismail
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - David W Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom
- Global Health Research Institute, University of Southampton, Southampton, United Kingdom
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Centre for Translational Research, IMU Institute for Research, Development and Innovation (IRDI), Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
145
|
Colistin Dependence in Extensively Drug-Resistant Acinetobacter baumannii Strain Is Associated with IS Ajo2 and IS Aba13 Insertions and Multiple Cellular Responses. Int J Mol Sci 2021; 22:ijms22020576. [PMID: 33430070 PMCID: PMC7827689 DOI: 10.3390/ijms22020576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The nosocomial opportunistic Gram-negative bacterial pathogen Acinetobacter baumannii is resistant to multiple antimicrobial agents and an emerging global health problem. The polymyxin antibiotic colistin, targeting the negatively charged lipid A component of the lipopolysaccharide on the bacterial cell surface, is often considered as the last-resort treatment, but resistance to colistin is unfortunately increasing worldwide. Notably, colistin-susceptible A. baumannii can also develop a colistin dependence after exposure to this drug in vitro. Colistin dependence might represent a stepping stone to resistance also in vivo. However, the mechanisms are far from clear. To address this issue, we combined proteogenomics, high-resolution microscopy, and lipid profiling to characterize and compare A. baumannii colistin-susceptible clinical isolate (Ab-S) of to its colistin-dependent subpopulation (Ab-D) obtained after subsequent passages in moderate colistin concentrations. Incidentally, in the colistin-dependent subpopulation the lpxA gene was disrupted by insertion of ISAjo2, the lipid A biosynthesis terminated, and Ab-D cells displayed a lipooligosaccharide (LOS)-deficient phenotype. Moreover, both mlaD and pldA genes were perturbed by insertions of ISAjo2 and ISAba13, and LOS-deficient bacteria displayed a capsule with decreased thickness as well as other surface imperfections. The major changes in relative protein abundance levels were detected in type 6 secretion system (T6SS) components, the resistance-nodulation-division (RND)-type efflux pumps, and in proteins involved in maintenance of outer membrane asymmetry. These findings suggest that colistin dependence in A. baumannii involves an ensemble of mechanisms seen in resistance development and accompanied by complex cellular events related to insertional sequences (ISs)-triggered LOS-deficiency. To our knowledge, this is the first study demonstrating the involvement of ISAjo2 and ISAba13 IS elements in the modulation of the lipid A biosynthesis and associated development of dependence on colistin.
Collapse
|
146
|
Yehouenou C, Bogaerts B, Vanneste K, Roosens NHC, De Keersmaecker SCJ, Marchal K, Affolabi D, Soleimani R, Rodriguez-Villalobos H, Van Bambeke F, Dalleur O, Simon A. First detection of a plasmid-encoded New-Delhi metallo-beta-lactamase-1 (NDM-1) producing Acinetobacter baumannii using whole genome sequencing, isolated in a clinical setting in Benin. Ann Clin Microbiol Antimicrob 2021; 20:5. [PMID: 33407536 PMCID: PMC7789245 DOI: 10.1186/s12941-020-00411-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii is considered a top priority pathogen by the World Health Organization for combatting increasing antibiotic resistance and development of new drugs. Since it was originally reported in Klebsiella pneumoniae in 2009, the quick spread of the blaNDM-1 gene encoding a New-Delhi metallo-beta-lactamase-1 (NDM-1) is increasingly recognized as a serious threat. This gene is usually carried by large plasmids and has already been documented in diverse bacterial species, including A. baumannii. Here, we report the first detection of a NDM-1-producing A. baumannii strain isolated in Benin. CASE PRESENTATION A 31-year-old woman was admitted to a surgical unit with a diagnosis of post-cesarean hematoma. An extensively-drug resistant A. baumannii strain solely susceptible to amikacin, colistin and ciprofloxacin, and resistant to several other antibiotics including ceftazidime, imipenem, meropenem, gentamicin, tobramycin, ceftazidime/avibactam, and sulfamethoxazole-trimethoprim, was isolated from the wound. Production of NDM-1 was demonstrated by immunochromatographic testing. Whole genome sequencing of the isolate confirmed the presence of blaNDM-1, but also antibiotic resistance genes against multiple beta-lactamases and other classes of antibiotics, in addition to several virulence genes. Moreover, the blaNDM-1 gene was found to be present in a Tn125 transposon integrated on a plasmid. CONCLUSIONS The discovery of this extensively-drug resistant A. baumannii strain carrying blaNDM-1 in Benin is worrying, especially because of its high potential risk of horizontal gene transfer due to being integrated into a transposon located on a plasmid. Strict control and prevention measures should be taken, once NDM-1 positive A. baumannii has been identified to prevent transfer of this resistance gene to other Enterobacterales. Capacity building is required by governmental agencies to provide suitable antibiotic treatment options and strategies, in combination with strengthening laboratory services for detection and surveillance of this pathogen.
Collapse
Affiliation(s)
- Carine Yehouenou
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium. .,Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin. .,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin.
| | - Bert Bogaerts
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium. .,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium.
| | - Kevin Vanneste
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Nancy H C Roosens
- Sciensano, Transversal Activities in Applied Genomics, Brussels, Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin.,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin.,Centre National Hospitalier et Universitaire Hubert Koutoukou Maga (CNHU-HKM) Country Cotonou, ., Benin
| | - Reza Soleimani
- Microbiologie, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Microbiologie, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium.,Pole de Microbiologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain UCLouvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium
| | - Olivia Dalleur
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Pharmacy, Clinique Universitaire Saint-Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Anne Simon
- Microbiologie, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium.,Pole de Microbiologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain UCLouvain, Brussels, Belgium
| |
Collapse
|
147
|
Hua X, Moran RA, Xu Q, He J, Fang Y, Zhang L, van Schaik W, Yu Y. Acquisition of a genomic resistance island (AbGRI5) from global clone 2 through homologous recombination in a clinical Acinetobacter baumannii isolate. J Antimicrob Chemother 2021; 76:65-69. [PMID: 33057672 DOI: 10.1093/jac/dkaa389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/19/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To reconstruct the evolutionary history of the clinical Acinetobacter baumannii XH1056, which lacks the Oxford scheme allele gdhB. METHODS Susceptibility testing was performed using broth microdilution and agar dilution. The whole-genome sequence of XH1056 was determined using the Illumina and Oxford Nanopore platforms. MLST was performed using the Pasteur scheme and the Oxford scheme. Antibiotic resistance genes were identified using ABRicate. RESULTS XH1056 was resistant to all antibiotics tested, apart from colistin, tigecycline and eravacycline. MLST using the Pasteur scheme assigned XH1056 to ST256. However, XH1056 could not be typed with the Oxford MLST scheme as gdhB is not present. Comparative analyses revealed that XH1056 contains a 52 933 bp region acquired from a global clone 2 (GC2) isolate, but is otherwise closely related to the ST23 A. baumannii XH858. The acquired region in XH1056 also contains a 34 932 bp resistance island that resembles AbGRI3 and contains the armA, msrE-mphE, sul1, blaPER-1, aadA1, cmlA1, aadA2, blaCARB-2 and ere(B) resistance genes. Comparison of the XH1056 chromosome to that of GC2 isolate XH859 revealed that the island in XH1056 is in the same chromosomal region as that in XH859. As this island is not in the standard AbGRI3 position, it was named AbGRI5. CONCLUSIONS XH1056 is a hybrid isolate generated by the acquisition of a chromosomal segment from a GC2 isolate that contains a resistance island in a new location-AbGRI5. As well as generating ST256, it appears likely that a single recombination event is also responsible for the acquisition of AbGRI5 and its associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Youhong Fang
- Department of Gastroenterology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bin Sheng Road, Hangzhou 310052, Zhejiang Province, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
148
|
Sykes EME, Deo S, Kumar A. Recent Advances in Genetic Tools for Acinetobacter baumannii. Front Genet 2020; 11:601380. [PMID: 33414809 PMCID: PMC7783400 DOI: 10.3389/fgene.2020.601380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter's high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.
Collapse
Affiliation(s)
| | | | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
149
|
Camargo CH, Cunha MPV, de Barcellos TAF, Bueno MS, Bertani AMDJ, dos Santos CA, Nagamori FO, Takagi EH, Chimara E, de Carvalho E, Tiba-Casas MR. Genomic and phenotypic characterisation of antimicrobial resistance in carbapenem-resistant Acinetobacter baumannii hyperendemic clones CC1, CC15, CC79 and CC25. Int J Antimicrob Agents 2020; 56:106195. [DOI: 10.1016/j.ijantimicag.2020.106195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
|
150
|
Riley LW. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol Spectr 2020; 8:10.1128/microbiolspec.ame-0014-2020. [PMID: 33385193 PMCID: PMC10773148 DOI: 10.1128/microbiolspec.ame-0014-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of E. coli that cause diarrhea are often described as intestinal pathogenic E. coli (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic E. coli (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of E. coli or pathovars. While IPEC can be distinguished from commensal E. coli based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal E. coli that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of E. coli based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by E. coli. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|