101
|
Roberts GMP, Garavan H. Neural mechanisms underlying ecstasy-related attentional bias. Psychiatry Res 2013; 213:122-32. [PMID: 23746613 DOI: 10.1016/j.pscychresns.2013.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 03/05/2013] [Accepted: 03/24/2013] [Indexed: 01/07/2023]
Abstract
Conditioned responses to cues associated with drug taking play a pivotal role in a number of theories of drug addiction. This study examined whether attentional biases towards drug-related cues exist in recreational drug users who predominantly used ecstasy (3,4-methylenedioxymethamphetamine). Experiment 1 compared 30 ecstasy users, 25 cannabis users, and 30 controls in an attentional distraction task in which neutral, evocative, and ecstasy-related pictures were presented within a coloured border, requiring participants to respond as quickly as possible to the border colour. Experiment 2 employed functional magnetic resonance imaging (fMRI) and the attentional distraction task and tested 20 ecstasy users and 20 controls. Experiment 1 revealed significant response speed interference by the ecstasy-related pictures in the ecstasy users only. Experiment 2 revealed increased prefrontal and occipital activity in ecstasy users in all conditions. Activations in response to the ecstasy stimuli in these regions showed an apparent antagonism whereby ecstasy users, relative to controls, showed increased occipital but decreased right prefrontal activation. These results are interpreted to reflect increased visual processing of, and decreased prefrontal control over, the irrelevant but salient ecstasy-related stimuli. These results suggest that right inferior frontal cortex may play an important role in controlling drug-related attentional biases and may thus play an important role in mediating control over drug usage.
Collapse
Affiliation(s)
- Gloria M P Roberts
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
102
|
Yu H, Zhou Z, Zhou X. The amygdalostriatal and corticostriatal effective connectivity in anticipation and evaluation of facial attractiveness. Brain Cogn 2013; 82:291-300. [PMID: 23774678 DOI: 10.1016/j.bandc.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/28/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Decision-making consists of several stages of information processing, including an anticipation stage and an outcome evaluation stage. Previous studies showed that the ventral striatum (VS) is pivotal to both stages, bridging motivation and action, and it works in concert with the ventral medial prefrontal cortex (vmPFC) and the amygdala. However, evidence concerning how the VS works together with the vmPFC and the amygdala came mainly from neuropathology and animal studies; little is known about the dynamics of this network in the functioning human brain. Here we used fMRI combined with dynamic causal modeling (DCM) to investigate the information flow along amygdalostriatal and corticostriatal pathways in a facial attractiveness guessing task. Specifically, we asked participants to guess whether a blurred photo of female face was attractive and to wait for a few seconds ("anticipation stage") until an unblurred photo of feedback face, which was either attractive or unattractive, was presented ("outcome evaluation stage"). At the anticipation stage, the bilateral amygdala and VS showed higher activation for the "attractive" than for the "unattractive" guess. At the outcome evaluation stage, the vmPFC and the bilateral VS were more activated by feedback faces whose attractiveness was congruent with the initial guess than by incongruent faces; however, this effect was only significant for attractive faces, not for unattractive ones. DCM showed that at the anticipation stage, the choice-related information entered the amygdalostriatal pathway through the amygdala and was projected to the VS. At the evaluation stage, the outcome-related information entered the corticostriatal pathway through the vmPFC. Bidirectional connectivities existed between the vmPFC and VS, with the VS-to-vmPFC connectivity weakened by unattractive faces. These findings advanced our understanding of the reward circuitry by demonstrating the pattern of information flow along the amygdalostriatal and corticostriatal pathways at different stages of decision-making.
Collapse
Affiliation(s)
- Hongbo Yu
- Center for Brain and Cognitive Sciences and Department of Psychology, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
103
|
Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 2013; 76 Pt B:320-8. [PMID: 23752096 DOI: 10.1016/j.neuropharm.2013.05.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Alice M Stamatakis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
Drug addiction is a chronic relapsing disorder for which research has been dedicated to understand the various factors that contribute to development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide a broad overview of various theories of addiction, drugs of abuse, and the neurobiology involved across the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the involvement of these pathways and associated circuits in mediating conditioned responses, drug craving, and loss of behavioral control thought to underlie withdrawal and relapse. With a better understanding of the neurobiological factors that underlie drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
105
|
Badiani A. Substance-specific environmental influences on drug use and drug preference in animals and humans. Curr Opin Neurobiol 2013; 23:588-96. [PMID: 23622777 DOI: 10.1016/j.conb.2013.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 01/01/2023]
Abstract
Epidemiological, clinical, and preclinical evidence indicate that the setting of drug use can exert a powerful modulatory influence on drug reward and that this influence is substance-specific. When heroin and cocaine co-abusers, for example, report on the circumstances of drug use, they indicate distinct settings for the two drugs: heroin being used preferentially at home and cocaine being used preferentially outside the home. Similar results were obtained in laboratory rats. These findings will be interpreted in the light of a novel model of drug reward, based on the emotional appraisal of central and peripheral drug effects as a function of environmental context. I argue here that drug addiction research has not paid sufficient attention to the substance-specific aspects of drug abuse and this may have contributed to the present dearth of effective treatments. Pharmacological and cognitive-behavioral therapy, for example, should be tailored so as to allow the addict to anticipate, and cope with, the risks associated, in a substance-specific manner, to the different settings of drug use.
Collapse
Affiliation(s)
- Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| |
Collapse
|
106
|
Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. J Neurosci 2013; 33:1109-15. [PMID: 23325248 DOI: 10.1523/jneurosci.3273-12.2013] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Signaling at NMDA receptors (NMDARs) is known to be important for memory reconsolidation, but while most studies show that NMDAR antagonists prevent memory restabilization and produce amnesia, others have shown that GluN2B-selective NMDAR antagonists prevent memory destabilization, protecting the memory. These apparently paradoxical, conflicting data provide an opportunity to define more precisely the requirement for different NMDAR subtypes in the mechanisms underlying memory reconsolidation and to further understand the contribution of glutamatergic signaling to this process. Here, using rats with fully consolidated pavlovian auditory fear memories, we demonstrate a double dissociation in the requirement for GluN2B-containing and GluN2A-containing NMDARs within the basolateral amygdala in the memory destabilization and restabilization processes, respectively. We further show a double dissociation in the mechanisms underlying memory retrieval and memory destabilization, since AMPAR antagonism prevented memory retrieval while still allowing the destabilization process to occur. These data demonstrate that glutamatergic signaling mechanisms within the basolateral amygdala differentially and dissociably mediate the retrieval, destabilization, and restabilization of previously consolidated fear memories.
Collapse
|
107
|
Belin D, Belin-Rauscent A, Murray JE, Everitt BJ. Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol 2013; 23:564-72. [PMID: 23452942 DOI: 10.1016/j.conb.2013.01.025] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
Abstract
Drug addiction may be associated with a loss of executive control over maladaptive incentive habits. We hypothesize that these incentive habits result from a pathological coupling of drug-influenced motivational states and a rigid stimulus-response habit system by which drug-associated stimuli through automatic processes elicit and maintain drug seeking. Neurally, incentive habits may depend upon an interaction between the basolateral amygdala and nucleus accumbens core, together with the progressive development of a ventral-to-dorsolateral striatum functional coupling through the recruitment of striato-nigro-striatal dopamine-dependent loop circuitry. Recent evidence suggests that both ventral striatal and central nucleus pathways from the amygdala may be required for the recruitment of DLS-dependent control over habitual behavior.
Collapse
Affiliation(s)
- David Belin
- INSERM U1084 - LNEC & University of Poitiers, INSERM AVENIR Team Psychobiology of Compulsive Disorders, Bâtiment B36, Pôle Biologie Santé, 1 rue Georges Bonnet, 86000 Poitiers, France.
| | | | | | | |
Collapse
|
108
|
Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 2013; 37:1946-54. [PMID: 23438892 DOI: 10.1016/j.neubiorev.2013.02.010] [Citation(s) in RCA: 466] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/30/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
We revisit our hypothesis that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntarily drug use to habitual, and ultimately compulsive drug use. We especially focus on the transitions in striatal control over drug seeking behaviour that underlie these transitions since functional heterogeneity of the striatum was a key area of Ann Kelley's research interests and one in which she made enormous contributions. We also discuss the hypothesis in light of recent data that the emergence of a compulsive drug seeking habit both reflects a shift to dorsal striatal control over behaviour and impaired prefontal cortical inhibitory control mechanisms. We further discuss aspects of the vulnerability to compulsive drug use and in particular the impact of impulsivity. In writing this review we acknowledge the untimely death of an outstanding scientist and a dear personal friend.
Collapse
Affiliation(s)
- Barry J Everitt
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.
| | | |
Collapse
|
109
|
Pierce RC, Wolf ME. Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission. Cold Spring Harb Perspect Med 2013; 3:a012021. [PMID: 23232118 PMCID: PMC3552338 DOI: 10.1101/cshperspect.a012021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Medium spiny neurons of the nucleus accumbens serve as the interface between corticolimbic regions that elicit and modulate motivated behaviors, including those related to drugs of abuse, and motor regions responsible for their execution. Medium spiny neurons are excited primarily by AMPA-type glutamate receptors, making AMPA receptor transmission in the accumbens a key regulatory point for addictive behaviors. In animal models of cocaine addiction, changes in the strength of AMPA receptor transmission onto accumbens medium spiny neurons have been shown to underlie cocaine-induced behavioral adaptations related to cocaine seeking. Here we review changes in AMPA receptor levels and subunit composition that occur after discontinuing different types of cocaine exposure, as well as changes elicited by cocaine reexposure following abstinence or extinction. Signaling pathways that regulate these cocaine-induced adaptations will also be considered, as they represent potential targets for addiction pharmacotherapies.
Collapse
Affiliation(s)
- R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
110
|
Diehl GW, Wachtel JM, Paine TA. Cue-induced conditioned activity does not incubate but is mediated by the basolateral amygdala. Pharmacol Biochem Behav 2013; 104:69-79. [PMID: 23333156 DOI: 10.1016/j.pbb.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 11/26/2022]
Abstract
Re-exposure to drug-associated cues causes significant drug craving in recovering addicts, which may precipitate relapse. In animal models of craving, drug-seeking responses for contingent delivery of drug-associated cues sensitizes or "incubates" across drug withdrawal. To date there is limited evidence supporting an incubation effect for behaviors mediated by non-contingent presentation of drug-associated cues. Here we used a model of cue-induced conditioned activity to determine if the conditioned locomotor response to a non-contingent presentation of a drug-associated cue sensitizes across drug withdrawal. In addition, because cue-induced drug-seeking responses are mediated by the rostral basolateral amygdala (BLA), we investigated whether this structure is critical for the expression of cue-induced conditioned activity. A conditioned association between cocaine (15mg/kg) and a compound discrete cue (flashing bicycle light+a metronome) was established over 12 conditioning sessions in male Sprague-Dawley rats. In experiment 1, cue-induced conditioned activity was assessed on 3 occasions: 3, 14 and 28days following the final drug-cue conditioning session. Cocaine-conditioned rats demonstrated reliable cue-induced conditioned activity across all 3 test sessions, however there was no evidence of an incubation effect. To determine whether repeated testing prevented the observation of an incubation effect, rats in experiment 2 were tested either 3days or 28days following conditioning; again no incubation effect was observed. In experiment 3, either saline or the GABAA receptor agonist muscimol was infused prior to testing. Intra-BLA infusions of muscimol prevented the expression of cue-induced conditioned activity. These data support the role of the rBLA in mediating conditioned responses to drug-associated cues. The failure to observe an incubation effect for cue-induced conditioned activity may point to a fundamental difference in the manner by which contingent and non-contingent presentations of drug-associated cues influence behavior.
Collapse
Affiliation(s)
- Geoffrey W Diehl
- Department on Neuroscience, Oberlin College, Oberlin, OH 44074, United States
| | | | | |
Collapse
|
111
|
Gass JT, Chandler LJ. The Plasticity of Extinction: Contribution of the Prefrontal Cortex in Treating Addiction through Inhibitory Learning. Front Psychiatry 2013; 4:46. [PMID: 23750137 PMCID: PMC3667556 DOI: 10.3389/fpsyt.2013.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/16/2013] [Indexed: 01/04/2023] Open
Abstract
Theories of drug addiction that incorporate various concepts from the fields of learning and memory have led to the idea that classical and operant conditioning principles underlie the compulsiveness of addictive behaviors. Relapse often results from exposure to drug-associated cues, and the ability to extinguish these conditioned behaviors through inhibitory learning could serve as a potential therapeutic approach for those who suffer from addiction. This review will examine the evidence that extinction learning alters neuronal plasticity in specific brain regions and pathways. In particular, subregions of the prefrontal cortex (PFC) and their projections to other brain regions have been shown to differentially modulate drug-seeking and extinction behavior. Additionally, there is a growing body of research demonstrating that manipulation of neuronal plasticity can alter extinction learning. Therefore, the ability to alter plasticity within areas of the PFC through pharmacological manipulation could facilitate the acquisition of extinction and provide a novel intervention to aid in the extinction of drug-related memories.
Collapse
Affiliation(s)
- J T Gass
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA
| | | |
Collapse
|
112
|
Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci U S A 2012; 110:713-8. [PMID: 23267100 DOI: 10.1073/pnas.1206287110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The nucleus accumbens (NAc) regulates motivated behavior by, in part, processing excitatory synaptic projections from several brain regions. Among these regions, the prefrontal cortex (PFC) and basolateral amygdala, convey executive control and affective states, respectively. Whereas glutamatergic synaptic transmission within the NAc has been recognized as a primary cellular target for cocaine and other drugs of abuse to induce addiction-related pathophysiological motivational states, the understanding has been thus far limited to drug-induced postsynaptic alterations. It remains elusive whether exposure to cocaine or other drugs of abuse influences presynaptic functions of these excitatory projections, and if so, in which projection pathways. Using optogenetic methods combined with biophysical assays, we demonstrate that the presynaptic release probability (Pr) of the PFC-to-NAc synapses was enhanced after short-term withdrawal (1 d) and long-term (45 d) withdrawal from either noncontingent (i.p. injection) or contingent (self-administration) exposure to cocaine. After long-term withdrawal of contingent drug exposure, the Pr was higher compared with i.p. injected rats. In contrast, within the basolateral amygdala afferents, presynaptic Pr was not significantly altered in any of these experimental conditions. Thus, cocaine-induced procedure- and pathway-specific presynaptic enhancement of excitatory synaptic transmission in the NAc. These results, together with previous findings of cocaine-induced postsynaptic enhancement, suggest an increased PFC-to-NAc shell glutamatergic synaptic transmission after withdrawal from exposure to cocaine. This presynaptic alteration may interact with other cocaine-induced cellular adaptations to shift the functional output of NAc neurons, contributing to the addictive emotional and motivational state.
Collapse
|
113
|
Impact of medial orbital cortex and medial subthalamic nucleus inactivation, individually and together, on the maintenance of cocaine self-administration behavior in rats. Behav Brain Res 2012; 238:1-9. [PMID: 23098798 DOI: 10.1016/j.bbr.2012.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 12/25/2022]
Abstract
A reversible neuronal inactivation procedure was used to study the role of the medial orbital cortex (MO) and medial tip of the subthalamic nucleus (mSTN) in maintenance of cocaine self-administration studied under a second-order schedule of drug and cue presentation. Lidocaine or vehicle was infused 5-min before 1-h self-administration test sessions, using bilateral, asymmetric or unilateral manipulations. The results demonstrated that whether the MO was inactivated bilaterally, unilaterally or asymmetrically (with contralateral mSTN inactivation), cocaine seeking and cocaine intake were reduced. In contrast, bilateral mSTN inactivation did not impact cocaine seeking or cocaine intake, suggesting that the reductions in these measures following asymmetric inactivation may have been due to a unilateral influence of lidocaine in MO. Expression of c-Fos protein was measured in sites downstream of the STN to ensure that the lidocaine inactivation procedure was effective in selectively altering activity of neurons in mSTN. Cocaine-induced c-Fos protein expression was augmented only in the ipsilateral nucleus accumbens core after mSTN lidocaine pretreatment, consistent with the expectation that inactivation of mSTN would disinhibit nucleus accumbens core, but not shell, activity. The present investigation shows the critical importance of the MO for maintaining cocaine seeking and cocaine intake in rats, though its projections to mSTN appear to be unimportant for this purpose. Because cocaine seeking was impacted to such a great extent (45% of baseline, on average), it is likely that MO inactivation exerts its influence on maintenance of cocaine self-administration by interfering primarily with cue-controlled behavior rather than by modifying the reinforcing effects of cocaine.
Collapse
|
114
|
Hanics J, Bálint E, Milanovich D, Zachar G, Adám A, Csillag A. Amygdalofugal axon terminals immunoreactive for L-aspartate or L-glutamate in the nucleus accumbens of rats and domestic chickens: a comparative electron microscopic immunocytochemical study combined with anterograde pathway tracing. Cell Tissue Res 2012; 350:409-23. [PMID: 23064903 DOI: 10.1007/s00441-012-1494-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/22/2012] [Indexed: 01/26/2023]
Abstract
Several studies have shown that L-aspartate (Asp) is present in synaptic vesicles and released exocytotically from presynaptic terminals, possibly by Ca(2+)-dependent corelease of Asp and L-glutamate (Glu). It has been demonstrated that both excitatory amino acids (EAAs) are released from the rat striatum as part of corticostriatal neurotransmission. The single or colocalized occurrence of Asp and Glu in specific synaptic boutons of the chicken medial striatum/nucl. accumbens has been demonstrated by our group using ultrastructural immunocytochemistry. However, evidence for the presence of EAAs in any specific striatal pathway was only circumstantial. Here, we report on the distribution of Asp and Glu in specific synaptic terminals of the amygdalostriatal pathway, both in rat and chicken brains, combining anterograde tracing with postembedding immunogold labeling of Asp or Glu. Immunoreactivity for Asp and Glu was observed in amygdalofugal terminals with asymmetrical synaptic junctions (morphologically representing excitatory synapses) in both species. The postsynaptic targets were either dendritic spines or small dendrites, whereas axosomatic or axo-axonic connections were not observed. Ultrastructurally, the synaptic terminals immunoreactive for Asp were indistinguishable from those immunoreactive for Glu. The findigs are consistent with an Asp-Glu corelease mechanism, with a distinct synaptic contingent, evolutionarily conserved in the amygdalostriatal pathway.
Collapse
Affiliation(s)
- János Hanics
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
115
|
Murray JE, Belin D, Everitt BJ. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 2012; 37:2456-66. [PMID: 22739470 PMCID: PMC3442340 DOI: 10.1038/npp.2012.104] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study investigated the involvement of dopamine-dependent mechanisms in the anterior dorsolateral (aDLS) and posterior dorsomedial (pDMS) striatum during the early- and late-stage performance of cocaine-seeking behavior. Rats were trained to self-administer cocaine under continuous reinforcement (fixed-ratio 1, FR1) with a 20-s light conditioned stimulus (CS) presented contingently upon each infusion. After a week, rats were challenged by a change in contingency to seek cocaine during a 15-min period uninfluenced by cocaine during which each response was reinforced by a 1-s CS presentation. Dopamine transmission blockade by intracranial infusions of α-flupenthixol only in the pDMS, but not in the aDLS, dose dependently reduced performance of cue-controlled cocaine seeking at the early stage of self-administration. One cohort of rats was then trained with increasing response requirements until completing 15 sessions under a second-order schedule [FI15(FR10:S)] so that cocaine-seeking performance became well established. At this stage, intra-aDLS, but not pDMS, α-flupenthixol infusions dose dependently reduced active lever presses. The second cohort of rats continued to self-administer cocaine under the FR1 schedule such that their drug intake was matched to the late-stage performance group. α-Flupenthixol in the pDMS, but not in the aDLS, again prevented the performance of cocaine seeking. These results show that dopamine transmission in the pDMS is required for initial performance of goal-directed cocaine seeking, and that its role is ultimately subverted and devolves instead to the aDLS only following training with high rates of cocaine-seeking behavior, supporting the theory of dynamic shifts in the striatal control over cocaine seeking between goal-directed and habitual performance.
Collapse
Affiliation(s)
- Jennifer E Murray
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK.
| | - David Belin
- INSERM European Associated Laboratory, Psychobiology of Compulsive Habits, Poitiers, France and Cambridge, UK,INSERM AVENIR Team, Psychobiology of Compulsive Disorders, INSERM U1084 Laboratoire de Neurosciences Expérimentales et Cliniques and Université de Poitiers, Poitiers, France
| | - Barry J Everitt
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK,INSERM European Associated Laboratory, Psychobiology of Compulsive Habits, Poitiers, France and Cambridge, UK
| |
Collapse
|
116
|
El Rawas R, Klement S, Kummer KK, Fritz M, Dechant G, Saria A, Zernig G. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Front Behav Neurosci 2012; 6:63. [PMID: 23015784 PMCID: PMC3449336 DOI: 10.3389/fnbeh.2012.00063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.
Collapse
Affiliation(s)
- Rana El Rawas
- Experimental Psychiatry Unit, Medical University Innsbruck Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction develops, the addict becomes conditioned to engage in addictive behaviors, and these behaviors can be triggered by opiate-associated cues during abstinence, resulting in relapse. Some medications for opiate addiction exert their therapeutic effects at glutamate receptors, especially the NMDA receptor. Understanding the neural circuits controlling opiate addiction, and the locus of glutamate's actions within these circuits, will help guide the development of targeted pharmacotherapeutics for relapse.
Collapse
Affiliation(s)
- Jamie Peters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1081BT Amsterdam, The Netherlands
| | | |
Collapse
|
118
|
Pilli J, Kumar SS. Triheteromeric N-methyl-D-aspartate receptors differentiate synaptic inputs onto pyramidal neurons in somatosensory cortex: involvement of the GluN3A subunit. Neuroscience 2012; 222:75-88. [PMID: 22814002 DOI: 10.1016/j.neuroscience.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/30/2012] [Accepted: 07/07/2012] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamatergic by virtue of glutamate-binding GluN2 subunits and glycinergic by virtue of glycine-binding GluN1 and GluN3 subunits. The existence, location, and functional-significance of NMDARs containing both GluN2 and GluN3 subunits have as yet remained unelucidated. Here we report on the discovery and characterization of a novel type of NMDARs, found at layer (L)1/primary whisker-motor-cortex inputs onto L5 pyramidal neurons in somatosensory cortex, that are distinct in structure and function from conventional GluN2A-containing NMDARs at thalamic/striatal (Str) inputs onto the same neurons. These receptors had a threshold-like activation at hyperpolarized holding-potentials with strong outward rectification of their current-voltage relationships unlike any known GluN1/GluN2-containing NMDARs. Pharmacology revealed a triheteromeric-receptor with features common to glutamate-activated GluN1/GluN2-containing and glycine-activated GluN1/GluN3-containing diheteromeric NMDARs. However, unlike GluN1/GluN3 receptors, NMDARs at L1 inputs were activated by glutamate and blocked by d-AP5, Ca(2+)-permeable, and more efficient at integrating and potentiating EPSPs selectively over Str inputs during high-frequency stimulation while obviating the need for AMPAR-mediated depolarization.
Collapse
Affiliation(s)
- J Pilli
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300, United States
| | | |
Collapse
|
119
|
Bridges R, Lutgen V, Lobner D, Baker DA. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 2012; 64:780-802. [PMID: 22759795 PMCID: PMC3400835 DOI: 10.1124/pr.110.003889] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
System x(c)(-) represents an intriguing target in attempts to understand the pathological states of the central nervous system. Also called a cystine-glutamate antiporter, system x(c)(-) typically functions by exchanging one molecule of extracellular cystine for one molecule of intracellular glutamate. Nonvesicular glutamate released during cystine-glutamate exchange activates extrasynaptic glutamate receptors in a manner that shapes synaptic activity and plasticity. These findings contribute to the intriguing possibility that extracellular glutamate is regulated by a complex network of release and reuptake mechanisms, many of which are unique to glutamate and rarely depicted in models of excitatory signaling. Because system x(c)(-) is often expressed on non-neuronal cells, the study of cystine-glutamate exchange may advance the emerging viewpoint that glia are active contributors to information processing in the brain. It is noteworthy that system x(c)(-) is at the interface between excitatory signaling and oxidative stress, because the uptake of cystine that results from cystine-glutamate exchange is critical in maintaining the levels of glutathione, a critical antioxidant. As a result of these dual functions, system x(c)(-) has been implicated in a wide array of central nervous system diseases ranging from addiction to neurodegenerative disorders to schizophrenia. In the current review, we briefly discuss the major cellular components that regulate glutamate homeostasis, including glutamate release by system x(c)(-). This is followed by an in-depth discussion of system x(c)(-) as it relates to glutamate release, cystine transport, and glutathione synthesis. Finally, the role of system x(c)(-) is surveyed across a number of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richard Bridges
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | | | | |
Collapse
|
120
|
Murray JE, Everitt BJ, Belin D. N-Acetylcysteine reduces early- and late-stage cocaine seeking without affecting cocaine taking in rats. Addict Biol 2012; 17:437-40. [PMID: 21521427 DOI: 10.1111/j.1369-1600.2011.00330.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-acetylcysteine (NAC) has been suggested to have therapeutic potential in the treatment of drug addiction through its effects on brain glutamate homeostasis. Here we show that NAC treatment resulted in dose-dependent reductions in cocaine seeking at both early and late stages of acquisition and maintenance of cocaine-seeking behavior, while confirming it had no effect on cocaine reinforcement. The results indicate that NAC is able to significantly diminish the propensity to seek cocaine early and late in the development of addiction and, taken together with previous work, indicates significant potential in relapse prevention.
Collapse
|
121
|
Electroacupuncture suppresses discrete cue-evoked heroin-seeking and fos protein expression in the nucleus accumbens core in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:286404. [PMID: 22454660 PMCID: PMC3290998 DOI: 10.1155/2012/286404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/08/2011] [Accepted: 10/26/2011] [Indexed: 12/02/2022]
Abstract
Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. Here, we used intravenous drug self-administration procedures in rats to further investigate the beneficial effects of electroacupuncture (EA) on heroin-seeking behavior in a reinstatement model of relapse. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4 h or 25 infusions for 14 consecutive days. Then the rats were abstinent from heroin for two weeks. 2 Hz EA stimulation was conducted once daily for 14 days during heroin abstinence. We tested these animals for contextual and discrete cue-induced reinstatement of active responses. We also applied immunohistochemistry to detect Fos-positive nuclei in the nucleus accumbens (NACc) core and shell after reinstatement test. We found that active responses elicited by both contextual cues and discrete cues were high in the rats trained with heroin than in saline controls. EA treatment significantly reduced active responses elicited by discrete cues. EA stimulation attenuated Fos expression in the core but not the shell of the NACc. Altogether, these results highlight the therapeutic benefit of EA in preventing relapse to drug addiction.
Collapse
|
122
|
LaLumiere RT, Smith KC, Kalivas PW. Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci 2012; 35:614-22. [PMID: 22321070 DOI: 10.1111/j.1460-9568.2012.07991.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Following cocaine self-administration and extinction training, activity in the infralimbic cortex (IL) suppresses cocaine-seeking behavior. IL inactivation induces cocaine-seeking whereas activation suppresses cocaine-reinstated drug-seeking. We asked how the suppression of cocaine-seeking induced by IL activation integrates with the circuitry promoting reinstated cocaine-seeking. Following cocaine self-administration and extinction training, rats underwent cue-induced reinstatement. In order to activate IL projections, microinjections of PEPA, a positive allosteric modulator of AMPA receptors, were made into the IL in combination with microinjections into a variety of nuclei known to regulate cocaine-seeking. Intra-IL PEPA administration suppressed cue-induced reinstatement without affecting locomotor activity. The suppression of cocaine-seeking was reversed by activating dopamine neurons in the ventral tegmental area with microinjections of the μ-opioid receptor agonist DAMGO, and was partially reversed by dopamine microinjections into the prelimbic cortex or basolateral amygdala. Previous evidence suggests that the nucleus accumbens shell both promotes and suppresses cocaine-seeking. The suppression of cue-induced cocaine seeking by PEPA in the IL was reversed by intra-shell microinjections of either dopamine or the AMPA receptor antagonist CNQX, suggesting that the accumbens shell bidirectionally regulates cocaine-seeking depending on whether dopamine input is mimicked or glutamate input is inhibited. Together, these findings indicate that the IL acts 'upstream' from structures promoting cocaine-seeking, including from the mesolimbic dopamine projections to the prelimbic cortex and basolateral amygdala, and that the accumbens shell may be a crucial point of integration between the circuits that promote (ventral tegmental area) and inhibit (IL) reinstated cocaine-seeking.
Collapse
Affiliation(s)
- Ryan T LaLumiere
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
123
|
Zhang XQ, Cui Y, Cui Y, Chen Y, Na XD, Chen FY, Wei XH, Li YY, Liu XG, Xin WJ. Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav Immun 2012; 26:318-25. [PMID: 22004988 DOI: 10.1016/j.bbi.2011.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 11/26/2022] Open
Abstract
Several lines of evidence have suggested that activated glia contributes to morphine-induced reward (conditioned place preference, CPP). Compared to well-defined roles of astrocyte in morphine CPP, the role of microglia in the nucleus accumbens (NAc) remains poorly characterized. The aim of the present study was to investigate the distinct role of microglia in morphine-induced CPP. Systemic administration of morphine (7.5 mg/kg for 5 days) induced significant preference for the morphine-paired compartment in rats, which lasted for at least 6 days after cessation of morphine treatment. Immunohistochemistry results showed that activation of p38 in the NAc microglia induced by chronic morphine treatment maintained on day 11. Bilateral intra-NAc injection of minocycline, a putative microglia inhibitor, or SB203580, an inhibitor of p38, prior to morphine administration not only inhibited p38 activation in the microglia but impaired the acquisition of CPP. On the day following the acquisition of morphine CPP, a single injection of minocycline or SB203580 failed to block the expression of CPP. Notably, pretreatment with minocycline or SB203580 for 5 days following the acquisition of morphine CPP significantly suppressed the activation of p38 and attenuated the maintenance of morphine CPP. Collectively, our present study indicates that the p38 signaling in the NAc microglia may play an important role in the acquisition and maintenance but not the expression of morphine CPP, and provides new evidence that microglia might be a potential target for the therapy of morphine addiction.
Collapse
Affiliation(s)
- Xue-Qin Zhang
- Department of Psychology, Guangzhou Medical Collage, 195 Dongfeng West Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol Biochem Behav 2012; 101:329-35. [PMID: 22296815 DOI: 10.1016/j.pbb.2012.01.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/25/2023]
Abstract
Pharmacological blockade of the type 5 metabotropic glutamate receptor (mGluR5) attenuates cue-induced reinstatement of ethanol-seeking behavior, yet the brain regions involved in these effects are not yet known. The purpose of the present study was to determine if local blockade of mGluR5 receptors in the basolateral amygdala (BLA) and/or the nucleus accumbens (NAc), two brain regions known to be involved in stimulus-reward associations, attenuate the reinstatement of ethanol-seeking behavior induced by ethanol-paired cues. As a control for possible non-specific effects, the effects of mGluR5 blockade in these regions on cue-induced reinstatement of sucrose-seeking were also assessed. Male Wistar rats were implanted with bilateral microinjection cannulae aimed at the BLA or NAc. Following recovery, animals were trained to self-administer ethanol (10% w/v) or 45 mg sucrose pellets on an FR1 schedule of reinforcement in 30 min daily sessions using a sucrose fading procedure. Following stabilization of responding, animals underwent extinction training. Next, animals received infusions of vehicle or the selective mGluR5 antagonist MTEP (3 μg/μl) into the BLA or NAc prior to cue-induced reinstatement testing sessions. mGluR5 blockade eliminated cue-induced reinstatement of alcohol - but not sucrose-seeking behavior. Results from this study indicate that mGluR5 receptors in the BLA and NAc mediate cue-induced reinstatement of ethanol-seeking behavior, and provide two potential neuroanatomical sites of action where systemically administered mGluR5 antagonists attenuate cue-induced reinstatement. These data are consistent with previous findings that cue-induced reinstatement of ethanol-seeking increases neuronal activity and glutamatergic transmission in these two regions.
Collapse
|
125
|
Milton AL, Everitt BJ. The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 2012; 36:1119-39. [PMID: 22285426 DOI: 10.1016/j.neubiorev.2012.01.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/09/2012] [Accepted: 01/15/2012] [Indexed: 01/15/2023]
Abstract
Addiction is a chronic, relapsing disorder, characterised by the long-term propensity of addicted individuals to relapse. A major factor that obstructs the attainment of abstinence is the persistence of maladaptive drug-associated memories, which can maintain drug-seeking and taking behaviour and promote unconscious relapse of these habits. Thus, addiction can be conceptualised as a disorder of aberrant learning of the formation of strong instrumental memories linking actions to drug-seeking and taking outcomes that ultimately are expressed as persistent stimulus-response habits; of previously neutral environmental stimuli that become associated with drug highs (and/or withdrawal states) through pavlovian conditioning, and of the subsequent interactions between pavlovian and instrumental memories to influence relapse behaviour. Understanding the psychological, neurobiological and molecular basis of these drug memories may produce new methods of pro-abstinence, anti-relapse treatments for addiction.
Collapse
Affiliation(s)
- Amy L Milton
- Behavioural and Clinical Neuroscience Institute, Department of Experimental Psychology, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK.
| | | |
Collapse
|
126
|
Kong H, Xu M. Dopamine D1 and D3 Receptors Are Differentially Involved in Cocaine-Induced Reward Learning and Cell Signaling. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jdar/235577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
127
|
Wiggins A, Smith RJ, Shen HW, Kalivas PW. Integrins modulate relapse to cocaine-seeking. J Neurosci 2011; 31:16177-84. [PMID: 22072669 PMCID: PMC3280336 DOI: 10.1523/jneurosci.3816-11.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/21/2011] [Accepted: 09/20/2011] [Indexed: 11/21/2022] Open
Abstract
Relapse to cocaine-seeking involves impairments in plasticity at glutamatergic synapses in the nucleus accumbens. Integrins are cell adhesion molecules that bind to the extracellular matrix and regulate aspects of synaptic plasticity, including glutamate receptor trafficking. To determine a role for integrins in cocaine-seeking, rats were trained to self-administer cocaine, the operant response extinguished, and cocaine-seeking induced by a conditioned cue or noncontingent cocaine injection. This cocaine self-administration protocol reduced the content of the β3 integrin subunit in postsynaptic density of the accumbens core at 24 h after the last self-administration session. However, after 3 weeks of forced abstinence plus extinction training, the level of β3 was elevated and was further regulated over 120 min during cocaine-induced drug-seeking. A small peptide ligand [arginine-glycine-aspartate (RGD)] that mimics extracellular matrix protein binding to integrins was microinjected into the accumbens core during self-administration or extinction training, or just before cocaine-reinstated drug seeking. The daily RGD injections during self-administration or just before a reinstatement session inhibited cocaine-induced drug-seeking, while RGD microinjection during extinction training was without consequence on reinstated cocaine-seeking. Daily RGD during self-administration also prevented the enduring changes in β3 levels. Finally, reduced surface expression of the GluR2 subunit of the AMPA receptor is associated with cocaine-seeking, and daily RGD microinjections during self-administration training normalized the surface expression of GluR2. Together, these data indicate that the regulation integrins may contribute to cocaine-reinstated drug-seeking, in part by promoting reduced GluR2 surface expression.
Collapse
Affiliation(s)
- Armina Wiggins
- Department of Neurosciences, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
128
|
Chase HW, Eickhoff SB, Laird AR, Hogarth L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 2011; 70:785-793. [PMID: 21757184 PMCID: PMC4827617 DOI: 10.1016/j.biopsych.2011.05.025] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The capacity of drug cues to elicit drug-seeking behavior is believed to play a fundamental role in drug dependence; yet the neurofunctional basis of human drug cue-reactivity is not fully understood. We performed a meta-analysis to identify brain regions that are consistently activated by presentation of drug cues. Studies involving treatment-seeking and nontreatment-seeking substance users were contrasted to determine whether there were consistent differences in the neural response to drug cues between these populations. Finally, to assess the neural basis of craving, consistency across studies in brain regions that show correlated activation with craving was assessed. METHODS Appropriate studies, assessing the effect of drug-related cues or manipulations of drug craving in drug-user populations across the whole brain, were obtained via the PubMed database and literature search. Activation likelihood estimation, a method of quantitative meta-analysis that estimates convergence across experiments by modeling the spatial uncertainty of neuroimaging data, was used to identify consistent regions of activation. RESULTS Cue-related activation was observed in the ventral striatum (across both subgroups), amygdala (in the treatment-seeking subgroup and overall), and orbitofrontal cortex (in the nontreatment-seeking subgroup and overall) but not insula cortex. Although a different pattern of frontal and temporal lobe activation between the subgroups was observed, these differences were not significant. Finally, right amygdala and left middle frontal gyrus activity were positively associated with craving. CONCLUSIONS These results substantiate the key neural substrates underlying reactivity to drug cues and drug craving.
Collapse
Affiliation(s)
- Henry W Chase
- School of Psychology, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Research Centre Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany; Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | - Angela R Laird
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Lee Hogarth
- School of Psychology, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
129
|
Pennartz C, Ito R, Verschure P, Battaglia F, Robbins T. The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci 2011; 34:548-59. [DOI: 10.1016/j.tins.2011.08.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/16/2011] [Accepted: 08/01/2011] [Indexed: 02/01/2023]
|
130
|
Abstract
The repeated use of drugs that directly or indirectly stimulate dopamine transmission carry addiction liability and produce enduring pathological changes in the brain circuitry that normally regulates adaptive behavioral responding to a changing environment. This circuitry is rich in glutamatergic projections, and addiction-related behaviors in animal models have been linked to impairments in excitatory synaptic plasticity. Among the best-characterized glutamatergic projection in this circuit is the prefrontal efferent to the nucleus accumbens. A variety of molecular adaptations have been identified in the prefrontal glutamate synapses in the accumbens, many of which are induced by different classes of addictive drugs. Based largely on work with cocaine, we hypothesize that the drug-induced adaptations impair synaptic plasticity in the cortico-accumbens projection, and thereby dysregulate the ability of addicts to control their drug-taking habits. Accordingly, we go on to describe the literature implicating the drug-induced changes in protein content or function that impinge upon synaptic plasticity and have been targeted in preclinical models of relapse and, in some cases, in pilot clinical trials. Based upon modeling drug-induced impairments in neuroplasticity in the cortico-accumbens pathway, we argue for a concerted effort to clinically evaluate the hypothesis that targeting glial and neuronal proteins regulating excitatory synaptic plasticity may prove beneficial in treating addiction.
Collapse
|
131
|
Szczytkowski JL, Fuchs RA, Lysle DT. Ventral tegmental area-basolateral amygdala-nucleus accumbens shell neurocircuitry controls the expression of heroin-conditioned immunomodulation. J Neuroimmunol 2011; 237:47-56. [PMID: 21722970 DOI: 10.1016/j.jneuroim.2011.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
The present investigations sought to determine whether the ventral tegmental area (VTA), basolateral amygdala (BLA), and nucleus accumbens shell (NAC) comprise a circuitry that mediates heroin-induced conditioned immunomodulation. Rats were given conditioning trials in which they received an injection of heroin upon placement into a distinctive environment. Prior to testing, rats received unilateral intra-BLA microinfusion of a D(1) antagonist concomitantly with unilateral intra-NAC shell microinfusion of an NMDA antagonist. Disconnection of the VTA-BLA-NAC circuit impaired the ability of the heroin-paired environment to suppress lipopolysaccharide-induced immune responses, defining for the first time a specific neural circuit involved in conditioned neural-immune interactions.
Collapse
Affiliation(s)
- Jennifer L Szczytkowski
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270, USA.
| | | | | |
Collapse
|
132
|
Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 2011; 475:377-80. [PMID: 21716290 PMCID: PMC3775282 DOI: 10.1038/nature10194] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/10/2011] [Indexed: 01/21/2023]
Abstract
The basolateral amygdala (BLA) plays a crucial role in emotional learning irrespective of valence1–5. While the BLA projection to the nucleus accumbens (NAc) is hypothesized to modulate cue-triggered motivated behaviors4, 6, 7,, our understanding of the interaction between these two brain regions has been limited by the inability to manipulate neural circuit elements of this pathway selectively during behavior. To circumvent this limitation, we used in vivo optogenetic stimulation or inhibition of glutamatergic fibers from the BLA to the NAc, coupled with intracranial pharmacology and ex vivo electrophysiology. We show that optical stimulation of the BLA-to-NAc pathway in mice reinforces behavioral responding to earn additional optical stimulations of these synaptic inputs. Optical stimulation of BLA-to-NAc glutamatergic fibers required intra-NAc dopamine D1-type, but not D2-type, receptor signaling. Brief optical inhibition of BLA-to-NAc fibers reduced cue-evoked intake of sucrose, demonstrating an important role of this specific pathway in controlling naturally occurring reward-related behavior. Moreover, while optical stimulation of medial prefrontal cortex (mPFC) to NAc glutamatergic fibers also elicited reliable excitatory synaptic responses, optical self-stimulation behavior was not observed by activation of this pathway. These data suggest that while the BLA is important for processing both positive and negative affect, the BLA-to-NAc glutamatergic pathway in conjunction with dopamine signaling in the NAc promotes motivated behavioral responding.
Collapse
|
133
|
Chauvet C, Lardeux V, Jaber M, Solinas M. Brain regions associated with the reversal of cocaine conditioned place preference by environmental enrichment. Neuroscience 2011; 184:88-96. [PMID: 21477638 DOI: 10.1016/j.neuroscience.2011.03.068] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 12/20/2022]
Abstract
In addition to the known preventive effects of environmental enrichment (EE) on drug addiction, we have recently shown that EE can also have "curative" effects and eliminate addiction-related behaviors in mice and rats. In the present study, using Fos immunohistochemistry, we investigated brain regions involved in the elimination of cocaine conditioned place preference (CPP) produced by a 30-day exposure to EE. A first group of mice was conditioned to cocaine in the CPP apparatus, a second group that served as control received cocaine in a cage different from the CPP apparatus and a third control group received only saline injections. At the end of conditioning, we kept mice abstinent in the animal facility, housing them in standard environments (SE) or EE for 30 days and then we tested them for expression of CPP. SE, but not EE mice, conditioned to cocaine showed long-lasting preferences for the cocaine-paired compartment. Expression of CPP was paralleled by significant increases in the expression of Fos in the anterior cingulate cortex, the lateral caudate putamen, the shell of the nucleus accumbens, the dentate gyrus of the hippocampus, the basolateral and central nuclei of amygdala, the bed nucleus of the stria terminalis, and the ventral tegmental area. In contrast, EE mice showed levels of expression of FOS similar to control groups. These results demonstrate that EE can eliminate context-induced cocaine seeking and that this effect appears associated with a general reduction in the activation of several brain regions implicated in relapse.
Collapse
Affiliation(s)
- C Chauvet
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS; 1 Rue George Bonnet, Poitiers 86022, France
| | | | | | | |
Collapse
|
134
|
Gass JT, Sinclair CM, Cleva RM, Widholm JJ, Olive MF. Alcohol-seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamate-oxidase-coated biosensors. Addict Biol 2011; 16:215-28. [PMID: 21054692 DOI: 10.1111/j.1369-1600.2010.00262.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Relapse is one of the most problematic aspects in the treatment of alcoholism and is often triggered by alcohol-associated environmental cues. Evidence indicates that glutamate neurotransmission plays a critical role in cue-induced relapse-like behavior, as inhibition of glutamate neurotransmission can prevent reinstatement of alcohol-seeking behavior. However, few studies have examined specific changes in extracellular glutamate levels in discrete brain regions produced by exposure to alcohol-associated cues. The purpose of this study was to use glutamate oxidase (GluOx)-coated biosensors to monitor changes in extracellular glutamate in specific brain regions during cue-induced reinstatement of alcohol-seeking behavior. Male Wistar rats were implanted with indwelling jugular vein catheters and intracerebral guide cannula aimed at the basolateral amygdala (BLA) or nucleus accumbens (NAc) core, and then trained to self-administer alcohol intravenously. A separate group of animals were trained to self-administer food pellets. Each reinforcer was accompanied by the presentation of a light/tone stimulus. Following stabilization of responding for alcohol or food reinforcement, and subsequent extinction training, animals were implanted with pre-calibrated biosensors and then underwent a 1-hour cue-induced reinstatement testing period. As determined by GluOx-coated biosensors, extracellular levels of glutamate were increased in the BLA and NAc core during cue-induced reinstatement of alcohol-seeking behavior. The cumulative change in extracellular glutamate in both regions was significantly greater for cue-induced reinstatement of alcohol-seeking behavior versus that of food-seeking behavior. These results indicate that increases in glutamate transmission in the BLA and NAc core may be a neurochemical substrate of cue-evoked alcohol-seeking behavior.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
135
|
Treatment of addiction and anxiety using extinction approaches: Neural mechanisms and their treatment implications. Pharmacol Biochem Behav 2011; 97:619-25. [DOI: 10.1016/j.pbb.2010.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 08/05/2010] [Accepted: 08/12/2010] [Indexed: 12/26/2022]
|
136
|
|
137
|
Kong H, Kuang W, Li S, Xu M. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine. Neuroscience 2010; 176:152-61. [PMID: 21168475 DOI: 10.1016/j.neuroscience.2010.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 01/10/2023]
Abstract
Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain.
Collapse
Affiliation(s)
- H Kong
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | | | | | | |
Collapse
|
138
|
Polston JE, Rubbinaccio HY, Morra JT, Sell EM, Glick SD. Music and methamphetamine: conditioned cue-induced increases in locomotor activity and dopamine release in rats. Pharmacol Biochem Behav 2010; 98:54-61. [PMID: 21145911 DOI: 10.1016/j.pbb.2010.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/25/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022]
Abstract
Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection ("Four" by Miles Davis) played repeatedly for 90 min. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drugs while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation.
Collapse
Affiliation(s)
- J E Polston
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
139
|
Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J Neurosci 2010; 30:12632-41. [PMID: 20861369 DOI: 10.1523/jneurosci.1264-10.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that regulates cell growth and survival by controlling translation in response to nutrients and growth factors, has been demonstrated to be involved in neuronal adaptations that underlie drug addiction and learning and memory. We investigated the potential role of the mTOR signaling pathway in relapse to cocaine seeking by using the cue-induced reinstatement model in self-administering rats. We found that exposure to a cocaine-related cue induced reinstatement to cocaine seeking and increased phosphorylation of p70s6 kinase (p70s6k) and ribosomal protein s6 (rps6), measures of mTOR activity, in the nucleus accumbens (NAc) core but not shell. Furthermore, inhibition of NAc core but not shell p70s6k and rps6 phosphorylation by rapamycin decreased cue-induced reinstatement of cocaine seeking. Finally, stimulation of NAc core p70s6k and rps6 phosphorylation by NMDA enhanced cue-induced reinstatement, an effect reversed by rapamycin pretreatment. Additionally, rapamycin infusion into the NAc core or shell did not alter ongoing cocaine self-administration or cue-induced reinstatement of sucrose seeking. These findings indicate that cue-induced reinstatement of cocaine seeking is mediated by activation of the mTOR signaling pathway in the NAc core.
Collapse
|
140
|
Shiflett MW, Balleine BW. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 2010; 32:1735-43. [PMID: 21044174 DOI: 10.1111/j.1460-9568.2010.07439.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it has long been hypothesized that the nucleus accumbens (NAc) acts as an interface between limbic and motor regions, direct evidence for this modulatory role on behavior is lacking. Using a disconnection procedure in rats, we found that basolateral amygdala (BLA) input to the core and medial shell of the NAc separately mediate two distinct incentive processes controlling the performance of goal-directed instrumental actions, respectively: (i) the sensitivity of instrumental responding to changes in the experienced value of the goal or outcome, produced by specific satiety-induced outcome devaluation; and (ii) the effect of reward-related cues on action selection, observed in outcome-specific Pavlovian-instrumental transfer. These results reveal, therefore, that dissociable neural circuits involving BLA inputs to the NAc core and medial shell mediate distinct components of the incentive motivational processes controlling choice and decision-making in instrumental conditioning.
Collapse
Affiliation(s)
- Michael W Shiflett
- Department of Psychology and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
141
|
Abstract
The endocannabinoid system has been implicated in the motivational effects of nicotine and nicotine-associated stimuli but the neural circuitry underlying tobacco addiction is not fully characterised. The present study aimed to establish a second-order schedule of nicotine reinforcement to compare the role of the endocannabinoid system in nicotine- and cue-maintained responding. The male rats were successfully trained to respond on a second-order schedule [FR5 (FR5: S) or FI 10' (FR3: S)] under which presentation of the CS (brief light oscillation) was intermittently reinforced by nicotine (0.03 mg/kg/infusion). The relative contribution of nicotine and the CS towards responding was then compared. Nicotine and the CS were only able to independently maintain responding to similar level under the [FI 10' (FR3: S)] schedule, which was subsequently employed to examine the effects of the selective CB1 receptor antagonist AM251. AM251 (0.1, 0.3 and 1 mg/kg, intraperitoneal [i.p.]) was used to examine the role of endocannabinoids in responding under the second-order schedule and responding maintained by independent presentation of nicotine and the CS. Responding under the second-order schedule was dose-dependently attenuated by AM251, whereas responding for independent presentation of nicotine and the CS was not affected. The establishment of second-order schedules of nicotine reinforcement in rodents highlighted the utility of such schedules for investigation of the neurobiology that underlies nicotine- and cue-maintained behaviour. Additionally, the role of CB1 receptors in nicotine-motivated behaviours was extended to those controlled under a second-order schedule.
Collapse
Affiliation(s)
- Victoria C Wing
- Psychobiology Research Laboratories, Institute of Neuroscience, Newcastle University, UK
| | | |
Collapse
|
142
|
Wing VC, Shoaib M. A second-order schedule of food reinforcement in rats to examine the role of CB1 receptors in the reinforcement-enhancing effects of nicotine. Addict Biol 2010; 15:380-92. [PMID: 20331564 DOI: 10.1111/j.1369-1600.2009.00203.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nicotine is believed to enhance the motivational value of reinforcers. Although endogenous cannabinoids acting on CB1 receptors have been implicated in the motivational effects of nicotine, their role in the 'reinforcement-enhancing' properties of nicotine is unknown. This study compared the effect of acute and chronic non-contingent nicotine administration on responding for an unconditioned reinforcing stimulus (UCS) and a visual conditioned stimulus (CS) and the role of CB1 receptors was examined. Male hooded Lister rats were trained on a second-order schedule [FI 15' (FR5: S)] under which presentation of the CS (5s/5Hz light oscillation) was intermittently reinforced by the UCS (food). The rats were treated with daily saline or nicotine (0.4 mg/kg, subcutaneous [s.c.]) throughout the study. The effect of the acute nicotine challenge (0.05, 0.1 and 0.2 mg/kg, s.c.) and the CB1 receptor antagonist AM251 (0.1, 0.3 and 1 mg/kg, intraperitoneal [i.p.]) on responding for the CS and/or UCS was examined. The acute nicotine challenge increased responding for both the UCS and CS in the rats chronically treated with nicotine, an effect which was less robust in the nicotine-naive rats. AM251 significantly reduced responding for the UCS and CS, and an interaction with the nicotine challenge was found. These data support and extend the hypothesis that nicotine can enhance the motivational value of reinforcing stimuli and suggest the increases in responding produced by nicotine involve CB1 receptors. Furthermore, this study highlights the utility of second-order schedules of reinforcement for investigation of the neural circuits underlying the reinforcement-enhancing effects of nicotine.
Collapse
MESH Headings
- Animals
- Appetitive Behavior/drug effects
- Appetitive Behavior/physiology
- Association Learning/drug effects
- Association Learning/physiology
- Brain/drug effects
- Brain/physiopathology
- Conditioning, Classical/drug effects
- Dose-Response Relationship, Drug
- Injections, Intraperitoneal
- Male
- Motivation/drug effects
- Motivation/physiology
- Nicotine/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Inbred Strains
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Reinforcement Schedule
- Tobacco Use Disorder/physiopathology
Collapse
Affiliation(s)
- Victoria C Wing
- Psychobiology Research Laboratories, Institute of Neuroscience, Newcastle University, UK
| | | |
Collapse
|
143
|
Vollstädt-Klein S, Wichert S, Rabinstein J, Bühler M, Klein O, Ende G, Hermann D, Mann K. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 2010; 105:1741-9. [PMID: 20670348 DOI: 10.1111/j.1360-0443.2010.03022.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS During the development of drug addiction, initial hedonic effects decrease when substance use becomes habitual and ultimately compulsive. Animal research suggests that these changes are represented by a transition from prefrontal cortical control to subcortical striatal control and within the striatum from ventral to dorsal domains of the striatum, but only limited evidence exists in humans. In this study we address this hypothesis in the context of alcohol dependence. DESIGN, SETTING AND PARTICIPANTS Non-abstinent heavy social drinkers (n = 21, 5.0 ± 1.5 drinks/day, 13 of them were alcohol-dependent according to DSM-IV) and light social drinkers (n = 10, 0.4 ± 0.4 drinks/day) were examined. MEASUREMENTS We used a cue-reactivity functional magnetic resonance imaging (fMRI) design during which pictures of alcoholic beverages and neutral control stimuli were presented. FINDINGS In the dorsal striatum heavy drinkers showed significant higher activations compared to light drinkers, whereas light social drinkers showed higher cue-induced fMRI activations in the ventral striatum and in prefrontal areas compared to heavy social drinkers [region of interest analyses, P < 0.05 false discovery rate (FDR)-corrected]. Correspondingly, ventral striatal activation in heavy drinkers correlated negatively with obsessive-compulsive craving, and furthermore we found a positive association between cue-induced activation in the dorsal striatum and obsessive-compulsive craving in all participants. CONCLUSIONS In line with our hypothesis we found higher cue-induced activation of the ventral striatum in social compared to heavy drinkers, and higher dorsal striatal activation in heavy drinkers. Increased prefrontal activation may indicate that social drinkers activate cortical control when viewing alcohol cues, which may prevent the development of heavy drinking or alcohol dependence. Our results suggest differentiating treatment research depending on whether alcohol use is hedonic or compulsive.
Collapse
Affiliation(s)
- Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
INTRODUCTION ADHD has a high comorbidity with substance use disorders (SUD). Both diseases have profound social, psychological, and economic consequences and are therefore highly relevant for health systems. The high comorbidity indicates some shared underlying neurobiological substrates. Knowing these substrates may increase the understanding of the disease and help identify therapeutic processes. METHOD Neuroimaging studies of ADHD were reviewed and similarities with SUD identified. For this a PubMed research was conducted with the search terms ADHD, SUD, MRI or positron emission tomography (PET) or spectroscopy or imaging. RESULTS Similarities were found, in both PET and fMRI studies, between patients with ADHD and those with addiction-related craving. Results from structural MRI and MR spectroscopy do not support a common pathophysiological background, probably because of the lack of studies on craving. DISCUSSION ADHD and SUD-related craving share some neurobiological similarities. One reason may be that patients with addiction show more craving when they also suffer from ADHD. The present review thus supports the conclusion from an earlier meta-analysis of clinical studies which found that adequate treatment of ADHD reduces craving and relapse into substance use.
Collapse
Affiliation(s)
- Thomas Frodl
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
145
|
Jones JL, Day JJ, Wheeler RA, Carelli RM. The basolateral amygdala differentially regulates conditioned neural responses within the nucleus accumbens core and shell. Neuroscience 2010; 169:1186-98. [PMID: 20570714 PMCID: PMC3206589 DOI: 10.1016/j.neuroscience.2010.05.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/12/2010] [Accepted: 05/28/2010] [Indexed: 11/25/2022]
Abstract
The ability to process information regarding reward-predictive cues involves a diverse network of neural substrates. Given the importance of the nucleus accumbens (NAc) and the basolateral amygdala (BLA) in associative reward processes, recent research has examined the functional importance of BLA-NAc interactions. Here, multi-neuron extracellular recordings of NAc neurons coupled to microinfusion of GABAA and GABAB agonists into the BLA were employed to determine the functional contribution of the BLA to phasic neural activity across the NAc core and shell during a cued-instrumental task. NAc neural response profiles prior to BLA inactivation exhibited largely indistinguishable activity across the core and shell. However, for NAc neurons that displayed cue-related increases in firing rates during the task, BLA inactivation significantly reduced this activity selectively in the core (not shell). Additionally, phasic increases in firing rate in the core (not shell) immediately following the lever press response were also significantly reduced following BLA manipulation. Concurrent with these neural changes, BLA inactivation caused a significant increase in latency to respond for rewards and a decrease in the percentage of trials in which animals made a conditioned approach to the cue. Together, these results suggest that an excitatory projection from the BLA provides a selective contribution to conditioned neural excitations of NAc core neurons during a cued-instrumental task, providing insight into the underlying neural circuitry that mediates responding to reward-predictive cues.
Collapse
Affiliation(s)
- Joshua L. Jones
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jeremy J. Day
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Robert A. Wheeler
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M. Carelli
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
146
|
Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers. PLoS One 2010; 5:e11509. [PMID: 20634975 PMCID: PMC2901385 DOI: 10.1371/journal.pone.0011509] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/16/2010] [Indexed: 12/03/2022] Open
Abstract
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction.
Collapse
|
147
|
Abstract
Environmental cues previously associated with reinforcing drugs can play a key role in relapse to drug seeking behaviors in humans. The mesocorticolimbic dopamine system plays a critical role in cocaine-induced neurobiological changes. Dopamine D1 and D3 receptors modulate locomotor-stimulant and positive reinforcing effects of cocaine, and cue-induced reinstatement of cocaine-seeking. Moreover, activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is regulated by both D1 and D3 receptors. How D1 and D3 receptors modulate the acquisition and extinction of cue-elicited cocaine seeking behavior and associated changes in the MAPK signaling pathway in different brain regions, however, remains unclear. In the present study, we found that D1 receptor mutant mice failed to acquire conditioned place preference (CPP) while D3 receptor mutant mice show delayed CPP extinction compared with wild-type mice. Moreover, ERK, but not the c-jun N-terminal kinase and p38, is activated in wild-type and D3 receptor mutant mice but not in D1 receptor mutant mice following CPP acquisition. D3 receptor mutant mice also exhibit sustained ERK activation compared with wild-type mice following extinction training. Our results suggest that D1 and D3 receptors differentially contribute to learned association between cues and the rewarding properties of cocaine by regulating, at least in part, ERK activation in specific areas of the brain.
Collapse
Affiliation(s)
- Liping Chen
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
148
|
Touzani K, Bodnar RJ, Sclafani A. Neuropharmacology of learned flavor preferences. Pharmacol Biochem Behav 2010; 97:55-62. [PMID: 20600253 DOI: 10.1016/j.pbb.2010.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/27/2010] [Accepted: 06/10/2010] [Indexed: 11/16/2022]
Abstract
Innate and learned flavor preferences influence food and fluid choices in animals. Two primary forms of learned preferences involve flavor-flavor and flavor-nutrient associations in which a particular flavor element (e.g., odor) is paired with an innately preferred flavor element (e.g., sweet taste) or with a positive post-oral nutrient consequence. This review summarizes recent findings related to the neurochemical basis of learned flavor preferences. Systemic and central injections of dopamine receptor antagonists implicate brain dopamine signaling in both flavor-flavor and flavor-nutrient conditioning by the taste and post-oral effects of sugars. Dopamine signaling in the nucleus accumbens, amygdala and lateral hypothalamus is involved in one or both forms of conditioning and selective effects are produced by D1-like and D2-like receptor antagonism. Opioid receptor antagonism, despite its suppressive action on sugar intake and reward, has little effect on the acquisition or expression of flavor preferences conditioned by the sweet taste or post-oral actions of sugars. Other studies indicate that flavor preference conditioning by sugars is differentially influenced by glutamate receptor antagonism, cannabinoid receptor antagonism and benzodiazepine receptor activation.
Collapse
Affiliation(s)
- Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, NY 11210, USA
| | | | | |
Collapse
|
149
|
Interaction of the rostral basolateral amygdala and prelimbic prefrontal cortex in regulating reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav 2010; 96:347-53. [PMID: 20600250 DOI: 10.1016/j.pbb.2010.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/12/2010] [Indexed: 11/21/2022]
Abstract
Previous findings in rats suggest that the rostral basolateral amygdala (rBLA) and prelimbic prefrontal cortex (plPFC) are likely components of cue reinstatement circuitry based on bilateral inactivation of each site alone. In the present investigation, we examined whether the rBLA and plPFC interact to regulate reinstatement of cocaine-seeking behavior elicited by reexposure to a combination of discrete and contextual cocaine-paired cues. After establishing stable baseline responding under a second-order schedule of cocaine reinforcement and cue presentation, rats underwent response-extinction training in which cocaine and cocaine-paired cues were withheld. To test the interaction, rats with asymmetric cannulae placements in the rBLA and plPFC received vehicle or lidocaine infusions prior to reinstatement testing during which cocaine-paired cues were presented, in the absence of cocaine availability, under a second-order schedule. Asymmetric inactivation of the rBLA and plPFC significantly attenuated reinstatement of cocaine-seeking behavior relative to vehicle treatment. As expected, inactivation of the rBLA or plPFC in rats with unilateral cannulae placements did not disrupt reinstatement relative to vehicle treatment. Findings propose critical intrahemispheric interaction between the rBLA and plPFC in regulating reinstatement of cocaine-seeking behavior elicited by reexposure to drug-paired cues.
Collapse
|
150
|
Jones JL, Day JJ, Aragona BJ, Wheeler RA, Wightman RM, Carelli RM. Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol Psychiatry 2010; 67:737-44. [PMID: 20044074 PMCID: PMC2849914 DOI: 10.1016/j.biopsych.2009.11.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/06/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Dopamine signaling in the nucleus accumbens (NAc) is essential for goal-directed behaviors and primarily arises from burst firing of ventral tegmental area neurons. However, the role of associative neural substrates such as the basolateral amygdala (BLA) in regulating phasic dopamine release in the NAc, particularly during reward seeking, remains unknown. METHODS Male Sprague-Dawley rats learned to discriminate two cues: a discriminative stimulus (DS) that predicted sucrose reinforcement contingent upon a lever press and a nonassociated stimulus (NS) that predicted a second lever never reinforced with sucrose. Following training, a test session was completed in which NAc dopamine was measured using fast-scan cyclic voltammetry in conjunction with inactivation of the ipsilateral BLA (gamma-aminobutyric acid agonists; baclofen/muscimol) to determine the contribution of BLA activity to dopamine release in the NAc core during the task. RESULTS Under vehicle conditions, DS and NS presentation elicited dopamine release within the NAc core. The DS evoked significantly more dopamine than the NS. Inactivation of the BLA selectively attenuated the magnitude of DS-evoked dopamine release, concurrent with an attenuation of DS-evoked conditioned approaches. Other behavioral responses (e.g., lever pressing) and dopamine release concomitant with those events were unaltered by BLA inactivation. Furthermore, neither ventral tegmental area electrically stimulated dopamine release nor the probability of high concentration dopamine release events was altered following BLA inactivation. CONCLUSIONS These results demonstrate that the BLA terminally modulates dopamine signals within the NAc core under specific, behaviorally relevant conditions, illustrating a functional mechanism by which the BLA selectively facilitates responding to motivationally salient environmental stimuli.
Collapse
Affiliation(s)
- Joshua L. Jones
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jeremy J. Day
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Brandon J. Aragona
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Robert A. Wheeler
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M. Carelli
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|