101
|
Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 2019; 20:34-48. [PMID: 30464208 DOI: 10.1038/s41583-018-0091-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Harris
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
102
|
Bae K, Zheng W, Ma Y, Huang Z. Real-Time Monitoring of Pharmacokinetics of Mitochondria-Targeting Molecules in Live Cells with Bioorthogonal Hyperspectral Stimulated Raman Scattering Microscopy. Anal Chem 2019; 92:740-748. [DOI: 10.1021/acs.analchem.9b02838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kideog Bae
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| | - Ying Ma
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
103
|
Calabretta MM, Álvarez-Diduk R, Michelini E, Roda A, Merkoçi A. Nano-lantern on paper for smartphone-based ATP detection. Biosens Bioelectron 2019; 150:111902. [PMID: 31786021 DOI: 10.1016/j.bios.2019.111902] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
ATP-driven bioluminescence relying on the D-luciferin-luciferase reaction is widely employed for several biosensing applications where bacterial ATP detection allows to verify microbial contamination for hygiene monitoring in hospitals, food processing and in general for cell viability studies. Several ATP kit assays are already commercially available but an user-friendly ATP biosensor characterized by low-cost, portability, and adequate sensitivity would be highly valuable for rapid and facile on site screening. Thanks to an innovative freeze-drying procedure, we developed a user-friendly, ready-to-use and stable ATP sensing paper biosensor that can be combined with smartphone detection. The ATP sensing paper includes a lyophilized "nano-lantern" with reaction components being rapidly reconstituted by 10 μL sample addition, enabling detection of 10-14 mol of ATP within 10 min. We analysed urinary microbial ATP as a biomarker of urinary tract infection (UTI), confirming the capability of the ATP sensing paper to detect the threshold for positivity corresponding to 105 colony-forming units of bacteria per mL of urine.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy; Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Elisa Michelini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, 00136, Rome, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy.
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, 00136, Rome, Italy.
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
104
|
Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto-Duarte A, Shokhirev MN, Schubert D, Maher P. Elevating acetyl-CoA levels reduces aspects of brain aging. eLife 2019; 8:47866. [PMID: 31742554 PMCID: PMC6882557 DOI: 10.7554/elife.47866] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
Because old age is the greatest risk factor for dementia, a successful therapy will require an understanding of the physiological changes that occur in the brain with aging. Here, two structurally distinct Alzheimer's disease (AD) drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD. CMS121 and J147 reduced cognitive decline as well as metabolic and transcriptional markers of aging in the brain when administered to rapidly aging SAMP8 mice. Both compounds preserved mitochondrial homeostasis by regulating acetyl-coenzyme A (acetyl-CoA) metabolism. CMS121 and J147 increased the levels of acetyl-CoA in cell culture and mice via the inhibition of acetyl-CoA carboxylase 1 (ACC1), resulting in neuroprotection and increased acetylation of histone H3K9 in SAMP8 mice, a site linked to memory enhancement. These data show that targeting specific metabolic aspects of the aging brain could result in treatments for dementia.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joshua Goldberg
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - António Pinto-Duarte
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
105
|
de la Torre JC, Olmo AD, Valles S. Can mild cognitive impairment be stabilized by showering brain mitochondria with laser photons? Neuropharmacology 2019; 171:107841. [PMID: 31704275 DOI: 10.1016/j.neuropharm.2019.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
There is now substantial evidence that cerebral blood flow (CBF) declines with age. From age 20 to 60, CBF is estimated to dip about 16% and continues to drop at a rate of 0.4%/year. This CBF dip will slowly reduce oxygen/glucose delivery to brain thus lowering ATP energy production needed by brain cells to perform normal activities. Reduced ATP production from mitochondrial loss or damage in the wear-and-tear of aging worsens when vascular risk factors (VRF) to Alzheimer's disease develop that can accelerate both age-decline CBF and mitochondrial deficiency to a level where mild cognitive impairment (MCI) develops. To date, no pharmacological or any other treatment has been successful in reversing, stabilizing or delaying MCI. For the first time in medical interventions, a non-pharmacological, non-invasive, well-tolerated, easy to perform, free of significant side effects and cost-effective treatment may achieve what virtually all AD treatments in the past have been unable to accomplish. This intervention uses transcranial infrared brain stimulation (TIBS), a form of photobiomodulation (PBM). PBM is a bioenergetic non-ionizing, therapeutic approach using low level light emission from laser or light emitting diodes. PBM has been used in a number of neurological conditions including Parkinson's disease, depression, traumatic brain injury, and stroke with diverse reported benefits. This brief review examines the impact of reduced energy supply stemming from chronic brain hypoperfusion in the aging brain. In this context, the use of TIBS is planned in a randomized, placebo-controlled study of MCI patients to be done at our University Clinic. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA; Department of Physiology, University of Valencia, Valencia, 46010, Spain.
| | - Antonio Del Olmo
- Neurology Section, Hospital Universitario Dr. Peset, Valencia, 46017, Spain
| | - Soraya Valles
- Department of Physiology, University of Valencia, Valencia, 46010, Spain
| |
Collapse
|
106
|
Beta-Amyloid Increases the Expression Levels of Tid1 Responsible for Neuronal Cell Death and Amyloid Beta Production. Mol Neurobiol 2019; 57:1099-1114. [PMID: 31686372 DOI: 10.1007/s12035-019-01807-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/15/2023]
Abstract
Mitochondrial dysfunctions and oxidative stress play important roles in the early pathogenesis of Alzheimer's disease (AD), which also involves the aberrant expression levels of mitochondrial proteins. However, the molecular mechanisms underlying the aberrant expression levels of these proteins in the pathogenesis of AD are still not completely understood. Tid1 (DnaJA3/mtHsp40), a mammalian homolog of the Drosophila tumor suppressor Tid56, is reported to induce mitochondrial fragmentation associated with an increase in reactive oxygen species (ROS) levels, resulting in cell death in some cancer cells. However, the involvement of Tid1 in AD pathogenesis is as yet unknown. In this study, we found that the Tid1 protein levels were upregulated in the hippocampus of AD patients and Tg2576 mice. Our in vitro studies showed that Aβ42 increased the expression levels of Tid1 in primary rat cortical neurons. The knockdown of Tid1 protected against neuronal cell death induced by Aβ42, and Tid1-mediated neuronal cell death, was dependent on the increased ROS generation and caspase-3 activity. The overexpression of Tid1 in HEK293-APP cells increased the BACE1 levels, resulting in increased Aβ production. Conversely, Tid1 knockdown in HEK293-APP cells and primary cultured neurons decreased Aβ production through the reduction in the BACE1 levels. We also found that the overexpression of Tid1 activated c-Jun N-terminal kinase (JNK) leading to increased Aβ production. Taken together, our results suggest that upregulated Tid1 levels in the hippocampus of patients with AD and Tg2576 mice induce apoptosis and increase Aβ production, and Tid1 may therefore be a suitable target in therapeutic interventions for AD.
Collapse
|
107
|
Rose KN, Barlock BJ, DaSilva NA, Johnson SL, Liu C, Ma H, Nelson R, Akhlaghi F, Seeram NP. Anti-neuroinflammatory effects of a food-grade phenolic-enriched maple syrup extract in a mouse model of Alzheimer’s disease. Nutr Neurosci 2019; 24:710-719. [DOI: 10.1080/1028415x.2019.1672009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kenneth N. Rose
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Benjamin J. Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Nicholas A. DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Shelby L. Johnson
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Robert Nelson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
108
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
109
|
Lanzillotta C, Di Domenico F, Perluigi M, Butterfield DA. Targeting Mitochondria in Alzheimer Disease: Rationale and Perspectives. CNS Drugs 2019; 33:957-969. [PMID: 31410665 PMCID: PMC6825561 DOI: 10.1007/s40263-019-00658-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders, including Alzheimer disease (AD). Mitochondria-the power station of the organism-can affect several different cellular activities, including abnormal cellular energy generation, response to toxic insults, regulation of metabolism, and execution of cell death. In AD subjects, mitochondria are characterized by impaired function such as lowered oxidative phosphorylation, decreased adenosine triphosphate production, significant increased reactive oxygen species generation, and compromised antioxidant defense. The current review discusses the most relevant mitochondrial defects that are considered to play a significant role in AD and that may offer promising therapeutic targets for the treatment/prevention of AD. In addition, we discuss mechanisms of action and translational potential of some promising mitochondrial and bioenergetic therapeutics for AD including compounds able to potentiate energy production, antioxidants to scavenge reactive oxygen species and reduce oxidative damage, glucose metabolism, and candidates that target mitophagy. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials. Thus, there is an urgent need to better understand the mechanisms regulating mitochondrial homeostasis in order to identify powerful drug candidates that target 'in and out' the mitochondria to preserve cognitive functions.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
110
|
Current Agents in Development for Treating Behavioral and Psychological Symptoms Associated with Dementia. Drugs Aging 2019; 36:589-605. [PMID: 30957198 DOI: 10.1007/s40266-019-00668-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Behavioral and psychological symptoms associated with dementia are highly prevalent and are associated with an increased risk of institutionalization and mortality. Current pharmacological treatments for these symptoms include cholinesterase inhibitors, antipsychotics, and selective serotonin reuptake inhibitors. When used for treating behavioral and psychological symptoms associated with dementia, they are associated with limited efficacy and/or serious adverse events. As such, there has been extensive research into novel agents with varying mechanisms of action targeting behavioral and psychological symptoms associated with dementia. In this article, we present the results of a comprehensive literature search and review that evaluates current agents that have completed or are currently in clinical trials for treating behavioral and psychological symptoms associated with dementia as a primary outcome. We highlight novel agents from miscellaneous drug classes, such as dextromethorphan/quinidine, bupropion/dextromethorphan, lumateperone, deudextromethorphan/quinidine, methylphenidate and scyllo-inositol, and drugs from various therapeutic classes (including atypical antipsychotics, selective serotonin reuptake inhibitors, and cannabinoids) that have demonstrated promising results and were generally well tolerated. Future research with large appropriately powered studies using validated outcome measures for behavioral and psychological symptoms associated with dementia should be conducted to further establish the clinical utility of these agents.
Collapse
|
111
|
An analog derived from phenylpropanoids ameliorates Alzheimer's disease–like pathology and protects mitochondrial function. Neurobiol Aging 2019; 80:187-195. [DOI: 10.1016/j.neurobiolaging.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 01/14/2023]
|
112
|
Tao QQ, Chen YC, Wu ZY. The role of CD2AP in the Pathogenesis of Alzheimer's Disease. Aging Dis 2019; 10:901-907. [PMID: 31440393 PMCID: PMC6675523 DOI: 10.14336/ad.2018.1025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Chao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
113
|
Liu N, Yu Z, Xun Y, Shu P, Yue Y, Yuan S, Jiang Y, Huang Z, Yang X, Feng X, Xiang S, Wang X. Amyloid-β25-35 Upregulates Endogenous Neuroprotectant Neuroglobin via NFκB Activation in vitro. J Alzheimers Dis 2019; 64:1163-1174. [PMID: 30010125 DOI: 10.3233/jad-180163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroglobin (Ngb) has been reported to be increased in early and moderately advanced Alzheimer's disease (AD) stages but declined in the severe stage. However, its regulatory mechanisms and pathophysiological roles in the disease remain to be defined. In this study, we found that Ngb expression was significantly upregulated by low dose Aβ25-35, the neurotoxic fragment of Aβ1 - 40 and Aβ1 - 42, but was not further increased by a higher dose of Aβ25-35. Mutation analysis and supershift assay demonstrated that transcription factor Nuclear Factor κB (NFκB), κB2 and κB3 sites located in mouse Ngb promoter region were involved in dynamic regulation of Ngb expression in response to different doses of Aβ25-35 stimulation. In addition, we found that suppression of endogenous Ngb expression exacerbated Aβ25-35-induced neuronal cell death and mitochondrial dysfunction. Our results indicate that endogenous Ngb expression may be upregulated by low dose Aβ25-35, which is responsible for protecting against Aβ25-35-mediated neurotoxicity. These experimental findings suggest that upregulation of endogenous Ngb expression might be an effective intervention approach for AD.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pan Shu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiwei Yue
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China.,Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zixuan Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Feng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
114
|
Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019; 49:35-45. [PMID: 31288090 DOI: 10.1016/j.mito.2019.07.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is becoming one of the most emerging pathological process in the etiology of neurological disorders. Other common etiologies of the neurological disorders are aging and oxidative stress. Neurodegenerative disorders for instance Huntington's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Epilepsy, Schizophrenia, Multiple sclerosis, Neuropathic pain and Alzheimer's disease involves mitochondrial dysfunction and is regarded as the core of their pathological processes. Most central pathological feature of the neurodegenerative diseases is apoptosis which is regulated by mitochondria. Altered signaling of the apoptotic mechanisms are involved in neurodegeneration. Abnormal levels of these molecular apoptotic proteins promotes the pathogenesis of neurological disorders. Mitochondria are also implicated in the production of reactive oxygen species (ROS). Raised ROS levels initiates the cascade leading to the non-apoptotic death of cells. ROS produced in cells acts as signaling molecules, but when produced in abundance will result in cellular consequences to deoxyribonucleic acid, proteins and lipids, decreased effectiveness of cellular mechanisms, initiation of inflammatory pathways, excitotoxicity, protein agglomeration and apoptosis. Protecting mitochondrial function has been identified as the most effective therapeutic approach to attenuate the pathogenesis of neurodegenerative diseases. This review aims to provide an insight into the mitochondrial dysfunction in the pathogenesis of neurological disorders, alteration in signaling cascades of apoptosis in mitochondrial dysfunction and the therapeutic strategies (both natural and synthetic drugs) targeting these mitochondrial apoptotic pathways and oxidative stress that holds great promise.
Collapse
Affiliation(s)
- Yuanbo Wu
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China; Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| | - Meiqiao Chen
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China
| | - Jielong Jiang
- Department of Nephrology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China; Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| |
Collapse
|
115
|
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci 2019; 20:E3108. [PMID: 31242683 PMCID: PMC6627589 DOI: 10.3390/ijms20123108] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to the central nervous system (CNS) conferred by brain barriers is a major obstacle in the development of effective neurotherapeutics. In this review, a classification of current approaches of clinical or investigational importance for the delivery of therapeutics to the CNS is presented. This classification includes the use of formulations administered systemically that can elicit transcytosis-mediated transport by interacting with transporters expressed by transvascular endothelial cells. Neurotherapeutics can also be delivered to the CNS by means of surgical intervention using specialized catheters or implantable reservoirs. Strategies for delivering drugs to the CNS have evolved tremendously during the last two decades, yet, some factors can affect the quality of data generated in preclinical investigation, which can hamper the extension of the applications of these strategies into clinically useful tools. Here, we disclose some of these factors and propose some solutions that may prove valuable at bridging the gap between preclinical findings and clinical trials.
Collapse
Affiliation(s)
- Rana Abdul Razzak
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Gordon J Florence
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| |
Collapse
|
116
|
Mitochondrial DNA Variants and Common Diseases: A Mathematical Model for the Diversity of Age-Related mtDNA Mutations. Cells 2019; 8:cells8060608. [PMID: 31216686 PMCID: PMC6627076 DOI: 10.3390/cells8060608] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is the only organelle in the human cell, besides the nucleus, with its own DNA (mtDNA). Since the mitochondrion is critical to the energy metabolism of the eukaryotic cell, it should be unsurprising, then, that a primary driver of cellular aging and related diseases is mtDNA instability over the life of an individual. The mutation rate of mammalian mtDNA is significantly higher than the mutation rate observed for nuclear DNA, due to the poor fidelity of DNA polymerase and the ROS-saturated environment present within the mitochondrion. In this review, we will discuss the current literature showing that mitochondrial dysfunction can contribute to age-related common diseases such as cancer, diabetes, and other commonly occurring diseases. We will then turn our attention to the likely role that mtDNA mutation plays in aging and senescence. Finally, we will use this context to develop a mathematical formula for estimating for the accumulation of somatic mtDNA mutations with age. This resulting model shows that almost 90% of non-proliferating cells would be expected to have at least 100 mutations per cell by the age of 70, and almost no cells would have fewer than 10 mutations, suggesting that mtDNA mutations may contribute significantly to many adult onset diseases.
Collapse
|
117
|
Fleck D, Phu L, Verschueren E, Hinkle T, Reichelt M, Bhangale T, Haley B, Wang Y, Graham R, Kirkpatrick DS, Sheng M, Bingol B. PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease. J Neurosci 2019; 39:4636-4656. [PMID: 30948477 PMCID: PMC6561697 DOI: 10.1523/jneurosci.0116-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to amyloid-β plaques and tau tangles, mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD). Neurons heavily rely on mitochondrial function, and deficits in brain energy metabolism are detected early in AD; however, direct human genetic evidence for mitochondrial involvement in AD pathogenesis is limited. We analyzed whole-exome sequencing data of 4549 AD cases and 3332 age-matched controls and discovered that rare protein altering variants in the gene pentatricopeptide repeat-containing protein 1 (PTCD1) show a trend for enrichment in cases compared with controls. We show here that PTCD1 is required for normal mitochondrial rRNA levels, proper assembly of the mitochondrial ribosome and hence for mitochondrial translation and assembly of the electron transport chain. Loss of PTCD1 function impairs oxidative phosphorylation and forces cells to rely on glycolysis for energy production. Cells expressing the AD-linked variant of PTCD1 fail to sustain energy production under increased metabolic stress. In neurons, reduced PTCD1 expression leads to lower ATP levels and impacts spontaneous synaptic activity. Thus, our study uncovers a possible link between a protein required for mitochondrial function and energy metabolism and AD risk.SIGNIFICANCE STATEMENT Mitochondria are the main source of cellular energy and mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD) and other neurodegenerative disorders. Here, we identify a variant in the gene PTCD1 that is enriched in AD patients and demonstrate that PTCD1 is required for ATP generation through oxidative phosphorylation. PTCD1 regulates the level of 16S rRNA, the backbone of the mitoribosome, and is essential for mitochondrial translation and assembly of the electron transport chain. Cells expressing the AD-associated variant fail to maintain adequate ATP production during metabolic stress, and reduced PTCD1 activity disrupts neuronal energy homeostasis and dampens spontaneous transmission. Our work provides a mechanistic link between a protein required for mitochondrial function and genetic AD risk.
Collapse
Affiliation(s)
| | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics
| | | | | | | | | | - Benjamin Haley
- Molecular Biology, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | | |
Collapse
|
118
|
Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S455-S467. [PMID: 29504539 DOI: 10.3233/jad-179915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Schamim Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, University of Giessen, Giessen, Germany
| | - Kristina Friedland
- Department of Molecular and Clinical Pharmacy, University of Erlangen, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| |
Collapse
|
119
|
Mitochondrial Dysfunction in Alzheimer’s Disease and Progress in Mitochondria-Targeted Therapeutics. Curr Behav Neurosci Rep 2019. [DOI: 10.1007/s40473-019-00179-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
120
|
Chong CM, Su H, Lu JJ, Wang Y. The effects of bioactive components from the rhizome of Salvia miltiorrhiza (Danshen) on the characteristics of Alzheimer's disease. Chin Med 2019; 14:19. [PMID: 31139246 PMCID: PMC6528372 DOI: 10.1186/s13020-019-0242-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a common human neurodegenerative disease, which is characterized by the progressive loss of memory and the cognitive impairment. Since the etiology of AD is still unknown, it is extremely difficult to develop the effective drugs for preventing or slowing the AD process. The major characteristics of AD such as amyloid β plaques, neurofibrillary tangles, mitochondrial dysfunction, and autophagy dysfunction are commonly used as the important indicators for evaluating the effects of potential candidate drugs. The rhizome of Salvia miltiorrhiza (known as 'Danshen' in Chinese), a famous traditional Chinese medicine, which is widely used for the treatment of hyperlipidemia, stroke, cardiovascular and cerebrovascular diseases. Increasing evidences suggest that the bioactive components of Danshen can improve cognitive deficits in mice, protect neuronal cells, reduce tau hyperphosylation, prevent amyloid-β fiber formation and disaggregation. Here we briefly summarize the studies regarding the effects of bioactive component from Danshen on those major characteristics of AD in preclinical studies, as well as explore the potential of these Danshen component in the treatment of AD.
Collapse
Affiliation(s)
- Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
121
|
Weidling I, Swerdlow RH. Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. BIOLOGY 2019; 8:biology8020039. [PMID: 31083585 PMCID: PMC6627276 DOI: 10.3390/biology8020039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories attempt to explain AD mitochondrial dysfunction. Groups propose AD mitochondrial defects stem from: (1) mitochondrial-nuclear DNA interactions/variations; (2) amyloid and neurofibrillary tangle interactions with mitochondria, and (3) mitochondrial quality control defects and oxidative damage. Cells respond to mitochondrial dysfunction through numerous retrograde responses including the Integrated Stress Response (ISR) involving eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). AD brains activate the ISR and we hypothesize mitochondrial defects may contribute to ISR activation. Here we review current recognized contributions of the mitochondria to AD, with an emphasis on their potential contribution to brain stress responses.
Collapse
Affiliation(s)
- Ian Weidling
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
122
|
Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 2019; 25:859-875. [PMID: 31050206 PMCID: PMC6566062 DOI: 10.1111/cns.13140] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double‐membrane‐encircled organelles existing in most eukaryotic cells and playing important roles in energy production, metabolism, Ca2+ buffering, and cell signaling. Mitophagy is the selective degradation of mitochondria by autophagy. Mitophagy can effectively remove damaged or stressed mitochondria, which is essential for cellular health. Thanks to the implementation of genetics, cell biology, and proteomics approaches, we are beginning to understand the mechanisms of mitophagy, including the roles of ubiquitin‐dependent and receptor‐dependent signals on damaged mitochondria in triggering mitophagy. Mitochondrial dysfunction and defective mitophagy have been broadly associated with neurodegenerative diseases. This review is aimed at summarizing the mechanisms of mitophagy in higher organisms and the roles of mitophagy in the pathogenesis of neurodegenerative diseases. Although many studies have been devoted to elucidating the mitophagy process, a deeper understanding of the mechanisms leading to mitophagy defects in neurodegenerative diseases is required for the development of new therapeutic interventions, taking into account the multifactorial nature of diseases and the phenotypic heterogeneity of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
123
|
Brooks LRK, Mias GI. Data-Driven Analysis of Age, Sex, and Tissue Effects on Gene Expression Variability in Alzheimer's Disease. Front Neurosci 2019. [DOI: 10.3389/fnins.2019.00392
expr 953166181 + 832251875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
124
|
Brooks LRK, Mias GI. Data-Driven Analysis of Age, Sex, and Tissue Effects on Gene Expression Variability in Alzheimer's Disease. Front Neurosci 2019; 13:392. [PMID: 31068785 PMCID: PMC6491842 DOI: 10.3389/fnins.2019.00392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) has been categorized by the Centers for Disease Control and Prevention (CDC) as the 6th leading cause of death in the United States. AD is a significant health-care burden because of its increased occurrence (specifically in the elderly population), and the lack of effective treatments and preventive methods. With an increase in life expectancy, the CDC expects AD cases to rise to 15 million by 2060. Aging has been previously associated with susceptibility to AD, and there are ongoing efforts to effectively differentiate between normal and AD age-related brain degeneration and memory loss. AD targets neuronal function and can cause neuronal loss due to the buildup of amyloid-beta plaques and intracellular neurofibrillary tangles. Our study aims to identify temporal changes within gene expression profiles of healthy controls and AD subjects. We conducted a meta-analysis using publicly available microarray expression data from AD and healthy cohorts. For our meta-analysis, we selected datasets that reported donor age and gender, and used Affymetrix and Illumina microarray platforms (8 datasets, 2,088 samples). Raw microarray expression data were re-analyzed, and normalized across arrays. We then performed an analysis of variance, using a linear model that incorporated age, tissue type, sex, and disease state as effects, as well as study to account for batch effects, and included binary interactions between factors. Our results identified 3,735 statistically significant (Bonferroni adjusted p < 0.05) gene expression differences between AD and healthy controls, which we filtered for biological effect (10% two-tailed quantiles of mean differences between groups) to obtain 352 genes. Interesting pathways identified as enriched comprised of neurodegenerative diseases pathways (including AD), and also mitochondrial translation and dysfunction, synaptic vesicle cycle and GABAergic synapse, and gene ontology terms enrichment in neuronal system, transmission across chemical synapses and mitochondrial translation. Overall our approach allowed us to effectively combine multiple available microarray datasets and identify gene expression differences between AD and healthy individuals including full age and tissue type considerations. Our findings provide potential gene and pathway associations that can be targeted to improve AD diagnostics and potentially treatment or prevention.
Collapse
Affiliation(s)
- Lavida R K Brooks
- Microbiology and Molecular Genetics, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Biochemistry and Molecular Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
125
|
Safe coordinated trafficking of heme and iron with copper maintain cell homeostasis: modules from the hemopexin system. Biometals 2019; 32:355-367. [PMID: 31011852 DOI: 10.1007/s10534-019-00194-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Studies with patients, animal models of human disease and hemopexin null mice have shown that the heme-binding protein hemopexin is vital for the protection of a variety of cell types and tissues against heme toxicity. The presence of hemopexin in all biological fluids examined to date indicates wide roles in abrogating heme toxicity in human tissues; and, thus, is clinically relevant. Heme-hemopexin endocytosis leads to coordinated trafficking of heme, iron and copper as heme traffics from endosomes to heme oxygenases (HOs) in the smooth endoplasmic reticulum and to the nucleus. This is safe redox-metal trafficking, without oxidative stress, as iron released from heme catabolism by HOs as well as copper taken up with heme-hemopexin move through the cell. To our knowledge, this coordinated metal trafficking has been described only for the hemopexin system and differs from the cell's response to non-protein bound heme, which can be toxic. We propose that defining how cells respond to heme-hemopexin endocytosis, a natural cytoprotective system, will aid our understanding of how cells adapt as they safely respond to increases in heme, Fe(II) and copper. This is relevant for many genetic hemolytic diseases and conditions, stroke and hemorrhage as well as neurodegeneration. Such analyses will help to define a pattern of events that can be utilized to characterize how dysfunctional redox and transition metal handling is linked to the development of pathology in disease states such as Alzheimer's disease when metal homeostasis is not restored; and potentially provide novel targets and approaches to improve therapies.
Collapse
|
126
|
The role of APOE4 in Alzheimer's disease: strategies for future therapeutic interventions. Neuronal Signal 2019; 3:NS20180203. [PMID: 32269835 PMCID: PMC7104324 DOI: 10.1042/ns20180203] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia affecting almost 50 million people worldwide. The ε4 allele of Apolipoprotein E (APOE) is the strongest known genetic risk factor for late-onset AD cases, with homozygous APOE4 carriers being approximately 15-times more likely to develop the disease. With 25% of the population being APOE4 carriers, understanding the role of this allele in AD pathogenesis and pathophysiology is crucial. Though the exact mechanism by which ε4 allele increases the risk for AD is unknown, the processes mediated by APOE, including cholesterol transport, synapse formation, modulation of neurite outgrowth, synaptic plasticity, destabilization of microtubules, and β-amyloid clearance, suggest potential therapeutic targets. This review will summarize the impact of APOE on neurons and neuronal signaling, the interactions between APOE and AD pathology, and the association with memory decline. We will then describe current treatments targeting APOE4, complications associated with the current therapies, and suggestions for future areas of research and treatment.
Collapse
|
127
|
Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 2019; 71:647-663. [PMID: 30706303 PMCID: PMC6465382 DOI: 10.1007/s10616-019-00302-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are attractive cellular organelles which are so interesting in both basic and clinical research, especially after it was found that they were arisen as a bacterial intruder in ancient cells. Interestingly, even now, they are the focus of many investigations and their function and relevance to health and disease have remained open questions. More recently, research on mitochondria have turned out their potential application in medicine as a novel therapeutic intervention. The importance of this issue is highlighted when we know that mitochondrial dysfunction can be observed in a variety of diseases such as cardiovascular diseases, neurodegenerative diseases, ischemia, diabetes, renal failure, skeletal muscles disorders, liver diseases, burns, aging, and cancer progression. In other words, transplantation of viable mitochondria into the injured tissues would replace or augment damaged mitochondria, allowing the rescue of cells and restoration of the normal function. Therefore, mitochondrial transplantation would be revolutionary for the treatment of a variety of diseases in which conventional therapies have proved unsuccessful. Here, we describe pieces of evidence of mitochondrial transplantation, discuss and highlight the current and future directions to show why mitochondrial transplantation could be a master key for treatment of a variety of diseases or injuries.
Collapse
Affiliation(s)
| | - Yoshikazu Kuwahara
- Divisions of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mehryar Habibi Roudkenar
- Department of Cardiology, Cardiovascular Disease Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Stem Cell and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
128
|
Wong-Guerra M, Jiménez-Martin J, Fonseca-Fonseca LA, Ramírez-Sánchez J, Montano-Peguero Y, Rocha JB, D Avila F, de Assis AM, Souza DO, Pardo-Andreu GL, Del Valle RMS, Lopez GA, Martínez OV, García NM, Mondelo-Rodríguez A, Padrón-Yaquis AS, Nuñez-Figueredo Y. JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment. Neurol Res 2019; 41:385-398. [PMID: 30821663 DOI: 10.1080/01616412.2019.1573285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE JM-20, a novel hybrid synthetic molecule, has been reported to have antioxidant, mitoprotective, anti-excitotoxic, anti-apoptotic and anti-inflammatory properties. However, the neuroprotective effect of JM-20 against memory impairment in preclinical AD-like models has not been analyzed. The aim of this study was to evaluate the potential neuroprotection of JM-20 that preserves essential memory process from cholinergic dysfunction and other molecular damages. METHODS The effects of JM-20 on scopolamine (1 mg/kg)-induced cognitive disorders were studied. Male Wistar rats (220-230 g) were treated with JM-20 and/or scopolamine, and behavioral tasks were performed. The AChE activity, superoxide dismutase activity, catalase activity, MDA and T-SH level on brain tissue were determined by spectrophotometric methods. Mitochondrial functionality parameters were measured after behavioral tests. Histological analyses on hippocampus and prefrontal cortex were processed with hematoxylin and eosin, and neuronal and axonal damage were determined. RESULTS The behavioral, biochemical and histopathological studies revealed that oral pre-treatment with JM-20 (8 mg/kg) significantly attenuated the scopolamine-induced memory deficits, mitochondrial malfunction, oxidative stress, and prevented AChE hyperactivity probably due to specific inhibition of AChE enzyme. It was also observed marked histological protection on hippocampal and prefrontal-cortex regions. CONCLUSIONS The multimodal action of this molecule could mediate the memory protection here observed and suggest that it may modulate different pathological aspects of memory deficits associated with AD in humans.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Javier Jiménez-Martin
- b Department of Physiology, Otago School of Medical Sciences , University of Otago , Dunedin , New Zealand
| | - Luis Arturo Fonseca-Fonseca
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Jeney Ramírez-Sánchez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Yanay Montano-Peguero
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Joao Batista Rocha
- c Departamento de Bioquímica e Biologia Molecular, Centro de Ciencias Naturales y Exactas , Universidad Federal de Santa Maria , Santa Maria , Brasil
| | - Fernanda D Avila
- c Departamento de Bioquímica e Biologia Molecular, Centro de Ciencias Naturales y Exactas , Universidad Federal de Santa Maria , Santa Maria , Brasil
| | - Adriano M de Assis
- d Departamento de Bioquímica, PPG em Ciencias Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brasil
| | - Diogo Onofre Souza
- d Departamento de Bioquímica, PPG em Ciencias Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brasil
| | - Gilberto L Pardo-Andreu
- e Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos , Universidad de La Habana , La Habana , Cuba
| | | | - Guillermo Aparicio Lopez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Odalys Valdés Martínez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Nelson Merino García
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Abel Mondelo-Rodríguez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Alejandro Saúl Padrón-Yaquis
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Yanier Nuñez-Figueredo
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| |
Collapse
|
129
|
Müller WE, Eckert A, Eckert GP, Fink H, Friedland K, Gauthier S, Hoerr R, Ihl R, Kasper S, Möller HJ. Therapeutic efficacy of the Ginkgo special extract EGb761 ® within the framework of the mitochondrial cascade hypothesis of Alzheimer's disease. World J Biol Psychiatry 2019; 20:173-189. [PMID: 28460580 DOI: 10.1080/15622975.2017.1308552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction as an important common pathomechanism for the whole spectrum of age-associated memory disorders from cognitive symptoms in the elderly over mild cognitive impairment to Alzheimer's dementia. Thus, a drug such as the Ginkgo special extract EGb 761® which improves mitochondrial function should be able to ameliorate cognitive deficits over the whole aging spectrum. METHODS We review the most relevant publications about effects of EGb 761® on cognition and synaptic deficits in preclinical studies as well as on cognitive deficits in man from aging to dementia. RESULTS EGb 761® improves mitochondrial dysfunction and cognitive impairment over the whole spectrum of age-associated cognitive disorders in relevant animal models and in vitro experiments, and also shows clinical efficacy in improving cognition over the whole range from aging to Alzheimer's or even vascular dementia. CONCLUSIONS EGb 761® shows clinical efficacy in the treatment of cognitive deficits over the whole spectrum of age-associated memory disorders. Thus, EGb 761® can serve as an important pharmacological argument for the mitochondrial cascade hypothesis of dementia.
Collapse
Affiliation(s)
- Walter E Müller
- a Department of Pharmacology , Biocenter, Goethe-University , Frankfurt/M , Germany
| | - Anne Eckert
- b Neurobiological laboratory, Department of Psychiatry , Basel , Switzerland
| | - Gunter P Eckert
- c Department of Nutritional Sciences , Justus-Liebig University , Giessen , Germany
| | - Heidrun Fink
- d Department of Pharmacology and Toxicology , Free University , Berlin , Germany
| | - Kristina Friedland
- e Department of Molecular and Clinical Pharmacy , University Erlangen , Erlangen , Germany
| | - Serge Gauthier
- f McGill Center for Studies in Aging , Montreal , Canada
| | - Robert Hoerr
- g Dr.Willmar Schwabe GmbH & Co. KG , Karlsruhe , Germany
| | - Ralf Ihl
- h Alexianer Hospital, Clinic of Geriatric Psychiatry , Krefeld , Germany
| | - Siegfried Kasper
- i Department of Psychiatry , Medical University , Vienna , Austria
| | - Hans-Jürgen Möller
- j Department of Psychiatry , Ludwig-Maximilian University , Munich , Germany
| |
Collapse
|
130
|
Zhang F, Niu L, Li S, Le W. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease. ACS Chem Neurosci 2019; 10:902-909. [PMID: 30412668 DOI: 10.1021/acschemneuro.8b00442] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hypoxia is considered as one of the important environmental factors contributing to the pathogenesis of Alzheimer's disease (AD). Many chronic hypoxia-causing comorbidities, such as obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD), have been reported to be closely associated with AD. Increasing evidence has documented that chronic hypoxia may affect many pathological aspects of AD including amyloid β (Aβ) metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial and synaptic dysfunction, which may collectively result in neurodegeneration in the brain. In this Review, we briefly summarize the effects of chronic hypoxia on AD pathogenesis and discuss the underlying mechanisms. Since chronic hypoxia is common in the elderly and may contribute to the pathogenesis of AD, prospective prevention and treatment targeting hypoxia may be helpful to delay or alleviate AD.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| |
Collapse
|
131
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
132
|
Gauba E, Chen H, Guo L, Du H. Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer's disease. Neurobiol Dis 2019; 121:138-147. [PMID: 30266287 PMCID: PMC6250052 DOI: 10.1016/j.nbd.2018.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction is pivotal in inducing synaptic injury and neuronal stress in Alzheimer's disease (AD). Mitochondrial F1Fo ATP synthase deregulation is a hallmark mitochondrial defect leading to oxidative phosphorylation (OXPHOS) failure in this neurological disorder. Oligomycin sensitivity conferring protein (OSCP) is a crucial F1Fo ATP synthase subunit. Decreased OSCP levels and OSCP interaction with amyloid β (Aβ) constitute key aspects of F1Fo ATP synthase pathology in AD-related conditions. However, the detailed mechanisms promoting such AD-related OSCP changes have not been fully resolved. Here, we have found increased physical interaction of OSCP with Cyclophilin D (CypD) in AD cases as well as in an AD animal model (5xFAD mice). Genetic depletion of CypD mitigates OSCP loss via ubiquitin-dependent OSCP degradation in 5xFAD mice. Moreover, the ablation of CypD also attenuates OSCP/Aβ interaction in AD mice. The relieved OSCP changes by CypD depletion in 5xFAD mice are along with preserved F1Fo ATP synthase function, restored mitochondrial bioenergetics as well as improved mouse cognition. The simplest interpretation of our results is that CypD is a critical mediator that promotes OSCP deficits in AD-related conditions. Therefore, to block the deleterious impact of CypD on OSCP has the potential to be a promising therapeutic strategy to correct mitochondrial dysfunction for AD therapy.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, The University of Texas at Dallas, United States
| | - Hao Chen
- Department of Biological Sciences, The University of Texas at Dallas, United States
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, United States
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, United States.
| |
Collapse
|
133
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
134
|
Xiang S, Huang Z, Wang T, Han Z, Yu CY, Ni D, Huang K, Zhang J. Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer's disease patients. BMC Med Genomics 2018; 11:115. [PMID: 30598117 PMCID: PMC6311927 DOI: 10.1186/s12920-018-0431-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Gene co-expression network (GCN) mining is a systematic approach to efficiently identify novel disease pathways, predict novel gene functions and search for potential disease biomarkers. However, few studies have systematically identified GCNs in multiple brain transcriptomic data of Alzheimer’s disease (AD) patients and looked for their specific functions. Methods In this study, we first mined GCN modules from AD and normal brain samples in multiple datasets respectively; then identified gene modules that are specific to AD or normal samples; lastly, condition-specific modules with similar functional enrichments were merged and enriched differentially expressed upstream transcription factors were further examined for the AD/normal-specific modules. Results We obtained 30 AD-specific modules which showed gain of correlation in AD samples and 31 normal-specific modules with loss of correlation in AD samples compared to normal ones, using the network mining tool lmQCM. Functional and pathway enrichment analysis not only confirmed known gene functional categories related to AD, but also identified novel regulatory factors and pathways. Remarkably, pathway analysis suggested that a variety of viral, bacteria, and parasitic infection pathways are activated in AD samples. Furthermore, upstream transcription factor analysis identified differentially expressed upstream regulators such as ZFHX3 for several modules, which can be potential driver genes for AD etiology and pathology. Conclusions Through our state-of-the-art network-based approach, AD/normal-specific GCN modules were identified using multiple transcriptomic datasets from multiple regions of the brain. Bacterial and viral infectious disease related pathways are the most frequently enriched in modules across datasets. Transcription factor ZFHX3 was identified as a potential driver regulator targeting the infectious diseases pathways in AD-specific modules. Our results provided new direction to the mechanism of AD as well as new candidates for drug targets. Electronic supplementary material The online version of this article (10.1186/s12920-018-0431-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shunian Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhi Huang
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhi Han
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Christina Y Yu
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Ni
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Kun Huang
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Jie Zhang
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
135
|
Mahapatra G, Smith SC, Hughes TM, Wagner B, Maldjian JA, Freedman BI, Molina AJA. Blood-based bioenergetic profiling is related to differences in brain morphology in African Americans with Type 2 diabetes. Clin Sci (Lond) 2018; 132:2509-2518. [PMID: 30401689 PMCID: PMC6512318 DOI: 10.1042/cs20180690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Blood-based bioenergetic profiling has promising applications as a minimally invasive biomarker of systemic bioenergetic capacity. In the present study, we examined peripheral blood mononuclear cell (PBMC) mitochondrial function and brain morphology in a cohort of African Americans with long-standing Type 2 diabetes. Key parameters of PBMC respiration were correlated with white matter, gray matter, and total intracranial volumes. Our analyses indicate that these relationships are primarily driven by the relationship of systemic bioenergetic capacity with total intracranial volume, suggesting that systemic differences in mitochondrial function may play a role in overall brain morphology.
Collapse
Affiliation(s)
- Gargi Mahapatra
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, U.S.A
| | - S Carrie Smith
- Centers for Genomics and Personalized Medicine Research and Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, U.S.A
| | - Timothy M Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, U.S.A
| | - Benjamin Wagner
- Department of Radiology, Advanced Neuroscience Imaging Research (ANSIR) Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - Joseph A Maldjian
- Department of Radiology, Advanced Neuroscience Imaging Research (ANSIR) Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - Barry I Freedman
- Centers for Genomics and Personalized Medicine Research and Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, U.S.A
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, U.S.A
| | - Anthony J A Molina
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, U.S.A.
- Department of Medicine, Division of Geriatrics and Gerontology, University of California San Diego School of Medicine, La Jolla, CA 92093, U.S.A
| |
Collapse
|
136
|
A Brief Review on the Neuroprotective Mechanisms of Vitexin. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4785089. [PMID: 30627560 PMCID: PMC6304565 DOI: 10.1155/2018/4785089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
The neural dysfunction is triggered by cellular and molecular events that provoke neurotoxicity and neural death. Currently, neurodegenerative diseases are increasingly common, and available treatments are focused on relieving symptoms. Based on the above, in this review we describe the participation of vitexin in the main events involved in the neurotoxicity and cell death process, as well as the use of vitexin as a therapeutic approach to suppress or attenuate neurodegenerative progress. Vitexin contributes to increasing neuroprotective factors and pathways and counteract the targets that induce neurodegeneration, such as redox imbalance, neuroinflammation, abnormal protein aggregation, and reduction of cognitive and/or motor impairment. The results obtained provide substantial evidence to support the scientific exploration of vitexin in these pathologies, since their effects are still little explored for this direction.
Collapse
|
137
|
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy. Aging Dis 2018; 9:1165-1184. [PMID: 30574426 PMCID: PMC6284760 DOI: 10.14336/ad.2018.1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer's disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer's disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
| |
Collapse
|
138
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 492] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
139
|
Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158:359-375. [DOI: 10.1016/j.bcp.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
|
140
|
Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1435934. [PMID: 30533169 PMCID: PMC6250043 DOI: 10.1155/2018/1435934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic and regulated organelles that historically have been defined based on their crucial role in cell metabolism. However, they are implicated in a variety of other important functions, making mitochondrial dysfunction an important axis in several pathological contexts. Despite that conventional biochemical and molecular biology approaches have provided significant insight into mitochondrial functionality, innovative techniques that provide a global view of the mitochondrion are still necessary. Proteomics fulfils this need by enabling accurate, systems-wide quantitative analysis of protein abundance. More importantly, redox proteomics approaches offer unique opportunities to tackle oxidative stress, a phenomenon that is intimately linked to aging, cardiovascular disease, and cancer. In addition, cutting-edge proteomics approaches reveal how proteins exert their functions in complex interaction networks where even subtle alterations stemming from early pathological states can be monitored. Here, we describe the proteomics approaches that will help to deepen the role of mitochondria in health and disease by assessing not only changes to mitochondrial protein composition but also alterations to their redox state and how protein interaction networks regulate mitochondrial function and dynamics. This review is aimed at showing the reader how the application of proteomics approaches during the last 20 years has revealed crucial mitochondrial roles in the context of aging, neurodegenerative disorders, metabolic disease, and cancer.
Collapse
|
141
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
142
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
143
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
144
|
Gu QF, Yu JZ, Wu H, Li YH, Liu CY, Feng L, Zhang GX, Xiao BG, Ma CG. Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 16:3929-3938. [PMID: 30344671 PMCID: PMC6176147 DOI: 10.3892/etm.2018.6701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Fasudil, a Rho kinase (ROCK) inhibitor, effectively inhibits disease severity in a mouse model of Alzheimer's disease (AD). However, given its significant limitations, including a relatively narrow safety window and poor oral bioavailability, Fasudil is not suitable for long-term use. Thus, screening for ROCK inhibitor(s) that are more efficient, safer, can be used orally and suitable for long-term use in the treatment of neurodegenerative disorders is required. The main purpose of the present study is to explore whether FSD-C10, a novel ROCK inhibitor, has therapeutic potential in amyloid precursor protein/presenilin-1 transgenic (APP/PS1 Tg) mice, and to determine possible mechanisms of its action. The results showed that FSD-C10 effectively improved learning and memory impairment, accompanied by reduced expression of amyloid-β 1-42 (Aβ1-42), Tau protein phosphorylation (P-tau) and β-site APP-cleaving enzyme in the hippocampus and cortex area of brain. In addition, FSD-C10 administration boosted the expression of synapse-associated proteins, such as postynaptic density protein 95, synaptophsin, α-amino 3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor and neurotrophic factors, e,g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Taken together, our results demonstrate that FSD-C10 has therapeutic potential in the AD mouse model, possibly through inhibiting the formation of Aβ1-42 and P-tau, and promoting the generation of synapse-associated proteins and neurotrophic factors.
Collapse
Affiliation(s)
- Qing-Fang Gu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Jie-Zhong Yu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hao Wu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Chun-Yun Liu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200025, P.R. China
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China.,2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
145
|
Kolaj I, Imindu Liyanage S, Weaver DF. Phenylpropanoids and Alzheimer's disease: A potential therapeutic platform. Neurochem Int 2018; 120:99-111. [PMID: 30098379 DOI: 10.1016/j.neuint.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive dementia, neuroinflammation and the accumulation of intracellular neurofibrillary tangles and extracellular plaques. The etiology of AD is unclear, but is generally attributed to four leading hypotheses: (i) abnormal folding and aggregation of amyloid-β (Aβ)/tau proteins (ii) activation of the innate immune system, (iii) mitochondrial dysfunction, and (iv) oxidative stress. To date, therapeutic strategies have largely focused on Aβ-centric targets; however, the repeated failure of clinical trials and the continued lack of a disease-modifying therapy demand novel, multifaceted approaches. Natural products are common molecular platforms in drug development; in AD, compounds from the plant phenylpropanoid metabolic pathway have yielded promising associations. Herein, we review developments in the pathogenesis of AD and the metabolism of phenylpropanoids in plants. We further discuss the role of these metabolites as relevant to the four leading mechanisms of AD pathogenesis, and observe multiple protective effects among phenylpropanoids against AD onset and progression.
Collapse
Affiliation(s)
- Igri Kolaj
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD-473, Toronto, ON, M5T 0S8, Canada; Department of Chemistry, University of Toronto, 80 St.George Street, Toronto, ON, M5S 3H6, Canada.
| | - S Imindu Liyanage
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD-473, Toronto, ON, M5T 0S8, Canada.
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, 4KD-473, Toronto, ON, M5T 0S8, Canada; Department of Chemistry, University of Toronto, 80 St.George Street, Toronto, ON, M5S 3H6, Canada; Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
146
|
Eckert SH, Gaca J, Kolesova N, Friedland K, Eckert GP, Muller WE. Mitochondrial Pharmacology of Dimebon (Latrepirdine) Calls for a New Look at its Possible Therapeutic Potential in Alzheimer's Disease. Aging Dis 2018; 9:729-744. [PMID: 30090660 PMCID: PMC6065284 DOI: 10.14336/ad.2017.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Dimebon (latrepirdine), an old antihistaminic drug, showed divergent results in two large clinical trials in Alzheimer disease (AD), which according to our review might be related to the specific pharmacological properties of the drug and the different patient populations included in both studies. Out of the many pharmacological effects of Dimebon, improvement of impaired mitochondrial function seeems to be most relevant for the substantial effects on cognition and behaviour reported in one of the studies, as these effects are already present at the low concentrations of dimebon measured in plasma and tissues of patients and experimental animals. Since impaired mitochondrial function seems to be the major driving force for the progression of the clinical symptoms and since most of the clinical benefits of dimebon originate from an effect on the symptomatic deterioration, mitochondrial improvement can also explain the lack of efficacy of this drug in another clinical trial where symptoms of the patiets remained stable for the time of the study. Accordingly, it seems worthwhile to reevaluate the clinical data to proof that clinical response is correlated with high levels of Neuropsychiatric Symptoms as these show a good relationship to the individual speed of symptomatic decline in AD patients related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Schamim H Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Janett Gaca
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Nathalie Kolesova
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Kristina Friedland
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Deparment of Molecular and Clinical Pharmacy, University of Erlangen, D-91058 Erlangen, Germany
| | - Gunter P Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Department of Nutricional Sciences, University of Giessen, D-35392 Giessen, Germany
| | - Walter E Muller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| |
Collapse
|
147
|
Farmer T, Naslavsky N, Caplan S. Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 2018; 19:569-577. [PMID: 29663589 PMCID: PMC6043374 DOI: 10.1111/tra.12573] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/03/2023]
Abstract
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross-regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.
Collapse
Affiliation(s)
- Trey Farmer
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
| | - Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
- The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
148
|
Karri V, Ramos D, Martinez JB, Odena A, Oliveira E, Coort SL, Evelo CT, Mariman ECM, Schuhmacher M, Kumar V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J Proteomics 2018; 187:106-125. [PMID: 30017948 DOI: 10.1016/j.jprot.2018.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects. SIGNIFICANCE The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Julia Bauzá Martinez
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Antonia Odena
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Susan L Coort
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
149
|
Torosyan N, Sethanandha C, Grill JD, Dilley ML, Lee J, Cummings JL, Ossinalde C, Silverman DH. Changes in regional cerebral blood flow associated with a 45 day course of the ketogenic agent, caprylidene, in patients with mild to moderate Alzheimer's disease: Results of a randomized, double-blinded, pilot study. Exp Gerontol 2018; 111:118-121. [PMID: 30006299 DOI: 10.1016/j.exger.2018.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Caprylidene is a ketogen that, when metabolized, produces the ketones beta-hydroxybutyrate and acetoacetate, which can cross the blood brain barrier. It has been hypothesized that ketone bodies can be used as an alternate energy source by neurons with impaired glucose utilization. Caprylidene has been shown to improve cognition in patients with mild-to-moderate Alzheimer's disease (AD) who lacked an AD-predisposing allele (ɛ4) of the gene for apolipoprotein E. In this pilot study, we examined the effects of caprylidene on regional cerebral blood flow (rCBF) in patients with mild to moderate AD. METHODS Sixteen subjects with mild-to-moderate AD, based on NINCDS-ADRDA criteria, were enrolled in a double-blinded, placebo-controlled, randomized clinical trial. Fourteen subjects received treatment with caprylidene, and 2 subjects were given placebo. Subjects received 4 15O-water PET scans over the course of the study to assess rCBF: once before receiving a standard caprylidene or placebo dose and 90 min after the dose, on the first day and after 45 days of daily caprylidene or placebo consumption. The scans were examined by standardized volumes of interest (sVOI) and voxel-based statistical parametric mapping (spm) methods of analysis. RESULTS Subjects lacking an ɛ4 allele had significantly elevated rCBF in the left superior lateral temporal cortex by sVOI analysis after adopting a caprylidene diet for 45 days (p = 0.04), which was further corroborated by spm. The anterior cerebellum, left inferior temporal cortex, and hypothalamus were also found by spm to be regions of long-term increase in rCBF in these subjects. In contrast, patients who possessed the ɛ4 allele did not display these changes in rCBF. CONCLUSION Daily ingestion of caprylidene over 45 days was associated with increased blood flow in specific brain regions in patients lacking an apolipoprotein ɛ4 allele.
Collapse
Affiliation(s)
- Nare Torosyan
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095, USA; Institute for Memory Impairments and Neurological Disorders, Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, University of California, Irvine, 3206 Biological Sciences III, Irvine, CA 92697, USA
| | - Chakmeedaj Sethanandha
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095, USA; Mahidol University, 999 Phutthamonthon Sai 4 Rd, Chang Wat Nakhon Pathom 73170, Thailand
| | - Joshua D Grill
- Institute for Memory Impairments and Neurological Disorders, Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, University of California, Irvine, 3206 Biological Sciences III, Irvine, CA 92697, USA
| | - Michelle L Dilley
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095, USA
| | - Jooyeon Lee
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095, USA
| | - Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV 89106, USA
| | - Celine Ossinalde
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095, USA
| | - Daniel H Silverman
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
150
|
Cantacorps L, González-Pardo H, Arias JL, Valverde O, Conejo NM. Altered brain functional connectivity and behaviour in a mouse model of maternal alcohol binge-drinking. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29526773 DOI: 10.1016/j.pnpbp.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prenatal and perinatal alcohol exposure caused by maternal alcohol intake during gestation and lactation periods can have long-lasting detrimental effects on the brain development and behaviour of offspring. Children diagnosed with Foetal Alcohol Spectrum Disorders (FASD) display a wide range of cognitive, emotional and motor deficits, together with characteristic morphological abnormalities. Maternal alcohol binge drinking is particularly harmful for foetal and early postnatal brain development, as it involves exposure to high levels of alcohol over short periods of time. However, little is known about the long-term effects of maternal alcohol binge drinking on brain function and behaviour. To address this issue, we used pregnant C57BL/6 female mice with time-limited access to a 20% v/v alcohol solution as a procedure to model alcohol binge drinking during gestation and lactational periods. Male offspring were behaviourally tested during adolescence (30 days) and adulthood (60 days), and baseline neural metabolic capacity of brain regions sensitive to alcohol effects were also evaluated in adult animals from both groups. Our results show that prenatal and postnatal alcohol exposure caused age-dependent changes in spontaneous locomotor activity, increased anxiety-like behaviour and attenuated alcohol-induced conditioned place preference in adults. Also, significant changes in neural metabolic capacity using cytochrome c oxidase (CCO) quantitative histochemistry were found in the hippocampal dentate gyrus, the mammillary bodies, the ventral tegmental area, the lateral habenula and the central lobules of the cerebellum in adult mice with prenatal and postnatal alcohol exposure. In addition, the analysis of interregional CCO activity correlations in alcohol-exposed adult mice showed disrupted functional brain connectivity involving the limbic, brainstem, and cerebellar regions. Finally, increased neurogenesis was found in the dentate gyrus of the hippocampus of alcohol-exposed offspring, suggesting neuroadaptive effects due to early alcohol exposure. Our results demonstrate that maternal binge-like alcohol drinking causes long-lasting effects on motor and emotional-related behaviours associated with impaired neuronal metabolic capacity and altered functional brain connectivity.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|