101
|
Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144:268-82. [PMID: 24945828 PMCID: PMC4591072 DOI: 10.1016/j.pharmthera.2014.06.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
102
|
Yee AG, Lee SM, Hunter MR, Glass M, Freestone PS, Lipski J. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. Neurotoxicology 2014; 45:1-11. [DOI: 10.1016/j.neuro.2014.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
|
103
|
Masoud ST, Vecchio LM, Bergeron Y, Hossain MM, Nguyen LT, Bermejo MK, Kile B, Sotnikova TD, Siesser WB, Gainetdinov RR, Wightman RM, Caron MG, Richardson JR, Miller GW, Ramsey AJ, Cyr M, Salahpour A. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis 2014; 74:66-75. [PMID: 25447236 DOI: 10.1016/j.nbd.2014.10.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023] Open
Abstract
The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- S T Masoud
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle - Rm 4302, Toronto, ON M5S 1A8, Canada.
| | - L M Vecchio
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle - Rm 4302, Toronto, ON M5S 1A8, Canada.
| | - Y Bergeron
- Department of Medical Biology, Université du Québec à Trois-Rivières, QC G9A 5H7 Canada.
| | - M M Hossain
- Environmental and Occupational Health Sciences Institute, Rutgers, 170 Frelinghuysen Road, EOHSI 340, Piscataway, NJ 08854, USA.
| | - L T Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle - Rm 4302, Toronto, ON M5S 1A8, Canada.
| | - M K Bermejo
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle - Rm 4302, Toronto, ON M5S 1A8, Canada.
| | - B Kile
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - T D Sotnikova
- Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy; Faculty of Biology and Soil Science, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - W B Siesser
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - R R Gainetdinov
- Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy; Faculty of Biology and Soil Science, St. Petersburg State University, St. Petersburg 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow Region, Russia.
| | - R M Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - M G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - J R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers, 170 Frelinghuysen Road, EOHSI 340, Piscataway, NJ 08854, USA.
| | - G W Miller
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| | - A J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle - Rm 4302, Toronto, ON M5S 1A8, Canada.
| | - M Cyr
- Department of Medical Biology, Université du Québec à Trois-Rivières, QC G9A 5H7 Canada.
| | - A Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle - Rm 4302, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
104
|
Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson's disease: involvement of ERK1/2-Nrf2 signaling pathway. Life Sci 2014; 114:77-85. [PMID: 25132361 DOI: 10.1016/j.lfs.2014.08.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022]
Abstract
AIMS Current no effective therapy is available to halt the progression of Parkinson's disease (PD). Oxidative stress has been implicated in the etiology of PD. The present study evaluates the hypothesis that prevention of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor deficits by gastrodin might mainly result from its antioxidant property via interrupting extracellular signal regulated protein kinases (ERK) 1/2-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. MAIN METHODS Pretreatment of mouse model of PD is established by treating C57BL/6 mice with 4 doses of MPTP (30 mg/kg per day, i.p.), with gastrodin (60 mg/kg per day) administered by daily intraperitoneal injection for 2 weeks. Motor behavior of mice was monitored by open-field test and rotarod test. Real-time polymerase chain reaction and Western blotting were used to analyze the expression of genes. KEY FINDINGS MPTP-induced motor deficits were partially and significantly forestalled by gastrodin. Gastrodin treatment prevented MPTP-induced oxidative stress, as measured by malondialdehyde in midbrain. Interestingly, MPTP-intoxicated mice treated with gastrodin robustly increased heme oxygenase 1, superoxide dismutase, glutathione levels, and Nrf2 nuclear translocation in striatum of MPTP-intoxicated mice. Furthermore, results herein suggest that the antioxidant pathway activated by gastrodin involves ERK1/2 phosphorylation. SIGNIFICANCE Gastrodin protects midbrain of MPTP-intoxicated mice against oxidative stress, in part, through interrupting ERK1/2-Nrf2 pathway mechanism, which will give us an insight into the potential of gastrodin in terms of opening up new therapeutic avenues for PD.
Collapse
|
105
|
Doorn JA, Florang VR, Schamp JH, Vanle BC. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat Disord 2014; 20 Suppl 1:S73-5. [PMID: 24262193 DOI: 10.1016/s1353-8020(13)70019-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neurotransmitter dopamine (DA) is important for numerous biological functions, including control of movement. Oxidation of DA to highly toxic and reactive species has been hypothesized to contribute to the selective neurodegeneration observed in Parkinson's disease (PD). DA catabolism is initiated by oxidative deamination via monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL). Such metabolism can be problematic as it greatly increases the toxicity of DA by production of DOPAL, known to be a toxic and reactive intermediate. DOPAL undergoes carbonyl metabolism primarily via aldehyde dehydrogenase (ALDH) enzymes to a less toxic acid product. Previous studies from our laboratory have shown that cellular ALDH enzymes are sensitive towards products of oxidative stress and lipid peroxidation, which are thought to be elevated during PD pathogenesis. Inhibition of ALDH and the resulting accumulation of DOPAL are concerning as DOPAL is toxic to dopaminergic cells, readily modifies proteins and causes protein aggregation. In addition, pesticides with association between exposure and PD incidence can interfere with DA metabolism and trafficking and/or ALDH activity, directly or indirectly, yielding elevation of DOPAL. Therefore, impairment of carbonyl metabolism is a potential mechanistic link between cellular insult and generation of a toxic and reactive intermediate endogenous to dopamine neurons.
Collapse
Affiliation(s)
- Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
106
|
Pifl C, Rajput A, Reither H, Blesa J, Cavada C, Obeso JA, Rajput AH, Hornykiewicz O. Is Parkinson's disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 2014; 34:8210-8. [PMID: 24920625 PMCID: PMC6608236 DOI: 10.1523/jneurosci.5456-13.2014] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/21/2022] Open
Abstract
The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson's disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [(3)H]dihydrotetrabenazine were profoundly reduced in PD by 87-90% and 71-80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in PD.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria,
| | - Alex Rajput
- Movement Disorders Program Saskatchewan, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N OW8, Canada
| | - Harald Reither
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Javier Blesa
- Movement Disorders Group, Neurosciences Division, CIMA, and Department of Neurology and Neurosurgery, Clinica Universidad de Navarra, E31008 Pamplona, Spain, and
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - José A Obeso
- Movement Disorders Group, Neurosciences Division, CIMA, and Department of Neurology and Neurosurgery, Clinica Universidad de Navarra, E31008 Pamplona, Spain, and
| | - Ali H Rajput
- Movement Disorders Program Saskatchewan, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N OW8, Canada
| | - Oleh Hornykiewicz
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
107
|
Smith ML, King J, Dent L, Mackey V, Muthian G, Griffin B, Charlton CG. Effects of acute and sub-chronic L-dopa therapy on striatal L-dopa methylation and dopamine oxidation in an MPTP mouse model of Parkinsons disease. Life Sci 2014; 110:1-7. [PMID: 24880075 DOI: 10.1016/j.lfs.2014.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/27/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
AIMS The molecular mechanisms for the loss of 3,4-dihydroxyphenylalanine (l-dopa) efficacy during the treatment of Parkinson's disease (PD) are unknown. Modifications related to catecholamine metabolism such as changes in l-dopa and dopamine (DA) metabolism, the modulation of catecholamine enzymes and the production of interfering metabolites are the primary concerns of this study. MAIN METHODS Normal (saline) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) pre-treated mice were primed with 100mg/kg of l-dopa twice a day for 14 days, and a matching group remained l-dopa naïve. l-dopa naive and primed mice received a challenge dose of 100mg/kg of l-dopa and were sacrificed 30 min later. Striatal catecholamine levels and the expression and activity of catechol-O-methyltransferase (COMT) were determined. KEY FINDINGS Normal and MPTP pre-treated animals metabolize l-dopa and DA similarly during l-dopa therapy. Administration of a challenge dose of l-dopa increased l-dopa and DA metabolism in l-dopa naïve animals, and this effect was enhanced in l-dopa primed mice. The levels of 3-OMD in MPTP pre-treated animals were almost identical to those in normal mice, which we found are likely due to increased COMT activity in MPTP pre-treated mice. SIGNIFICANCE The results of this comparative study provide evidence that sub-chronic administration of l-dopa decreases the ability of the striatum to accumulate l-dopa and DA, due to increased metabolism via methylation and oxidation. This data supports evidence for the metabolic adaptation of the catecholamine pathway during long-term treatment with l-dopa, which may explain the causes for the loss of l-dopa efficacy.
Collapse
Affiliation(s)
- Marquitta L Smith
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Jennifer King
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, USA
| | - Lemuel Dent
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Veronica Mackey
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gladson Muthian
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Brenya Griffin
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Clivel G Charlton
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
108
|
Buttery PC, Barker RA. Treating Parkinson's disease in the 21st century: can stem cell transplantation compete? J Comp Neurol 2014; 522:2802-16. [PMID: 24610597 PMCID: PMC4233918 DOI: 10.1002/cne.23577] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/07/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022]
Abstract
The characteristic and selective degeneration of a unique population of cells—the nigrostriatal dopamine (DA) neurons—that occurs in Parkinson’s disease (PD) has made the condition an iconic target for cell replacement therapies. Indeed, transplantation of fetal ventral mesencephalic cells into the DA-deficient striatum was first trialled nearly 30 years ago, at a time when other treatments for the disease were less well developed. Over recent decades standard treatments for PD have advanced, and newer biological therapies are now emerging. In the 21st century, stem cell technology will have to compete alongside other sophisticated treatments, including deep brain stimulation and gene therapies. In this review we examine how stem cell–based transplantation therapies compare with these novel and emerging treatments in the management of this common condition. J. Comp. Neurol. 522:2802–2816, 2014.
Collapse
Affiliation(s)
- Philip C Buttery
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
109
|
Müller T. Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson's disease. Expert Rev Neurother 2014; 13:707-18. [PMID: 23739007 DOI: 10.1586/ern.13.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Levodopa is the most efficacious drug treatment option for Parkinson's disease. However, in particular, high levodopa dosing may contribute to disease progression. Chronic levodopa metabolism reduces the methylation capacity and the antioxidant defense. Thus, this levodopa-induced free radical production complements the disease process, which considerably depends on free radical-induced, apoptotic neuronal cell death. Accordingly, clinical long-term studies with in the laboratory neuroprotective compounds failed in clinical investigations, as these studies were performed in levodopa-naive patients with Parkinson's disease over a relative short interval. Therefore, the likelihood for a positive outcome was rather low, since trials only focused on the disease process in levodopa-naive patients. However, studies on antioxidant therapeutic strategies were positive in levodopa-treated Parkinson's disease patients. To counteract these metabolic long-term levodopa-associated effects, chronic levodopa therapy should be combined with supplemental application of free radical scavengers and methyl group donating vitamins.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088, Berlin, Germany.
| |
Collapse
|
110
|
Bernstein AI, Stout KA, Miller GW. The vesicular monoamine transporter 2: an underexplored pharmacological target. Neurochem Int 2014; 73:89-97. [PMID: 24398404 DOI: 10.1016/j.neuint.2013.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022]
Abstract
Active transport of neurotransmitters into synaptic vesicles is required for their subsequent exocytotic release. In the monoamine system, this process is carried out by the vesicular monoamine transporters (VMAT1 and VMAT2). These proteins are responsible for vesicular packaging of dopamine, norepinephrine, serotonin, and histamine. These proteins are essential for proper neuronal function; however, compared to their plasma membrane counterparts, there are few drugs available that target these vesicular proteins. This is partly due to the added complexity of crossing the plasma membrane, but also to the technical difficulty of assaying for vesicular uptake in high throughput. Until recently, reagents to enable high throughput screening for function of these vesicular neurotransmitter transporters have not been available. Fortunately, novel compounds and methods are now making such screening possible; thus, a renewed focus on these transporters as potential targets is timely and necessary.
Collapse
Affiliation(s)
- Alison I Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
111
|
Sidharthan NP, Minchin RF, Butcher NJ. Cytosolic sulfotransferase 1A3 is induced by dopamine and protects neuronal cells from dopamine toxicity: role of D1 receptor-N-methyl-D-aspartate receptor coupling. J Biol Chem 2013; 288:34364-74. [PMID: 24136195 DOI: 10.1074/jbc.m113.493239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase (SULT1A3) is present that can rapidly metabolize dopamine to dopamine sulfate. Here, we show that SULT1A3 and a closely related protein SULT1A1 are highly inducible by dopamine. This involves activation of the D1 and NMDA receptors. Both ERK1/2 phosphorylation and calcineurin activation are required for induction. Pharmacological agents that inhibited induction or siRNA targeting SULT1A3 significantly increased the susceptibility of cells to dopamine toxicity. Taken together, these results show that dopamine can induce its own metabolism and protect neuron-like cells from damage, suggesting that SULT1A3 activity may be a risk factor for dopamine-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Neelima P Sidharthan
- From the School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia 4072
| | | | | |
Collapse
|
112
|
Continuous DOPA synthesis from a single AAV: dosing and efficacy in models of Parkinson's disease. Sci Rep 2013; 3:2157. [PMID: 23831692 PMCID: PMC3703607 DOI: 10.1038/srep02157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/18/2013] [Indexed: 11/09/2022] Open
Abstract
We used a single adeno-associated viral (AAV) vector co-expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) to investigate the relationship between vector dose, and the magnitude and rate of recovery in hemi-parkinsonian rats. Intrastriatal injections of >1E10 genomic copies (gc) of TH-GCH1 vector resulted in complete recovery in drug-naïve behavior tests. Lower vector dose gave partial to no functional improvement. Stereological quantification revealed no striatal NeuN+ cell loss in any of the groups, whereas a TH-GCH1 dose of >1E11 gc resulted in cell loss in globus pallidus. Thus, a TH-GCH1 dose of 1E10 gc gave complete recovery without causing neuronal loss. Safety and efficacy was also studied in non-human primates where the control vector resulted in co-expression of the transgenes in caudate-putamen. In the TH-GCH1 group, GCH1 expression was robust but TH was not detectable. Moreover, TH-GCH1 treatment did not result in functional improvement in non-human primates.
Collapse
|
113
|
Oliveira CJ, Anatriello E, de Miranda-Santos IK, Francischetti IM, Sá-Nunes A, Ferreira BR, Ribeiro JMC. Proteome of Rhipicephalus sanguineus tick saliva induced by the secretagogues pilocarpine and dopamine. Ticks Tick Borne Dis 2013; 4:469-77. [PMID: 24029695 DOI: 10.1016/j.ttbdis.2013.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 04/17/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
One dimensional gel electrophoresis was used to separate proteins from the saliva of Rhipicephalus sanguineus female ticks fed on rabbits. Gel slices were subjected to tryptic digestion and analyzed by reversed-phase HPLC followed by MS/MS analysis. The data were compared to a database of salivary proteins of the same tick and to the predicted proteins of the host. Saliva was obtained by either pilocarpine or dopamine stimulation of partially fed ticks. Electrophoretic separations of both yielded products that were identified by mass spectrometry, although the pilocarpine-derived sample was of much better quality. The majority of identified proteins were of rabbit origin, indicating the recycling of the host proteins in the tick saliva, including hemoglobin, albumin, haptoglobin, transferring, and a plasma serpin. The few proteins found that were previously associated with parasitism and blood feeding include 2 glycine-rich, cement-like proteins, 2 lipocalins, and a thyropin protease inhibitor. Among other of the 19 tick proteins identified, albeit with undefined roles, were SPARC and cyclophilin A. This catalog provides a resource that can be mined for secreted molecules that play a role in tick-host interactions.
Collapse
Affiliation(s)
- C J Oliveira
- Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
The defining motor characteristics of Parkinson's disease (PD) are mediated by the neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol. Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This review outlines the many mechanisms by which disruption of vesicular function may contribute to the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene products, variations in the proper compartmentalization of dopamine can wreak havoc on a functional dopamine pathway. Findings from patient populations, imaging studies, transgenic models, and mechanistic studies will be presented to document the relationship between impaired vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be beneficial in the treatment of PD.
Collapse
Affiliation(s)
- Shawn P. Alter
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gina M. Lenzi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alison I. Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gary W. Miller
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Environmental Health, Rollins School of Public Health, Claudia Nance Rollins Bldg, Room 8007, 1518 Clifton Road, NE, Atlanta, GA 30322, USA
| |
Collapse
|
115
|
Kasture S, Mohan M, Kasture V. Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13596-013-0126-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
116
|
Coune PG, Schneider BL, Aebischer P. Parkinson's disease: gene therapies. Cold Spring Harb Perspect Med 2013; 2:a009431. [PMID: 22474617 DOI: 10.1101/cshperspect.a009431] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the recent development of effective gene delivery systems, gene therapy for the central nervous system is finding novel applications. Here, we review existing viral vectors and discuss gene therapy strategies that have been proposed for Parkinson's disease. To date, most of the clinical trials were based on viral vectors to deliver therapeutic transgenes to neurons within the basal ganglia. Initial trials used genes to relieve the major motor symptoms caused by nigrostriatal degeneration. Although these new genetic approaches still need to prove more effective than existing symptomatic treatments, there is a need for disease-modifying strategies. The investigation of the genetic factors implicated in Parkinson's disease is providing precious insights in disease pathology that, combined with innovative gene delivery systems, will hopefully offer novel opportunities for gene therapy interventions to slow down, or even halt disease progression.
Collapse
Affiliation(s)
- Philippe G Coune
- Neurodegenerative Studies Laboratory, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
117
|
Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 2013; 28:715-24. [PMID: 23589357 DOI: 10.1002/mds.25187] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 12/17/2022] Open
Abstract
Although there have been significant advances, pathogenesis in Parkinson's disease (PD) is still poorly understood. Potential clues about pathogenesis that have not been systematically pursued are suggested by the restricted pattern of neuronal pathology in the disease. In addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology (LP), phenotypic dysregulation, or frank degeneration in PD patients. Drawing on this literature, there appears to be a small number of risk factors contributing to vulnerability. These include autonomous activity, broad action potentials, low intrinsic calcium buffering capacity, poorly myelinated long highly branched axons and terminal fields, and use of a catecholamine neurotransmitter, often with the catecholamine-derived neuromelanin pigment. Of these phenotypic traits, only the physiological ones appear to provide a reachable therapeutic target at present.
Collapse
Affiliation(s)
- David Sulzer
- Department of Psychiatry, Columbia University, New York, New York, USA
| | | |
Collapse
|
118
|
Borah A, Paul R, Mazumder MK, Bhattacharjee N. Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson's disease. Neurosci Bull 2013; 29:655-60. [PMID: 23575894 DOI: 10.1007/s12264-013-1330-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
While the cause of dopaminergic neuronal cell death in Parkinson's disease (PD) is not yet understood, many endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been linked to the production of hydroxyl radical ((·)OH) and the generation of oxidative stress in dopaminergic areas of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another significant observation is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as an endogenous molecule that potentially contributes to the progressive development of PD. The sequence of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA could be a neurological risk factor having significant pathological consequences.
Collapse
Affiliation(s)
- Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India,
| | | | | | | |
Collapse
|
119
|
Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 2013; 8:e60378. [PMID: 23560093 PMCID: PMC3613356 DOI: 10.1371/journal.pone.0060378] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Adam W. Oaks
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
120
|
Llorente-Folch I, Sahún I, Contreras L, Casarejos MJ, Grau JM, Saheki T, Mena MA, Satrústegui J, Dierssen M, Pardo B. AGC1-malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. J Neurochem 2013; 124:347-62. [PMID: 23216354 DOI: 10.1111/jnc.12096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 12/21/2022]
Abstract
The mitochondrial transporter of aspartate-glutamate Aralar/AGC1 is a regulatory component of the malate-aspartate shuttle. Aralar deficiency in mouse and human causes a shutdown of brain shuttle activity and global cerebral hypomyelination. A lack of neurofilament-labeled processes is detected in the cerebral cortex, but whether different types of neurons are differentially affected by Aralar deficiency is still unknown. We have now found that Aralar-knockout (Aralar-KO) post-natal mice show hyperactivity, anxiety-like behavior, and hyperreactivity with a decrease of dopamine (DA) in terminal-rich regions. The striatum is the brain region most affected in terms of size, amino acid and monoamine content. We find a decline in vesicular monoamine transporter-2 (VMAT2) levels associated with increased DA metabolism through MAO activity (DOPAC/DA ratio) in Aralar-KO striatum. However, no decrease in DA or in the number of nigral tyrosine hydroxylase-positive cells was detected in Aralar-KO brainstem. Adult Aralar-hemizygous mice presented also increased DOPAC/DA ratio in striatum and enhanced sensitivity to amphetamine. Our results suggest that Aralar deficiency causes a fall in GSH/GSSG ratio and VMAT2 in striatum that might be related to a failure to produce mitochondrial NADH and to an increase of reactive oxygen species (ROS) in the cytosol. The results indicate that the nigrostriatal dopaminergic system is a target of Aralar deficiency.
Collapse
Affiliation(s)
- Irene Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, and CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
An under-appreciated clue about pathogenesis in Parkinson disease (PD) is the distribution of pathology in the early and middle stages of the disease. This pathological 'roadmap' shows that in addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology, phenotypic dysregulation or frank degeneration in PD patients. This spatially distributed, at-risk population of neurons shares a number of features, including autonomously generated activity, broad action potentials, low intrinsic calcium buffering capacity and long, poorly myelinated, highly branched axons. Many, and perhaps all, of these traits add to the metabolic burden in these neurons, suggesting that mitochondrial deficits could drive pathogenesis in PD-in agreement with a large segment of the literature. What is less clear is how this neuronal phenotype might shape the susceptibility to proteostatic dysfunction or to the spread of α-synuclein fibrils deposited in the extracellular space. The review explores the literature on these issues and their translational implications.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
122
|
Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 2012; 48:393-405. [PMID: 23266466 DOI: 10.1016/j.ejps.2012.12.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/20/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
The primary aim of this study was to investigate the potential use of chitosan nanoparticles as a delivery system to enhance the brain targeting efficiency of bromocriptine (BRC) following intranasal (i.n.) administration. The BRC loaded chitosan nanoparticles (CS NPs) were prepared by ionic gelation of CS with tripolyphosphate anions. These NPs had a mean size (161.3 ± 4. 7 nm), zeta potential (+40.3 ± 2.7 mV), loading capacity (37.8% ± 1.8%) and entrapment efficiency (84.2% ± 3.5%). The oral administration of haloperidol (2mg/kg) to mice produced typical Parkinson (PD) symptoms. Catalepsy and akinesia outcomes in animals receiving BRC either in solution or within CS NPs showed a reversal in catalepsy and akinesia behavior when compared to haloperidol treated mice, this reversal being specially pronounced in mice receiving BRC loaded CS NPs. Biodistribution of BRC formulations in the brain and blood of mice following i.n. and intravenous (i.v.) administration was performed using optimized technetium labeled (99mTc-labeled) BRC formulations. The brain/blood ratio of 0.47 ± 0.04, 0.69 ± 0.031, and 0.05 ± 0.01 for BRC solution (i.n.), BRC loaded CS NPs (i.n.) and (i.v.) respectively, at 0.5h are suggestive of direct nose to brain transport bypassing the blood-brain barrier. Gamma scintigraphy imaging of mice brain following i.v. and i.n. administrations were performed to determine the localization of drug in brain. The drug targeting index and direct transport percentage for BRC loaded CS NPs following i.n. route were 6.3 ± 0.8 and 84.2% ± 1.9%. These encouraging results confirmed the development of a novel non-invasive nose to brain delivery system of BRC for the treatment of PD.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Rashid A Khan
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Gulam Mustafa
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Krishna Chuttani
- Department of Radiopharmaceuticals, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Jasjeet K Sahni
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | - Javed Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India.
| |
Collapse
|
123
|
Abstract
L-dopa is a precursor for dopamine synthesis and a mainstay treatment for Parkinson's disease. However, l-dopa therapy is not without side effects that may be attributed to non-dopaminergic mechanisms. Synthesized dopamine can be neurotoxic through its enzymatic degradation by monoamine oxidase (MAO) to form the reactive byproduct, hydrogen peroxide and hydroxyl radicals or through auto-oxidation to form highly reactive quinones that can bind proteins and render them non-functional. Since l-dopa could be decarboxylated by aromatic amino acid decarboxylase (AADC) present within both dopamine and serotonin neurons, it was hypothesized that serotonin neurons convert l-dopa into dopamine to generate excessive reactive oxygen species and quinoproteins that ultimately lead to serotonin neuron death. To examine the effects of l-dopa on serotonin neurons, the RN46A-B14 cell line was used. These immortalized serotonergic cell cultures were terminally differentiated and then incubated with varying concentrations of l-dopa. Results show that RN46A-B14 cells contain AADC and can synthesize dopamine after incubation with l-dopa. Furthermore, l-dopa dose-dependently increased intracellular reactive oxygen species (ROS) and cell death. Dopamine, ROS production and cell death were attenuated by co-incubation with the AADC inhibitor, NSD-1015. The MAO inhibitor, pargyline, also attenuated cell death and ROS after l-dopa treatment. Lastly, quinoprotein formation was enhanced significantly by incubation with l-dopa. Taken together, these data illustrate that serotonergic cells can produce dopamine and that the accumulation of dopamine after l-dopa and its subsequent degradation can lead to ROS production and death of RN46A-B14 serotonergic cells.
Collapse
|
124
|
Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Sullivan R, Gross DJ, Holmes C, Kopin IJ, Sharabi Y. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease. J Neurochem 2012; 123:932-43. [PMID: 22906103 DOI: 10.1111/j.1471-4159.2012.07924.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 01/03/2023]
Abstract
Parkinson's disease entails profound loss of nigrostriatal dopaminergic terminals, decreased vesicular uptake of intraneuronal catecholamines, and relatively increased putamen tissue concentrations of the toxic dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde (DOPAL). The objective of this study was to test whether vesicular uptake blockade augments endogenous DOPAL production. We also examined whether intracellular DOPAL contributes to apoptosis and, as α-synuclein oligomers may be pathogenetic in Parkinson's disease, oligomerizes α-synuclein. Catechols were assayed in PC12 cells after reserpine to block vesicular uptake, with or without inhibition of enzymes metabolizing DOPAL-daidzein for aldehyde dehydrogenase and AL1576 for aldehyde reductase. Vesicular uptake was quantified by a method based on 6F- or (13) C-dopamine incubation; DOPAL toxicity by apoptosis responses to exogenous dopamine, with or without daidzein+AL1576; and DOPAL--induced synuclein oligomerization by synuclein dimer production during DOPA incubation, with or without inhibition of L-aromatic-amino-acid decarboxylase or monoamine oxidase. Reserpine inhibited vesicular uptake by 95-97% and rapidly increased cell DOPAL content (p = 0.0008). Daidzein+AL1576 augmented DOPAL responses to reserpine (p = 0.004). Intracellular DOPAL contributed to dopamine-evoked apoptosis and DOPA-evoked synuclein dimerization. The findings fit with the 'catecholaldehyde hypothesis,' according to which decreased vesicular sequestration of cytosolic catecholamines and impaired catecholaldehyde detoxification contribute to the catecholaminergic denervation that characterizes Parkinson's disease.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, Bethesda, MD 20892-1620, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiol Dis 2012; 51:35-42. [PMID: 23064436 DOI: 10.1016/j.nbd.2012.10.011] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
The pathogenic mechanisms that underlie Parkinson's disease remain unknown. Here, we review evidence from both sporadic and genetic forms of Parkinson's disease that implicate both mitochondria and oxidative stress as central players in disease pathogenesis. A systemic deficiency in complex I of the mitochondrial electron transport chain is evident in many patients with the disease. Oxidative stress caused by reactive metabolites of dopamine and alterations in the levels of iron and glutathione in the substantia nigra accompany this mitochondrial dysfunction. Recent evidence from studies on the genetic forms of parkinsonism with particular stress on DJ-1, parkin, and PINK-1 also suggest the involvement of mitochondria and oxidative stress.
Collapse
Affiliation(s)
- David N Hauser
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
126
|
Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons. Neurobiol Dis 2012; 47:367-77. [DOI: 10.1016/j.nbd.2012.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022] Open
|
127
|
Cho KI, Searle K, Webb M, Yi H, Ferreira PA. Ranbp2 haploinsufficiency mediates distinct cellular and biochemical phenotypes in brain and retinal dopaminergic and glia cells elicited by the Parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell Mol Life Sci 2012; 69:3511-27. [PMID: 22821000 PMCID: PMC3445802 DOI: 10.1007/s00018-012-1071-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 11/25/2022]
Abstract
Many components and pathways transducing multifaceted and deleterious effects of stress stimuli remain ill-defined. The Ran-binding protein 2 (RanBP2) interactome modulates the expression of a range of clinical and cell-context-dependent manifestations upon a variety of stressors. We examined the role of Ranbp2 haploinsufficiency on cellular and metabolic manifestations linked to tyrosine-hydroxylase (TH+) dopaminergic neurons and glial cells of the brain and retina upon acute challenge to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a parkinsonian neurotoxin, which models facets of Parkinson disease. MPTP led to stronger akinetic parkinsonism and slower recovery in Ranbp2+/− than wild-type mice without viability changes of brain TH+-neurons of either genotype, with the exception of transient nuclear atypia via changes in chromatin condensation of Ranbp2+/− TH+-neurons. Conversely, the number of wild-type retinal TH+-amacrine neurons compared to Ranbp2+/− underwent milder declines without apoptosis followed by stronger recoveries without neurogenesis. These phenotypes were accompanied by a stronger rise of EdU+-proliferative cells and non-proliferative gliosis of GFAP+-Müller cells in wild-type than Ranbp2+/− that outlasted the MPTP-insult. Finally, MPTP-treated wild-type and Ranbp2+/− mice present distinct metabolic footprints in the brain or selective regions thereof, such as striatum, that are supportive of RanBP2-mediated regulation of interdependent metabolic pathways of lysine, cholesterol, free-fatty acids, or their β-oxidation. These studies demonstrate contrasting gene-environment phenodeviances and roles of Ranbp2 between dopaminergic and glial cells of the brain and retina upon oxidative stress-elicited signaling and factors triggering a continuum of metabolic and cellular manifestations and proxies linked to oxidative stress, and chorioretinal and neurological disorders such as Parkinson.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Kelly Searle
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, 21205 MD
| | - Mason Webb
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Haiqing Yi
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
128
|
Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 2012; 28:41-50. [PMID: 22791686 DOI: 10.1002/mds.25095] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022] Open
Abstract
Although there have been significant advances, pathogenesis in Parkinson's disease (PD) is still poorly understood. Potential clues about pathogenesis that have not been systematically pursued are suggested by the restricted pattern of neuronal pathology in the disease. In addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology (LP), phenotypic dysregulation, or frank degeneration in PD patients. Drawing on this literature, there appear to be a small number of risk factors contributing to vulnerability. These include autonomous activity, broad action potentials, low intrinsic calcium-buffering capacity, poorly myelinated long highly branched axons and terminal fields, and use of a monoamine neurotransmitter, often with the catecholamine-derived neuromelanin pigment. Of these phenotypic traits, only the physiological ones appear to provide a reachable therapeutic target at present.
Collapse
Affiliation(s)
- David Sulzer
- Department of Psychiatry, Columbia University, New York, New York, USA.
| | | |
Collapse
|
129
|
|
130
|
Linsenbardt AJ, Breckenridge JM, Wilken GH, Macarthur H. Dopaminochrome induces caspase-independent apoptosis in the mesencephalic cell line, MN9D. J Neurochem 2012; 122:175-84. [PMID: 22486217 DOI: 10.1111/j.1471-4159.2012.07756.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is characterized by a deficiency in motor cortex modulation due to degeneration of pigmented dopaminergic neurons of the substantia nigra projecting to the striatum. These neurons are particularly susceptible to oxidative stress, perhaps because of their dopaminergic nature. Like all catecholamines, dopamine is easily oxidized, first to a quinone intermediate and then to dopaminochrome (DAC), a 5-dihydroxyindole tautomer, that is cytotoxic in an oxidative stress-dependent manner. Here we show, using the murine mesencephalic cell line MN9D, that DAC causes cell death by apoptosis, illustrated by membrane blebbing, Annexin V, and propidium iodide labeling within 3 h. In addition, DAC causes oxidative damage to DNA within 3 h, and positive terminal deoxynucleotidyl transferase dUTP nick end labeling fluorescence by 24 h. DAC, however, does not induce caspase 3 activation and its cytotoxic actions are not prevented by the pan-caspase inhibitor, Z-VAD-fmk. DAC-induced cytotoxicity is limited by the PARP1 inhibitor, 5-aminoisoquinolinone, supporting a role for apoptosis-inducing factor (AIF) in the apoptotic process. Indeed, AIF is detected in the nuclear fraction of MN9D cells 3 h after DAC exposure. Taken together these results demonstrate that DAC induces cytotoxicity in MN9D cells in a caspase-independent apoptotic manner, likely triggered by oxidative damage to DNA, and involving the translocation of AIF from the mitochondria to the nucleus.
Collapse
Affiliation(s)
- Andrew J Linsenbardt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | | | | | | |
Collapse
|
131
|
Design of a single AAV vector for coexpression of TH and GCH1 to establish continuous DOPA synthesis in a rat model of Parkinson's disease. Mol Ther 2012; 20:1315-26. [PMID: 22294150 DOI: 10.1038/mt.2012.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preclinical efficacy of continuous delivery of 3,4-dihydroxyphenylalanine (DOPA) with adeno-associated viral (AAV) vectors has recently been documented in animal models of Parkinson's disease (PD). So far, all studies have utilized a mix of two monocistronic vectors expressing either of the two genes, tyrosine hydroxylase (TH) and GTP cyclohydrolase-1 (GCH1), needed for DOPA production. Here, we present a novel vector design that enables efficient DOPA production from a single AAV vector in rats with complete unilateral dopamine (DA) lesions. Functional efficacy was assessed with drug-induced and spontaneous motor behavioral tests where vector-treated animals showed near complete and stable recovery within 1 month. Recovery of motor function was associated with restoration of extracellular DA levels as assessed by online microdialysis. Histological analysis showed robust transgene expression not only in the striatum but also in overlying cortical areas. In globus pallidus, we noted loss of NeuN staining, which might be due to different sensitivity in neuronal populations to transgene expression. Taken together, we present a single AAV vector design that result in efficient DOPA production and wide-spread transduction. This is a favorable starting point for continued translation toward a therapeutic application, although future studies need to carefully review target region, vector spread and dilution with this approach.
Collapse
|
132
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
133
|
Kefalopoulou Z, Aviles-Olmos I, Foltynie T. Critical aspects of clinical trial design for novel cell and gene therapies. PARKINSON'S DISEASE 2011; 2011:804041. [PMID: 22254150 PMCID: PMC3255302 DOI: 10.4061/2011/804041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/13/2011] [Indexed: 11/23/2022]
Abstract
Neural cell transplantation and gene therapy have attracted considerable interest as promising therapeutic alternatives for patients with Parkinson's disease (PD). Preclinical and open-label studies have suggested that grafted fetal neural tissue or viral vector gene transfer can achieve considerable biochemical and clinical improvements, whereas subsequent double-blind, placebo-controlled protocols have produced rather more modest and variable results. Detailed evaluation of these discordant findings has highlighted several crucial issues such as patient selection criteria, details surrounding transplantation or gene therapy methodologies, as well as the study designs themselves that ought to be carefully considered in the planning phases of future clinical trials. Beyond the provision of symptomatic efficacy and safety data, it also remains to be identified whether the possibilities offered by stem cell and gene therapy technological advances might translate to meaningful neuroprotection and/or disease-modifying effects or alleviate the nonmotor aspects of PD and thus offer additional benefits beyond those achieved through conventional pharmacotherapy or deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Zinovia Kefalopoulou
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Iciar Aviles-Olmos
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
134
|
Li J, Yang J, Zhao P, Li S, Zhang R, Zhang X, Liu D, Zhang B. Neuromelanin enhances the toxicity of α-synuclein in SK-N-SH cells. J Neural Transm (Vienna) 2011; 119:685-91. [PMID: 22200858 DOI: 10.1007/s00702-011-0753-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
The key pathological feature of Parkinson's disease (PD) is selective degeneration of the neuromelanin (NM)-pigmented dopaminergic neurons in the substantia nigra (SN). NM, like other risk factors, such as oxidative stress (OS) and α-synuclein (α-syn), is involved in the pathogenesis of PD. But whether or not NM synergizes with α-syn or OS in the pathogenesis of PD remains unexplored. In the present study, we examined the effects of NM on cellular viability, apoptosis and free radical production in α-syn over-expressing human neuroblastoma cell line (SK-N-SH) in the presence or absence of the oxidizer Fenton's Reagent (FR). We showed that NM synergized with FR in suppressing cell viability, and in inducing apoptosis and hydroxyl radical production in all SK-N-SH cell lines. α-Syn over-expressing cells exhibited more pronounced effect, especially the A53T mutation. Our findings suggest that NM synergizes with both OS and α-syn in conferring dopaminergic vulnerability, adding to our understanding of the pathogenesis of PD.
Collapse
Affiliation(s)
- Jie Li
- Department of Psychiatry, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Gołembiowska K, Dziubina A. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats. Neurotox Res 2011; 21:222-30. [PMID: 21830163 PMCID: PMC3246585 DOI: 10.1007/s12640-011-9263-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/21/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
A2A adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A2A adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. l-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, l-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of l-DOPA and CSC or ZM 241385 did not change the effect of l-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of l-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|
136
|
Müller T, Muhlack S. Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson's disease patients. Mov Disord 2011; 26:543-6. [PMID: 21462263 DOI: 10.1002/mds.23384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Oxidative stress is influenced by the thiol homeostasis, which determines the redox milieu. One of its components is Cysteinyl-glycine (Cys-Gly) generation, as its metabolic precursor is the free radicals scavenging glutathione. Levodopa is under suspicion to promote oxidative stress via the turnover of its metabolite dopamine in abundant mitochondria. Objective was to investigate the impact of levodopa on Cys-Gly plasma metabolism. Fifteen patients with Parkinson's disease orally took one 200-mg levodopa/50-mg carbidopa (CD) containing tablet. Levodopa, its derivative 3-O-methyldopa (3-OMD), and free Cys-Gly were measured at baseline, 60 and 120 min following levodopa/CD administration. Cys-gly concentrations decreased, levodopa and 3-OMD levels increased. Inverse relationships appeared between computed differences of Cys-gly and 3-OMD bioavailability. We conclude that Cys-Gly decline is related to levodopa metabolism to 3-OMD. Cys-Gly decay may result from the alternative transformation of glutathione to its oxidized form glutathione dissulfide as consequence of free radical scavenging.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, Germany.
| | | |
Collapse
|
137
|
Quinoprotein Adducts Accumulate in the Substantia Nigra of Aged Rats and Correlate with Dopamine-Induced Toxicity in SH-SY5Y Cells. Neurochem Res 2011; 36:2169-75. [DOI: 10.1007/s11064-011-0541-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
|
138
|
Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson's disease? Prog Neurobiol 2011; 94:389-407. [PMID: 21723913 DOI: 10.1016/j.pneurobio.2011.06.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
There is consensus that amelioration of the motor symptoms of Parkinson's disease is most effective with L-DOPA (levodopa). However, this necessary therapeutic step is biased by an enduring belief that L-DOPA is toxic to the remaining substantia nigra dopaminergic neurons by itself, or by specific metabolites such as dopamine. The concept of L-DOPA toxicity originated from pre-clinical studies conducted mainly in cell culture, demonstrating that L-DOPA or its derivatives damage dopaminergic neurons due to oxidative stress and other mechanisms. However, the in vitro data remain controversial as some studies showed neuroprotective, rather than toxic action of the drug. The relevance of this debate needs to be considered in the context of the studies conducted on animals and in clinical trials that do not provide convincing evidence for L-DOPA toxicity in vivo. This review presents the current views on the pathophysiology of Parkinson's disease, focusing on mitochondrial dysfunction and oxidative/proteolytic stress, the factors that can be affected by L-DOPA or its metabolites. We then critically discuss the evidence supporting the two opposing views on the effects of L-DOPA in vitro, as well as the animal and human data. We also address the problem of inadequate experimental models used in these studies. L-DOPA remains the symptomatic 'hero' of Parkinson's disease. Whether it contributes to degeneration of nigral dopaminergic neurons, or is a 'scapegoat' for explaining undesirable or unexpected effects of the treatment, remains a hotly debated topic.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd., Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
139
|
Park KH, Choi NY, Koh SH, Park HH, Kim YS, Kim MJ, Lee SJ, Yu HJ, Lee KY, Lee YJ, Kim HT. L-DOPA neurotoxicity is prevented by neuroprotective effects of erythropoietin. Neurotoxicology 2011; 32:879-87. [PMID: 21683736 DOI: 10.1016/j.neuro.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/21/2011] [Accepted: 05/19/2011] [Indexed: 01/27/2023]
Abstract
The neurotoxicity of L-3,4-dihydroxyphenylalanine (L-DOPA), one of the most important drugs for the treatment of Parkinson's disease, still remains controversial, although much more data on L-DOPA neurotoxicity have been presented. Considering the well known neuroprotective effects of erythropoietin (EPO), the inhibitory effects of EPO on L-DOPA neurotoxicity need to be evaluated. Neuronally differentiated PC12 (nPC12) cells were treated with different concentrations of L-DOPA and/or EPO for 24h. Cell viability was evaluated using trypan blue, 4',6-diamidino-2-phenylindole (DAPI) and TUNEL staining, and cell counting. Free radicals and intracellular signaling protein levels were measured with 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and Western blotting, respectively. L-DOPA reduced nPC12 cell viability at higher concentrations, but combined treatment with EPO and L-DOPA significantly restored cell viability. Free radicals and hydroxyl radical levels increased by L-DOPA were decreased after combined treatment of L-DOPA and EPO. Levels of survival-related intracellular signaling proteins decreased in nPC12 cells treated with 200 μM L-DOPA but increased significantly in cells treated with 200μM L-DOPA and 5 μM EPO. However, cleaved caspase-3, a death-related protein, increased in nPC12 cells treated with 200 μM L-DOPA but decreased significantly in cells treated with 200 μM L-DOPA and 5 μM EPO. Pretreatment with LY294002, a phosphatidylinositol 3-kinase inhibitor, prior to combined treatment with EPO and L-DOPA almost completely blocked the protective effects of EPO. These results indicate that EPO can prevent L-DOPA neurotoxicity by activating the PI3K pathway as well as reducing oxidative stress.
Collapse
Affiliation(s)
- Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Inchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
|
141
|
Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson's disease. Neurochem Res 2011; 36:1435-43. [PMID: 21484267 DOI: 10.1007/s11064-011-0469-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/21/2022]
Abstract
Evidence from clinical and experimental studies indicate that oxidative stress is involved in pathogenesis of Parkinson's disease. The present study was designed to investigate the neuroprotective potential of lycopene on oxidative stress and neurobehavioral abnormalities in rotenone induced PD. Rats were treated with rotenone (3 mg/kg body weight, intraperitoneally) for 30 days. NADH dehydrogenase a marker of rotenone action was observed to be significantly inhibited (35%) in striatum of treated animals. However, lycopene administration (10 mg/kg, orally) to the rotenone treated animals for 30 days increased the activity by 39% when compared to rotenone treated animals. Rotenone administration increased the MDA levels (75.15%) in striatum, whereas, lycopene administration to rotenone treated animals decreased the levels by 24.33%. Along with this, significant decrease in GSH levels (42.69%) was observed in rotenone treated animals. Lycopene supplementation on the other hand, increased the levels of GSH by 75.35% when compared with rotenone treated group. The activity of SOD was inhibited by 69% in rotenone treated animals and on lycopene supplementation; the activity increased by 12% when compared to controls. This was accompanied by cognitive and motor deficits in rotenone administered animals, which were reversed on lycopene treatment. Lycopene treatment also prevented release of cytochrome c from mitochondria. Collectively, these observations suggest that lycopene supplementation along with rotenone for 30 days prevented rotenone-induced alterations in antioxidants along with the prevention of rotenone induced oxidative stress and neurobehavioral deficits. The results provide an evidence for beneficial effect of lycopene supplementation in rotenone-induced PD and suggest therapeutic potential in neurodegenerative diseases involving accentuated oxidative stress.
Collapse
|
142
|
Lorenc-Koci E, Lenda T, Antkiewicz-Michaluk L, Wardas J, Domin H, Smiałowska M, Konieczny J. Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson's disease in rats. Neurochem Int 2011; 58:839-49. [PMID: 21419185 DOI: 10.1016/j.neuint.2011.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
Abstract
Impairment of the ubiquitin-proteasome system, responsible for clearing of misfolded and unwanted proteins, has been implicated in the loss of nigrostriatal dopaminergic neurons characteristic of Parkinson's disease (PD). Recently, proteasome inhibitors have been used to model parkinsonian-like changes in animals. In the present study, the effects of intrastriatal and intranigral injections of the selective proteasome inhibitor lactacystin on key markers of PD were examined in Wistar rats. Comparisons of these two different routes of lactacystin administration revealed that only a unilateral, intranigral injection of lactacystin at a dose of 0.5, 1, 2.5 and 5 μg/2 μl produced after 7 days distinct decreases in the concentrations of dopamine (DA) and its metabolites (DOPAC, 3-MT, HVA) in the ipsilateral striatum. The used doses of lactacystin (except for 0.5 μg/2 μl) significantly accelerated DA catabolism, i.e. the total, oxidative MAO-dependent and COMT-catalyzed pathways, as assessed by HVA/DA, DOPAC/DA and 3-MT/DA ratios, respectively, in the ipsilateral striatum. Such alterations were not observed in the striatal DA content and catabolism either 7, 14 or 21 days after a unilateral, intrastriatal high-dose lactacystin injection (5 and 10 μg/2 μl). Intranigrally administered lactacystin (1 μg/2 μl) caused a marked decline of tyrosine hydroxylase (TH) and α-synuclein protein levels in that structure. Neither TH nor α-synuclein protein levels in the substantia nigra (SN) were affected by high lactacystin doses injected intrastriatally. Moreover, stereological counting of TH-immunoreactive neurons and autoradiographic analysis of [(3)H]GBR 12,935 binding to dopamine transporter confirmed a loss of nigrostriatal dopaminergic neurons after an intranigral lactacystin (1 and 2.5 μg/2 μl) injection. An appearance of cardinal neurochemical and histological changes of parkinsonian type only after intranigral lactacystin injection indicates that DA cell bodies in the SN, but not DA terminals in the striatum are susceptible to proteasome inhibition.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., PL-31-343 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
143
|
Protective effects of statins on l-DOPA neurotoxicity due to the activation of phosphatidylinositol 3-kinase and free radical scavenging in PC12 cell culture. Brain Res 2011; 1370:53-63. [DOI: 10.1016/j.brainres.2010.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/18/2010] [Accepted: 11/05/2010] [Indexed: 01/08/2023]
|
144
|
Crawford CA, Akopian G, Ring J, Jakowec MW, Petzinger GM, Andersen JK, Vittozzi-Wong P, Wang K, Farley CM, Charntikov S, Mitroi D, Beal MF, Chow R, Walsh JP. Acute and long-term response of dopamine nigrostriatal synapses to a single, low-dose episode of 3-nitropropionic acid-mediated chemical hypoxia. Synapse 2010; 65:339-50. [PMID: 20730800 DOI: 10.1002/syn.20852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 07/26/2010] [Indexed: 11/11/2022]
Abstract
The goal of the present investigation was to determine the persistence of striatal (DA) dopaminergic dysfunction after a mild chemically induced hypoxic event in Fisher 344 rats. To this end, we gave a single injection of the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP; 16.5 mg/kg, i.p.) to 2-month old male F344 rats and measured various indices of striatal DA functioning and lipid peroxidation over a 3-month span. Separate groups of rats were used to measure rod walking, evoked DA release, DA content, malondialdehyde (MDA) accumulation, DA receptor binding, and tyrosine hydroxylase (TH) activity. The results showed that 3-NP exposure reduced most measures of DA functioning including motoric ability, DA release, and D(2) receptor densities for 1 to 3 months postdrug administration. Interestingly, DA content was reduced 1 week after 3-NP exposure, but rose to 147% of control values 1 month after 3-NP treatment. MDA accumulation, a measure of lipid peroxidation activity, was increased 24 h and 1 month after 3-NP treatment. 3-NP did not affect TH activity, suggesting that alterations in DA functioning were not the result of nigrostriatal terminal loss. These data demonstrate that a brief mild hypoxic episode caused by 3-NP exposure has long-term detrimental effects on the functioning of the nigrostriatal DA system.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, California 92407, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Borah A, Mohanakumar KP. Salicylic acid protects against chronic l-DOPA-induced 6-OHDA generation in experimental model of parkinsonism. Brain Res 2010; 1344:192-9. [DOI: 10.1016/j.brainres.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
146
|
Abstract
The once fantastic theoretical concept that patients with Parkinson's disease (PD) would receive gene therapy in an attempt to alleviate their symptoms and potentially modify the course of their disease has become a reality. On the basis of positive preclinical data, four different gene therapy approaches are currently in Phase I or Phase II clinical trials. Some approaches are intended to increase levels of endogenous dopamine or enhance the function of the prodrug levodopa. Others are intended to normalize basal ganglia circuitry by reducing the PD-related overactivity of specific brain structures such as the subthalamic nucleus. Each is intended for symptomatic benefit. Finally, gene delivery of trophic factors that not only augment dopaminergic function but are potentially disease modifying has a strong preclinical database and are also in clinical trials. Each of these approaches is discussed in the present review.
Collapse
Affiliation(s)
- Tomas Bjorklund
- Brain Repair and Imaging in Neural Systems, Department of Experimental and Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
147
|
Yamato M, Kudo W, Shiba T, Yamada KI, Watanabe T, Utsumi H. Determination of reactive oxygen species associated with the degeneration of dopaminergic neurons during dopamine metabolism. Free Radic Res 2010; 44:249-57. [PMID: 20014978 DOI: 10.3109/10715760903456084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress is believed to be an important mechanism underlying dopamine-induced neuronal damage. This study provides X-band electron spin resonance (ESR) spectroscopic evidence for reactive oxygen species (ROS) generation during dopamine metabolism. The authors induced excess dopamine metabolism in the mouse striatum by bathing it in tyramine-containing perfusate using microdialysis. The addition of tyramine to the perfusate raised the levels of extracellular dopamine and hydrogen peroxide significantly. The ESR signal from hydroxy-TEMPO decayed during tyramine perfusion and treatment with a monoamine-oxidase inhibitor or radical scavenger suppressed the signal decay. Decreases in the number of tyrosine hydroxylase-immunopositive fibres and in dopamine concentration after tyramine perfusion were observed. Moreover, the tyramine-perfused mice showed a marked methamphetamine-induced rotational response. Notably, these effects of tyramine were suppressed by the simultaneous perfusion of hydroxy-TEMPO. These findings indicate that the ROS generation, which was monitored by hydroxy-TEMPO, caused oxidative damage to the dopaminergic neurons.
Collapse
Affiliation(s)
- Mayumi Yamato
- Department of REDOX Medicinal Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
148
|
Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease. J Bioenerg Biomembr 2010; 41:469-72. [PMID: 19967436 DOI: 10.1007/s10863-009-9257-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The etiology of sporadic Parkinson's disease (PD) is unknown, although mitochondrial dysfunction and oxidative stress have been implicated in the mechanisms associated with PD pathogenesis. Dopamine (DA) neurons of the substantia nigra pars compacta have been shown to degenerate to a greater extent in PD than other neurons suggesting the possibility that DA itself may be contributing to the neurodegenerative process. This review discusses our work on the effects of DA oxidation and reactive DA quinones on mitochondrial function and protein modification and the potential for exacerbating toxicity associated with mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, 3501 Fifth Avenue, 7038 Biomedical Science Tower 3, Pittsburgh, PA 15261, USA.
| |
Collapse
|
149
|
skn-1-Dependent and -independent regulation of aip-1 expression following metabolic stress in Caenorhabditis elegans. Mol Cell Biol 2010; 30:2651-67. [PMID: 20351174 DOI: 10.1128/mcb.01340-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance of a stable, properly folded, and catalytically active proteome is a major challenge to organisms in the face of multiple internal and external stresses which damage proteins and lead to protein misfolding. Here we show that internal metabolic stress produced by reactive intermediates resulting from tyrosine degradation triggers the expression of the aip-1 gene, which is critical in responses to the environmental toxin arsenic and the clearance of unstable polyglutamine and Abeta proteins. aip-1 acts via binding to the proteosome and enhancing proteosomal function. We find that full induction of aip-1 depends on the oxidative-stress-responsive skn-1 transcription factor but significant induction still occurs without skn-1. Importantly, activation of skn-1 with wdr-23(RNAi), which dramatically induces the expression of other skn-1 target genes, produces a minimal increase in aip-1 expression. This suggests that the previously demonstrated specificity in aip-1/AIRAP induction could reflect the actions of multiple synergistic activators, such as the heat shock factor homolog hsf-1, which we also find is required for full induction. These may be triggered by proteosome dysfunction, as we find that this event links the multiple inducers of aip-1. Together, our results show that cell stress triggers aip-1 expression by both skn-1-dependent and -independent pathways.
Collapse
|
150
|
Bisaglia M, Greggio E, Maric D, Miller DW, Cookson MR, Bubacco L. Alpha-synuclein overexpression increases dopamine toxicity in BE2-M17 cells. BMC Neurosci 2010; 11:41. [PMID: 20334701 PMCID: PMC2851596 DOI: 10.1186/1471-2202-11-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD. Results We used dopaminergic human neuroblastoma BE(2)-M17 cell lines stably transfected with WT or A30P mutant α-synuclein to characterize the effect of α-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant α-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA. Conclusions Our results suggest that an interplay between dopamine and α-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of α-synuclein oligomers and impairment of the lysosomal degradation.
Collapse
Affiliation(s)
- Marco Bisaglia
- Department of Biology, University of Padova, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|