101
|
Shepherd JD. Memory, plasticity and sleep - A role for calcium permeable AMPA receptors? Front Mol Neurosci 2012; 5:49. [PMID: 22514518 PMCID: PMC3324118 DOI: 10.3389/fnmol.2012.00049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/26/2012] [Indexed: 01/25/2023] Open
Abstract
Experience shapes and molds the brain throughout life.These changes in neuronal circuits are produced by a myriad of molecular and cellular processes. Simplistically, circuits are modified through changes in neurotransmitter release or through neurotransmitter detection at synapses. The predominant neurotransmitter receptor in excitatory transmission, the AMPA-type glutamate receptor (AMPAR), is exquisitely sensitive to changes in experience and synaptic activity. These ion channels are usually impermeable to calcium, a property conferred by the GluA2 subunit. However, GluA2-lacking AMPARs are permeable to calcium and have recently been shown to play a unique role in synaptic function. In this review, I will describe new findings on the role of calcium permeable AMPARs (CP-AMPARs) in experience-dependent and synaptic plasticity.These studies suggest that CP-AMPARs play a prominent role in maintaining circuits in a labile state where further plasticity can occur, thus promoting metaplasticity. Moreover, the abnormal expression of CP-AMPARs has been implicated in drug addiction and memory disorders and thus may be a novel therapeutic target.
Collapse
Affiliation(s)
- Jason D Shepherd
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
102
|
Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012; 2012:264378. [PMID: 22530156 PMCID: PMC3317003 DOI: 10.1155/2012/264378] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/04/2011] [Indexed: 02/04/2023] Open
Abstract
Converging lines of evidence strongly support a role for sleep in brain plasticity. An elegant idea that may explain how sleep accomplishes this role is the "synaptic homeostasis hypothesis (SHY)." According to SHY, sleep promotes net synaptic weakening which offsets net synaptic strengthening that occurs during wakefulness. SHY is intuitively appealing because it relates the homeostatic regulation of sleep to an important function (synaptic plasticity). SHY has also received important experimental support from recent studies in Drosophila melanogaster. There remain, however, a number of unanswered questions about SHY. What is the cellular mechanism governing SHY? How does it fit with what we know about plasticity mechanisms in the brain? In this review, I discuss the evidence and theory of SHY in the context of what is known about Hebbian and non-Hebbian synaptic plasticity. I conclude that while SHY remains an elegant idea, the underlying mechanisms are mysterious and its functional significance unknown.
Collapse
|
103
|
Lee HK. Ca-permeable AMPA receptors in homeostatic synaptic plasticity. Front Mol Neurosci 2012; 5:17. [PMID: 22347846 PMCID: PMC3278195 DOI: 10.3389/fnmol.2012.00017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/02/2012] [Indexed: 01/08/2023] Open
Abstract
Neurons possess diverse mechanisms of homeostatic adaptation to overall changes in neural and synaptic activity, which are critical for proper brain functions. Homeostatic regulation of excitatory synapses has been studied in the context of synaptic scaling, which allows neurons to adjust their excitatory synaptic gain to maintain their activity within a dynamic range. Recent evidence suggests that one of the main mechanisms underlying synaptic scaling is by altering the function of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), including synaptic expression of Ca2+-permeable (CP-) AMPARs. CP-AMPARs endow synapses with unique properties, which may benefit adaptation of neurons to periods of inactivity as would occur when a major input is lost. This review will summarize how synaptic expression of CP-AMPARs is regulated during homeostatic synaptic plasticity in the context of synaptic scaling, and will address the potential functional consequences of altering synaptic CP-AMPAR content.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|
104
|
Hengen KB, Nelson NR, Stang KM, Johnson SM, Crader SM, Watters JJ, Mitchell GS, Behan M. Increased GABA(A) receptor ε-subunit expression on ventral respiratory column neurons protects breathing during pregnancy. PLoS One 2012; 7:e30608. [PMID: 22303446 PMCID: PMC3269439 DOI: 10.1371/journal.pone.0030608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/24/2011] [Indexed: 12/14/2022] Open
Abstract
GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABAARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABAAR expression on brainstem neurons of the ventral respiratory column (VRC). In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC) were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABAAR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABAAR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors) in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABAAR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life) despite increased neurosteroid levels during pregnancy.
Collapse
Affiliation(s)
- Keith B Hengen
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Knipper M, Müller M, Zimmermann U. Molecular Mechanism of Tinnitus. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2012. [DOI: 10.1007/978-1-4614-3728-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
106
|
Mower AF, Kwok S, Yu H, Majewska AK, Okamoto KI, Hayashi Y, Sur M. Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo. Proc Natl Acad Sci U S A 2011; 108:21241-6. [PMID: 22160721 PMCID: PMC3248554 DOI: 10.1073/pnas.1108261109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unbalanced visual input during development induces persistent alterations in the function and structure of visual cortical neurons. The molecular mechanisms that drive activity-dependent changes await direct visualization of underlying signals at individual synapses in vivo. By using a genetically engineered Förster resonance energy transfer (FRET) probe for the detection of CaMKII activity, and two-photon imaging of single synapses within identified functional domains, we have revealed unexpected and differential mechanisms in specific subsets of synapses in vivo. Brief monocular deprivation leads to activation of CaMKII in most synapses of layer 2/3 pyramidal cells within deprived eye domains, despite reduced visual drive, but not in nondeprived eye domains. Synapses that are eliminated in deprived eye domains have low basal CaMKII activity, implying a protective role for activated CaMKII against synapse elimination.
Collapse
Affiliation(s)
- Amanda F. Mower
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Showming Kwok
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- RIKEN–MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Hongbo Yu
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ania K. Majewska
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ken-Ichi Okamoto
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- RIKEN–MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Yasunori Hayashi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- RIKEN–MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
107
|
Wu J, Petralia RS, Kurushima H, Patel H, Jung MY, Volk L, Chowdhury S, Shepherd JD, Dehoff M, Li Y, Kuhl D, Huganir RL, Price DL, Scannevin R, Troncoso JC, Wong PC, Worley PF. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. Cell 2011; 147:615-28. [PMID: 22036569 DOI: 10.1016/j.cell.2011.09.036] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 06/21/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
Assemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aβ load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.
Collapse
Affiliation(s)
- Jing Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Vitureira N, Letellier M, Goda Y. Homeostatic synaptic plasticity: from single synapses to neural circuits. Curr Opin Neurobiol 2011; 22:516-21. [PMID: 21983330 DOI: 10.1016/j.conb.2011.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/21/2011] [Indexed: 10/16/2022]
Abstract
Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron.
Collapse
Affiliation(s)
- Nathalia Vitureira
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
109
|
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 2011; 34:591-8. [PMID: 21963089 DOI: 10.1016/j.tins.2011.08.007] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement in various forms of plasticity, discuss Arc's role in behavior and disease, and highlight critical unresolved questions.
Collapse
Affiliation(s)
- Erica Korb
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | |
Collapse
|
110
|
Lee HK, Kirkwood A. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex. Semin Cell Dev Biol 2011; 22:514-20. [PMID: 21856433 DOI: 10.1016/j.semcdb.2011.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/16/2022]
Abstract
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and Lømo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Biology, University of Maryland, College Park, MD 20742, United States.
| | | |
Collapse
|
111
|
Petrus E, Anguh TT, Pho H, Lee A, Gammon N, Lee HK. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex. J Neurophysiol 2011; 106:2499-505. [PMID: 21813745 DOI: 10.1152/jn.00111.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer 6 (L6) of primary sensory cortices is distinct from other layers in that it provides a major cortical input to primary sensory thalamic nuclei. L6 pyramidal neurons in the primary visual cortex (V1) send projections to the lateral geniculate nucleus (LGN), as well as to the thalamic reticular nucleus and higher order thalamic nuclei. Although L6 neurons are proposed to modulate the activity of thalamic relay neurons, how sensory experience regulates L6 neurons is largely unknown. Several days of visual deprivation homeostatically adjusts excitatory synapses in L4 and L2/3 of V1 depending on the developmental age. For instance, L4 exhibits an early critical period during which visual deprivation homeostatically scales up excitatory synaptic transmission. On the other hand, homeostatic changes in L2/3 excitatory synapses are delayed and persist into adulthood. In the present study we examined how visual deprivation affects excitatory synapses on L6 pyramidal neurons. We found that L6 pyramidal neurons homeostatically increase the strength of excitatory synapses following 2 days of dark exposure (DE), which was readily reversed by 1 day of light exposure. This effect was restricted to an early critical period, similar to that reported for L4 neurons. However, at a later developmental age, a longer duration of DE (1 wk) decreased the strength of excitatory synapses, which reversed to normal levels with light exposure. These changes are opposite to what is predicted from the homeostatic plasticity theory. Our results suggest that L6 neurons differentially adjust their excitatory synaptic strength to visual deprivation depending on the age of the animals.
Collapse
Affiliation(s)
- Emily Petrus
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | |
Collapse
|
112
|
The role of GABAergic inhibition in ocular dominance plasticity. Neural Plast 2011; 2011:391763. [PMID: 21826276 PMCID: PMC3150150 DOI: 10.1155/2011/391763] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 12/12/2022] Open
Abstract
During the last decade, we have gained much insight into the mechanisms that open and close a sensitive period of plasticity in the visual cortex. This brings the hope that novel treatments can be developed for brain injuries requiring renewed plasticity potential and neurodevelopmental brain disorders caused by defective synaptic plasticity. One of the central mechanisms responsible for opening the sensitive period is the maturation of inhibitory innervation. Many molecular and cellular events have been identified that drive this developmental process, including signaling through BDNF and IGF-1, transcriptional control by OTX2, maturation of the extracellular matrix, and GABA-regulated inhibitory synapse formation. The mechanisms through which the development of inhibitory innervation triggers and potentially closes the sensitive period may involve plasticity of inhibitory inputs or permissive regulation of excitatory synapse plasticity. Here, we discuss the current state of knowledge in the field and open questions to be addressed.
Collapse
|
113
|
Leslie JH. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223-37. [PMID: 21601615 PMCID: PMC3134580 DOI: 10.1016/j.pneurobio.2011.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.
Collapse
Affiliation(s)
- Jennifer H. Leslie
- Department of Biology Picower Institute for Learning and Memory Massachusetts Institute of Technology Phone: 617-258-5241 Fax: 617-452-2249
| |
Collapse
|
114
|
Ivanova T, Matthews A, Gross C, Mappus RC, Gollnick C, Swanson A, Bassell GJ, Liu RC. Arc/Arg3.1 mRNA expression reveals a subcellular trace of prior sound exposure in adult primary auditory cortex. Neuroscience 2011; 181:117-26. [PMID: 21334422 PMCID: PMC3074009 DOI: 10.1016/j.neuroscience.2011.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/24/2011] [Accepted: 02/14/2011] [Indexed: 01/13/2023]
Abstract
Acquiring the behavioral significance of sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 min (24 h separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in situ hybridization (FISH) to assess the layer-specific subcellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3-6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1-2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical subcellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool.
Collapse
Affiliation(s)
- Tamara Ivanova
- Department of Biology, Emory University, Atlanta, GA 30322
| | | | - Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Clare Gollnick
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Andrew Swanson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30332
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA 30322
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30332
| |
Collapse
|
115
|
Henley JM, Barker EA, Glebov OO. Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci 2011; 34:258-68. [PMID: 21420743 PMCID: PMC3314507 DOI: 10.1016/j.tins.2011.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 01/10/2023]
Abstract
Postsynaptic AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission and are crucial for many aspects of brain function, including learning, memory and cognition. The number, synaptic localization and subunit composition of synaptic AMPARs are tightly regulated by network activity and by the history of activity at individual synapses. Furthermore, aberrant AMPAR trafficking is implicated in neurodegenerative diseases. AMPARs therefore represent a prime target for drug development and the mechanisms that control their synaptic delivery, retention and removal are the subject of extensive research. Here, we review recent findings that have provided new insights into AMPAR trafficking and that might lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, UK, BS8 1TD.
| | | | | |
Collapse
|
116
|
Goel A, Xu LW, Snyder KP, Song L, Goenaga-Vazquez Y, Megill A, Takamiya K, Huganir RL, Lee HK. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity. PLoS One 2011; 6:e18264. [PMID: 21483826 PMCID: PMC3069067 DOI: 10.1371/journal.pone.0018264] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/28/2011] [Indexed: 11/18/2022] Open
Abstract
Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Anubhuti Goel
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, Maryland, United States of America
| | - Linda W. Xu
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin P. Snyder
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Lihua Song
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Yamila Goenaga-Vazquez
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, Maryland, United States of America
| | - Andrea Megill
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Cell Biology and Molecular Genetics (CBMG) Program, University of Maryland, College Park, Maryland, United States of America
| | - Kogo Takamiya
- Department of Integrative Physiology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Hey-Kyoung Lee
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
117
|
Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers. Neurosci Res 2011; 69:175-86. [DOI: 10.1016/j.neures.2010.12.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 01/22/2023]
|
118
|
Shepherd JD, Bear MF. New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci 2011; 14:279-84. [PMID: 21278731 DOI: 10.1038/nn.2708] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many proteins have been implicated in synaptic and experience-dependent plasticity. However, few demonstrate the exquisite regulation of expression and breadth of functional importance as the immediate early gene product Arc. Here we review and attempt to synthesize the disparate views of Arc in neuronal function. The main conclusion garnered from this body of work is that Arc is a critical effector molecule downstream of many molecular signaling pathways and that dysregulation of Arc expression can have dire consequences for normal brain function.
Collapse
Affiliation(s)
- Jason D Shepherd
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|