101
|
Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice. PLoS One 2012; 7:e30155. [PMID: 22272291 PMCID: PMC3260228 DOI: 10.1371/journal.pone.0030155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model. METHODOLOGY/PRINCIPAL FINDINGS To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rate-invariant neurons could be efficiently used to convey information about the odorant identity. We showed that different coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that the optimal readout time window corresponds to the duration of gamma oscillations cycles. CONCLUSION We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spiking packets sequence using the gamma oscillations as a clock. This would allow the system to reach a tradeoff between rapid and accurate odorant discrimination.
Collapse
|
102
|
A modified adjusting delay task to assess impulsive choice between isocaloric reinforcers in non-deprived male rats: effects of 5-HT₂A/C and 5-HT₁A receptor agonists. Psychopharmacology (Berl) 2012; 219:377-86. [PMID: 21989803 PMCID: PMC3936353 DOI: 10.1007/s00213-011-2517-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Existing animal models of impulsivity frequently use food restriction to increase subjects' motivation. In addition, behavioral tasks that assess impulsive choice typically involve the use of reinforcers with dissimilar caloric content. These factors represent energy-homeostasis limitations, which may confound the interpretation of results and limit the applicability of these models. OBJECTIVES This study was aimed at validating face and convergent validities of a modified adjusting delay task, which assesses impulsive choice between isocaloric reinforcers in ad libitum fed rats. METHODS Male Wistar rats (n = 18) were used to assess the preferredness and reinforcing efficacy of a "supersaccharin" solution (1.5% glucose/0.4% saccharin) over a 1.5% glucose solution. A separate group of rats (n = 24) was trained in a modified adjusting delay task, which involved repeated choice between the glucose solution delivered immediately and the supersaccharin solution delivered after a variable delay. To pharmacologically validate the task, the effects of the 5-HT(2A/C) receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)-DOI] and the 5-HT(1A) receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide [(±)-8-OH-DPAT] on impulsive choice were then evaluated. RESULTS Supersaccharin was highly reinforcing and uniformly preferred over the glucose solution by all subjects. Rats quickly learned the task, and impulsivity was a very stable and consistent trait. DOI and 8-OH-DPAT significantly and dose dependently increased impulsive choice in this modified adjusting delay task. CONCLUSIONS We validated a rodent task of impulsive choice, which eliminates typical energy-homeostasis limitations and, therefore, opens new avenues in the study of impulsivity in preclinical feeding and obesity research.
Collapse
|
103
|
Pennartz CM, van Wingerden M, Vinck M. Population coding and neural rhythmicity in the orbitofrontal cortex. Ann N Y Acad Sci 2011; 1239:149-61. [DOI: 10.1111/j.1749-6632.2011.06296.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
104
|
Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat Neurosci 2011; 15:155-61. [PMID: 22101640 PMCID: PMC3245808 DOI: 10.1038/nn.2966] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/23/2011] [Indexed: 11/08/2022]
Abstract
Learning to adapt to a complex and fluctuating environment requires the ability to adjust neural representations of sensory stimuli. Through pattern completion processes, cortical networks can reconstruct familiar patterns from degraded input patterns, while pattern separation processes allow discrimination of even highly overlapping inputs. Here we show that the balance between pattern separation and completion is experience-dependent. Rats given extensive training with overlapping complex odorant mixtures show improved behavioral discrimination ability and enhanced cortical ensemble pattern separation. In contrast, behavioral training to disregard normally detectable differences between overlapping mixtures results in impaired cortical ensemble pattern separation (enhanced pattern completion) and impaired discrimination. This bidirectional effect was not found in the olfactory bulb, and may be due to plasticity within olfactory cortex itself. Thus pattern recognition, and the balance between pattern separation and completion, is highly malleable based on task demands and occurs in concert with changes in perceptual performance.
Collapse
|
105
|
Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini PP. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J Neurosci 2011; 31:15397-406. [PMID: 22031886 PMCID: PMC3224083 DOI: 10.1523/jneurosci.2196-11.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/10/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022] Open
Abstract
Neurological insults during development are associated with later impairments in learning and memory. Although remedial training can help restore cognitive function, the neural mechanisms of this recovery in memory systems are largely unknown. To examine this issue, we measured electrophysiological oscillatory activity in the hippocampus (both CA3 and CA1) and prefrontal cortex of adult rats that had experienced repeated seizures in the first weeks of life, while they were remedially trained on a delayed-nonmatch-to-sample memory task. Seizure-exposed rats showed initial difficulties learning the task but performed similarly to control rats after extra training. Whole-session analyses illustrated enhanced theta power in all three structures while seizure rats learned response tasks before the memory task. While performing the memory task, dynamic oscillation patterns revealed that prefrontal cortex theta power was increased among seizure-exposed rats. This enhancement appeared after the first memory-training steps using short delays and plateaued at the most difficult steps, which included both short and long delays. Further, seizure rats showed enhanced CA1-prefrontal cortex theta coherence in correct trials compared with incorrect trials when long delays were imposed, suggesting increased hippocampal-prefrontal cortex synchrony for the task in this group when memory demand was high. Seizure-exposed rats also showed heightened gamma power and coherence among all three structures during the trials. Our results demonstrate the first evidence of hippocampal-prefrontal enhancements following seizures in early development. Dynamic compensatory changes in this network and interconnected circuits may underpin cognitive rehabilitation following other neurological insults to higher cognitive systems.
Collapse
Affiliation(s)
- Jonathan K. Kleen
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| | - Edie X. Wu
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| | - Gregory L. Holmes
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| | - Rod C. Scott
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
- UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Pierre-Pascal Lenck-Santini
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| |
Collapse
|
106
|
Rosero MA, Aylwin ML. Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats. Eur J Neurosci 2011; 34:787-99. [DOI: 10.1111/j.1460-9568.2011.07800.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Rouse AG, Stanslaski SR, Cong P, Jensen RM, Afshar P, Ullestad D, Gupta R, Molnar GF, Moran DW, Denison TJ. A chronic generalized bi-directional brain-machine interface. J Neural Eng 2011; 8:036018. [PMID: 21543839 DOI: 10.1088/1741-2560/8/3/036018] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.
Collapse
Affiliation(s)
- A G Rouse
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Linster C, Nai Q, Ennis M. Nonlinear effects of noradrenergic modulation of olfactory bulb function in adult rodents. J Neurophysiol 2011; 105:1432-43. [PMID: 21273323 PMCID: PMC3075300 DOI: 10.1152/jn.00960.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/25/2011] [Indexed: 01/28/2023] Open
Abstract
The mammalian main olfactory bulb receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in acquisition of conditioned odor preferences in neonatal animals, in some species-specific odor-dependent behaviors, and in adult odor perception. We provide a detailed review of the functional role of NE in adult rodent main olfactory bulb function. We include cellular, synaptic, network, and behavioral data and use computational simulations to tie these different types of data together.
Collapse
Affiliation(s)
- Christiane Linster
- Department of Neurobiology and Behavior, W245 Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
109
|
Chen Q, Xiao L, Liu Q, Ling S, Yin Y, Dong Q, Wang P. An olfactory bulb slice-based biosensor for multi-site extracellular recording of neural networks. Biosens Bioelectron 2011; 26:3313-9. [PMID: 21295963 DOI: 10.1016/j.bios.2011.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/11/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Multi-site recording is the important component for studies of the neural networks. In order to investigate the electrophysiological properties of the olfactory bulb neural networks, we developed a novel slice-based biosensor for synchronous measurement with multi-sites. In the present study, the horizontal olfactory bulb slices with legible layered structures were prepared as the sensing element to construct a tissue-based biosensor with the microelectrode array. This olfactory bulb slice-based biosensor was used to simultaneously record the extracellular potentials from multi-positions. Spike detection and cross-correlation analysis were applied to evaluate the electrophysiological activities. The spontaneous potentials as well as the induced responses by glutamic acid took on different electrophysiological characteristics and firing patterns at the different sites of the olfactory bulb slice. This slice-based biosensor can realize multi-site synchronous monitoring and is advantageous for searching after the firing patterns and synaptic connections in the olfactory bulb neural networks. It is also helpful for further probing into olfactory information encoding of the olfactory neural networks.
Collapse
Affiliation(s)
- Qingmei Chen
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
110
|
Fletcher ML, Chen WR. Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. Learn Mem 2010; 17:561-70. [PMID: 20980444 DOI: 10.1101/lm.941510] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of plasticity. As in other sensory systems, this plasticity can be controlled by centrifugal inputs from brain regions known to be involved in attention and learning processes. Specifically, both the bulb and cortex receive heavy inputs from cholinergic, noradrenergic, and serotonergic modulatory systems. These neuromodulators are shown to have profound effects on both odor processing and odor memory by acting on both inhibitory local interneurons and output neurons in both regions.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
111
|
Brain activity at 70-80 Hz changes during olfactory stimulation protocols in Drosophila. PLoS One 2010; 5:e12867. [PMID: 20877566 PMCID: PMC2943920 DOI: 10.1371/journal.pone.0012867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 08/28/2010] [Indexed: 01/09/2023] Open
Abstract
Oscillatory and synchronized activities in the mammalian brain have been correlated with the execution of complex cognitive tasks. Similar oscillations have been observed in local field potentials (LFPs) in flies, in this case correlated with different attentional states. To further test the significance of these oscillations we recorded LFPs from the brain of Drosophila melanogaster as it responded to the presentation of olfactory stimuli. We find that responses in the 70-80 Hz range increase during olfactory stimulation. Recurrent stimulation specifically decreased the power of LFPs in this frequency range. Delivery of electric shocks before olfactory stimulation modulated LFPs in the 70-80 Hz range by evoking a transient increase. These results suggest that these signals are a simple neuronal correlate of higher-order olfactory processing in flies.
Collapse
|
112
|
Wilson DA, Yan X. Sleep-like states modulate functional connectivity in the rat olfactory system. J Neurophysiol 2010; 104:3231-9. [PMID: 20861440 DOI: 10.1152/jn.00711.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was an examination of state-dependent functional connectivity during spontaneous activity between the piriform cortex and its upstream and downstream connections. Rats were anesthetized with urethan and allowed to spontaneously cycle between fast- and slow-wave states similar to fast- and slow-wave sleep states. Local field potential recordings were made from the olfactory bulb, piriform cortex, dorsal hippocampus, amygdala, and primary visual cortex. The results demonstrate that during slow-wave sleep-like states, when the piriform cortex shows reduced sensitivity to odor input via the olfactory bulb, there is enhanced coherence with other forebrain structures. Granger causality analyses suggest that the link between piriform cortical and hippocampal activity during slow-wave state is in the direction of the hippocampus to the piriform cortex rather than the reverse. The results suggest that slow-wave sleep-like states may provide an opportunity for the transfer and/or consolidation of information related to odor memories, specifically at a time when the piriform cortex is less sensitive to sensory input.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | | |
Collapse
|
113
|
Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex. J Neurosci 2010; 30:10025-38. [PMID: 20668187 DOI: 10.1523/jneurosci.0222-10.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gamma oscillations (30-100 Hz) correlate to a variety of neural functions, including sensory processing, attention, and action selection. However, they have barely been studied in relation to emotional processing and valuation of sensory signals and actions. We conducted multineuron and local field potential recordings in the orbitofrontal cortex (OFC) of rats performing a task in which they made go or no-go decisions based on two olfactory stimuli predicting appetitive or aversive outcomes. Gamma power was strongest during the late phase of odor sampling, just before go/no-go movement, and increased with behavioral learning. Learning speed was correlated to the slope of the gamma power increment. Spikes of OFC neurons were consistently timed to the gamma rhythm during odor sampling, regardless of the associated outcome. However, only a specific subgroup of cells showed consistent phase timing. These cells showed action-outcome selective activity, not during stimulus sampling but during subsequent movement responses. During sampling, this subgroup displayed a suppression in firing rate but a concurrent increment in the consistency of spike timing relative to gamma oscillations. In addition to gamma rhythm, OFC field potentials were characterized by theta oscillations during odor sampling. Neurons phase-locked to either theta or gamma rhythms but not to both, suggesting that they become associated with separate rhythmic networks involving OFC. Altogether, these results suggest that OFC gamma-band synchronization reflects inhibitory control over a subpopulation of neurons that express information about the emotional valence of actions after a motor decision, which suggests a novel mechanism for response inhibition.
Collapse
|
114
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1201] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
115
|
Abstract
Previous studies in waking animals have shown that the frequency structure of olfactory bulb (OB) local field potential oscillations is very similar across the OB, but large low-impedance surface electrodes may have favored highly coherent events, averaging out local inhomogeneities. We tested the hypothesis that OB oscillations represent spatially homogeneous phenomena at all scales. We used pairs of concentric electrodes (200 μm outer shaft surrounding an inner 2-3 μm recording site) beginning on the dorsal OB at anterior and medial locations in urethane-anesthetized rats and measured local field potential responses at successive 200 μm depths before and during odor stimulation. Within locations (outer vs. inner lead on a single probe), on the time scale of 0.5 s, coherence in all frequency bands was significant, but on larger time scales (10 s), only respiratory (1-4 Hz) and beta (15-30 Hz) oscillations showed prominent peaks. Across locations, coherence in all frequency bands was significantly lower for both sizes of electrodes at all depths but the most superficial 600 μm. Near the pial surface, coherence across outer (larger) electrodes at different sites was equal to coherence across outer and inner (small) electrodes within a single site and larger than coherence across inner electrodes at different sites. Overall, the beta band showed the largest coherence across bulbar sites and electrodes. Therefore larger electrodes at the surface of the OB favor globally coherent events, and at all depths, coherence depends on the type of oscillation (beta or gamma) and duration of the analysis window.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
116
|
Kay LM, Beshel J. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol 2010; 104:829-39. [PMID: 20538778 DOI: 10.1152/jn.00166.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (approximately 70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15-35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
117
|
Pandipati S, Gire DH, Schoppa NE. Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb. J Neurophysiol 2010; 104:665-74. [PMID: 20538781 DOI: 10.1152/jn.00328.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Norepinephrine (NE) is widely implicated in various forms of associative olfactory learning in rodents, including early learning preference in neonates. Here we used patch-clamp recordings in rat olfactory bulb slices to assess cellular actions of NE, examining both acute, short-term effects of NE as well as the relationship between these acute effects and long-term cellular changes that could underlie learning. Our focus for long-term effects was on synchronized gamma frequency (30-70 Hz) oscillations, shown in prior studies to be enhanced for up to an hour after brief exposure of a bulb slice to NE and neuronal stimulation. In terms of acute effects, we found that a dominant action of NE was to reduce inhibitory GABAergic transmission from granule cells (GCs) to output mitral cells (MCs). This disinhibition was also induced by clonidine, an agonist specific for alpha(2) adrenergic receptors (ARs). Acute NE-induced disinhibition of MCs appeared to be linked to long-term enhancement of gamma oscillations, based, first, on the fact that clonidine, but not agonists specific for other AR subtypes, mimicked NE's long-term actions. In addition, the alpha(2) AR-specific antagonist yohimbine blocked the long-term enhancement of the oscillations due to NE. Last, brief exposure of the slice to the GABA(A) receptor antagonist gabazine, to block inhibitory synapses directly, also induced the long-term changes. Acute disinhibition is a plausible permissive effect of NE leading to olfactory learning, because, when combined with exposure to a specific odor, it should lead to neuron-specific increases in intracellular calcium of the type generally associated with long-term synaptic modifications.
Collapse
Affiliation(s)
- Sruthi Pandipati
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
118
|
Gourévitch B, Kay LM, Martin C. Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task. J Neurophysiol 2010; 103:2633-41. [PMID: 20164392 DOI: 10.1152/jn.01075.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.
Collapse
Affiliation(s)
- Boris Gourévitch
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8195, Centre de Neurosciences Paris-Sud, Orsay, France
| | | | | |
Collapse
|
119
|
Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb. J Neurosci 2010; 30:870-5. [PMID: 20089895 DOI: 10.1523/jneurosci.4958-09.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptides are systematically encountered in local interneurons, but their functional contribution in neural networks is poorly documented. In the mouse main olfactory bulb (MOB), somatostatin is mainly concentrated in local GABAergic interneurons restricted to the external plexiform layer (EPL). Immunohistochemical experiments revealed that the sst2 receptor, the major somatostatin receptor subtype in the telencephalon, is expressed by mitral cells, the MOB principal cells. As odor-activated mitral cells synchronize and generate gamma oscillations of the local field potentials, we investigated whether pharmacological manipulations of sst2 receptors could influence these oscillations in freely behaving mice. In wild-type, but not in sst2 knock-out mice, gamma oscillation power decreased lastingly after intrabulbar injection of an sst2-selective antagonist (BIM-23627), while sst2-selective agonists (octreotide and L-779976) durably increased it. Sst2-mediated oscillation changes were correlated with modifications of the dendrodendritic synaptic transmission between mitral and granule cells. Finally, bilateral injections of BIM-23627 and octreotide respectively decreased and increased odor discrimination performances. Together, these results suggest that endogenous somatostatin, presumably released from EPL interneurons, affects gamma oscillations through the dendrodendritic reciprocal synapse and contributes to olfactory processing. This provides the first direct correlation between synaptic, oscillatory, and perceptual effects induced by an intrinsic neuromodulator.
Collapse
|
120
|
Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model. J Neurosci 2010; 30:505-14. [PMID: 20071513 DOI: 10.1523/jneurosci.4622-09.2010] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease often results in impaired olfactory perceptual acuity-a potential biomarker of the disorder. However, the usefulness of olfactory screens to serve as informative indicators of Alzheimer's is precluded by a lack of knowledge regarding why the disease impacts olfaction. We addressed this question by assaying olfactory perception and amyloid-beta (Abeta) deposition throughout the olfactory system in mice that overexpress a mutated form of the human amyloid-beta precursor protein. Such mice displayed progressive olfactory deficits that mimic those observed clinically-some evident at 3 months of age. Also, at 3 months of age, we observed nonfibrillar Abeta deposition within the olfactory bulb-earlier than deposition within any other brain region. There was also a correlation between olfactory deficits and the spatial-temporal pattern of Abeta deposition. Therefore, nonfibrillar, versus fibrillar, Abeta-related mechanisms likely contribute to early olfactory perceptual loss in Alzheimer's disease. Furthermore, these results present the odor cross-habituation test as a powerful behavioral assay, which reflects Abeta deposition and thus may serve to monitor the efficacy of therapies aimed at reducing Abeta.
Collapse
|
121
|
Abstract
Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.
Collapse
|
122
|
Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations. Proc Natl Acad Sci U S A 2009; 106:21954-9. [PMID: 19996171 DOI: 10.1073/pnas.0910964106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gamma oscillations in the olfactory bulb can be produced as an interaction of subthreshold oscillations (STOs) in the mitral cells (MCs) with inhibitory granule cells (GCs). The mechanism does not require that the GCs spike, and we work in a regime in which the MCs fire at rates lower than the fast gamma rhythm they create. The frequency of the network is that of the STOs, allowing the gamma to be modulated in amplitude with only small changes in frequency. Gamma oscillations could also be obtained with spiking GCs, but only for GCs firing close to population rate. Our mechanism differs from the more standard description of the gamma oscillation, in which the the decay time of the inhibitory cells is critical to the frequency of the network.
Collapse
|
123
|
David FO, Hugues E, Cenier T, Fourcaud-Trocmé N, Buonviso N. Specific entrainment of mitral cells during gamma oscillation in the rat olfactory bulb. PLoS Comput Biol 2009; 5:e1000551. [PMID: 19876377 PMCID: PMC2760751 DOI: 10.1371/journal.pcbi.1000551] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 09/30/2009] [Indexed: 11/20/2022] Open
Abstract
Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism. Olfactory function relies on a chain of neural relays that extends from the periphery to the central nervous system and implies neural activity with various timescales. A central question in neuroscience is how information is encoded by the neural activity. In the mammalian olfactory bulb, local neural activity oscillations in the 40–80 Hz range (gamma) may influence the timing of individual neuron activities such that olfactory information may be encoded in this way. In this study, we first characterize in vivo the detailed activity of individual neurons relative to the oscillation and find that, depending on their state, neurons can exhibit periodic activity patterns. We also find, at least qualitatively, a relation between this activity and a particular odor. This is reminiscent of general physical phenomena—the entrainment by an oscillation—and to verify this hypothesis, in a second phase, we build a biologically realistic model mimicking these in vivo conditions. Our model confirms quantitatively this hypothesis and reveals that entrainment is maximal in the gamma range. Taken together, our results suggest that the neuronal activity may be specifically formatted in time during the gamma oscillation in such a way that it could, at this stage, encode the odor.
Collapse
Affiliation(s)
- François O David
- Neurosciences Sensorielles, Comportement, Cognition, CNRS-Université Claude Bernard, Lyon, France.
| | | | | | | | | |
Collapse
|
124
|
Abstract
Odors evoke complex spatiotemporal responses in the insect antennal lobe (AL) and mammalian olfactory bulb. However, the behavioral relevance of spatiotemporal coding remains unclear. In the present work we combined behavioral analyses with calcium imaging of odor induced activity in the honeybee AL to evaluate the relevance of this temporal dimension in the olfactory code. We used a new way for evaluation of odor similarity of binary mixtures in behavioral studies, which involved testing whether a match of odor-sampling time is necessary between training and testing conditions for odor recognition during associative learning. Using graded changes in the similarity of the mixture ratios, we found high correlations between the behavioral generalization across those mixtures and a gradient of activation in AL output. Furthermore, short odor stimuli of 500 ms or less affected how well odors were matched with a memory template, and this time corresponded to a shift from a sampling-time-dependent to a sampling-time-independent memory. Accordingly, 375 ms corresponded to the time required for spatiotemporal AL activity patterns to reach maximal separation according to imaging studies. Finally, we compared spatiotemporal representations of binary mixtures in trained and untrained animals. AL activity was modified by conditioning to improve separation of odor representations. These data suggest that one role of reinforcement is to "tune" the AL such that relevant odors become more discriminable.
Collapse
|
125
|
Aylwin M, Aguilar G, Flores F, Maldonado P. Odorant modulation of neuronal activity and local field potential in sensory-deprived olfactory bulb. Neuroscience 2009; 162:1265-78. [DOI: 10.1016/j.neuroscience.2009.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
|
126
|
Chapuis J, Garcia S, Messaoudi B, Thevenet M, Ferreira G, Gervais R, Ravel N. The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats. J Neurosci 2009; 29:10287-98. [PMID: 19692603 PMCID: PMC6665786 DOI: 10.1523/jneurosci.0505-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 06/15/2009] [Accepted: 06/20/2009] [Indexed: 11/21/2022] Open
Abstract
Recent findings have revealed the importance of orthonasal and retronasal olfaction in food memory, especially in conditioned odor aversion (COA); however, little is known about the dynamics of the cerebral circuit involved in the recognition of an odor as a toxic food signal and whether the activated network depends on the way (orthonasal vs retronasal) the odor was first experienced. In this study, we mapped the modulations of odor-induced oscillatory activities through COA learning using multisite recordings of local field potentials in behaving rats. During conditioning, orthonasal odor alone or associated with ingested odor was paired with immediate illness. For all animals, COA retrieval was assessed by orthonasal smelling only. Both types of conditioning induced similarly strong COA. Results pointed out (1) a predictive correlation between the emergence of powerful beta (15-40 Hz) activity and the behavioral expression of COA and (2) a differential network distribution of this beta activity according to the way the animals were exposed to the odor during conditioning. Indeed, for both types of conditioning, the aversive behavior was predicted by the emergence of a strong beta oscillatory activity in response to the odor in the olfactory bulb, piriform cortex, orbitofrontal cortex, and basolateral amygdala. This network was selectively extended to the infralimbic and insular cortices when the odor was ingested during acquisition. These differential networks could participate in different food odor memory; these results are discussed in line with recent behavioral results that indicate that COA can be formed over long odor-illness delays only if the odor is ingested.
Collapse
Affiliation(s)
- Julie Chapuis
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5020 Neurosciences Sensorielles Comportement Cognition, Université Lyon 1, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
127
|
Leon M, Johnson BA. Is there a space-time continuum in olfaction? Cell Mol Life Sci 2009; 66:2135-50. [PMID: 19294334 PMCID: PMC2705728 DOI: 10.1007/s00018-009-0011-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/18/2009] [Accepted: 02/23/2009] [Indexed: 11/22/2022]
Abstract
The coding of olfactory stimuli across a wide range of organisms may rely on fundamentally similar mechanisms in which a complement of specific odorant receptors on olfactory sensory neurons respond differentially to airborne chemicals to initiate the process by which specific odors are perceived. The question that we address in this review is the role of specific neurons in mediating this sensory system--an identity code--relative to the role that temporally specific responses across many neurons play in producing an olfactory perception--a temporal code. While information coded in specific neurons may be converted into a temporal code, it is also possible that temporal codes exist in the absence of response specificity for any particular neuron or subset of neurons. We review the data supporting these ideas, and we discuss the research perspectives that could help to reveal the mechanisms by which odorants become perceptions.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
128
|
Shamir M, Ghitza O, Epstein S, Kopell N. Representation of time-varying stimuli by a network exhibiting oscillations on a faster time scale. PLoS Comput Biol 2009; 5:e1000370. [PMID: 19412531 PMCID: PMC2671161 DOI: 10.1371/journal.pcbi.1000370] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 03/20/2009] [Indexed: 11/21/2022] Open
Abstract
Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.
Collapse
Affiliation(s)
- Maoz Shamir
- Center for BioDynamics, Boston University, Boston, MA, USA.
| | | | | | | |
Collapse
|
129
|
Mandairon N, Sultan S, Rey N, Kermen F, Moreno M, Busto G, Farget V, Messaoudi B, Thevenet M, Didier A. A computer-assisted odorized hole-board for testing olfactory perception in mice. J Neurosci Methods 2009; 180:296-303. [PMID: 19383513 DOI: 10.1016/j.jneumeth.2009.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/07/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
The present paper describes a behavioral setup, designed and built in our laboratory, allowing the systematic and automatic recording of performances in a large number of olfactory behavioral tests. This computerized monitoring system has the capability of measuring different aspects of olfactory function in mice using different paradigms including threshold evaluation, generalization tasks, habituation/dishabituation, olfactory associative learning, short-term olfactory memory with or without a spatial component, and olfactory preferences. In this paper, we first describe the hole-board apparatus and its software and then give the experimental results obtained using this system. We demonstrate that one single, easy-to-run experimental setup is a powerful tool for the study of olfactory behavior in mice that has many advantages and broad applications.
Collapse
Affiliation(s)
- Nathalie Mandairon
- Laboratoire deNeurosciences Sensorielles, Comportement, Cognition, Université de Lyon, 50 Avenue Tony Garnier, Lyon F-69007, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Hermer-Vazquez R, Hermer-Vazquez L, Srinivasan S. A putatively novel form of spontaneous coordination in neural activity. Brain Res Bull 2009; 79:6-14. [PMID: 19167468 DOI: 10.1016/j.brainresbull.2008.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
We simultaneously recorded local field potentials from three sites along the olfactory-entorhinal axis in rats lightly anesthetized with isoflurane, as part of another experiment. While analyzing the initial data from that experiment with spectrograms, we discovered a potentially novel form of correlated neural activity, with near-simultaneous occurrence across the three widely separated brain sites. After validating their existence further, we named these events Synchronous Frequency Bursts (SFBs). Here we report our initial investigations into their properties and their potential functional significance. In Experiment 1, we found that SFBs have highly regular properties, consisting of brief (approximately 250 ms), high amplitude bursts of LFP energy spanning frequency ranges from the delta band (1-4 Hz) to at least the low gamma band (30-50 Hz). SFBs occurred almost simultaneously across recording sites, usually with onsets <25 ms apart, and there was no clear pattern of temporal leading or lagging among the sites. While the SFBs had fairly typical, exponentially decaying power spectral density plots, their coherence structure was unusual, with high peaks in several narrow frequency ranges and little coherence in other bands. In Experiment 2, we found that SFBs occurred far more often under light anesthesia than deeper anesthetic states, and were especially prevalent as the animals regained consciousness. Finally, in Experiment 3 we showed that SFBs occur simultaneously at a significant rate across brain sites from putatively different functional subsystems--olfactory versus motor pathways. We suggest that SFBs do not carry information per se, but rather, play a role in coordinating activity in different frequency bands, potentially brain-wide, as animals progress from sleep or anesthesia toward full consciousness.
Collapse
Affiliation(s)
- Raymond Hermer-Vazquez
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
131
|
Mandairon N, Linster C. Odor perception and olfactory bulb plasticity in adult mammals. J Neurophysiol 2009; 101:2204-9. [PMID: 19261715 DOI: 10.1152/jn.00076.2009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adult mammalian olfactory bulb (OB) is unique in that olfactory sensory neurons project directly, without prior thalamic relay, to the OB. This review discusses evidence for the direct involvement of the OB in odor perception and its modulation by olfactory experience. We first discuss recent data showing that the OB exhibits a high level of plasticity in response to olfactory experience including exposure, enrichment, and learning. We next review evidence showing that, in return, experimental manipulation of the OB neural network changes how odorants are processed and perceived. We finally review in more detail a few experiments showing a tight correlation between the modulation of OB neural processing and odor perception. We argue that the OB has evolved to be an adapting network, allowing animals to adjust olfactory computations to changing environments.
Collapse
Affiliation(s)
- Nathalie Mandairon
- Laboratoire de Neurosciences Sensorielles, Comportement, Cognition, Université de Lyon, Lyon, France
| | | |
Collapse
|
132
|
Kay LM, Beshel J, Brea J, Martin C, Rojas-Líbano D, Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci 2009; 32:207-14. [PMID: 19243843 DOI: 10.1016/j.tins.2008.11.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/01/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Olfactory system oscillations play out with beautiful temporal and behavioral regularity on the oscilloscope and seem to scream 'meaning'. Always there is the fear that, although attractive, these symbols of dynamic regularity might be just seductive epiphenomena. There are now many studies that have isolated some of the neural mechanisms involved in these oscillations, and recent work argues that they are functional and even necessary at the physiological and cognitive levels. However, much remains to be done for a full understanding of their functions.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
The chemical senses, smell and taste, are the most poorly understood sensory modalities. In recent years, however, the field of chemosensation has benefited from new methods and technical innovations that have accelerated the rate of scientific progress. For example, enormous advances have been made in identifying olfactory and gustatory receptor genes and mapping their expression patterns. Genetic tools now permit us to monitor and control neural activity in vivo with unprecedented precision. New imaging techniques allow us to watch neural activity patterns unfold in real time. Finally, improved hardware and software enable multineuron electrophysiological recordings on an expanded scale. These innovations have enabled some fresh approaches to classic problems in chemosensation.
Collapse
|
134
|
Abstract
Emerging experimental evidence suggests that both networks and their component neurons respond to similar inputs differently, depending on the state of network activity. The network state is determined by the intrinsic dynamical structure of the network and may change as a function of neuromodulation, the balance or stochasticity of synaptic inputs to the network, and the history of network activity. Much of the knowledge on state-dependent effects comes from comparisons of awake and sleep states of the mammalian brain. Yet, the mechanisms underlying these states are difficult to unravel. Several vertebrate and invertebrate studies have elucidated cellular and synaptic mechanisms of state dependence resulting from neuromodulation, sensory input, and experience. Recent studies have combined modeling and experiments to examine the computational principles that emerge when network state is taken into account; these studies are highlighted in this article. We discuss these principles in a variety of systems (mammalian, crustacean, and mollusk) to demonstrate the unifying theme of state dependence of network output.
Collapse
|
135
|
Le Pichon CE, Valley MT, Polymenidou M, Chesler AT, Sagdullaev BT, Aguzzi A, Firestein S. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci 2008; 12:60-9. [PMID: 19098904 PMCID: PMC2704296 DOI: 10.1038/nn.2238] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/06/2008] [Indexed: 11/25/2022]
Abstract
The prion protein PrPC is infamous for its role in disease, yet its normal physiological function remains unknown. Here we report a novel behavioral phenotype of PrP−/− mice in an odor-guided task. This phenotype is manifest in three PrP knockout lines on different genetic backgrounds, strong evidence it is specific to the lack of PrPC rather than other genetic factors. PrP−/− mice also display altered behavior in a second olfactory task, suggesting the phenotype is olfactory specific. Furthermore, PrPC deficiency affects oscillatory activity in the deep layers of the main olfactory bulb, as well as dendrodendritic synaptic transmission between olfactory bulb granule and mitral cells. Importantly, both the behavioral and electrophysiological alterations found in PrP−/− mice are rescued by transgenic neuronal-specific expression of PrPC. These data suggest a critical role for PrPC in the normal processing of sensory information by the olfactory system.
Collapse
Affiliation(s)
- Claire E Le Pichon
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Járdánházy A, Járdánházy T. Non-linear quantitative electroencephalographic (qEEG) changes during processing of chemo-sensory stimulations: a preliminary study. Behav Brain Res 2008; 194:162-8. [PMID: 18672006 DOI: 10.1016/j.bbr.2008.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
The present study was to investigate the processing of pleasant smell and taste stimuli by non-linear EEG measures. Point correlation dimension (PD2i) has been used for studying the local, and synchronization likelihood (SL) the global dynamical organization. Nine healthy subjects participated in this study. After a baseline period of 30s the patients were given a perfume cap or a chocolate taste for 30s. The analysis was performed off-line on 16 channels. After smell stimulation an immediate bilateral but short response was seen. First a decrease and afterwards an increase were found in the mean PD2i. In contrast, the taste stimulation resulted in a later reaction mainly on the right side. The SL in the slow alpha band decreased during the first 15s after both stimulations. In the second 15s, however, a remarkable SL increase was seen mainly in the 7-14Hz and in every frequency band. The decreased mean PD2i and SL values could be interpreted by the simplified network preparation to cognitive data processing. The PD2i and SL methods detected subtle dynamical changes during olfactory and gustatory processes suitable for collection normative database to pathological conditions.
Collapse
Affiliation(s)
- Anett Járdánházy
- Department of Neurology, University of Szeged, Semmelweis u. 6. V/514, H-6725 Szeged, Hungary
| | | |
Collapse
|
137
|
Wilson RI. Neural and behavioral mechanisms of olfactory perception. Curr Opin Neurobiol 2008; 18:408-12. [PMID: 18809492 DOI: 10.1016/j.conb.2008.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
Abstract
Recent in vivo and in vitro studies have challenged existing models of olfactory processing in the vertebrate olfactory bulb and insect antennal lobe. Whereas lateral connectivity between olfactory glomeruli was previously thought to form a dense, topographically organized inhibitory surround, new evidence suggests that lateral connections may be sparse, nontopographic, and partly excitatory. Other recent studies highlight the role of active sensing (sniffing) in shaping odor-evoked neural activity and perception.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
138
|
Nowotny T, Huerta R, Rabinovich MI. Neuronal synchrony: peculiarity and generality. CHAOS (WOODBURY, N.Y.) 2008; 18:037119. [PMID: 19045493 PMCID: PMC2688816 DOI: 10.1063/1.2949925] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/02/2008] [Indexed: 05/22/2023]
Abstract
Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their "dynamical repertoire" includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale).
Collapse
Affiliation(s)
- Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom.
| | | | | |
Collapse
|
139
|
Rojas-Líbano D, Kay LM. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2008; 2:179-94. [PMID: 19003484 DOI: 10.1007/s11571-008-9053-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/27/2022] Open
Abstract
Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems.
Collapse
Affiliation(s)
- Daniel Rojas-Líbano
- Committee on Neurobiology, Institute for Mind & Biology, The University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
140
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
141
|
Wesson DW, Donahou TN, Johnson MO, Wachowiak M. Sniffing behavior of mice during performance in odor-guided tasks. Chem Senses 2008; 33:581-96. [PMID: 18534995 DOI: 10.1093/chemse/bjn029] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sniffing, a rhythmic inhalation and exhalation of air through the nose, is a behavior thought to play a critical role in shaping how odor information is represented and processed by the nervous system. Although the mouse has become a prominent model for studying olfaction, little is known about sniffing behavior in mice. Here, we characterized mouse sniffing behavior by measuring intranasal pressure transients in behaving mice. Sniffing was monitored during unstructured exploratory behavior and during performance of 3 commonly used olfactory paradigms: a habituation/dishabituation task, a sand digging-based discrimination task, and a nose poke-based discrimination task. We found that respiration frequencies in quiescent mice ranged from 3 to 5 Hz--higher than that reported for rats. During exploration, sniff frequency increased up to approximately 12 Hz and was highly dynamic, with rapid changes in frequency, amplitude, and waveform. Sniffing behavior varied strongly between tasks as well as for different behavioral epochs of each task. For example, mice performing the digging-based task showed little increase in sniff frequency prior to digging, whereas mice performing a nose poke-based task showed robust increases. Mice showed large increases in sniff frequency prior to reward delivery in all tasks. Mice also showed increases in sniff frequency when nose poking in a nonodor-guided task. These results show that mouse sniffing behavior is highly dynamic, varies with behavioral context, and is strongly modulated by olfactory as well as nonolfactory events.
Collapse
Affiliation(s)
- Daniel W Wesson
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
142
|
Fuentes RA, Aguilar MI, Aylwin ML, Maldonado PE. Neuronal activity of mitral-tufted cells in awake rats during passive and active odorant stimulation. J Neurophysiol 2008; 100:422-30. [PMID: 18497360 DOI: 10.1152/jn.00095.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odorants induce specific modulation of mitral/tufted (MT) cells' firing rate in the mammalian olfactory bulb (OB), inducing temporal patterns of neuronal discharge embedded in an oscillatory local field potential (LFP). While most studies have examined anesthetized animals, little is known about the firing rate and temporal patterns of OB single units and population activity in awake behaving mammals. We examined the firing rate and oscillatory activity of MT cells and LFP signals in behaving rats during two olfactory tasks: passive exposure (PE) and two-alternative (TA) choice discrimination. MT inhibitory responses are predominant in the TA task (76.5%), whereas MT excitatory responses predominate in the PE task (59.2%). Rhythmic discharge in the 12- to 100-Hz range was found in 79.0 and 68.9% of MT cells during PE and TA tasks, respectively. Most odorants presented in PE task increase rhythmic discharges at frequencies >50 Hz, whereas in TA, one of four odorants produced a modest increment <40 Hz. LFP oscillations were clearly modulated by odorants during the TA task, increasing their oscillatory power at frequencies centered at 20 Hz and decreasing power at frequencies >50 Hz. Our results indicate that firing rate responses of MT cells in awake animals are behaviorally modulated with inhibition being a prominent feature of this modulation. The occurrence of oscillatory patterns in single- and multiunitary discharge is also related to stimulation and behavioral context, while the oscillatory patterns of the neuronal population showed a strong dependence on odorant stimulation.
Collapse
Affiliation(s)
- Romulo A Fuentes
- Centro de Neurociencias Integradas, and P Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla, Santiago, Chile
| | | | | | | |
Collapse
|
143
|
Grossman KJ, Mallik AK, Ross J, Kay LM, Issa NP. Glomerular activation patterns and the perception of odor mixtures. Eur J Neurosci 2008; 27:2676-85. [DOI: 10.1111/j.1460-9568.2008.06213.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
144
|
Bathellier B, Buhl DL, Accolla R, Carleton A. Dynamic ensemble odor coding in the mammalian olfactory bulb: sensory information at different timescales. Neuron 2008; 57:586-98. [PMID: 18304487 DOI: 10.1016/j.neuron.2008.02.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/05/2007] [Accepted: 02/06/2008] [Indexed: 11/19/2022]
Abstract
Neural firing discharges are often temporally patterned, but it is often ambiguous as to whether the temporal features of these patterns constitute a useful code. Here we show in the mouse olfactory bulb that ensembles of projection neurons respond with complex odor- and concentration-specific dynamic activity sequences developing below and above sniffing frequency. Based on this activity, almost optimal discrimination of presented odors was possible during single sniffs, consistent with reported behavioral data. Within a sniff cycle, slower features of the dynamics alone (>100 ms resolution, including mean firing rate) were sufficient for maximal discrimination. A smaller amount of information was also observed in faster features down to 20-40 ms resolution. Therefore, mitral cell ensemble activity contains information at different timescales that could be separately or complementarily exploited by downstream brain centers to make odor discriminations. Our results also support suggestive analogies in the dynamics of odor representations between insects and mammals.
Collapse
Affiliation(s)
- Brice Bathellier
- Flavour Perception Group, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), CH-1015, Switzerland
| | | | | | | |
Collapse
|