101
|
Nagano Y, Kaneda K, Maruyama C, Ide S, Kato F, Minami M. Corticotropin-releasing factor enhances inhibitory synaptic transmission to type III neurons in the bed nucleus of the stria terminalis. Neurosci Lett 2015; 600:56-61. [DOI: 10.1016/j.neulet.2015.05.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
|
102
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
Affiliation(s)
- Jenna A McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Postdoctoral Training Program in Reproductive Mood Disorders, Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, United States; Neuroscience Center, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
103
|
Silberman Y, Winder DG. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions. Alcohol 2015; 49:179-84. [PMID: 25716197 PMCID: PMC4414799 DOI: 10.1016/j.alcohol.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/25/2022]
Abstract
The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, 2200 Pierce Ave., Nashville, TN 37232, USA.
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, 2200 Pierce Ave., Nashville, TN 37232, USA
| |
Collapse
|
104
|
Oliveira LA, Almeida J, Benini R, Crestani CC. CRF1 and CRF2 receptors in the bed nucleus of the stria terminalis modulate the cardiovascular responses to acute restraint stress in rats. Pharmacol Res 2015; 95-96:53-62. [PMID: 25829333 DOI: 10.1016/j.phrs.2015.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/19/2022]
Abstract
The corticotropin-releasing factor (CRF) is involved in behavioral and physiological responses to emotional stress through its action in several limbic structures, including the bed nucleus of the stria terminalis (BNST). Nevertheless, the role of CRF1 and CRF2 receptors in the BNST in cardiovascular adjustments during aversive threat is unknown. Therefore, in the present study we investigated the involvement of CRF receptors within the BNST in cardiovascular responses evoked by acute restraint stress in rats. For this, we evaluated the effects of bilateral treatment of the BNST with selective agonists and antagonists of either CRF1 or CRF2 receptors in the arterial pressure and heart rate increase and the decrease in tail skin temperature induced by restraint stress. Microinjection of the selective CRF1 receptor antagonist CP376395 into the BNST reduced the pressor and tachycardiac responses caused by restraint. Conversely, BNST treatment with the selective CRF1 receptor agonist CRF increased restraint-evoked arterial pressure and HR responses and reduced the fall in tail skin temperature response. All effects of CRF were inhibited by local BNST pretreatment with CP376395. The selective CRF2 receptor antagonist antisalvagine-30 reduced the arterial pressure increase and the fall in tail skin temperature. The selective CRF2 receptor agonist urocortin-3 increased restraint-evoked pressor and tachycardiac responses and reduced the drop in cutaneous temperature. All effects of urocortin-3 were abolished by local BNST pretreatment with antisalvagine-30. These findings indicate an involvement of both CRF1 and CRF2 receptors in the BNST in cardiovascular adjustments during emotional stress.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Jeferson Almeida
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
105
|
Marcinkiewcz CA, Dorrier CE, Lopez AJ, Kash TL. Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal. Neuropharmacology 2015; 89:157-67. [PMID: 25229718 PMCID: PMC4469779 DOI: 10.1016/j.neuropharm.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 01/13/2023]
Abstract
One of the hallmarks of alcohol dependence is the presence of a withdrawal syndrome during abstinence, which manifests as physical craving for alcohol accompanied by subjective feelings of anxiety. Using a model of chronic intermittent ethanol (CIE) vapor in mice, we investigated the role of serotonin2c receptor (5HT2c-R) signaling in the BNST as a neural substrate underlying ethanol-induced anxiety during withdrawal. Mice were subjected to a 5-day CIE regimen of 16 h of ethanol vapor exposure followed by an 8 h "withdrawal" period between exposures. After the 5th and final exposure, mice were withdrawn for 24 h or 1 week before experiments began. Anxiety-like behavior was assessed in the social approach, light dark, and open field tests with mice showing deficits in social, but not general anxiety-like behavior that was alleviated by pretreatment with the 5HT2c-R antagonist SB 242,084 (3 mg/kg, i.p.) 24 h and 1 week post-CIE. Using immunohistochemistry and whole cell patch clamp electrophysiology, we also found that CIE increased FOS-IR and enhanced neuronal excitability in the ventral BNST (vBNST) 24 h into withdrawal in a 5HT2c-R dependent manner. This enhanced excitability persisted for 1 week post-CIE. We also found that mCPP, a 5HT2c/b agonist, induced a more robust depolarization in cells of the vBNST in CIE mice, confirming that 5HT2c-R signaling is upregulated in the vBNST following CIE. Taken together, these results suggest that CIE upregulates 5HT2c-R signaling in the vBNST, leading to increased excitability. This enhanced excitability of the vBNST may drive increased anxiety-like behavior during ethanol withdrawal.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cayce E Dorrier
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alberto J Lopez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
106
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|
107
|
Lovinger DM. Mechanisms of Neuroplasticity and Ethanol's Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis. Alcohol Res 2015; 37:109-24. [PMID: 26259092 PMCID: PMC4476598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction.Two brain regions subject to alcohol's effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol's actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder.
Collapse
|
108
|
McReynolds JR, Vranjkovic O, Thao M, Baker DA, Makky K, Lim Y, Mantsch JR. Beta-2 adrenergic receptors mediate stress-evoked reinstatement of cocaine-induced conditioned place preference and increases in CRF mRNA in the bed nucleus of the stria terminalis in mice. Psychopharmacology (Berl) 2014; 231:3953-63. [PMID: 24696080 PMCID: PMC8647032 DOI: 10.1007/s00213-014-3535-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/02/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Understanding the mechanisms responsible for stress-induced relapse is important for guiding treatment strategies aimed at minimizing the contribution of stress to addiction. Evidence suggests that these mechanisms involve interactions between noradrenergic systems and the neuropeptide corticotropin-releasing factor (CRF). OBJECTIVES The interaction between β-adrenergic receptors (ARs) and CRF as it relates to the reinstatement of cocaine-conditioned reward in response to a stressor was examined in mice. We hypothesized that β2-ARs are required for stress-induced activation of CRF pathways responsible for reinstatement. METHODS Stress-induced relapse was examined based on the re-establishment of cocaine-induced conditioned place preference (CPP; 4 × 15 mg/kg cocaine, i.p.) after extinction using forced swim (6 min at 22 °C) or an injection of the β2-AR agonist, clenbuterol (4 mg/kg, i.p.). The CRF-R1 antagonist antalarmin (10 mg/kg, i.p.) or the β2-AR antagonist ICI-118,551 (1 mg/kg, i.p.) were given 30 min prior to reinstating stimuli. Quantitative PCR was conducted in dissected bed nucleus of the stria terminalis (BNST) and amygdala, putative sources of CRF that contribute to reinstatement, to examine the effects of ICI-118,551 on swim-induced increases in CRF messenger RNA (mRNA) in mice with a cocaine history. RESULTS Pretreatment with ICI-118,551 or antalarmin blocked swim-induced reinstatement of CPP. Reinstatement by clenbuterol was also blocked by antalarmin. ICI-118,551 pretreatment prevented swim-induced increases in CRF mRNA in the BNST. Effects in the amygdala were not observed. CONCLUSIONS These findings indicate that, during stress, norepinephrine, via β2-ARs, either directly or indirectly activates CRF-releasing neurons in the BNST that interface with motivational neurocircuitry to induce reinstatement of cocaine-conditioned reward.
Collapse
Affiliation(s)
- Jayme R. McReynolds
- Corresponding Author: John Mantsch, Ph.D., Department of Biomedical Sciences, Marquette University, , , Telephone Number: (414) 288-2036, Fax Number: (414) 288-6564
| | - Oliver Vranjkovic
- Corresponding Author: John Mantsch, Ph.D., Department of Biomedical Sciences, Marquette University, , , Telephone Number: (414) 288-2036, Fax Number: (414) 288-6564
| | | | | | | | | | | |
Collapse
|
109
|
ZHU LITING, YU JUN, ZHANG WENYI, XIE BIN, ZHU YI. Research progress on the central mechanism underlying regulation of visceral biological rhythm by per2 (Review). Mol Med Rep 2014; 10:2241-8. [DOI: 10.3892/mmr.2014.2559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/25/2014] [Indexed: 11/05/2022] Open
|
110
|
Vranjkovic O, Gasser PJ, Gerndt CH, Baker DA, Mantsch JR. Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated pathway from the ventral bed nucleus of the stria terminalis that regulates CRF actions in the ventral tegmental area. J Neurosci 2014; 34:12504-14. [PMID: 25209288 PMCID: PMC4160780 DOI: 10.1523/jneurosci.0680-14.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/21/2022] Open
Abstract
The ventral bed nucleus of the stria terminalis (vBNST) has been implicated in stress-induced cocaine use. Here we demonstrate that, in the vBNST, corticotropin releasing factor (CRF) is expressed in neurons that innervate the ventral tegmental area (VTA), a site where the CRF receptor antagonist antalarmin prevents the reinstatement of cocaine seeking by a stressor, intermittent footshock, following intravenous self-administration in rats. The vBNST receives dense noradrenergic innervation and expresses β adrenergic receptors (ARs). Footshock-induced reinstatement was prevented by bilateral intra-vBNST injection of the β-2 AR antagonist, ICI-118,551, but not the β-1 AR antagonist, betaxolol. Moreover, bilateral intra-vBNST injection of the β-2 AR agonist, clenbuterol, but not the β-1 agonist, dobutamine, reinstated cocaine seeking, suggesting that activation of vBNST β-2 AR is both necessary for stress-induced reinstatement and sufficient to induce cocaine seeking. The contribution of a β-2 AR-regulated vBNST-to-VTA pathway that releases CRF was investigated using a disconnection approach. Injection of ICI-118,551 into the vBNST in one hemisphere and antalarmin into the VTA of the contralateral hemisphere prevented footshock-induced reinstatement, whereas ipsilateral manipulations failed to attenuate stress-induced cocaine seeking, suggesting that β-2 AR regulate vBNST efferents that release CRF into the VTA, activating CRF receptors, and promoting cocaine use. Last, reinstatement by clenbuterol delivered bilaterally into the vBNST was prevented by bilateral vBNST pretreatment with antalarmin, indicating that β-2 AR-mediated actions in the vBNST also require local CRF receptor activation. Understanding the processes through which stress induces cocaine seeking should guide the development of new treatments for addiction.
Collapse
Affiliation(s)
- Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Clayton H Gerndt
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
111
|
α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 2014; 34:9319-31. [PMID: 25009265 DOI: 10.1523/jneurosci.0822-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs.
Collapse
|
112
|
McReynolds JR, Peña DF, Blacktop JM, Mantsch JR. Neurobiological mechanisms underlying relapse to cocaine use: contributions of CRF and noradrenergic systems and regulation by glucocorticoids. Stress 2014; 17:22-38. [PMID: 24328808 DOI: 10.3109/10253890.2013.872617] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Considering its pervasive and uncontrollable influence in drug addicts, understanding the neurobiological processes through which stress contributes to drug use is a critical goal for addiction researchers and will likely be important for the development of effective medications aimed at relapse prevention. In this paper, we review work from our laboratory and others focused on determining the neurobiological mechanisms that underlie and contribute to stress-induced relapse of cocaine use with an emphasis on the actions of corticotropin-releasing factor in the ventral tegmental area (VTA) and a key pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine and beta adrenergic receptors. Additionally, we discuss work suggesting that the influence of stress in cocaine addiction changes and intensifies with repeated cocaine use in an intake-dependent manner and examine the potential role of glucocorticoid hormones in the underlying drug-induced neuroadaptations. It is our hope that research in this area will inform clinical practice and medication development aimed at minimizing the contribution of stress to the addiction cycle, thereby improving treatment outcomes and reducing the societal costs of addiction.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University , Milwaukee, WI , USA
| | | | | | | |
Collapse
|
113
|
Abstract
Relapse and hazardous drinking represent the most difficult clinical problems in treating patients with alcohol use disorders. Using a rat model of alcohol use and alcohol-seeking, we demonstrated that central administration of peptide antagonists for relaxin family peptide 3 receptor (RXFP3), the cognate receptor for the highly conserved neuropeptide, relaxin-3, decreased self-administration of alcohol in a dose-related manner and attenuated cue- and stress-induced reinstatement following extinction. By comparison, RXFP3 antagonist treatment did not significantly attenuate self-administration or reinstatement of sucrose-seeking, suggesting a selective effect for alcohol. RXFP3 is densely expressed in the stress-responsive bed nucleus of the stria terminalis, and bilateral injections of RXFP3 antagonist into the bed nucleus of the stria terminalis significantly decreased self-administration and stress-induced reinstatement of alcohol, suggesting that this brain region may, at least in part, mediate the effects of RXFP3 antagonism. RXFP3 antagonist treatment had no effect on general ingestive behavior, activity, or procedural memory for lever pressing in the paradigms assessed. These data suggest that relaxin-3/RXFP3 signaling regulates alcohol intake and relapse-like behavior, adding to current knowledge of the brain chemistry of reward-seeking.
Collapse
|
114
|
Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 2013; 21:1190-222. [PMID: 24206937 DOI: 10.1016/j.jagp.2013.09.005] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Delirium is a neurobehavioral syndrome caused by dysregulation of neuronal activity secondary to systemic disturbances. Over time, a number of theories have been proposed in an attempt to explain the processes leading to the development of delirium. Each proposed theory has focused on a specific mechanism or pathologic process (e.g., dopamine excess or acetylcholine deficiency theories), observational and experiential evidence (e.g., sleep deprivation, aging), or empirical data (e.g., specific pharmacologic agents' association with postoperative delirium, intraoperative hypoxia). This article represents a review of published literature and summarizes the top seven proposed theories and their interrelation. This review includes the "neuroinflammatory," "neuronal aging," "oxidative stress," "neurotransmitter deficiency," "neuroendocrine," "diurnal dysregulation," and "network disconnectivity" hypotheses. Most of these theories are complementary, rather than competing, with many areas of intersection and reciprocal influence. The literature suggests that many factors or mechanisms included in these theories lead to a final common outcome associated with an alteration in neurotransmitter synthesis, function, and/or availability that mediates the complex behavioral and cognitive changes observed in delirium. In general, the most commonly described neurotransmitter changes associated with delirium include deficiencies in acetylcholine and/or melatonin availability; excess in dopamine, norepinephrine, and/or glutamate release; and variable alterations (e.g., either a decreased or increased activity, depending on delirium presentation and cause) in serotonin, histamine, and/or γ-aminobutyric acid. In the end, it is unlikely that any one of these theories is fully capable of explaining the etiology or phenomenologic manifestations of delirium but rather that two or more of these, if not all, act together to lead to the biochemical derangement and, ultimately, to the complex cognitive and behavioral changes characteristic of delirium.
Collapse
Affiliation(s)
- José R Maldonado
- Departments of Psychiatry, Internal Medicine & Surgery and the Psychosomatic Medicine Service, Stanford University School of Medicine, and Board of Directors, American Delirium Society, Stanford, CA.
| |
Collapse
|
115
|
Cruz F, Alves F, Leão R, Planeta C, Crestani C. Role of the bed nucleus of the stria terminalis in cardiovascular changes following chronic treatment with cocaine and testosterone: A role beyond drug seeking in addiction? Neuroscience 2013; 253:29-39. [DOI: 10.1016/j.neuroscience.2013.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 01/01/2023]
|
116
|
Rodríguez-Sierra OE, Turesson HK, Pare D. Contrasting distribution of physiological cell types in different regions of the bed nucleus of the stria terminalis. J Neurophysiol 2013; 110:2037-49. [PMID: 23926040 DOI: 10.1152/jn.00408.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We characterized the electroresponsive and morphological properties of neurons in the bed nucleus of the stria terminalis (BNST). Previously, Rainnie and colleagues distinguished three cell types in the anterolateral region of BNST (BNST-AL): low-threshold bursting cells (LTB; type II) and regular spiking neurons that display time-dependent (RS; type I) or fast (fIR; type III) inward rectification in the hyperpolarizing direction (Hammack SE, Mania I, Rainnie DG. J Neurophysiol 98: 638-56, 2007). We report that the same neuronal types exist in the anteromedial (AM) and anteroventral (AV) regions of BNST. In addition, we observed two hitherto unreported cell types: late-firing (LF) cells, only seen in BNST-AL, that display a conspicuous delay to firing, and spontaneously active (SA) neurons, only present in BNST-AV, firing continuously at rest. However, the feature that most clearly distinguished the three BNST regions was the incidence of LTB cells (approximately 40-70%) and the strength of their bursting behavior (both higher in BNST-AM and AV relative to AL). The incidence of RS cells was similar in the three regions (∼25%), whereas that of fIR cells was higher in BNST-AL (∼25%) than AV or AM (≤8%). With the use of biocytin, two dominant morphological cell classes were identified but they were not consistently related to particular physiological phenotypes. One neuronal class had highly branched and spiny dendrites; the second had longer but poorly branched and sparsely spiny dendrites. Both often exhibited dendritic varicosities. Since LTB cells prevail in BNST, it will be important to determine what inputs set their firing mode (tonic vs. bursting) and in what behavioral states.
Collapse
Affiliation(s)
- Olga E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey; and
| | | | | |
Collapse
|
117
|
Neurobiological mechanisms that contribute to stress-related cocaine use. Neuropharmacology 2013; 76 Pt B:383-94. [PMID: 23916481 DOI: 10.1016/j.neuropharm.2013.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a "stage setter" for drug use - increasing sensitivity to cocaine and drug-associated cues - under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
118
|
Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 2013; 76 Pt B:320-8. [PMID: 23752096 DOI: 10.1016/j.neuropharm.2013.05.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Alice M Stamatakis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
119
|
Li C, McCall NM, Lopez AJ, Kash TL. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons. Alcohol 2013; 47:279-87. [PMID: 23597415 DOI: 10.1016/j.alcohol.2013.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022]
Abstract
The role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse. This lack of knowledge is likely due to the highly heterogeneous cell composition of the vPAG, with both γ-aminobutyric acid (GABA) and glutamate neurons present in addition to DA neurons. In this study, we performed whole-cell recordings in a TH-eGFP transgenic mouse line to evaluate the properties of vPAG-DA neurons. Following this initial characterization, we examined how both acute and chronic alcohol exposure modify synaptic transmission onto vPAG-DA neurons. We found minimal effects of acute alcohol exposure on GABA transmission, but a robust enhancement of glutamatergic synaptic transmission in vPAG-DA. Consistent with this effect on excitatory transmission, we also found that alcohol caused an increase in firing rate. These data were in contrast to the effects of chronic intermittent alcohol exposure, which had no significant impact on either inhibitory or excitatory synaptic transmission on the vPAG-DA neurons. These data add to a growing body of literature that points to alcohol having both region-dependent and cell-type dependent effects on function.
Collapse
Affiliation(s)
- Chia Li
- Curriculum in Neurobiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
120
|
Characterization of corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus of Crh-IRES-Cre mutant mice. PLoS One 2013; 8:e64943. [PMID: 23724107 PMCID: PMC3665778 DOI: 10.1371/journal.pone.0064943] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Corticotropin-releasing hormone (CRH)-containing neurons in the paraventricular nucleus of the hypothalamus (PVN) initiate and control neuroendocrine responses to psychogenic and physical stress. Investigations into the physiology of CRH neurons, however, have been hampered by the lack of tools for adequately targeting or visualizing this cell population. Here we characterize CRH neurons in the PVN of mice that express tdTomato fluorophore, generated by crosses of recently developed Crh-IRES-Cre driver and Ai14 Cre-reporter mouse strains. tdTomato containing PVN neurons in Crh-IRES-Cre;Ai14 mice are readily visualized without secondary-detection methods. These neurons are predominantly neuroendocrine and abundantly express CRH protein, but not other PVN phenotypic neuropeptides. After an acute stress, a large majority of tdTomato cells express neuronal activation marker c-Fos. Finally, tdTomato PVN neurons exhibit homogenous intrinsic biophysical and synaptic properties, and can be optogenetically manipulated by viral Cre-driven expression of channelrhodopsin. These observations highlight basic cell-type characteristics of CRH neurons in a mutant mouse, providing validation for its future use in probing neurophysiology of endocrine stress responses.
Collapse
|
121
|
Silberman Y, Winder DG. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology 2013; 70:316-23. [PMID: 23470280 DOI: 10.1016/j.neuropharm.2013.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/14/2023]
Abstract
Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
122
|
Silberman Y, Winder DG. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry 2013; 4:42. [PMID: 23755023 PMCID: PMC3665954 DOI: 10.3389/fpsyt.2013.00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Neuroscience Program in Substance Abuse, Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute , Nashville, TN , USA
| | | |
Collapse
|