101
|
Fluid network dynamics in the prefrontal cortex during multiple strategy switching. Nat Commun 2018; 9:309. [PMID: 29358717 PMCID: PMC5778086 DOI: 10.1038/s41467-017-02764-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023] Open
Abstract
Coordinated shifts of neuronal activity in the prefrontal cortex are associated with strategy adaptations in behavioural tasks, when animals switch from following one rule to another. However, network dynamics related to multiple-rule changes are scarcely known. We show how firing rates of individual neurons in the prelimbic and cingulate cortex correlate with the performance of rats trained to change their navigation multiple times according to allocentric and egocentric strategies. The concerted population activity exhibits a stable firing during the performance of one rule but shifted to another neuronal firing state when a new rule is learnt. Interestingly, when the same rule is presented a second time within the same session, neuronal firing does not revert back to the original neuronal firing state, but a new activity-state is formed. Our data indicate that neuronal firing of prefrontal cortical neurons represents changes in strategy and task-performance rather than specific strategies or rules. Population activity of neurons in the prefrontal cortex has been shown to represent cognitive strategy and rules. Here the authors report that when the same rule is repeated on multiple occasions in the task, it is accompanied each time by a new prefrontal firing rate state.
Collapse
|
102
|
Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making. J Neurosci 2017; 37:10529-10540. [PMID: 29093055 DOI: 10.1523/jneurosci.1678-17.2017] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022] Open
Abstract
Rat orbitofrontal cortex (OFC) is located in the dorsal bank of the rhinal sulcus, and is divided into the medial orbital area, ventral orbital area, ventrolateral orbital area, lateral orbital area, dorsolateral orbital area, and agranular insular areas. Over the past 20 years, there has been a marked increase in the number of publications focused on the functions of rat OFC. While collectively this extensive body of work has provided great insight into the functions of OFC, leading to theoretical and computational models of its functions, one issue that has emerged relates to what is defined as OFC because targeting of this region can be quite variable between studies of appetitive behavior, even within the same species. Also apparent is that there is an oversampling and undersampling of certain subregions of rat OFC for study, and this will be demonstrated here. The intent of the Viewpoint is to summarize studies in rat OFC, given the diversity of what groups refer to as "OFC," and to integrate these with the findings of recent anatomical studies. The primary aim is to help discern functions in reward learning and decision-making, clearing the course for future empirical work.
Collapse
|
103
|
Shepard R, Beckett E, Coutellier L. Assessment of the acquisition of executive function during the transition from adolescence to adulthood in male and female mice. Dev Cogn Neurosci 2017; 28:29-40. [PMID: 29102727 PMCID: PMC6987909 DOI: 10.1016/j.dcn.2017.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Executive functions (EF) reached full maturity during the transition from adolescence to adulthood. Human studies provide important information about adolescent developmental trajectories; however, little remains known about the neural circuits underlying the acquisition of mature EF. Ethical and technical considerations with human subjects limit opportunities to design experimental studies that allows for an in-depth understanding of developmental changes in neural circuits that regulate cognitive maturation. Preclinical models can offer solutions to this problem. Unfortunately, current rodent models of adolescent development have inherent flaws that limit their translational value. For instance, females are often omitted from studies, preventing the assessment of potential sex-specific developmental trajectories. Furthermore, it remains unclear whether cognitive developmental changes in rodents are similar to those observed in humans. Here, we tested adolescent and adult male and female mice in a neurocognitive battery of assays. Based on this approach, we assessed mice performances within distinct subdomains of EF, and observed similarities with human developmental trajectories. Furthermore, the sex-specific cognitive changes we observed were paralleled by molecular and neural activity changes demonstrating that our approach can be used in future research to assess the contribution of precise neural circuits to adolescent cognitive maturation.
Collapse
Affiliation(s)
- Ryan Shepard
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Emily Beckett
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
104
|
Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol. Nutrients 2017; 9:nu9101080. [PMID: 28961168 PMCID: PMC5691697 DOI: 10.3390/nu9101080] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal ethanol exposure is associated with deficits in executive function such as working memory, reversal learning and attentional set shifting in humans and animals. These behaviors are dependent on normal structure and function in cholinergic brain regions. Supplementation with choline can improve many behaviors in rodent models of fetal alcohol spectrum disorders and also improves working memory function in normal rats. We tested the hypothesis that supplementation with choline in the postnatal period will improve working memory during adolescence in normal and ethanol-exposed animals, and that working memory engagement during adolescence will transfer to other cognitive domains and have lasting effects on executive function in adulthood. Male and female offspring of rats fed an ethanol-containing liquid diet (ET; 3% v/v) or control dams given a non-ethanol liquid diet (CT) were injected with choline (Cho; 100 mg/kg) or saline (Sal) once per day from postnatal day (P) 16–P30. Animals were trained/tested on a working memory test in adolescence and then underwent attentional set shifting and reversal learning in young adulthood. In adolescence, ET rats required more training to reach criterion than CT-Sal. Choline improved working memory performance for both CT and ET animals. In young adulthood, ET animals also performed poorly on the set shifting and reversal tasks. Deficits were more robust in ET male rats than female ET rats, but Cho improved performance in both sexes. ET male rats given a combination of Cho and working memory training in adolescence required significantly fewer trials to achieve criterion than any other ET group, suggesting that early interventions can cause a persistent improvement.
Collapse
|
105
|
Kuramoto E, Iwai H, Yamanaka A, Ohno S, Seki H, Tanaka YR, Furuta T, Hioki H, Goto T. Dorsal and ventral parts of thalamic nucleus submedius project to different areas of rat orbitofrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol 2017; 525:3821-3839. [DOI: 10.1002/cne.24306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Sachi Ohno
- Department of Dental Anesthesiology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Haruka Seki
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Yasuhiro R. Tanaka
- Department of Physiology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| |
Collapse
|
106
|
Adolescent binge ethanol exposure alters specific forebrain cholinergic cell populations and leads to selective functional deficits in the prefrontal cortex. Neuroscience 2017; 361:129-143. [PMID: 28807788 DOI: 10.1016/j.neuroscience.2017.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023]
Abstract
Adolescence has been identified as a vulnerable developmental time period during which exposure to drugs can have long-lasting, detrimental effects. Although adolescent binge-like ethanol (EtOH) exposure leads to a significant reduction in forebrain cholinergic neurons, EtOH's functional effect on acetylcholine (ACh) release during behavior has yet to be examined. Using an adolescent intermittent ethanol exposure model (AIE), rats were exposed to binge-like levels of EtOH from postnatal days (PD) 25 to 55. Three weeks following the final EtOH exposure, cholinergic functioning was assessed during a spontaneous alternation protocol. During maze testing, ACh levels increased in both the hippocampus and prefrontal cortex. However, selectively in the prefrontal cortex, AIE rats displayed reduced levels of behaviorally relevant ACh efflux. We found no treatment differences in spatial exploration, spatial learning, spatial reversal, or novel object recognition. In contrast, AIE rats were impaired during the first attentional set shift on an operant set-shifting task, indicative of an EtOH-mediated deficit in cognitive flexibility. A unique pattern of cholinergic cell loss was observed in the basal forebrain following AIE: Within the medial septum/diagonal band there was a selective loss (30%) of choline acetyltransferase (ChAT)-positive neurons that were nestin negative (ChAT+/nestin-); whereas in the Nucleus basalis of Meynert (NbM) there was a selective reduction (50%) in ChAT+/nestin+. These results indicate that early adolescent binge EtOH exposure leads to a long-lasting frontocortical functional cholinergic deficit, driven by a loss of ChAT+/nestin+ neurons in the NbM, which was associated with impaired cognitive flexibility during adulthood.
Collapse
|
107
|
Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability. Neuropsychopharmacology 2017; 42:1800-1812. [PMID: 28139680 PMCID: PMC5520780 DOI: 10.1038/npp.2017.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/03/2023]
Abstract
Alcohol abuse disorders are associated with dysfunction of frontal cortical areas including the orbitofrontal cortex (OFC). The OFC is extensively innervated by monoamines, and drugs that target monoamine receptors have been used to treat a number of neuropsychiatric diseases, including alcoholism. However, little is known regarding how monoamines affect OFC neuron excitability or whether this modulation is altered by chronic exposure to ethanol. In this study, we examined the effect of dopamine, norepinephrine, and serotonin on lOFC neuronal excitability in naive mice and in those exposed to chronic intermittent ethanol (CIE) treatment. All three monoamines decreased current-evoked spike firing of lOFC neurons and this action required Giα-coupled D2, α2-adrenergic, and 5HT1A receptors, respectively. Inhibition of firing by dopamine or the D2 agonist quinpirole, but not norepinephrine or serotonin, was prevented by the GABAA receptor antagonist picrotoxin. GABA-mediated tonic current was enhanced by dopamine or the D1 agonist SKF81297 but not quinpirole, whereas the amplitude of spontaneous IPSCs was increased by quinpirole but not dopamine. Spiking was also inhibited by the direct GIRK channel activator ML297, whereas blocking these channels with barium increased firing and eliminated the inhibitory actions of monoamines. In the presence of ML297 or the G-protein blocker GDP-β-S, DA induced a further decrease in spike firing, suggesting the involvement of a non-GIRK channel mechanism. In neurons from CIE-treated mice, spike frequency was nearly doubled and inhibition of firing by monoamines or ML297 was lost. These effects occurred in the absence of significant changes in expression of Gi/o or GIRK channel proteins. Together, these findings show that monoamines are important modulators of lOFC excitability and suggest that disruption of this process could contribute to various deficits associated with alcohol dependence.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Neuroscience, Medical University of South Carolina, 67 President Street, IOP456N, Charleston, SC 29425, USA, Tel: 843 792 5225, Fax: 843 792 7353, E-mail:
| |
Collapse
|
108
|
Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies. J Neurosci 2017; 37:8315-8329. [PMID: 28739583 DOI: 10.1523/jneurosci.1221-17.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 01/13/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) encode reward prediction errors and can drive reinforcement learning through their projections to striatum, but much less is known about their projections to prefrontal cortex (PFC). Here, we studied these projections and observed phasic VTA-PFC fiber photometry signals after the delivery of rewards. Next, we studied how optogenetic stimulation of these projections affects behavior using conditioned place preference and a task in which mice learn associations between cues and food rewards and then use those associations to make choices. Neither phasic nor tonic stimulation of dopaminergic VTA-PFC projections elicited place preference. Furthermore, substituting phasic VTA-PFC stimulation for food rewards was not sufficient to reinforce new cue-reward associations nor maintain previously learned ones. However, the same patterns of stimulation that failed to reinforce place preference or cue-reward associations were able to modify behavior in other ways. First, continuous tonic stimulation maintained previously learned cue-reward associations even after they ceased being valid. Second, delivering phasic stimulation either continuously or after choices not previously associated with reward induced mice to make choices that deviated from previously learned associations. In summary, despite the fact that dopaminergic VTA-PFC projections exhibit phasic increases in activity that are time locked to the delivery of rewards, phasic activation of these projections does not necessarily reinforce specific actions. Rather, dopaminergic VTA-PFC activity can control whether mice maintain or deviate from previously learned cue-reward associations.SIGNIFICANCE STATEMENT Dopaminergic inputs from ventral tegmental area (VTA) to striatum encode reward prediction errors and reinforce specific actions; however, it is currently unknown whether dopaminergic inputs to prefrontal cortex (PFC) play similar or distinct roles. Here, we used bulk Ca2+ imaging to show that unexpected rewards or reward-predicting cues elicit phasic increases in the activity of dopaminergic VTA-PFC fibers. However, in multiple behavioral paradigms, we failed to observe reinforcing effects after stimulation of these fibers. In these same experiments, we did find that tonic or phasic patterns of stimulation caused mice to maintain or deviate from previously learned cue-reward associations, respectively. Therefore, although they may exhibit similar patterns of activity, dopaminergic inputs to striatum and PFC can elicit divergent behavioral effects.
Collapse
|
109
|
Szlachta M, Pabian P, Kuśmider M, Solich J, Kolasa M, Żurawek D, Dziedzicka-Wasylewska M, Faron-Górecka A. Effect of clozapine on ketamine-induced deficits in attentional set shift task in mice. Psychopharmacology (Berl) 2017; 234:2103-2112. [PMID: 28405711 PMCID: PMC5486929 DOI: 10.1007/s00213-017-4613-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 01/26/2023]
Abstract
RATIONALE Clozapine (CLZ) is an effective treatment for schizophrenia, producing improvements in both negative symptoms and cognitive impairments. Cognitive impairments can be modelled in animals by ketamine (KET) and assessed using the attentional set-shift task (ASST). OBJECTIVE Our first aim was to determine whether CLZ improves cognitive function and reverses KET-induced cognitive impairments using the ASST. Our second aim was to assess dose dependency of these effects. RESULTS Our findings demonstrate that acute as well as sub-chronic administration of KET cause cognitive deficits observed as increase in number of trails and errors to reach the criterion in the EDS phase. CLZ 0.3 mg/kg reversed the effects of both acute and sub-chronic KET, with no effects on locomotor activity. However, clozapine's effect after sub-chronic administration of dose 0.3 mg/kg was not as explicit as in the case of acute treatment. Moreover, administration of 1 mg/kg CLZ to KET-treated mice induced or enhanced deficits in the extra-dimensional shift phase compared to 1 mg/kg CLZ administration to mice not receiving KET. Locomotor activity test showed sedation effects of CLZ 1 mg/kg after acute treatment; therefore, effect of CLZ 1 mg/kg on KET-induced cognitive deficits was not evaluated in the attentional set-shift task (ASST) test. CONCLUSIONS The present findings support dose-dependent effects of CLZ to reverse KET-induced cognitive deficits. The observed dose dependency may be mediated by activation of different receptors, including monomers and/or heterodimers.
Collapse
Affiliation(s)
- M Szlachta
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - P Pabian
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Kuśmider
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - J Solich
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Kolasa
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - D Żurawek
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Dziedzicka-Wasylewska
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Faron-Górecka
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| |
Collapse
|
110
|
Boomhower SR, Newland MC. Effects of adolescent exposure to methylmercury and d-amphetamine on reversal learning and an extradimensional shift in male mice. Exp Clin Psychopharmacol 2017; 25:64-73. [PMID: 28287789 PMCID: PMC5367946 DOI: 10.1037/pha0000107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adolescence is associated with the continued maturation of dopamine neurotransmission and is implicated in the etiology of many psychiatric illnesses. Adolescent exposure to neurotoxicants that distort dopamine neurotransmission, such as methylmercury (MeHg), may modify the effects of chronic d-amphetamine (d-AMP) administration on reversal learning and attentional-set shifting. Male C57Bl/6n mice were randomly assigned to two MeHg-exposure groups (0 ppm and 3 ppm) and two d-AMP-exposure groups (saline and 1 mg/kg/day), producing four treatment groups (n = 10-12/group): control, MeHg, d-AMP, and MeHg + d-AMP. MeHg exposure (via drinking water) spanned postnatal days 21-59 (the murine adolescent period), and once daily intraperitoneal injections of d-AMP or saline spanned postnatal days 28-42. As adults, mice were trained on a spatial-discrimination-reversal (SDR) task in which the spatial location of a lever press predicted reinforcement. Following 2 SDRs, a visual-discrimination task (extradimensional shift) was instated in which the presence of a stimulus light above a lever predicted reinforcement. Responding was modeled using a logistic function, which estimated the rate (slope) of a behavioral transition and trials required to complete half a transition (half-max). MeHg, d-AMP, and MeHg + d-AMP exposure increased estimates of half-max on the second reversal. MeHg exposure increased half-max and decreased the slope term following the extradimensional shift, but these effects did not occur following MeHg + d-AMP exposure. MeHg + d-AMP exposure produced more perseverative errors and omissions following a reversal. Adolescent exposure to MeHg can modify the behavioral effects of chronic d-AMP administration. (PsycINFO Database Record
Collapse
|
111
|
Hunsaker MR, Smith GK, Kesner RP. Adaptation of the Arizona Cognitive Task Battery for use with the Ts65Dn mouse model (Mus musculus) of Down syndrome. ACTA ACUST UNITED AC 2017; 131:189-206. [PMID: 28333487 DOI: 10.1037/com0000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We propose and validate a clear strategy to efficiently and comprehensively characterize neurobehavioral deficits in the Ts65Dn mouse model of Down syndrome. This novel approach uses neurocognitive theory to design and select behavioral tasks that test specific hypotheses concerning the results of Down syndrome. In this article, we model the Arizona Cognitive Task Battery, used to study human populations with Down syndrome, in Ts65Dn mice. We observed specific deficits for spatial memory, impaired long-term memory for visual objects, acquisition and reversal of motor responses, reduced motor dexterity, and impaired adaptive function as measured by nesting and anxiety tasks. The Ts65Dn mice showed intact temporal ordering, novelty detection, and visual object recognition with short delays. These results phenocopy the performance of participants with Down syndrome on the Arizona Cognitive Task Battery. This approach extends the utility of mouse models of Down syndrome by integrating the expertise of clinical neurology and cognitive neuroscience into the mouse behavioral laboratory. Further, by directly emphasizing the reciprocal translation of research between human disease states and the associated mouse models, we demonstrate that it is possible for both groups to mutually inform each other's research to more efficiently generate hypotheses and elucidate treatment strategies. (PsycINFO Database Record
Collapse
|
112
|
Qvist P, Rajkumar AP, Redrobe JP, Nyegaard M, Christensen JH, Mors O, Wegener G, Didriksen M, Børglum AD. Mice heterozygous for an inactivated allele of the schizophrenia associated Brd1 gene display selective cognitive deficits with translational relevance to schizophrenia. Neurobiol Learn Mem 2017; 141:44-52. [PMID: 28341151 DOI: 10.1016/j.nlm.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Schizophrenia is a debilitating brain disorder characterized by disturbances of emotion, perception and cognition. Cognitive impairments predict functional outcome in schizophrenia and are detectable even in the prodromal stage of the disorder. However, our understanding of the underlying neurobiology is limited and procognitive treatments remain elusive. We recently demonstrated that mice heterozygous for an inactivated allele of the schizophrenia-associated Brd1 gene (Brd1+/- mice) display behaviors reminiscent of schizophrenia, including impaired social cognition and long-term memory. Here, we further characterize performance of these mice by following the preclinical guidelines recommended by the 'Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)' and 'Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)' initiatives to maximize translational value. Brd1+/- mice exhibit relational encoding deficits, compromised working and long term memory, as well as impaired executive cognitive functioning with cognitive behaviors relying on medial prefrontal cortex being particularly affected. Akin to patients with schizophrenia, the cognitive deficits displayed by Brd1+/- mice are not global, but selective. Our results underline the value of Brd1+/- mice as a promising tool for studying the neurobiology of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Per Qvist
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; H. Lundbeck A/S, Synaptic Transmission, Valby, Denmark
| | - Anto P Rajkumar
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark.
| |
Collapse
|
113
|
Dickson PE, Cairns J, Goldowitz D, Mittleman G. Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience 2017; 345:99-109. [PMID: 27012612 PMCID: PMC5031514 DOI: 10.1016/j.neuroscience.2016.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Cognitive flexibility has traditionally been considered a frontal lobe function. However, converging evidence suggests involvement of a larger brain circuit which includes the cerebellum. Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological substrate through which the cerebellum may modulate higher cognitive functions, and it has been observed that cognitive inflexibility and cerebellar pathology co-occur in psychiatric disorders (e.g., autism, schizophrenia, addiction). However, the degree to which the cerebellum contributes to distinct forms of cognitive flexibility and rule learning is unknown. We tested lurcher↔wildtype aggregation chimeras which lose 0-100% of cerebellar Purkinje cells during development on a touchscreen-mediated attentional set-shifting task to assess the contribution of the cerebellum to higher and lower order rule learning and cognitive flexibility. Purkinje cells, the sole output of the cerebellar cortex, ranged from 0 to 108,390 in tested mice. Reversal learning and extradimensional set-shifting were impaired in mice with⩾95% Purkinje cell loss. Cognitive deficits were unrelated to motor deficits in ataxic mice. Acquisition of a simple visual discrimination and an attentional-set were unrelated to Purkinje cells. A positive relationship was observed between Purkinje cells and errors when exemplars from a novel, non-relevant dimension were introduced. Collectively, these data suggest that the cerebellum contributes to higher order cognitive flexibility, lower order cognitive flexibility, and attention to novel stimuli, but not the acquisition of higher and lower order rules. These data indicate that the cerebellar pathology observed in psychiatric disorders may underlie deficits involving cognitive flexibility and attention to novel stimuli.
Collapse
Affiliation(s)
- P E Dickson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States
| | - J Cairns
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - D Goldowitz
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - G Mittleman
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
114
|
Oikonomidis L, Santangelo AM, Shiba Y, Clarke FH, Robbins TW, Roberts AC. A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey. Dev Neurobiol 2017; 77:328-353. [PMID: 27589556 PMCID: PMC5412688 DOI: 10.1002/dneu.22446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
Some patients suffering from the same neuropsychiatric disorder may have no overlapping symptoms whilst others may share symptoms common to other distinct disorders. Therefore, the Research Domain Criteria initiative recognises the need for better characterisation of the individual symptoms on which to focus symptom-based treatment strategies. Many of the disorders involve dysfunction within the prefrontal cortex (PFC) and so the marmoset, due to their highly developed PFC and small size, is an ideal species for studying the neurobiological basis of the behavioural dimensions that underlie these symptoms.Here we focus on a battery of tests that address dysfunction spanning the cognitive (cognitive inflexibility and working memory), negative valence (fear generalisation and negative bias) and positive valence (anhedonia) systems pertinent for understanding disorders such as ADHD, Schizophrenia, Anxiety, Depression and OCD. Parsing the separable prefrontal and striatal circuits and identifying the selective neurochemical modulation (serotonin vs dopamine) that underlie cognitive dysfunction have revealed counterparts in the clinical domain. Aspects of the negative valence system have been explored both at individual- (trait anxiety and genetic variation in serotonin transporter) and circuit-based levels enabling the understanding of generalisation processes, negative biases and differential responsiveness to SSRIs. Within the positive valence system, the combination of cardiovascular and behavioural measures provides a framework for understanding motivational, anticipatory and consummatory aspects of anhedonia and their neurobiological mechanisms. Together, the direct comparison of experimental findings in marmosets with clinical studies is proving an excellent translational model to address the behavioural dimensions and neurobiology of neuropsychiatric symptoms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 328-353, 2017.
Collapse
Affiliation(s)
- Lydia Oikonomidis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - F Hannah Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| |
Collapse
|
115
|
Marquardt K, Sigdel R, Brigman JL. Touch-screen visual reversal learning is mediated by value encoding and signal propagation in the orbitofrontal cortex. Neurobiol Learn Mem 2017; 139:179-188. [PMID: 28111339 PMCID: PMC5372695 DOI: 10.1016/j.nlm.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022]
Abstract
Behavioral inflexibility is a common symptom of neuropsychiatric disorders which can have a major detrimental impact on quality of life. While the orbitofrontal cortex (OFC) has been strongly implicated in behavioral flexibility in rodents across paradigms, our understanding of how the OFC mediates these behaviors is rapidly adapting. Here we examined neuronal activity during reversal learning by coupling in vivo electrophysiological recording with a mouse touch-screen learning paradigm to further elucidate the role of the OFC in updating reward value. Single unit and oscillatory activity was recorded during well-learned discrimination and 3 distinct phases of reversal (early, chance and well-learned). During touch-screen performance, OFC neuronal firing tracked rewarded responses following a previous rewarded choice when behavior was well learned, but shifted to primarily track repeated errors following a previous error in early reversal. Spike activity tracked rewarded choices independent of previous trial outcome during chance reversal, and returned to the initial pattern of reward response at criterion. Analysis of spike coupling to oscillatory local field potentials showed that less frequently occurring behaviors had significantly fewer neurons locked to any oscillatory frequency. Together, these data support the role of the OFC in tracking the value of individual choices to inform future responses and suggests that oscillatory signaling may be involved in propagating responses to increase or decrease the likelihood that action is taken in the future. They further support the use of touch-screen paradigms in preclinical studies to more closely model clinical approaches to measuring behavioral flexibility.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Rahul Sigdel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States.
| |
Collapse
|
116
|
Driscoll LL. Response to Golub, Herr, and Sobin. Neurotoxicol Teratol 2017; 61:133. [PMID: 28188837 DOI: 10.1016/j.ntt.2017.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
|
117
|
Kuramoto E, Pan S, Furuta T, Tanaka YR, Iwai H, Yamanaka A, Ohno S, Kaneko T, Goto T, Hioki H. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol 2017; 525:166-185. [PMID: 27275581 DOI: 10.1002/cne.24054] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022]
Abstract
The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Shixiu Pan
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Yasuhiro R Tanaka
- Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Sachi Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
118
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
119
|
Quinolinic acid injection in mouse medial prefrontal cortex affects reversal learning abilities, cortical connectivity and hippocampal synaptic plasticity. Sci Rep 2016; 6:36489. [PMID: 27819338 PMCID: PMC5098239 DOI: 10.1038/srep36489] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Intracerebral injection of the excitotoxic, endogenous tryptophan metabolite, quinolinic acid (QA), constitutes a chemical model of neurodegenerative brain disease. Complementary techniques were combined to examine the consequences of QA injection into medial prefrontal cortex (mPFC) of C57BL6 mice. In accordance with the NMDAR-mediated synapto- and neurotoxic action of QA, we found an initial increase in excitability and an augmentation of hippocampal long-term potentiation, converting within two weeks into a reduction and impairment, respectively, of these processes. QA-induced mPFC excitotoxicity impaired behavioral flexibility in a reversal variant of the hidden-platform Morris water maze (MWM), whereas regular, extended MWM training was unaffected. QA-induced mPFC damage specifically affected the spatial-cognitive strategies that mice use to locate the platform during reversal learning. These behavioral and cognitive defects coincided with changes in cortical functional connectivity (FC) and hippocampal neuroplasticity. FC between various cortical regions was assessed by resting-state fMRI (rsfMRI) methodology, and mice that had received QA injection into mPFC showed increased FC between various cortical regions. mPFC and hippocampus (HC) are anatomically as well as functionally linked as part of a cortical network that controls higher-order cognitive functions. Together, these observations demonstrate the central functional importance of rodent mPFC as well as the validity of QA-induced mPFC damage as a preclinical rodent model of the early stages of neurodegeneration.
Collapse
|
120
|
Linley SB, Gallo MM, Vertes RP. Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Res 2016; 1649:110-122. [PMID: 27544424 PMCID: PMC5796786 DOI: 10.1016/j.brainres.2016.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
The nucleus reuniens (RE) of the ventral midline thalamus is strongly reciprocally connected with the hippocampus (HF) and the medial prefrontal cortex (mPFC) and has been shown to mediate the transfer of information between these structures. It has become increasingly well established that RE serves a critical role in mnemonic tasks requiring the interaction of the HF and mPFC, but essentially not tasks relying solely on the HF. Very few studies have addressed the independent actions of RE on prefrontal executive functioning. The present report examined the effects of lesions of the ventral midline thalamus, including RE and the dorsally adjacent rhomboid nucleus (RH) in rats on attention and behavioral flexibility using the attentional set shifting task (AST). The task uses odor and tactile stimuli to test for attentional set formation, attentional set shifting, behavioral flexibility and reversal learning. By comparison with sham controls, lesioned rats were significantly impaired on reversal learning and intradimensional (ID) set shifting. Specifically, RE/RH lesioned rats were impaired on the first reversal stage of the task which required a change in response strategy to select a previously non-rewarded stimulus for reward. RE/RH lesioned rats also exhibited deficits in the ability to transfer or generalize rules of the task which requires making the same modality-based choices (e.g., odor vs. tactile) to different sets of stimuli in the ID stage of the task. These results demonstrate that in addition to its role in tasks dependent on HF-mPFC interactions, nucleus reuniens is also critically involved cognitive/executive functions associated with the medial prefrontal cortex. As such, the deficits in the AST task produced by RE/RH lesions suggest the ventral midline thalamus directly contributes to flexible goal directed behavior.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States; Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Michelle M Gallo
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
121
|
Badanich KA, Fakih ME, Gurina TS, Roy EK, Hoffman JL, Uruena-Agnes AR, Kirstein CL. Reversal learning and experimenter-administered chronic intermittent ethanol exposure in male rats. Psychopharmacology (Berl) 2016; 233:3615-26. [PMID: 27518574 DOI: 10.1007/s00213-016-4395-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/23/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Chronic alcohol exposure is associated with impaired decision making skills, cognitive deficits, and poor performance on tasks requiring behavioral flexibility. Although oral routes of alcohol administration are commonly used to examine effects of alcohol on various behaviors in rodents, only a few investigations have used intragastric exposures to evaluate ethanol's effects on behavioral flexibility in the adult rat. OBJECTIVES The aim of the current series of experiments was to determine if behavioral flexibility impairments would be demonstrated across a variety of procedural factors, including route of administration [intraperitoneal injection (i.p.), intragastric gavage (i.g.)], ethanol dose (3-5 g/kg), number of daily exposures (once/day, twice/day), duration of exposure (2-6 weeks), or length of abstinence (5-7 days). METHODS Adult male Sprague-Dawley rats were exposed to chronic intermittent ethanol (CIE) or vehicle and evaluated for behavioral intoxication, blood ethanol concentrations (BEC), and performance on a reversal learning odor discrimination task. RESULTS While all rats displayed behavioral intoxication and elevated BECs, CIE i.p. rats had prolonged elevation in BECs and made the most errors during the reversal learning task. Unexpectedly, CIE i.g. exposures failed to produce deficits during reversal learning tasks regardless of ethanol dose, frequency/duration of exposure, or length of abstinence. CONCLUSIONS Behavioral flexibility deficits resulting from CIE i.p. exposures may be due to the severity and chronicity of alcohol intoxication. Elucidating the impact of ethanol on behavioral flexibility is critical for developing a better understanding of the behavioral consequences of chronic alcohol exposure.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Department of Psychology, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA.
| | - Mackinzie E Fakih
- Department of Psychology, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA
| | - Tatyana S Gurina
- Department of Psychology, University of South Florida, Tampa, FL, 33620, USA
| | - Emalie K Roy
- Department of Psychology, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA
| | - Jessica L Hoffman
- Department of Psychology, University of South Florida, Tampa, FL, 33620, USA
| | | | - Cheryl L Kirstein
- Department of Psychology, University of South Florida, Tampa, FL, 33620, USA.,Department of Physiology and Molecular Pharmacology, University of South Florida College of Medicine, Tampa, FL, 33620, USA
| |
Collapse
|
122
|
Fillinger C, Yalcin I, Barrot M, Veinante P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a' and 24b' in the mouse. Brain Struct Funct 2016; 222:1509-1532. [PMID: 27539453 DOI: 10.1007/s00429-016-1290-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
Abstract
Areas 24a and 24b of the anterior cingulate cortex (ACC) play a major role in cognition, emotion and pain. While their connectivity has been studied in primate and in rat, a complete mapping was still missing in the mouse. Here, we analyzed the afferents to the mouse ACC by injecting retrograde tracers in the ventral and dorsal areas of the ACC (areas 24a/b) and of the midcingulate cortex (MCC; areas 24a'/b'). Our results reveal inputs from five principal groups of structures: (1) cortical areas, mainly the orbital, medial prefrontal, retrosplenial, parietal associative, primary and secondary sensory areas and the hippocampus, (2) basal forebrain, mainly the basolateral amygdaloid nucleus, the claustrum and the horizontal limb of the diagonal band of Broca, (3) the thalamus, mainly the anteromedial, lateral mediodorsal, ventromedial, centrolateral, central medial and reuniens/rhomboid nuclei, (4) the hypothalamus, mainly the lateral and retromammillary areas, and (5) the brainstem, mainly the monoaminergic centers. The neurochemical nature of inputs from the diagonal band of Broca and brainstem centers was also investigated by double-labeling, showing that only a part of these afferents were cholinergic or monoaminergic. Comparisons between the areas indicate that areas 24a and 24b receive qualitatively similar inputs, but with different densities. These differences are more pronounced when comparing the inputs to ACC's areas 24a/24b to the inputs to MCC's areas 24a'/24b'. These results provide a complete analysis of the afferents to the mouse areas 24a/24b and 24a'/24b', which shows important similarity with the connectivity of homologous areas in rats, and brings the anatomical basis necessary to address the roles of cingulate areas in mice.
Collapse
Affiliation(s)
- Clémentine Fillinger
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France. .,Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
123
|
Park J, Moghaddam B. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience 2016; 345:193-202. [PMID: 27316551 DOI: 10.1016/j.neuroscience.2016.06.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Anxiety often is studied as a stand-alone construct in laboratory models. But in the context of coping with real-life anxiety, its negative impacts extend beyond aversive feelings and involve disruptions in ongoing goal-directed behaviors and cognitive functioning. Critical examples of cognitive constructs affected by anxiety are cognitive flexibility and decision making. In particular, anxiety impedes the ability to shift flexibly between strategies in response to changes in task demands, as well as the ability to maintain a strategy in the presence of distractors. The brain region most critically involved in behavioral flexibility is the prefrontal cortex (PFC), but little is known about how anxiety impacts PFC encoding of internal and external events that are critical for flexible behavior. Here we review animal and human neurophysiological and neuroimaging studies implicating PFC neural processing in anxiety-induced deficits in cognitive flexibility. We then suggest experimental and analytical approaches for future studies to gain a better mechanistic understanding of impaired cognitive inflexibility in anxiety and related disorders.
Collapse
Affiliation(s)
- Junchol Park
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bita Moghaddam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
124
|
The touchscreen operant platform for assessing cognitive functions in a rat model of depression. Physiol Behav 2016; 161:74-80. [PMID: 27083126 DOI: 10.1016/j.physbeh.2016.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022]
Abstract
In the present study we assessed alterations in cognitive functions in a chronic mild stress (CMS) rat model of depression. Cognitive functions were assessed in two different tasks applying the translational operant platform touchscreen technology; the visual discrimination/acquisition task was used to assess the ability to perceive and distinguish visual stimuli and to assess associative stimulus-reward learning. The visual discrimination/reversal learning task was used to assess functional brain plasticity or reprogramming of previously acquired stimulus-reward associations. These tasks permit the dissociation of multiple cognitive domains. The CMS model is a validated depression model with the useful feature that rats upon stress exposure show a graduated, individual stress response allowing the segregation of rats into different phenotypes including stress-resilient and anhedonic-like subgroups. Anhedonic-like rats are less likely to acquire the pairwise discrimination task, and they have a slower acquisition rate than controls. In the reversal learning task, resilient rats performed significantly better than anhedonic-like rats over time and 50% passed criterion as opposed to 25% for controls and only 14% for anhedonic-like rats. This indicates that resilient rats have higher cognitive flexibility than anhedonic-like rats. Thus they perform better in learning a novel task, which at the same time potentially implies an increased ability to inhibit previously rewarded behavior.
Collapse
|
125
|
Effects of stress on behavioral flexibility in rodents. Neuroscience 2016; 345:176-192. [PMID: 27066767 DOI: 10.1016/j.neuroscience.2016.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Abstract
Cognitive flexibility is the ability to switch between different rules or concepts and behavioral flexibility is the overt physical manifestation of these shifts. Behavioral flexibility is essential for adaptive responses and commonly measured by reversal learning and set-shifting performance in rodents. Both tasks have demonstrated vulnerability to stress with effects dependent upon stressor type and number of repetitions. This review compares the effects of stress on reversal learning and set-shifting to provide insight into the differential effect of stress on cognition. Acute and short-term repetition of stress appears to facilitate reversal learning whereas the longer term repetition of stress impairs reversal learning. Stress facilitated intradimensional set-shifting within a single, short-term stress protocol but otherwise generally impaired set-shifting performance in acute and repeated stress paradigms. Chronic unpredictable stress impairs reversal learning and set-shifting whereas repeated cold intermittent stress selectively impairs reversal learning and has no effect on set-shifting. In considering the mechanisms underlying the effects of stress on behavioral flexibility, pharmacological manipulations performed in conjunction with stress are also reviewed. Blocking corticosterone receptors does not affect the facilitation of reversal learning following acute stress but the prevention of corticosterone synthesis rescues repeated stress-induced set-shifting impairment. Enhancing post-synaptic norepinephrine function, serotonin availability, and dopamine receptor activation rescues and/or prevents behavioral flexibility performance following stress. While this review highlights a lack of a standardization of stress paradigms, some consistent effects are apparent. Future studies are necessary to specify the mechanisms underlying the stress-induced impairments of behavioral flexibility, which will aid in alleviating these symptoms in patients with some psychiatric disorders.
Collapse
|
126
|
den Hartog C, Zamudio-Bulcock P, Nimitvilai S, Gilstrap M, Eaton B, Fedarovich H, Motts A, Woodward JJ. Inactivation of the lateral orbitofrontal cortex increases drinking in ethanol-dependent but not non-dependent mice. Neuropharmacology 2016; 107:451-459. [PMID: 27016020 DOI: 10.1016/j.neuropharm.2016.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/05/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
Abstract
Long-term consumption of ethanol affects cortical areas that are important for learning and memory, cognition, and decision-making. Deficits in cortical function may contribute to alcohol-abuse disorders by impeding an individual's ability to control drinking. Previous studies from this laboratory show that acute ethanol reduces activity of lateral orbitofrontal cortex (LOFC) neurons while chronic exposure impairs LOFC-dependent reversal learning and induces changes in LOFC excitability. Despite these findings, the role of LOFC neurons in ethanol consumption is unknown. To address this issue, we examined ethanol drinking in adult C57Bl/6J mice that received an excitotoxic lesion or viral injection of the inhibitory DREADD (designer receptor exclusively activated by designer drug) into the LOFC. No differences in ethanol consumption were observed between sham and lesioned mice during access to increasing concentrations of ethanol (3-40%) every other day for 7 weeks. Adulterating the ethanol solution with saccharin (0.2%) or quinine (0.06 mM) enhanced or inhibited, respectively, consumption of the 40% ethanol solution similarly in both groups. Using a chronic intermittent ethanol (CIE) vapor exposure model that produces dependence, we found no difference in baseline drinking between sham and lesioned mice prior to vapor treatments. CIE enhanced drinking in both groups as compared to air-treated animals and CIE treated lesioned mice showed an additional increase in ethanol drinking as compared to CIE sham controls. This effect persisted during the first week when quinine was added to the ethanol solution but consumption decreased to control levels in CIE lesioned mice in the following 2 weeks. In viral injected mice, baseline drinking was not altered by expression of the inhibitory DREADD receptor and repeated cycles of CIE exposure enhanced drinking in DREADD and virus control groups. Consistent with the lesion study, treatment with clozapine-N-oxide (CNO) further enhanced consumption only in CIE exposed DREADD mice with no change in air-treated mice. These results suggest that the LOFC is not critical for the initiation and maintenance of ethanol drinking in non-dependent mice, but may regulate the escalated drinking observed during dependence.
Collapse
Affiliation(s)
- Carolina den Hartog
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paula Zamudio-Bulcock
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Meghin Gilstrap
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bethany Eaton
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hleb Fedarovich
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew Motts
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
127
|
Park J, Wood J, Bondi C, Del Arco A, Moghaddam B. Anxiety Evokes Hypofrontality and Disrupts Rule-Relevant Encoding by Dorsomedial Prefrontal Cortex Neurons. J Neurosci 2016; 36:3322-35. [PMID: 26985040 PMCID: PMC4792942 DOI: 10.1523/jneurosci.4250-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/05/2023] Open
Abstract
Anxiety is a debilitating symptom of most psychiatric disorders, including major depression, post-traumatic stress disorder, schizophrenia, and addiction. A detrimental aspect of anxiety is disruption of prefrontal cortex (PFC)-mediated executive functions, such as flexible decision making. Here we sought to understand how anxiety modulates PFC neuronal encoding of flexible shifting between behavioral strategies. We used a clinically substantiated anxiogenic treatment to induce sustained anxiety in rats and recorded from dorsomedial PFC (dmPFC) and orbitofrontal cortex (OFC) neurons while they were freely moving in a home cage and while they performed a PFC-dependent task that required flexible switches between rules in two distinct perceptual dimensions. Anxiety elicited a sustained background "hypofrontality" in dmPFC and OFC by reducing the firing rate of spontaneously active neuronal subpopulations. During task performance, the impact of anxiety was subtle, but, consistent with human data, behavior was selectively impaired when previously correct conditions were presented as conflicting choices. This impairment was associated with reduced recruitment of dmPFC neurons that selectively represented task rules at the time of action. OFC rule representation was not affected by anxiety. These data indicate that a neural substrate of the decision-making deficits in anxiety is diminished dmPFC neuronal encoding of task rules during conflict-related actions. Given the translational relevance of the model used here, the data provide a neuronal encoding mechanism for how anxiety biases decision making when the choice involves overcoming a conflict. They also demonstrate that PFC encoding of actions, as opposed to cues or outcome, is especially vulnerable to anxiety. SIGNIFICANCE STATEMENT A debilitating aspect of anxiety is its impact on decision making and flexible control of behavior. These cognitive constructs depend on proper functioning of the prefrontal cortex (PFC). Understanding how anxiety affects PFC encoding of cognitive events is of great clinical and evolutionary significance. Using a clinically valid experimental model, we find that, under anxiety, decision making may be skewed by salient and conflicting environmental stimuli at the expense of flexible top-down guided choices. We also find that anxiety suppresses spontaneous activity of PFC neurons, and weakens encoding of task rules by dorsomedial PFC neurons. These data provide a neuronal encoding scheme for how anxiety disengages PFC during decision making.
Collapse
Affiliation(s)
- Junchol Park
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jesse Wood
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Corina Bondi
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Alberto Del Arco
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bita Moghaddam
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
128
|
Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: An updated perspective. Neuroscience 2016; 345:12-26. [PMID: 26979052 DOI: 10.1016/j.neuroscience.2016.03.021] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/21/2023]
Abstract
Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as a heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principal neurotransmitter systems involved.
Collapse
Affiliation(s)
- A Izquierdo
- Department of Psychology, The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - J L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A K Radke
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - P H Rudebeck
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10014, USA
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
129
|
Chou A, Morganti JM, Rosi S. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior. PLoS One 2016; 11:e0151418. [PMID: 26964036 PMCID: PMC4786257 DOI: 10.1371/journal.pone.0151418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.
Collapse
Affiliation(s)
- Austin Chou
- Brain and Spinal Injury Center, University of California, San Francisco, CA, United States of America
- Neuroscience Graduate Program, University of California, San Francisco, CA, United States of America
- Department of Physical Therapy Rehabilitation Science, University of California, San Francisco, CA, United States of America
| | - Josh M. Morganti
- Brain and Spinal Injury Center, University of California, San Francisco, CA, United States of America
- Department of Physical Therapy Rehabilitation Science, University of California, San Francisco, CA, United States of America
| | - Susanna Rosi
- Brain and Spinal Injury Center, University of California, San Francisco, CA, United States of America
- Neuroscience Graduate Program, University of California, San Francisco, CA, United States of America
- Department of Physical Therapy Rehabilitation Science, University of California, San Francisco, CA, United States of America
- Department of Neurological Surgery, University of California, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
130
|
Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol 2016; 51:1-15. [PMID: 26992695 DOI: 10.1016/j.alcohol.2015.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD.
Collapse
|
131
|
Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol. Neuropsychopharmacology 2016; 41:1112-27. [PMID: 26286839 PMCID: PMC4748436 DOI: 10.1038/npp.2015.250] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
132
|
Shiba Y, Santangelo AM, Roberts AC. Beyond the Medial Regions of Prefrontal Cortex in the Regulation of Fear and Anxiety. Front Syst Neurosci 2016; 10:12. [PMID: 26941618 PMCID: PMC4761915 DOI: 10.3389/fnsys.2016.00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/04/2016] [Indexed: 12/28/2022] Open
Abstract
Fear and anxiety are adaptive responses but if left unregulated, or inappropriately regulated, they become biologically and socially maladaptive. Dysregulated emotions are manifest in a wide variety of psychiatric and neurological conditions but the external expression gives little indication of the underlying causes, which are inevitably multi-determined. To go beyond the overt phenotype and begin to understand the causal mechanisms leading to conditions characterized by anxiety and disorders of mood, it is necessary to identify the base psychological processes that have become dysregulated, and map them on to their associated neural substrates. So far, attention has been focused primarily on the medial regions of prefrontal cortex (PFC) and in particular their contribution to the expression and extinction of conditioned fear. However, functional neuroimaging studies have shown that the sphere of influence within the PFC is not restricted to its medial regions, but extends into dorsal, ventrolateral (vlPFC) and orbitofrontal (OFC) regions too; although the causal role of these other areas in the regulation of fear and anxiety remains to be determined and in the case of the OFC, existing findings are conflicting. Here, we review the evidence for the contribution of these other regions in negative emotion regulation in rodents and old world and new world monkeys. We consider a variety of different contexts, including conditioned and innate fear, learned and unlearned anxiety and cost-benefit decision-making, and a range of physiological and behavioral measures of emotion. It is proposed that both the OFC and vlPFC contribute to emotion regulation via their involvement, respectively, in the prediction of future outcomes and higher-order attentional control. The fractionation of these neurocognitive and neurobehavioral systems that regulate fear and anxiety opens up new opportunities for diagnostic stratification and personalized treatment strategies.
Collapse
Affiliation(s)
- Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| | - Andrea M. Santangelo
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| | - Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| |
Collapse
|
133
|
Baker PM, Raynor SA, Francis NT, Mizumori SJY. Lateral habenula integration of proactive and retroactive information mediates behavioral flexibility. Neuroscience 2016; 345:89-98. [PMID: 26876779 DOI: 10.1016/j.neuroscience.2016.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
The lateral habenula (LHb) is known to play an important role in signaling aversive or adverse events that have happened or are predicted by cues under Pavlovian conditions. In rodents, it is also required for behavioral flexibility when changes in reward outcomes signal that strategies should be changed. It is not known whether the LHb also controls appetitive behaviors when an animal is able to utilize external cues proactively to guide upcoming decisions. In order to test this, male Long-Evans rats were trained to switch between two arms of a figure eight maze based on the tone presented prior to the choice. Importantly, the tones were switched every three to six trials so rats were able establish a response pattern before being required to switch. This caused rats to rely on both proactive (tones) and retroactive information (reward feedback) to guide behavior. Inactivation of the LHb with the GABA agonists baclofen and muscimol impaired overall performance by increasing both errors when the tones are switched (switch errors) as well as on subsequent trials (perseverative errors) indicating that both proactive and retroactive information are utilized by the LHb to guide behavioral flexibility. Once a correct choice was made in a given block, LHb inactivated rats did not make more errors than controls. A control study revealed that the LHb is not required for tone or reward magnitude discrimination per se. These results demonstrate for the first time that the LHb contributes to behavioral flexibility through utilizing both proactive and retroactive information when performing appetitive tasks.
Collapse
Affiliation(s)
- P M Baker
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - S A Raynor
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - N T Francis
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - S J Y Mizumori
- Department of Psychology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
134
|
Neurophysiology of rule switching in the corticostriatal circuit. Neuroscience 2016; 345:64-76. [PMID: 26851774 DOI: 10.1016/j.neuroscience.2016.01.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/06/2023]
Abstract
The ability to adjust behavioral responses to cues in a changing environment is crucial for survival. Activity in the medial Prefrontal Cortex (mPFC) is thought to both represent rules to guide behavior as well as detect and resolve conflicts between rules in changing contingencies. While lesion and pharmacological studies have supported a crucial role for mPFC in this type of set-shifting, an understanding of how mPFC represents current rules or detects and resolves conflict between different rules is still unclear. Meanwhile, medial dorsal striatum (mDS) receives major projections from mPFC and neural activity of mDS is closely linked to action selection, making the mDS a potential major player for enacting rule-guided action policies. However, exactly what is signaled by mPFC and how this impacts neural signals in mDS is not well known. In this review, we will summarize what is known about neural signals of rules and set shifting in both prefrontal cortex and dorsal striatum, as well as provide questions and directions for future experiments.
Collapse
|
135
|
Abstract
Alterations in executive control and cognitive flexibility, such as attentional set-shifting abilities, are core features of several neuropsychiatric diseases. The most widely used neuropsychological tests for the evaluation of attentional set-shifting in human subjects are the Wisconsin Card Sorting Test (WCST) and the CANTAB Intra-/Extra-dimensional set shift task (ID/ED). These tasks have proven clinical relevance and have been modified and successfully adapted for research in animal models. However, currently available tasks for rodents present several limitations, mainly due to their manual-based testing procedures, which are hampering translational advances in psychiatric medicine. To overcome these limitations and to better mimic the original version in primates, we present the development of a novel operant-based two-chamber ID/ED "Operon" task for rodents. We demonstrated the effectiveness of this novel task to measure different facets of cognitive flexibility in mice including attentional set formation and shifting, and reversal learning. Moreover, we show the high flexibility of this task in which three different perceptual dimensions can be manipulated with a high number of stimuli cues for each dimension. This novel ID/ED Operon task can be an effective preclinical tool for drug testing and/or large genetic screening relevant to the study of executive dysfunction and cognitive symptoms found in psychiatric disorders.
Collapse
Affiliation(s)
- Diego Scheggia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia;
| |
Collapse
|
136
|
Hvoslef-Eide M, Nilsson SRO, Saksida LM, Bussey TJ. Cognitive Translation Using the Rodent Touchscreen Testing Approach. Curr Top Behav Neurosci 2016; 28:423-447. [PMID: 27305921 DOI: 10.1007/7854_2015_5007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of novel therapeutic avenues for the treatment of cognitive deficits in psychiatric and neurodegenerative disease is of high importance, yet progress in this field has been slow. One reason for this lack of success may lie in discrepancies between how cognitive functions are assessed in experimental animals and humans. In an attempt to bridge this translational gap, the rodent touchscreen testing platform is suggested as a translational tool. Specific examples of successful cross-species translation are discussed focusing on paired associate learning (PAL), the 5-choice serial reaction time task (5-CSRTT), the rodent continuous performance task (rCPT) and reversal learning. With ongoing research assessing the neurocognitive validity of tasks, the touchscreen approach is likely to become increasingly prevalent in translational cognitive research.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
137
|
Yao ZH, Kang X, Yang L, Niu Y, Lu Y, Nie L. PBA regulates neurogenesis and cognition dysfunction after repeated electroconvulsive shock in a rat model. Psychiatry Res 2015; 230:331-40. [PMID: 26381183 DOI: 10.1016/j.psychres.2015.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 12/23/2022]
Abstract
Electroconvulsive therapy (ECT) was widely used to treat the refractory depression. But ECT led to the cognitive deficits plaguing the depression patients. The underlying mechanisms of the cognitive deficits remain elusive. Repeated electroconvulsive shock (rECS) was used to simulate ECT and explore the mechanisms of ECT during the animal studies. Previous studies showed rECS could lead to neurogenesis and cognitive impairment. But it was well known that neurogenesis could improve the cognition. So these suggested that the mechanism of the cognitive deficit after rECS was very complex. In present study, we explored the probable mechanisms of the cognitive deficit after rECS from neurogenesis aspect. We found the cognitive deficit was reversible and neurogenesis could bring a long-term beneficial effect on cognition. Astrogliosis and NR1 down-regulation probably participated in the reversible cognitive deficits after rECS. Phenylbutyric acid (PBA), generally as an agent to investigate the roles of histone acetylation, could prevent the reversible cognitive dysfunction, but PBA could diminish the long-term effect of enhanced cognition by rECS. These suggested that ECT could possibly bring the long-term beneficial cognitive effect by regulating neurogenesis.
Collapse
Affiliation(s)
- Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan 430060, China; Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Kang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Lu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Nie
- Department of Geriatrics, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
138
|
Thompson SM, Josey M, Holmes A, Brigman JL. Conditional loss of GluN2B in cortex and hippocampus impairs attentional set formation. Behav Neurosci 2015; 129:105-12. [PMID: 25798630 DOI: 10.1037/bne0000045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to attend to appropriate stimuli, to plan actions and then alter those actions when environmental conditions change, is essential for an organism to thrive. There is increasing evidence that these executive control processes are mediated in part by N-methyl-D-aspartate receptors (NMDAR). NMDAR subunits confer different physiological properties to the receptor, interact with distinct intracellular postsynaptic scaffolding and signaling molecules and are differentially expressed during development. Recent findings have suggested that the GluN2B subunit may play a unique role in both the acquisition of adaptive choice and the behavioral flexibility required to shift between choices. Here we investigated the role of GluN2B containing NMDARs in the ability to learn, reverse and shift between stimulus dimensions. Mutant mice (floxed-GluN2B x CaMKII-Cre) lacking GluN2B in the dorsal CA1 of the hippocampus and throughout the cortex were tested on an attentional set-shifting task. To explore the role that alterations in motor behavior may have on these behaviors, gross and fine motor behaviors were analyzed in mutant and floxed-control mice. Results show that corticohippocampal loss of GluN2B selectively impaired an initial reversal in a stimulus specific manner and impaired the ability of mutant mice to form an attentional set. Further, GluN2B mice showed normal motor behavior in both overall movement and individual limb behaviors. Together, these results further support the role of NMDAR, and GluN2B in particular, in aspects of executive control including behavioral flexibility and attentional processes.
Collapse
Affiliation(s)
- Shannon M Thompson
- Department of Neurosciences, University of New Mexico School of Medicine
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institutes of Health
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine
| |
Collapse
|
139
|
Yang M, Lewis FC, Sarvi MS, Foley GM, Crawley JN. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks. Learn Mem 2015; 22:622-32. [PMID: 26572653 PMCID: PMC4749736 DOI: 10.1101/lm.039602.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 01/25/2023]
Abstract
Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/−) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/− mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/−, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/− mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey–Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/− mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/− failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/−. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/− mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome.
Collapse
Affiliation(s)
- Mu Yang
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Freeman C Lewis
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Michael S Sarvi
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Gillian M Foley
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Jacqueline N Crawley
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| |
Collapse
|
140
|
Janitzky K, Lippert MT, Engelhorn A, Tegtmeier J, Goldschmidt J, Heinze HJ, Ohl FW. Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task. Front Behav Neurosci 2015; 9:286. [PMID: 26582980 PMCID: PMC4631833 DOI: 10.3389/fnbeh.2015.00286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
The locus coeruleus (LC) is the sole source of noradrenergic projections to the cortex and essential for attention-dependent cognitive processes. In this study we used unilateral optogenetic silencing of the LC in an attentional set-shifting task (ASST) to evaluate the influence of the LC on prefrontal cortex-dependent functions in mice. We expressed the halorhodopsin eNpHR 3.0 to reversibly silence LC activity during task performance, and found that silencing selectively impaired learning of those parts of the ASST that most strongly rely on cognitive flexibility. In particular, extra-dimensional set-shifting (EDS) and reversal learning was impaired, suggesting an involvement of the medial prefrontal cortex (mPFC) and the orbitofrontal cortex. In contrast, those parts of the task that are less dependent on cognitive flexibility, i.e., compound discrimination (CD) and the intra-dimensional shifts (IDS) were not affected. Furthermore, attentional set formation was unaffected by LC silencing. Our results therefore suggest a modulatory influence of the LC on cognitive flexibility, mediated by different frontal networks.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, University of Magdeburg Magdeburg, Germany ; Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Michael T Lippert
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Achim Engelhorn
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Jennifer Tegtmeier
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Jürgen Goldschmidt
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, University of Magdeburg Magdeburg, Germany ; Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Frank W Ohl
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Systems Physiology, Institute of Biology, University of Magdeburg Magdeburg, Germany
| |
Collapse
|
141
|
Alsiö J, Nilsson SRO, Gastambide F, Wang RAH, Dam SA, Mar AC, Tricklebank M, Robbins TW. The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study. Psychopharmacology (Berl) 2015; 232:4017-31. [PMID: 26007324 PMCID: PMC4600472 DOI: 10.1007/s00213-015-3963-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/07/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE Reversal learning requires associative learning and executive functioning to suppress non-adaptive responding. Reversal-learning deficits are observed in e.g. schizophrenia and obsessive-compulsive disorder and implicate neural circuitry including the orbitofrontal cortex (OFC). Serotonergic function has been strongly linked to visual reversal learning in humans and experimental animals but less is known about which receptor subtypes are involved. OBJECTIVES The objectives of the study were to test the effects of systemic and intra-OFC 5-HT2C-receptor antagonism on visual reversal learning in rats and assess the psychological mechanisms underlying these effects within novel touchscreen paradigms. METHODS In experiments 1-2, we used a novel 3-stimulus task to investigate the effects of 5-HT2C-receptor antagonism through SB 242084 (0.1, 0.5 and 1.0 mg/kg i.p.) cross-site. Experiment 3 assessed the effects of SB 242084 in 2-choice reversal learning. In experiment 4, we validated a novel touchscreen serial visual reversal task suitable for neuropharmacological microinfusions by baclofen-/muscimol-induced OFC inactivation. In experiment 5, we tested the effect of intra-OFC SB 242084 (1.0 or 3.0 μg/side) on performance in this task. RESULTS In experiments 1-3, SB 242084 reduced early errors but increased late errors to criterion. In experiment 5, intra-OFC SB 242084 reduced early errors without increasing late errors in a reversal paradigm validated as OFC dependent (experiment 4). CONCLUSION Intra-OFC 5-HT2C-receptor antagonism decreases perseveration in novel touchscreen reversal-learning paradigms for the rat. Systemic 5-HT2C-receptor antagonism additionally impairs late learning-a robust effect observed cross-site and potentially linked to impulsivity. These conclusions are discussed in terms of neural mechanisms underlying reversal learning and their relevance to psychiatric disorders.
Collapse
Affiliation(s)
- J Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, Uppsala, SE-75124, Sweden.
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - F Gastambide
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd., Erl Wood Manor, Windlesham, GU20 6PH, UK
| | - R A H Wang
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - S A Dam
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - A C Mar
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - M Tricklebank
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd., Erl Wood Manor, Windlesham, GU20 6PH, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
142
|
Hvoslef-Eide M, Mar AC, Nilsson SRO, Alsiö J, Heath CJ, Saksida LM, Robbins TW, Bussey TJ. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26202612 DOI: 10.1007/s00213-015-4007-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - A C Mar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, 10016, USA
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, 75124, Uppsala, Sweden
| | - C J Heath
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
143
|
McAllister KAL, Mar AC, Theobald DE, Saksida LM, Bussey TJ. Comparing the effects of subchronic phencyclidine and medial prefrontal cortex dysfunction on cognitive tests relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26194915 DOI: 10.1007/s00213-015-4018-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE It is becoming increasingly clear that the development of treatments for cognitive symptoms of schizophrenia requires urgent attention, and that valid animal models of relevant impairments are required. With subchronic psychotomimetic agent phencyclidine (scPCP), a putative model of such impairment, the extent to which changes following scPCP do or do not resemble those following dysfunction of the prefrontal cortex is of importance. OBJECTIVES The present study carried out a comparison of the most common scPCP dosing regimen with excitotoxin-induced medial prefrontal cortex (mPFC) dysfunction in rats, across several cognitive tests relevant to schizophrenia. METHODS ScPCP subjects were dosed intraperitoneal with 5 mg/kg PCP or vehicle twice daily for 1 week followed by 1 week washout prior to behavioural testing. mPFC dysfunction was induced via fibre-sparing excitotoxin infused into the pre-limbic and infralimbic cortex. Subjects were tested on spontaneous novel object recognition, touchscreen object-location paired-associates learning and touchscreen reversal learning. RESULTS A double-dissociation was observed between object-location paired-associates learning and object recognition: mPFC dysfunction impaired acquisition of the object-location task but not spontaneous novel object recognition, while scPCP impaired spontaneous novel object recognition but not object-location associative learning. Both scPCP and mPFC dysfunction resulted in a similar facilitation of reversal learning. CONCLUSIONS The pattern of impairment following scPCP raises questions around its efficacy as a model of cognitive impairment in schizophrenia, particularly if importance is placed on faithfully replicating the effects of mPFC dysfunction.
Collapse
Affiliation(s)
- K A L McAllister
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK. .,, 20 Manchester Sq., London, W1U 3PZ, UK.
| | - A C Mar
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - D E Theobald
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
144
|
Thomas AW, Caporale N, Wu C, Wilbrecht L. Early maternal separation impacts cognitive flexibility at the age of first independence in mice. Dev Cogn Neurosci 2015; 18:49-56. [PMID: 26531108 PMCID: PMC4834230 DOI: 10.1016/j.dcn.2015.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
MS mice tested in 4-choice task as juveniles are less flexible than littermates. MS mice tested in adulthood in 4-choice paradigm do not differ from littermates. MS mice showed greater ethanol consumption compared to littermates in adulthood.
Early life adversity is associated with increased risk for mental and physical health problems, including substance abuse. Changes in neural development caused by early life insults could cause or complicate these conditions. Maternal separation (MS) is a model of early adversity for rodents. Clear effects of MS have been shown on behavioral flexibility in rats, but studies of effects of MS on cognition in mice have been mixed. We hypothesized that previous studies focused on adult mice may have overlooked a developmental transition point when juvenile mice exhibit greater flexibility in reversal learning. Here, using a 4-choice reversal learning task we find that early MS leads to decreased flexibility in post-weaning juvenile mice, but no significant effects in adults. In a further study of voluntary ethanol consumption, we found that adult mice that had experienced MS showed greater cumulative 20% ethanol consumption in an intermittent access paradigm compared to controls. Our data confirm that the MS paradigm can reduce cognitive flexibility in mice and may enhance risk for substance abuse. We discuss possible interpretations of these data as stress-related impairment or adaptive earlier maturation in response to an adverse environment.
Collapse
Affiliation(s)
| | - Natalia Caporale
- University of California Berkeley, Psychology Department; Helen Wills Neuroscience Institute
| | - Claudia Wu
- University of California Irvine, Neurobiology and Behavior Graduate Program
| | - Linda Wilbrecht
- University of California Berkeley, Psychology Department; Helen Wills Neuroscience Institute.
| |
Collapse
|
145
|
Bissonette GB, Roesch MR. Neural correlates of rules and conflict in medial prefrontal cortex during decision and feedback epochs. Front Behav Neurosci 2015; 9:266. [PMID: 26500516 PMCID: PMC4594023 DOI: 10.3389/fnbeh.2015.00266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 11/26/2022] Open
Abstract
The ability to properly adjust behavioral responses to cues in a changing environment is crucial for survival. Activity in the medial Prefrontal Cortex (mPFC) is thought to both represent rules to guide behavior as well as detect and resolve conflicts between rules in changing contingencies. However, while lesion and pharmacological studies have supported a crucial role for mPFC in this type of set-shifting, an understanding of how mPFC represents current rules or detects and resolves conflict between different rules is unclear. Here, we directly address the role of rat mPFC in shifting rule based behavioral strategies using a novel behavioral task designed to tease apart neural signatures of rules, conflict and direction. We demonstrate that activity of single neurons in rat mPFC represent distinct rules. Further, we show increased firing on high conflict trials in a separate population of mPFC neurons. Reduced firing in both populations of neurons was associated with poor performance. Moreover, activity in both populations increased and decreased firing during the outcome epoch when reward was and was not delivered on correct and incorrect trials, respectively. In addition, outcome firing was modulated by the current rule and the degree of conflict associated with the previous decision. These results promote a greater understanding of the role that mPFC plays in switching between rules, signaling both rule and conflict to promote improved behavioral performance.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Department of Psychology, University of Maryland, College Park College Park, MD, USA ; Program in Neuroscience and Cognitive Science, University of Maryland, College Park College Park, MD, USA
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park College Park, MD, USA ; Program in Neuroscience and Cognitive Science, University of Maryland, College Park College Park, MD, USA
| |
Collapse
|
146
|
Bruining H, Matsui A, Oguro-Ando A, Kahn RS, Van't Spijker HM, Akkermans G, Stiedl O, van Engeland H, Koopmans B, van Lith HA, Oppelaar H, Tieland L, Nonkes LJ, Yagi T, Kaneko R, Burbach JPH, Yamamoto N, Kas MJ. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development. Biol Psychiatry 2015; 78:485-95. [PMID: 25802080 DOI: 10.1016/j.biopsych.2015.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. METHODS Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. RESULTS Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. CONCLUSIONS This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes.
Collapse
Affiliation(s)
- Hilgo Bruining
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Asuka Matsui
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heleen M Van't Spijker
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guus Akkermans
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Herman van Engeland
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hein A van Lith
- Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Program Emotion and Cognition, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Hugo Oppelaar
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Liselotte Tieland
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lourens J Nonkes
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nobuhiko Yamamoto
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
147
|
Maiti P, Gregg LC, McDonald MP. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function. Behav Brain Res 2015; 298:192-201. [PMID: 26393431 DOI: 10.1016/j.bbr.2015.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 02/09/2023]
Abstract
In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction.
Collapse
Affiliation(s)
- Panchanan Maiti
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Laura C Gregg
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Michael P McDonald
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
148
|
Kim DH, Choi BR, Jeon WK, Han JS. Impairment of intradimensional shift in an attentional set-shifting task in rats with chronic bilateral common carotid artery occlusion. Behav Brain Res 2015; 296:169-176. [PMID: 26365458 DOI: 10.1016/j.bbr.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Studies of rats with chronic bilateral common carotid artery occlusion (BCCAo), an animal model for vascular dementia (VaD), have reported hippocampus-dependent memory impairment and associated neuropathologies. Patients with VaD also experience attentional shifting dysfunction. However, animal models of VaD have not been used to study attentional function. Therefore, the present study examined attentional function in rats with BCCAo, using attentional set-shifting task (ASST) that required rats to choose a food-baited pot from 2 possible pots. ASST included 6 consecutive sessions including simple discrimination, compound discrimination, intradimensional shifting, extradimensional shifting, and reversals. The BCCAo rats were significantly slower at learning the intradimensional set-shifting task compared to control rats. Previous studies have demonstrated that the cingulate cortex and medial prefrontal cortex are critical to intradimensional and extradimensional set-shifting, respectively. Additionally, inflammatory responses and neuronal dysfunction were observed in rats with chronic BCCAo. In addition, OX-6 positive microglia significantly increased in the forceps minor white matter of BCCAo rats, and glutamate decarboxylase signals co-localized with NeuN were reduced in the anterior cingulate cortex of BCCAo rats, compared to control rats. Impaired neuronal and GABAergic neuronal integrity in the anterior cingulate cortex, damage to white matter, and attentional impairments observed in BCCAo rats suggest dysfunction of brain structures that are associated with attentional impairments observed in patients with VaD.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
149
|
Bissonette GB, Roesch MR. Rule encoding in dorsal striatum impacts action selection. Eur J Neurosci 2015; 42:2555-67. [PMID: 26275165 DOI: 10.1111/ejn.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
Cognitive flexibility is a hallmark of prefrontal cortical (PFC) function yet little is known about downstream area involvement. The medial dorsal striatum (mDS) receives major projections from the PFC and is uniquely situated to perform the integration of responses with rule information. In this study, we use a novel rule shifting task in rats that mirrors non-human primate and human studies in its temporal precision and counterbalanced responses. We record activity from single neurons in the mDS while rats switch between different rules for reward. Additionally, we pharmacologically inactivate mDS by infusion of a baclofen/muscimol cocktail. Inactivation of mDS impaired the ability to shift to a new rule and increased the number of regressive errors. While recording in mDS, we identified neurons modulated by direction whose activity reflected the conflict between competing rule information. We show that a subset of these neurons was also rule selective, and that the conflict between competing rule cues was resolved as behavioural performance improved. Other neurons were modulated by rule, but not direction. These neurons became selective before behavioural performance accurately reflected the current rule. These data provide an additional locus for investigating the mechanisms underlying behavioural flexibility. Converging lines of evidence from multiple human psychiatric disorders have implicated dorsal striatum as an important and understudied neural substrate of flexible cognition. Our data confirm the importance of mDS, and suggest a mechanism by which mDS mediates abstract cognition functions.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
150
|
Miller HL, Ragozzino ME, Cook EH, Sweeney JA, Mosconi MW. Cognitive set shifting deficits and their relationship to repetitive behaviors in autism spectrum disorder. J Autism Dev Disord 2015; 45:805-15. [PMID: 25234483 DOI: 10.1007/s10803-014-2244-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurocognitive impairments associated with restricted and repetitive behaviors (RRBs) in autism spectrum disorder (ASD) are not yet clear. Prior studies indicate that individuals with ASD show reduced cognitive flexibility, which could reflect difficulty shifting from a previously learned response pattern or a failure to maintain a new response set. We examined different error types on a test of set-shifting completed by 60 individuals with ASD and 55 age- and nonverbal IQ-matched controls. Individuals with ASD were able to initially shift sets, but they exhibited difficulty maintaining new response sets. Difficulty with set maintenance was related to increased severity of RRBs. General difficulty maintaining new response sets and a heightened tendency to revert to old preferences may contribute to RRBs.
Collapse
Affiliation(s)
- Haylie L Miller
- Department of Physical Therapy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | | | | | | | | |
Collapse
|