101
|
Affiliation(s)
- Ross D. Booton
- Dept of Animal and Plant Sciences, Univ. of Sheffield Sheffield UK
- Dept of Infectious Disease Epidemiology, Imperial College London London UK
| | - Yoh Iwasa
- Dept of Bioscience, School of Science and Technology, Kwansei‐Gakuin Univ Japan
| | - Dylan Z. Childs
- Dept of Animal and Plant Sciences, Univ. of Sheffield Sheffield UK
| |
Collapse
|
102
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
103
|
Grassl J, Holt S, Cremen N, Peso M, Hahne D, Baer B. Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. J Invertebr Pathol 2018; 159:78-86. [DOI: 10.1016/j.jip.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023]
|
104
|
Shi T, Burton S, Wang Y, Xu S, Zhang W, Yu L. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:17-23. [PMID: 30497706 DOI: 10.1016/j.pestbp.2018.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
The cyano-substituted neonicotinoid insecticide, thiacloprid, is nowadays widely used in agriculture for controlling insect pests. However, it also simultaneously has adverse effects on the health of important pollinators, such as honey bees. Previous studies have reported that sublethal doses of neonicotinoids impaired immunocompetence, learning and memory performance, and homing behaviour in honey bees. In the present study, using LC-MS-based combined with GC-MS-based metabolomic approaches, we profiled the metabolic changes that occur in the head of honey bee after subchronic exposure to 2 mg/L thiacloprid over 3 days. The estimated total dose of thiacloprid fed to each bee was 0.12 μg. The results showed that there were 115 metabolites significantly affected in thiacloprid-treated bees compared to control. The metabolites with high level of abundance enriched to wide range pathways associated with oxidative stress and detoxification suggest that the honey bees have activated their detoxification system to resistant toxicity of thiacloprid. While, the reduction of serotonin suggest thiacloprid may hinder the brain activity implicated in learning and behaviour development. Our study expand the understanding of the molecular basis of the complex interactions between neonicotinoids and honey bees.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Sawyer Burton
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yufei Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shengyun Xu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
105
|
Edwards ED, Woolly EF, McLellan RM, Keyzers RA. Non-detection of honeybee hive contamination following Vespula wasp baiting with protein containing fipronil. PLoS One 2018; 13:e0206385. [PMID: 30372501 PMCID: PMC6205613 DOI: 10.1371/journal.pone.0206385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
Introduced wasps (Vespula germanica and V. vulgaris) are costly invertebrate pests in New Zealand, with large impacts on the local ecology and economy. Wasps eat honeybees (Apis mellifera), which has potentially devastating effects on hive health, as well as agricultural and horticultural industries. Vespex bait, which contains fipronil in a proteinaceous carrier, has recently been introduced for wasp control. In over a decade of reported trials, honeybees have never been observed foraging on Vespex, likely because the bait contains no sugars to serve as a bee food source. However, the potential for the control agent fipronil to enter beehives has not been tested. Therefore, here, we investigated this using a liquid chromatography–mass spectrometry assay of fipronil and two of its environmental breakdown and metabolic derivatives, fipronil desulfinyl and fipronil sulfone. We did not detect fipronil in any of the worker bee, bee larva, honey or pollen samples (n = 120 per product) collected from 30 hives over a 2-year period. Furthermore, although we detected fipronil desulfinyl in one honeybee sample, this is thought to have originated from a single individual, representing a rare occurrence of intoxication, and there was no evidence that Vespex was the toxicant source. There was also no evidence of trophallactic transfer of fipronil or its derivatives in any of the hives sampled. Previous studies have reported the impairment of individual bee performance at fipronil doses similar to the detection limit of our study. However, our results provide confidence that if undetectable intoxication was occurring, it would involve an acute exposure for those few individuals affected, with minimal impairment to colonies. Therefore, we conclude that the use of Vespex in the vicinity of honeybees does not result in significant hive uptake while effectively reducing wasp pressure on honeybee colonies.
Collapse
Affiliation(s)
- Eric D. Edwards
- Department of Conservation, Wellington, New Zealand
- * E-mail: (EDE); (RAK)
| | - Ethan F. Woolly
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rose M. McLellan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Robert A. Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington, New Zealand
- * E-mail: (EDE); (RAK)
| |
Collapse
|
106
|
Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci Rep 2018; 8:15003. [PMID: 30301926 PMCID: PMC6177410 DOI: 10.1038/s41598-018-33348-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022] Open
Abstract
The main objective of this study was to test comparatively the effects of two common insecticides on honey bee Apis mellifera worker’s lifespan, food consumption, mortality, and expression of antioxidant genes. Newly emerged worker bees were exposed to organophosphate insecticide coumaphos, a neonicotinoid imidacloprid, and their mixtures. Toxicity tests were conducted along with bee midgut immunohistological TUNEL analyses. RT-qPCR assessed the regulation of 10 bee antioxidant genes linked to pesticide toxicity. We tested coumaphos at 92,600 ppb concentration, in combination with 5 and 20 ppb imidacloprid. Coumaphos induced significantly higher bee mortality, which was associated with down regulation of catalase compared to coumaphos and imidacloprid (5/20 ppb) mixtures, whereas, both imidacloprid concentrations independently had no effect on bee mortality. Mixture of coumaphos and imidacloprid reduced daily bee consumption of a control food patty to 10 mg from a coumaphos intake of 14.3 mg and 18.4 and 13.7 mg for imidacloprid (5 and 20) ppb, respectively. While coumaphos and imidacloprid mixtures induced down-regulation of antioxidant genes with noticeable midgut tissue damage, imidacloprid induced intensive gene up-regulations with less midgut apoptosis.
Collapse
|
107
|
Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera. J Invertebr Pathol 2018; 159:121-128. [PMID: 30268675 DOI: 10.1016/j.jip.2018.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
The invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection- by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage.
Collapse
|
108
|
Balsebre A, Báez ME, Martínez J, Fuentes E. Matrix solid-phase dispersion associated to gas chromatography for the assessment in honey bee of a group of pesticides of concern in the apicultural field. J Chromatogr A 2018; 1567:47-54. [DOI: 10.1016/j.chroma.2018.06.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
|
109
|
Arce AN, Ramos Rodrigues A, Yu J, Colgan TJ, Wurm Y, Gill RJ. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc Biol Sci 2018; 285:rspb.2018.0655. [PMID: 30158303 PMCID: PMC6125916 DOI: 10.1098/rspb.2018.0655] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Social bees represent an important group of pollinating insects that can be exposed to potentially harmful pesticides when foraging on treated or contaminated flowering plants. To investigate if such exposure is detrimental to bees, many studies have exclusively fed individuals with pesticide-spiked food, informing us about the hazard but not necessarily the risk of exposure. While such studies are important to establish the physiological and behavioural effects on individuals, they do not consider the possibility that the risk of exposure may change over time. For example, many pesticide assays exclude potential behavioural adaptations to novel toxins, such as rejection of harmful compounds by choosing to feed on an uncontaminated food source, thus behaviourally lowering the risk of exposure. In this paper, we conducted an experiment over 10 days in which bumblebees could forage on an array of sucrose feeders containing 0, 2 and 11 parts per billion of the neonicotinoid pesticide thiamethoxam. This more closely mimics pesticide exposure in the wild by allowing foraging bees to (i) experience a field realistic range of pesticide concentrations across a chronic exposure period, (ii) have repeated interactions with the pesticide in their environment, and (iii) retain the social cues associated with foraging by using whole colonies. We found that the proportion of visits to pesticide-laced feeders increased over time, resulting in greater consumption of pesticide-laced sucrose relative to untreated sucrose. After changing the spatial position of each feeder, foragers continued to preferentially visit the pesticide-laced feeders which indicates that workers can detect thiamethoxam and alter their behaviour to continue feeding on it. The increasing preference for consuming the neonicotinoid-treated food therefore increases the risk of exposure for the colony during prolonged pesticide exposure. Our results highlight the need to incorporate attractiveness of pesticides to foraging bees (and potentially other insect pollinators) in addition to simply considering the proportion of pesticide-contaminated floral resources within the foraging landscape.
Collapse
Affiliation(s)
- Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Jiajun Yu
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Thomas J Colgan
- Department of Organismal Biology, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- Department of Organismal Biology, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| |
Collapse
|
110
|
Azzouz-Olden F, Hunt A, DeGrandi-Hoffman G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics 2018; 19:628. [PMID: 30134827 PMCID: PMC6106827 DOI: 10.1186/s12864-018-5007-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-5007-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | | |
Collapse
|
111
|
Yao J, Zhu YC, Adamczyk J. Responses of Honey Bees to Lethal and Sublethal Doses of Formulated Clothianidin Alone and Mixtures. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1517-1525. [PMID: 29889221 DOI: 10.1093/jee/toy140] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 05/06/2018] [Indexed: 05/21/2023]
Abstract
The widespread use of neonicotinoid insecticides has sparked concern over the toxicity risk to honey bees (Apis mellifera L. (Hymenoptera: Apidae)). In this study, feeding treatments with the clothianidin formulation at 2.6 ppb (residue concentration) or its binary mixtures with five representative pesticides (classes) did not influence on adult survivorship, but all treatments caused significantly lower body weight than controls. Most binary mixtures at residue levels showed minor or no interaction on body weight loss, and synergistic interaction was detected only from the mixture of clothianidin + λ-cyhalothrin. Chlorpyrifos alone and the mixture of clothianidin + chlorpyrifos significantly suppressed esterase (EST) activity, while most treatments of individual pesticides and mixtures had no effect on EST and glutathione S-transferase (GST) activities. However, ingestion of clothianidin at 2.6 ppb significantly enhanced P450 oxidase activity by 19%. The LC50 of formulated clothianidin was estimated at 0.53 ppm active ingredient, which is equivalent to 25.4 ng clothianidin per bee (LD50) based on the average sugar consumption of 24 µl per bee per day. In addition to mortality, ingestion of clothianidin at LC50 significantly reduced bee body weight by 12%. P450 activities were also significantly induced at 24 and 48 h in clothianidin-treated bees, while no significant difference was found in GST and EST activities. Further examinations revealed that the expression of an important CYP9q1 detoxification gene was significantly induced by clothianidin. Thus, data consistently indicated that P450s were involved in clothianidin detoxification in honey bees. Although the honey bee population in Stoneville (MS, United States) had sixfold lower susceptibility than other reported populations, clothianidin had very high oral toxicity to bees.
Collapse
Affiliation(s)
- Jianxiu Yao
- USDA-ARS, Southern Insect Management Unit, Stoneville, MS
| | - Yu Cheng Zhu
- USDA-ARS, Southern Insect Management Unit, Stoneville, MS
| | - John Adamczyk
- USDA-ARS, Southern Horticultural Research Unit, Poplarville, MS
| |
Collapse
|
112
|
Diao Q, Li B, Zhao H, Wu Y, Guo R, Dai P, Chen D, Wang Q, Hou C. Enhancement of chronic bee paralysis virus levels in honeybees acute exposed to imidacloprid: A Chinese case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:487-494. [PMID: 29499530 DOI: 10.1016/j.scitotenv.2018.02.258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Though honeybee populations have not yet been reported to be largely lost in China, many stressors that affect the health of honeybees have been confirmed. Honeybees inevitably come into contact with environmental stressors that are not intended to target honeybees, such as pesticides. Although large-scale losses of honeybee colonies are thought to be associated with viruses, these viruses usually lead to covert infections and to not cause acute damage if the bees do not encounter outside stressors. To reveal the potential relationship between acute pesticides and viruses, we applied different doses of imidacloprid to adult bees that were primarily infected with low levels (4.3×105 genome copies) of chronic bee paralysis virus (CBPV) to observe whether the acute oral toxicity of imidacloprid was able to elevate the level of CBPV. Here, we found that the titer of CBPV was significantly elevated in adult bees after 96h of acute treatment with imidacloprid at the highest dose 66.9ng/bee compared with other treatments and controls. Our study provides clear evidence that exposure to acute high doses of imidacloprid in honeybees persistently infected by CBPV can exert a remarkably negative effect on honeybee survival. These results imply that acute environmental stressors might be one of the major accelerators causing rapid viral replication, which may progress to cause mass proliferation and dissemination and lead to colony decline. The present study will be useful for better understanding the harm caused by this pesticide, especially regarding how honeybee tolerance to the viral infection might be altered by acute pesticide exposure.
Collapse
Affiliation(s)
- Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Beibei Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, PR China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agricultural and Forestry University, Fuzhou 350002, PR China
| | - Pingli Dai
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Dafu Chen
- College of Bee Science, Fujian Agricultural and Forestry University, Fuzhou 350002, PR China
| | - Qiang Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| |
Collapse
|
113
|
Walderdorff L, Laval-Gilly P, Bonnefoy A, Falla-Angel J. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:17-24. [PMID: 29758240 DOI: 10.1016/j.jinsphys.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H2O2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H2O2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H2O2 and NO production.
Collapse
Affiliation(s)
- Louise Walderdorff
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France.
| | - Philippe Laval-Gilly
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| | - Jaïro Falla-Angel
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| |
Collapse
|
114
|
Odemer R, Nilles L, Linder N, Rosenkranz P. Sublethal effects of clothianidin and Nosema spp. on the longevity and foraging activity of free flying honey bees. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:527-538. [PMID: 29556938 DOI: 10.1007/s10646-018-1925-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoids alone or in combination with pathogens are considered to be involved in the worldwide weakening of honey bees. We here present a new approach for testing sublethal and/or synergistic effects in free flying colonies. In our experiment individually marked honey bees were kept in free flying mini-hives and chronically exposed to sublethal doses of the neonicotinoid clothianidin. Additional groups of bees were challenged with Nosema infections or with combinations of the pesticide and pathogens. Longevity and flight activity of the differentially treated bees were monitored for a period of 18 days. In contrast to previous laboratory studies, no effect of the neonicotinoid treatment on mortality or flight activity could be observed. Although the lifespan of Nosema infected bees were significantly reduced compared to non-infected bees a combination of pesticide and pathogen did not reveal any synergistic effect. Our results indicate that individual bees are less impaired by neonicotinoids if kept within the social environment of the colony. The effect of such a "social buffering" should be considered in future risk assessments.
Collapse
Affiliation(s)
- Richard Odemer
- Apicultural State Institute, University of Hohenheim, Stuttgart, 70593, Germany.
| | - Lisa Nilles
- Apicultural State Institute, University of Hohenheim, Stuttgart, 70593, Germany
| | - Nadine Linder
- Apicultural State Institute, University of Hohenheim, Stuttgart, 70593, Germany
| | - Peter Rosenkranz
- Apicultural State Institute, University of Hohenheim, Stuttgart, 70593, Germany
| |
Collapse
|
115
|
Aloisi A, Franchet A, Ferrandon D, Bianco A, Ménard-Moyon C. Fluorescent-fipronil: Design and synthesis of a stable conjugate. Bioorg Med Chem Lett 2018; 28:2631-2635. [PMID: 29945796 DOI: 10.1016/j.bmcl.2018.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
Fipronil is a phenyl pyrazole molecule widely used across the world as both insecticide and veterinary drug. The main goal of this work was to synthesize a fluorescently labeled fipronil derivative for cellular imaging without affecting its intrinsic properties. We selected fluorescein as fluorescent probe and we investigated different strategies for stable chemical ligation between both entities, such as thiourea and direct peptide bond. While thiourea bond displayed low stability, direct peptide bond was difficult to achieve due to problems of steric hindrance. The best result was obtained by conjugation using click chemistry, which allowed to obtain fipronil stably labeled with the fluorescent probe.
Collapse
Affiliation(s)
- Adriano Aloisi
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Adrien Franchet
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Cécilia Ménard-Moyon
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France.
| |
Collapse
|
116
|
Lopes MP, Fernandes KM, Tomé HVV, Gonçalves WG, Miranda FR, Serrão JE, Martins GF. Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers. PEST MANAGEMENT SCIENCE 2018; 74:1311-1318. [PMID: 29194936 DOI: 10.1002/ps.4815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/26/2017] [Accepted: 11/24/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND The global decline in Apis mellifera colonies is attributed to multiple factors, including pesticides. The bioinsecticide spinosad was initially recognized as safe for non-target organisms; however, its toxicity has been changing this view. Here, we investigated the survival, behavioral changes, and structural changes in the midgut and Malpighian tubules of A. mellifera treated orally with a spinosad formulation. RESULTS The field-recommended concentration of spinosad killed 100% of the bees. The 5% and 50% lethal concentrations (LC5 and LC50 , respectively) of spinosad altered the behavioral activity, reducing the walking distance and velocity, and increased the resting time in comparison to the control. The LC50 caused disorganization of the epithelia of tested organs and induced oxidative stress and cell death. CONCLUSIONS The present work provides new insights into the debate about the role of bioinsecticides in the mortality of Africanized honey bees. Even at very low concentrations, the spinosad formulation was toxic to the vital organs midgut and Malpighian tubules and adversely affected walking behavior. This detailed evaluation of the impact of the bioinsecticide on A. mellifera will contribute to the clarification of disturbances probably caused by spinosad formulations, which can be used to develop more sustainable protocols in agriculture. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcos Pereira Lopes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
117
|
Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T, Stegner MA, Williams JW, Zhang J, Turner MG. Abrupt Change in Ecological Systems: Inference and Diagnosis. Trends Ecol Evol 2018; 33:513-526. [PMID: 29784428 DOI: 10.1016/j.tree.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Abrupt ecological changes are, by definition, those that occur over short periods of time relative to typical rates of change for a given ecosystem. The potential for such changes is growing due to anthropogenic pressures, which challenges the resilience of societies and ecosystems. Abrupt ecological changes are difficult to diagnose because they can arise from a variety of circumstances, including rapid changes in external drivers (e.g., climate, or resource extraction), nonlinear responses to gradual changes in drivers, and interactions among multiple drivers and disturbances. We synthesize strategies for identifying causes of abrupt ecological change and highlight instances where abrupt changes are likely. Diagnosing abrupt changes and inferring causation are increasingly important as society seek to adapt to rapid, multifaceted environmental changes.
Collapse
Affiliation(s)
- Zak Ratajczak
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Stephen R Carpenter
- Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Tanjona Ramiadantsoa
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Allison Stegner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John W Williams
- Department of Geography and Center for Climatic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jien Zhang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Monica G Turner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
118
|
Pamminger T, Botías C, Goulson D, Hughes WOH. A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Christina Botías
- School of Life SciencesUniversity of Sussex Brighton UK
- Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Dave Goulson
- School of Life SciencesUniversity of Sussex Brighton UK
| | | |
Collapse
|
119
|
Wang Z, Ni X, Peng Q, Hou Y, Fang Y, Mu W, Liu C, Liu P, Liu X. The novel fungicide SYP-14288 acts as an uncoupler against Phytophthora capsici. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:83-89. [PMID: 29933997 DOI: 10.1016/j.pestbp.2018.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
SYP-14288 is a novel fungicide developed by the Shenyang Research Institute of Chemical Industry in China. Although preliminary studies indicate that SYP-14288 is highly effective against 32 important plant pathogens belonging to a range of taxonomic groups, its mode of action remains unknown. In this study, we documented that SYP-14288 has excellent activity against all of the asexual life stages of the plant-pathogenic oomycete Phytophthora capsici, and is especially effective in blocking cyst germination and other life stages that require high energy consumption. In assays designed to determine the fungicide's mode of action, addition of ATP reduced SYP-14288 inhibition of P. capsici, which suggested that SYP-14288 inhibits ATP synthesis of the pathogen. This inference was confirmed in that treatment with SYP-14288 sharply reduced the ATP content in P. capsici. The respiration rate of P. capsici was positively correlated with the concentration of SYP-14288 or of the fungicide fluazinam (an uncoupler of oxidative phosphorylation), but increases in respiration were greater with SYP-14288 than with fluazinam. These results indicate that SYP-14288 is a promising fungicide that functions as an uncoupler of oxidative phosphorylation.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| | - Xiaoxia Ni
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China; Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, PR China
| | - Qin Peng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| | - Yanhua Hou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| | - Yuan Fang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| | - Wenjun Mu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Eco-environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, PR China
| | - Changling Liu
- State Key Laboratory of Discovery and Development of Novel Pesticide, China Shenyang Research Institute of Chemical Industry, Shenyang 110021, PR China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China.
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
120
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
121
|
Shao Y, Zheng H, Qian J, Wan X. In Situ Generation of Nitrilimines from Aryldiazonium Salts and Diazo Esters: Synthesis of Fully Substituted Pyrazoles under Room Temperature. Org Lett 2018; 20:2412-2415. [DOI: 10.1021/acs.orglett.8b00750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hao Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Junfeng Qian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
122
|
Drummond FA, Ballman ES, Eitzer BD, Du Clos B, Dill J. Exposure of Honey Bee (Apis mellifera L.) Colonies to Pesticides in Pollen, A Statewide Assessment in Maine. ENVIRONMENTAL ENTOMOLOGY 2018; 47:378-387. [PMID: 29509899 DOI: 10.1093/ee/nvy023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In 2015, we conducted a statewide assessment of honey bee exposure to pesticides with assistance of volunteer beekeepers. Pollen trapping was conducted at 32 sites in the spring, summer, and early fall. Apiary locations ranged from unmanaged natural landscapes to managed agricultural or urban landscapes. Pollen samples at each site were aggregated over the collection dates and chemical residue analysis was conducted on each pollen sample for 190 pesticides and metabolites using HPLC/MS. Twenty-five different residues were detected for an average of 2.9 detections per site. Detections were dominated by fungicides, but risk, calculated as: ppb residue concentration/LD50, was mostly due to insecticides. Beekeeper perceived land-use in the vicinity of each apiary was associated with significant differences in the number of detections and residue concentrations, agricultural landscapes greater than nonagricultural. However, there was no significant difference in oral or contact risk quotients due to land-use type. The landscape composition surrounding apiaries, derived with GIS, determined pesticide exposure for honey bees when total detections, log pesticide residue concentration, and log contact risk quotients were used as measures. Partial least squares explained 43.9% of the variance in pesticide exposure due to landscape composition. The best predictors describing pesticide exposure were: area (ha) of blueberry, coniferous forest, and urban/developed land cover types. Maine is the most forested state in the United States (as determined by % land area forested, 93%) and a negative exponential decay was observed between land area in conifer forest and the number of pesticide detections per apiary.
Collapse
Affiliation(s)
- Francis A Drummond
- School of Biology and Ecology, University of Maine, Deering, Orono, ME
- Cooperative Extension, University of Maine, Orono, ME
| | - Elissa S Ballman
- School of Biology and Ecology, University of Maine, Deering, Orono, ME
| | - Brian D Eitzer
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT
| | - Brianne Du Clos
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME
| | - James Dill
- Cooperative Extension, University of Maine, Orono, ME
| |
Collapse
|
123
|
Traver BE, Feazel-Orr HK, Catalfamo KM, Brewster CC, Fell RD. Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of Honey Bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:517-527. [PMID: 29471479 DOI: 10.1093/jee/toy026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Honey bee, Apis mellifera (L.; Hymenoptera: Apidae), populations are in decline and their losses pose a serious threat for crop pollination and food production. The specific causes of these losses are believed to be multifactorial. Pesticides, parasites and pathogens, and nutritional deficiencies have been implicated in the losses due to their ability to exert energetic stress on bees. While our understanding of the role of these factors in honey bee colony losses has improved, there is still a lack of knowledge of how they impact the immune system of the honey bee. In this study, honey bee colonies were exposed to Fumagilin-B, Apistan (tau-fluvalinate), and chlorothalonil at field realistic levels. No significant effects of the antibiotic and two pesticides were observed on the levels of varroa mite, Nosema ceranae (Fries; Microsporidia: Nosematidae), black queen cell virus, deformed wing virus, or immunity as measured by phenoloxidase and glucose oxidase activity. Any effects on the parasites, pathogens, and immunity we observed appear to be due mainly to seasonal changes within the honey bee colonies. The results suggest that Fumagilin-B, Apistan, and chlorothalonil do not significantly impact the health of honey bee colonies, based on the factors analyzed and the concentration of chemicals tested.
Collapse
Affiliation(s)
- Brenna E Traver
- Department of Biology, Penn State Schuylkill, Schuylkill Haven, PA
| | | | | | | | | |
Collapse
|
124
|
O'Neal ST, Anderson TD, Wu-Smart JY. Interactions between pesticides and pathogen susceptibility in honey bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:57-62. [PMID: 29764661 DOI: 10.1016/j.cois.2018.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Judy Y Wu-Smart
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
125
|
Paris L, El Alaoui H, Delbac F, Diogon M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. CURRENT OPINION IN INSECT SCIENCE 2018; 26:149-154. [PMID: 29764655 DOI: 10.1016/j.cois.2018.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
The common and widespread parasite Nosema ceranae is considered a major threat to the Western honey bee at both the individual and colony levels. Several studies demonstrated that infection by this parasite may affect physiology, behavior, and survival of honey bees. N. ceranae infection impairs midgut integrity and alters the energy demand in honey bees. The infection can also significantly suppress the bee immune response and modify pheromone production in worker and queen honey bees leading to precocious foraging. However, the presence of N. ceranae is not systematically associated with colony weakening and honey bee mortality. This variability depends upon parasite or host genetics, nutrition, climate or interactions with other stressors such as environmental contaminants or other parasites.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
126
|
Booton RD, Yamaguchi R, Marshall JAR, Childs DZ, Iwasa Y. Interactions between immunotoxicants and parasite stress: Implications for host health. J Theor Biol 2018; 445:120-127. [PMID: 29474856 DOI: 10.1016/j.jtbi.2018.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/02/2018] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
Many organisms face a wide variety of biotic and abiotic stressors which reduce individual survival, interacting to further reduce fitness. Here we studied the effects of two such interacting stressors: immunotoxicant exposure and parasite infection. We model the dynamics of a within-host infection and the associated immune response of an individual. We consider both the indirect sub-lethal effects on immunosuppression and the direct effects on health and mortality of individuals exposed to toxicants. We demonstrate that sub-lethal exposure to toxicants can promote infection through the suppression of the immune system. This happens through the depletion of the immune response which causes rapid proliferation in parasite load. We predict that the within-host parasite density is maximised by an intermediate toxicant exposure, rather than continuing to increase with toxicant exposure. In addition, high toxicant exposure can alter cellular regulation and cause the breakdown of normal healthy tissue, from which we infer higher mortality risk of the host. We classify this breakdown into three phases of increasing toxicant stress, and demonstrate the range of conditions under which toxicant exposure causes failure at the within-host level. These phases are determined by the relationship between the immunity status, overall cellular health and the level of toxicant exposure. We discuss the implications of our model in the context of individual bee health. Our model provides an assessment of how pesticide stress and infection interact to cause the breakdown of the within-host dynamics of individual bees.
Collapse
Affiliation(s)
- Ross D Booton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | - Ryo Yamaguchi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - James A R Marshall
- Department of Computer Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
127
|
Yue M, Luo S, Liu J, Wu J. Apis cerana Is Less Sensitive to Most Neonicotinoids, Despite of Their Smaller Body Mass. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:39-42. [PMID: 29272437 DOI: 10.1093/jee/tox342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiple stressors and interaction between them may be responsible for the decline of global pollinators. Among them, exposure to neonicotinoids has been getting more attention and has been considered as a main stressor. The Western honey bee (Apis mellifera L.) (Hymenoptera: Apidae) and Chinese indigenous honey bee (Apis cerana F.) (Hymenoptera: Apidae) are two managed honey bee species in China. These two species are widely used in beekeeping, and many wild A. cerana is widely spread in forests and contributes to the ecosystem. It is predicated that A. cerana is more sensitive to insecticides than A. mellifera due to their smaller mass. Here, we found that although the body mass of A. cerana is significantly lower than A. mellifera, the sensitivity of the two species to neonicotinoids are not associated with their body mass but depended on the chemical structure of neonicotinoids. To dinotefuran, the two species showed the similar sensitivity. To acetamiprid, A. mellifera was less sensitive than A. cerana. However, to imidacloprid and thiamethoxam, A. mellifera was more sensitive than A. cerana. These results suggested that the sensitivity of honey bees to neonicotinoids is closely associated with the structure of pesticides, but not with body mass of bees. It is also indicated that the hazards of pesticides to the different pollinators could not be inferred from one species to another.
Collapse
Affiliation(s)
- Meng Yue
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jialin Liu
- Department of Economic Animal, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, China
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
128
|
Dickel F, Münch D, Amdam GV, Mappes J, Freitak D. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One 2018; 13:e0191256. [PMID: 29385177 PMCID: PMC5791986 DOI: 10.1371/journal.pone.0191256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies of honeybees and bumblebees have examined combinatory effects of different stressors, as insect pollinators are naturally exposed to multiple stressors. At the same time the potential influences of simultaneously occurring agricultural agents on insect pollinator health remain largely unknown. Due to different farming methods, and the drift of applied agents and manure, pollinators are most probably exposed to insecticides but also bacteria from organic fertilizers at the same time. We orally exposed honeybee workers to sub-lethal doses of the insecticide thiacloprid and two strains of the bacterium Enterococcus faecalis, which can occur in manure from farming animals. Our results show that under laboratory conditions the bees simultaneously exposed to the a bacterium and the pesticide thiacloprid thiacloprid had significant higher survival rates 11 days post exposure than the controls, which surprisingly showed the lowest survival. Bees that were exposed to diet containing thiacloprid showed decreased food intake. General antibacterial activity is increased by the insecticide and the bacteria, resulting in a higher immune response observed in treated individuals compared to control individuals. We thus propose that caloric restriction through behavioural and physiological adaptations may have mediated an improved survival and stress resistance in our tests. However, the decreased food consumption could in long-term also result in possible negative effects at colony level. Our study does not show an additive negative impact of sub-lethal insecticide and bacteria doses, when tested under laboratory conditions. In contrast, we report seemingly beneficial effects of simultaneous exposure of bees to agricultural agents, which might demonstrate a surprising biological capacity for coping with stressors, possibly through hormetic regulation.
Collapse
Affiliation(s)
- Franziska Dickel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Daniel Münch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro Vang Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, United States of America
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
129
|
Piechowicz B, Woś I, Podbielska M, Grodzicki P. The transfer of active ingredients of insecticides and fungicides from an orchard to beehives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:18-24. [PMID: 29083963 DOI: 10.1080/03601234.2017.1369320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This investigation was undertaken to determine whether active ingredients (AIs) of currently recommended plant protection products (PPPs) could be transferred to beehives from apple and pear trees. A field trial was carried out with apple trees of Ligol and Idared variety, and pear trees of Conference variety. For pest and diseases control of fungal origin, recommended PPPs were applied. Samples of flowers from the above-mentioned varieties of fruit trees, of bees, brood and honey from beehives located in their direct neighborhood were collected regularly and analyzed for the presence of lambda-cyhalothrin (an insecticide) and cyprodinil, captan, fluopyram, kresoxim-methyl, penthiopyrad and trifloxystrobin (fungicides). In samples of flowers of Ligol variety, fluopyram residues (on average 0.621 µg single flower-1) were at the highest levels, whereas in samples of pear flowers of Conference variety, and in flowers of Idared variety, captan residues (on average, respectively, 0.705 and 165.7 µg single flower-1). In samples of bees and honey, residues of five AIs were detected, and in brood six AIs, whereby in each case captan residues prevailed, respectively, up to 585.2, 51.52 and 126.5 µg kg-1 bees and honey. In the honey, significantly larger residues of captan were found out than maximum residue level (MRL) for this AI - 103.04% MRL. In the case of any AI, the daily intake did not exceed 0.002% acceptable daily intake (ADI).
Collapse
Affiliation(s)
- Bartosz Piechowicz
- a Department of Ecotoxicology , Institute of Biotechnology, University of Rzeszów , Werynia , Poland
| | - Izabela Woś
- a Department of Ecotoxicology , Institute of Biotechnology, University of Rzeszów , Werynia , Poland
| | - Magdalena Podbielska
- a Department of Ecotoxicology , Institute of Biotechnology, University of Rzeszów , Werynia , Poland
| | - Przemysław Grodzicki
- b Department of Animal Physiology, Faculty of Biology an Environmental Protection , Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
130
|
Abdu-Allah GAM, Pittendrigh BR. Lethal and sub-lethal effects of select macrocyclic lactones insecticides on forager worker honey bees under laboratory experimental conditions. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:81-88. [PMID: 29134493 DOI: 10.1007/s10646-017-1872-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Selective insecticide application is one important strategy for more precisely targeting harmful insects while avoiding or mitigating collateral damage to beneficial insects like honey bees. Recently, macrocyclic lactone-class insecticides have been introduced into the market place as selective bio-insecticides for controlling many arthropod pests, but how to target this selectivity only to harmful insects has yet to be achieved. In this study, the authors investigated the acute toxicity of fourmacrocyclic lactone insecticides (commercialized as abamectin, emamectin benzoate, spinetoram, and spinosad) both topically and through feeding studies with adult forager honey bees. Results indicated emamectin benzoate as topically 133.3, 750.0, and 38.3-fold and orally 3.3, 7.6, and 31.7-fold more toxic, respectively than abamectin, spinetoram and spinosad. Using Hazard Quotients for estimates of field toxicity, abamectin was measured as the safest insecticide both topically and orally for honey bees. Moreover, a significant reduction of sugar solution consumption by treatment group honey bees for orally applied emamectin benzoate and spinetoram suggests that these insecticides may have repellent properties.
Collapse
Affiliation(s)
- Gamal A M Abdu-Allah
- Department of Plant Protection, Faculty of Agriculture, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
131
|
Coulon M, Schurr F, Martel AC, Cougoule N, Bégaud A, Mangoni P, Dalmon A, Alaux C, Le Conte Y, Thiéry R, Ribière-Chabert M, Dubois E. Metabolisation of thiamethoxam (a neonicotinoid pesticide) and interaction with the Chronic bee paralysis virus in honeybees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:10-18. [PMID: 29463403 DOI: 10.1016/j.pestbp.2017.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 06/08/2023]
Abstract
Pathogens and pesticides are likely to co-occur in honeybee hives, but much remains to be investigated regarding their potential interactions. Here, we first investigated the metabolisation kinetics of thiamethoxam in chronically fed honeybees. We show that thiamethoxam, at a dose of 0.25ng/bee/day, is quickly and effectively metabolised into clothianidin, throughout a 20day exposure period. Using a similar chronic exposure to pesticide, we then studied, in a separate experiment, the impact of thiamethoxam and Chronic bee paralysis virus (CBPV) co-exposure in honeybees. The honeybees were exposed to the virus by contact, mimicking the natural transmission route in the hive. We demonstrate that a high dose of thiamethoxam (5.0ng/bee/day) can cause a synergistic increase in mortality in co-exposed honeybees after 8 to 10days of exposure, with no increase in viral loads. At a lower dose (2.5ng/bee/day), there was no synergistic increase of mortality, but viral loads were significantly higher in naturally dead honeybees, compared with sacrificed honeybees exposed to the same conditions. These results show that the interactions between pathogens and pesticides in honeybees can be complex: increasing pesticide doses may not necessarily be linked to a rise in viral loads, suggesting that honeybee tolerance to the viral infection might change with pesticide exposure.
Collapse
Affiliation(s)
- M Coulon
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France; INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France.
| | - F Schurr
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A-C Martel
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - N Cougoule
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A Bégaud
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - P Mangoni
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A Dalmon
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - C Alaux
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - Y Le Conte
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - R Thiéry
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - M Ribière-Chabert
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - E Dubois
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France.
| |
Collapse
|
132
|
Li W, Evans JD, Li J, Su S, Hamilton M, Chen Y. Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitol Res 2017; 116:3265-3274. [DOI: 10.1007/s00436-017-5630-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023]
|
133
|
Fine JD, Mullin CA. Metabolism of N-Methyl-2-Pyrrolidone in Honey Bee Adults and Larvae: Exploring Age Related Differences in Toxic Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11412-11422. [PMID: 28858486 DOI: 10.1021/acs.est.7b03291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In chronic feeding assays, the common agrochemical inert formulant N-methyl-2-pyrrolidone (NMP) is at least 20 times more toxic to honey bee larvae than to adults, but the underlying cause of this difference is unknown. In other taxa, NMP is primarily detoxified via a cytochrome P450 mediated pathway. Using a LC-MS method, putative cytochrome P450 metabolites of NMP were identified and quantified in adults and larvae following chronic exposure to NMP. Major differences in the identities and quantities of the generated metabolites were observed between adults and larvae. One major difference was the higher percentage of the administered NMP recovered as the parent compound in larvae compared to adults. To further explore the apparent difference in metabolic capacity, a spectrofluorometric method was used to compare general cytochrome P450 enzyme activity by monitoring the transformation of a 7-ethoxycoumarin substrate. Higher microsomal levels of 7-ethoxycoumarin-O-deethylase activity in adult fat bodies suggests that the higher percentage of unmetabolized NMP in larvae relative to adults may be due to lower cytochrome P450 enzyme activity in fat bodies. Taken together, these results suggest that larvae may be less able to detoxify xenobiotics encountered in diet than adults, and these findings will help inform future risk assessment.
Collapse
Affiliation(s)
- Julia D Fine
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher A Mullin
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
134
|
O'Neal ST, Swale DR, Anderson TD. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci Rep 2017; 7:8668. [PMID: 28819165 PMCID: PMC5561242 DOI: 10.1038/s41598-017-09448-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
135
|
Kairo G, Biron DG, Ben Abdelkader F, Bonnet M, Tchamitchian S, Cousin M, Dussaubat C, Benoit B, Kretzschmar A, Belzunces LP, Brunet JL. Nosema ceranae, Fipronil and their combination compromise honey bee reproduction via changes in male physiology. Sci Rep 2017; 7:8556. [PMID: 28819220 PMCID: PMC5561069 DOI: 10.1038/s41598-017-08380-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/07/2017] [Indexed: 12/16/2022] Open
Abstract
The honey bee is threatened by biological agents and pesticides that can act in combination to induce synergistic effects on its physiology and lifespan. The synergistic effects of a parasite/pesticide combination have been demonstrated on workers and queens, but no studies have been performed on drones despite their essential contribution to colony sustainability by providing semen diversity and quality. The effects of the Nosema ceranae/fipronil combination on the life traits and physiology of mature drones were examined following exposure under semi-field conditions. The results showed that the microsporidia alone induced moderate and localized effects in the midgut, whereas fipronil alone induced moderate and generalized effects. The parasite/insecticide combination drastically affected both physiology and survival, exhibiting an important and significant generalized action that could jeopardize mating success. In terms of fertility, semen was strongly impacted regardless of stressor, suggesting that drone reproductive functions are very sensitive to stress factors. These findings suggest that drone health and fertility impairment might contribute to poorly mated queens, leading to the storage of poor quality semen and poor spermathecae diversity. Thus, the queens failures observed in recent years might result from the continuous exposure of drones to multiple environmental stressors.
Collapse
Affiliation(s)
- Guillaume Kairo
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - David G Biron
- CNRS, UMR CNRS 6023 Laboratoire Microorganismes: Génome et Environnement, 63177, Aubière Cedex, France
| | - Faten Ben Abdelkader
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.,INAT, Laboratoire de Zoologie et d'Apiculture, 1082, Tunis, Tunisia
| | - Marc Bonnet
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Sylvie Tchamitchian
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Marianne Cousin
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Claudia Dussaubat
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Boris Benoit
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - André Kretzschmar
- INRA, UR 546 Biostatistiques & Processus Spatiaux, CS 40509, 84914, Avignon Cedex 9, France
| | - Luc P Belzunces
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Jean-Luc Brunet
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.
| |
Collapse
|
136
|
O'Neal ST, Brewster CC, Bloomquist JR, Anderson TD. Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection. J Invertebr Pathol 2017; 149:119-126. [PMID: 28797906 DOI: 10.1016/j.jip.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
The health and survival of managed honey bee (Apis mellifera) colonies are affected by multiple factors, one of the most important being the interaction between viral pathogens and infestations of the ectoparasitic mite Varroa destructor. Currently, the only effective strategy available for mitigating the impact of viral infections is the chemical control of mite populations. Unfortunately, the use of in-hive acaricides comes at a price, as they can produce sublethal effects that are difficult to quantify, but may ultimately be as damaging as the mites they are used to treat. The goal of this study was to investigate the physiological and immunological effects of the formamidine acaricide amitraz and its primary metabolite in honey bees. Using flock house virus as a model for viral infection, this study found that exposure to a formamidine acaricide may have a negative impact on the ability of honey bees to tolerate viral infection. Furthermore, this work has demonstrated that amitraz and its metabolite significantly alter honey bee cardiac function, most likely through interaction with octopamine receptors. The results suggest a potential drawback to the in-hive use of amitraz and raise intriguing questions about the relationship between insect cardiac function and disease tolerance.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| | | | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
137
|
Czerwinski MA, Sadd BM. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:273-283. [DOI: 10.1002/jez.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - Ben Michael Sadd
- School of Biological Sciences; Illinois State University; Normal Illinois
| |
Collapse
|
138
|
Paris L, Roussel M, Pereira B, Delbac F, Diogon M. Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microb Biotechnol 2017; 10:1702-1717. [PMID: 28736933 PMCID: PMC5658624 DOI: 10.1111/1751-7915.12772] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 02/05/2023] Open
Abstract
The causes underlying the increased mortality of honeybee colonies remain unclear and may involve multiple stressors acting together, including both pathogens and pesticides. Previous studies suggested that infection by the gut parasite Nosema ceranae combined with chronic exposure to sublethal doses of the insecticide fipronil generated an increase in oxidative stress in the midgut of honeybees. To explore the impact of these two stressors on oxidative balance, we experimentally infected bees with N. ceranae and/or chronically exposed to fipronil at low doses for 22 days, and we measured soluble reactive oxygen species (ROS) and ROS damage by quantifying both protein and lipid oxidation in the midgut. Our results revealed a disruption of the oxidative balance, with a decrease in both the amount of ROS and ROS damage in the presence of the parasite alone. However, protein oxidation was significantly increased in the N. ceranae/fipronil combination, revealing an increase in oxidative damage and suggesting higher fipronil toxicity in infected bees. Furthermore, our results highlighted a temporal order in the appearance of oxidation events in the intestinal cells and revealed that all samples tended to undergo protein oxidation during ageing, regardless of treatment.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Michaël Roussel
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Bruno Pereira
- Université Clermont Auvergne, CHU Clermont-Ferrand, Unité de Biostatistiques, DRCI, F-63000, Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| |
Collapse
|
139
|
Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17285-17325. [PMID: 28593544 PMCID: PMC5533829 DOI: 10.1007/s11356-017-9240-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Neonicotinoid pesticides were first introduced in the mid-1990s, and since then, their use has grown rapidly. They are now the most widely used class of insecticides in the world, with the majority of applications coming from seed dressings. Neonicotinoids are water-soluble, and so can be taken up by a developing plant and can be found inside vascular tissues and foliage, providing protection against herbivorous insects. However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants and most instead disperses into the wider environment. Since the mid-2000s, several studies raised concerns that neonicotinoids may be having a negative effect on non-target organisms, in particular on honeybees and bumblebees. In response to these studies, the European Food Safety Authority (EFSA) was commissioned to produce risk assessments for the use of clothianidin, imidacloprid and thiamethoxam and their impact on bees. These risk assessments concluded that the use of these compounds on certain flowering crops poses a high risk to bees. On the basis of these findings, the European Union adopted a partial ban on these substances in May 2013. The purpose of the present paper is to collate and summarise scientific evidence published since 2013 that investigates the impact of neonicotinoids on non-target organisms. Whilst much of the recent work has focused on the impact of neonicotinoids on bees, a growing body of evidence demonstrates that persistent, low levels of neonicotinoids can have negative impacts on a wide range of free-living organisms.
Collapse
Affiliation(s)
- Thomas James Wood
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Dave Goulson
- School of Life Sciences, The University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| |
Collapse
|
140
|
Siede R, Faust L, Meixner MD, Maus C, Grünewald B, Büchler R. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid. PEST MANAGEMENT SCIENCE 2017; 73:1334-1344. [PMID: 28168846 PMCID: PMC5485166 DOI: 10.1002/ps.4547] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Substantial honey bee colony losses have occurred periodically in the last decades. The drivers for these losses are not fully understood. The influence of pests and pathogens are beyond dispute, but in addition, chronic exposure to sublethal concentrations of pesticides has been suggested to affect the performance of honey bee colonies. This study aims to elucidate the potential effects of a chronic exposure to sublethal concentrations (one realistic worst-case concentration) of the neonicotinoid thiacloprid to honey bee colonies in a three year replicated colony feeding study. RESULTS Thiacloprid did not significantly affect the colony strength. No differences between treatment and control were observed for the mortality of bees, the infestation with the parasitic mite Varroa destructor and the infection levels of viruses. No colony losses occurred during the overwintering seasons. Furthermore, thiacloprid did not influence the constitutive expression of the immunity-related hymenoptaecin gene. However, upregulation of hymenoptaecin expression as a response to bacterial challenge was less pronounced in exposed bees than in control bees. CONCLUSION Under field conditions, bee colonies are not adversely affected by a long-lasting exposure to sublethal concentrations of thiacloprid. No indications were found that field-realistic and higher doses exerted a biologically significant effect on colony performance. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Reinhold Siede
- Landesbetrieb Landwirtschaft HessenBieneninstitut KirchhainKirchhainGermany
| | - Lena Faust
- Institut für Bienenkunde, Oberursel, Polytechnische Gesellschaft, Fachbereich BiowissenschaftenGoethe‐Universität Frankfurt am MainOberurselGermany
| | - Marina D Meixner
- Landesbetrieb Landwirtschaft HessenBieneninstitut KirchhainKirchhainGermany
| | | | - Bernd Grünewald
- Institut für Bienenkunde, Oberursel, Polytechnische Gesellschaft, Fachbereich BiowissenschaftenGoethe‐Universität Frankfurt am MainOberurselGermany
| | - Ralph Büchler
- Landesbetrieb Landwirtschaft HessenBieneninstitut KirchhainKirchhainGermany
| |
Collapse
|
141
|
Abbo PM, Kawasaki JK, Hamilton M, Cook SC, DeGrandi-Hoffman G, Li WF, Liu J, Chen YP. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera. INSECT SCIENCE 2017; 24:467-477. [PMID: 26990560 DOI: 10.1111/1744-7917.12335] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 05/21/2023]
Abstract
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.
Collapse
Affiliation(s)
- Pendo M Abbo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | - Joshua K Kawasaki
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Steven C Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Wen Feng Li
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Liu
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
142
|
Bixby M, Baylis K, Hoover SE, Currie RW, Melathopoulos AP, Pernal SF, Foster LJ, Guarna MM. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:816-825. [PMID: 28334400 PMCID: PMC5444677 DOI: 10.1093/jee/tox077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper's profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance.
Collapse
Affiliation(s)
- Miriam Bixby
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4, ( ; ; )
- Corresponding author, e-mail:
| | - Kathy Baylis
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, 302b Mumford Hall, 1301 W. Gregory, Urbana, Illinois 61801
| | - Shelley E Hoover
- Alberta Agriculture and Forestry, Agriculture Centre, 100, 5401- 1 Ave., South, Lethbridge, AB, T1J 4V6, Canada
| | - Rob W Currie
- Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, Room 218, Entomology Bldg, Winnipeg, MB, R3T 2N2, Canada
| | - Andony P Melathopoulos
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, Oregon 97331 and
| | - Stephen F Pernal
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, Alberta T0H 0C0, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4, (; ; )
| | - M Marta Guarna
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4, ( ; ; )
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Box PO 29, Beaverlodge, Alberta T0H 0C0, Canada ( )
| |
Collapse
|
143
|
Rortais A, Arnold G, Dorne JL, More SJ, Sperandio G, Streissl F, Szentes C, Verdonck F. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:524-537. [PMID: 28279532 DOI: 10.1016/j.scitotenv.2016.09.127] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/21/2023]
Abstract
Current approaches to risk assessment in bees do not take into account co-exposures from multiple stressors. The European Food Safety Authority (EFSA) is deploying resources and efforts to move towards a holistic risk assessment approach of multiple stressors in bees. This paper describes the general principles of pesticide risk assessment in bees, including recent developments at EFSA dealing with risk assessment of single and multiple pesticide residues and biological hazards. The EFSA Guidance Document on the risk assessment of plant protection products in bees highlights the need for the inclusion of an uncertainty analysis, other routes of exposures and multiple stressors such as chemical mixtures and biological agents. The EFSA risk assessment on the survival, spread and establishment of the small hive beetle, Aethina tumida, an invasive alien species, is provided with potential insights for other bee pests such as the Asian hornet, Vespa velutina. Furthermore, data gaps are identified at each step of the risk assessment, and recommendations are made for future research that could be supported under the framework of Horizon 2020. Finally, the recent work conducted at EFSA is presented, under the overarching MUST-B project ("EU efforts towards the development of a holistic approach for the risk assessment on MUltiple STressors in Bees") comprising a toolbox for harmonised data collection under field conditions and a mechanistic model to assess effects from pesticides and other stressors such as biological agents and beekeeping management practices, at the colony level and in a spatially complex landscape. Future perspectives at EFSA include the development of a data model to collate high quality data to calibrate and validate the model to be used as a regulatory tool. Finally, the evidence collected within the framework of MUST-B will support EFSA's activities on the development of a holistic approach to the risk assessment of multiple stressors in bees. In conclusion, EFSA calls for collaborative action at the EU level to establish a common and open access database to serve multiple purposes and different stakeholders.
Collapse
Affiliation(s)
- Agnès Rortais
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Gérard Arnold
- Laboratoire Evolution, Génomes, Comportement, Ecologie, Centre National de la Recherche Scientifique (CNRS) - Université Paris-Sud (UMR 9191), avenue de la Terrasse, 91198 Gif sur Yvette, France.
| | - Jean-Lou Dorne
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giorgio Sperandio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Franz Streissl
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Csaba Szentes
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| | - Frank Verdonck
- European Food Safety Authority (EFSA), via Carlo Magno 1A, Parma 43126, Italy.
| |
Collapse
|
144
|
Benuszak J, Laurent M, Chauzat MP. The exposure of honey bees (Apis mellifera; Hymenoptera: Apidae) to pesticides: Room for improvement in research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:423-438. [PMID: 28256316 DOI: 10.1016/j.scitotenv.2017.02.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 05/23/2023]
Abstract
Losses of honey bees have been repeatedly reported from many places worldwide. The widespread use of synthetic pesticides has led to concerns regarding their environmental fate and their effects on pollinators. Based on a standardised review, we report the use of a wide variety of honey bee matrices and sampling methods in the scientific papers studying pesticide exposure. Matrices such as beeswax and beebread were very little analysed despite their capacities for long-term pesticide storage. Moreover, bioavailability and transfer between in-hive matrices were poorly understood and explored. Many pesticides were studied but interactions between molecules or with other stressors were lacking. Sampling methods, targeted matrices and units of measure should have been, to some extent, standardised between publications to ease comparison and cross checking. Data on honey bee exposure to pesticides would have also benefit from the use of commercial formulations in experiments instead of active ingredients, with a special assessment of co-formulants (quantitative exposure and effects). Finally, the air matrix within the colony must be explored in order to complete current knowledge on honey bee pesticide exposure.
Collapse
Affiliation(s)
- Johanna Benuszak
- Unit of Coordination and Support to Surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
| | - Marion Laurent
- Unit of Honeybee Pathology, ANSES, European Union and National Reference Laboratory for Honeybee Health, Sophia Antipolis, France
| | - Marie-Pierre Chauzat
- Unit of Coordination and Support to Surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France; Unit of Honeybee Pathology, ANSES, European Union and National Reference Laboratory for Honeybee Health, Sophia Antipolis, France.
| |
Collapse
|
145
|
McArt SH, Fersch AA, Milano NJ, Truitt LL, Böröczky K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci Rep 2017; 7:46554. [PMID: 28422139 PMCID: PMC5396195 DOI: 10.1038/srep46554] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/22/2017] [Indexed: 11/08/2022] Open
Abstract
Honey bees provide critical pollination services for many agricultural crops. While the contribution of pesticides to current hive loss rates is debated, remarkably little is known regarding the magnitude of risk to bees and mechanisms of exposure during pollination. Here, we show that pesticide risk in recently accumulated beebread was above regulatory agency levels of concern for acute or chronic exposure at 5 and 22 of the 30 apple orchards, respectively, where we placed 120 experimental hives. Landscape context strongly predicted focal crop pollen foraging and total pesticide residues, which were dominated by fungicides. Yet focal crop pollen foraging was a poor predictor of pesticide risk, which was driven primarily by insecticides. Instead, risk was positively related to diversity of non-focal crop pollen sources. Furthermore, over 60% of pesticide risk was attributed to pesticides that were not sprayed during the apple bloom period. These results suggest the majority of pesticide risk to honey bees providing pollination services came from residues in non-focal crop pollen, likely contaminated wildflowers or other sources. We suggest a greater understanding of the specific mechanisms of non-focal crop pesticide exposure is essential for minimizing risk to bees and improving the sustainability of grower pest management programs.
Collapse
Affiliation(s)
- Scott H. McArt
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley A. Fersch
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Nelson J. Milano
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Lauren L. Truitt
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Katalin Böröczky
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
146
|
Fox MA, Brewer LE, Martin L. An Overview of Literature Topics Related to Current Concepts, Methods, Tools, and Applications for Cumulative Risk Assessment (2007-2016). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040389. [PMID: 28387705 PMCID: PMC5409590 DOI: 10.3390/ijerph14040389] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 11/26/2022]
Abstract
Cumulative risk assessments (CRAs) address combined risks from exposures to multiple chemical and nonchemical stressors and may focus on vulnerable communities or populations. Significant contributions have been made to the development of concepts, methods, and applications for CRA over the past decade. Work in both human health and ecological cumulative risk has advanced in two different contexts. The first context is the effects of chemical mixtures that share common modes of action, or that cause common adverse outcomes. In this context two primary models are used for predicting mixture effects, dose addition or response addition. The second context is evaluating the combined effects of chemical and nonchemical (e.g., radiation, biological, nutritional, economic, psychological, habitat alteration, land-use change, global climate change, and natural disasters) stressors. CRA can be adapted to address risk in many contexts, and this adaptability is reflected in the range in disciplinary perspectives in the published literature. This article presents the results of a literature search and discusses a range of selected work with the intention to give a broad overview of relevant topics and provide a starting point for researchers interested in CRA applications.
Collapse
Affiliation(s)
- Mary A Fox
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - L Elizabeth Brewer
- Office of the Science Advisor, U.S. Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Washington, DC 20004, USA.
| | - Lawrence Martin
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC 20004, USA.
| |
Collapse
|
147
|
Wessler IK, Kirkpatrick CJ. Non-neuronal acetylcholine involved in reproduction in mammals and honeybees. J Neurochem 2017; 142 Suppl 2:144-150. [PMID: 28072454 DOI: 10.1111/jnc.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 01/25/2023]
Abstract
Bacteria and archaea synthesize acetylcholine (ACh). Thus, it can be postulated that ACh was created by nature roughly three billion years ago. Therefore, the wide expression of ACh in nature (i.e., in bacteria, archaea, unicellular organisms, plants, fungi, non-vertebrates and vertebrates and in the abundance of non-neuronal cells of mammals) is not surprising. The term non-neuronal ACh and non-neuronal cholinergic system have been introduced to describe the auto- and paracrine, that is, local regulatory actions of ACh in cells not innervated by neuronal cholinergic fibers and to communicate among themselves. In this way non-neuronal ACh binds to the nicotinic or muscarinic receptors expressed on these local and migrating cells and modulates basic cells functions such as proliferation, differentiation, migration and the transport of ions and water. The present article is focused to the effects of non-neuronal ACh linked to reproduction; data on the expression and function of the non-neuronal cholinergic system in the following topics are summarized: (i) Sperm, granulosa cells, oocytes; (ii) Auxiliary systems (ovary, oviduct, placenta); (iii) Embryonic stem cells as first step for reproduction of a new individual after fertilization; (iv) Larval food as an example of reproduction in insects (honeybees) and adverse effects of the neonicotinoids, a class of world-wide applied insecticides. The review article will show that non-neuronal ACh is substantially involved in the regulation of reproduction in mammals and also non-mammals like insects (honeybees). There is a need to learn more about this biological role of ACh. In particular, we have to consider that insecticides like the neonicotinoids, but also carbamates and organophosphorus pesticides, interfere with the non-neuronal cholinergic system thus compromising for example the breeding of honeybees. But it is possible that other species may also be adversely affected as well, a mechanism which may contribute to the observed decline in biodiversity. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ignaz Karl Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
148
|
Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies. INSECTS 2017; 8:insects8010031. [PMID: 28287445 PMCID: PMC5371959 DOI: 10.3390/insects8010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.
Collapse
|
149
|
Ellis C, Park KJ, Whitehorn P, David A, Goulson D. The Neonicotinoid Insecticide Thiacloprid Impacts upon Bumblebee Colony Development under Field Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1727-1732. [PMID: 28079366 DOI: 10.1021/acs.est.6b04791] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impacts of pesticides, and in particular of neonicotinoids, on bee health remain much debated. Many studies describing negative effects have been criticized as the experimental protocol did not perfectly simulate real-life field scenarios. Here, we placed free-flying bumblebee colonies next to raspberry crops that were either untreated or treated with the neonicotinoid thiacloprid as part of normal farming practice. Colonies were exposed to the raspberry crops for a two week period before being relocated to either a flower-rich or flower-poor site. Overall, exposed colonies were more likely to die prematurely, and those that survived reached a lower final weight and produced 46% fewer reproductives than colonies placed at control farms. The impact was more marked at the flower-rich site (all colonies performed poorly at the flower poor site). Analysis of nectar and pollen stores from bumblebee colonies placed at the same raspberry farms revealed thiacloprid residues of up to 771 ppb in pollen and up to 561 ppb in nectar. The image of thiacloprid as a relatively benign neonicotinoid should now be questioned.
Collapse
Affiliation(s)
- Ciaran Ellis
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, FK9 4LA, U.K
| | - Kirsty J Park
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, FK9 4LA, U.K
| | - Penelope Whitehorn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, FK9 4LA, U.K
| | - Arthur David
- School of Life Sciences, University of Sussex , Brighton, BN1 9QG, U.K
| | - Dave Goulson
- School of Life Sciences, University of Sussex , Brighton, BN1 9QG, U.K
| |
Collapse
|
150
|
Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Sci Rep 2017; 7:40853. [PMID: 28145462 PMCID: PMC5286422 DOI: 10.1038/srep40853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 02/05/2023] Open
Abstract
Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.
Collapse
|