101
|
Charil A, Laplante DP, Vaillancourt C, King S. Prenatal stress and brain development. ACTA ACUST UNITED AC 2010; 65:56-79. [PMID: 20550950 DOI: 10.1016/j.brainresrev.2010.06.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/29/2010] [Accepted: 06/09/2010] [Indexed: 12/30/2022]
Abstract
Prenatal stress (PS) has been linked to abnormal cognitive, behavioral and psychosocial outcomes in both animals and humans. Animal studies have clearly demonstrated PS effects on the offspring's brain, however, while it has been speculated that PS most likely affects the brains of exposed human fetuses as well, no study has to date examined this possibility prospectively using an independent stressor (i.e., a stressful event that the pregnant woman has no control over, such as a natural disaster). The aim of this review is to summarize the existing animal literature by focusing on specific brain regions that have been shown to be affected by PS both macroscopically and microscopically. These regions include the hippocampus, amygdala, corpus callosum, anterior commissure, cerebral cortex, cerebellum and hypothalamus. We first discuss the mechanisms by which the effects of PS might occur. In particular, we show that maternal and fetal hypothalamic-pituitary-adrenal (HPA) axes, and the placenta, are the most likely candidates for these mechanisms. We see that, although animal studies have obvious advantages over human studies, the integration of findings in animals and the transfer of these findings to human populations remains a complex issue. Finally, we show how it is possible to circumvent these challenges by studying the effects of PS on brain development directly in humans, by taking advantage of natural or man-made disasters and assessing the impact and consequences of such stressful events on pregnant women and their offspring prospectively.
Collapse
Affiliation(s)
- Arnaud Charil
- McGill University, Department of Psychiatry, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
102
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
103
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
104
|
Abstract
The neurodevelopmental hypothesis of schizophrenia asserts that the underlying pathology of schizophrenia has its roots in brain development and that these brain abnormalities do not manifest themselves until adolescence or early adulthood. Animal models based on developmental manipulations have provided insight into the vulnerability of the developing fetus and the importance of the early environment for normal maturation. These models have provided a wide range of validated approaches to answer questions regarding environmental influences on both neural and behavioral development. In an effort to better understand the developmental hypothesis of schizophrenia, animal models have been developed, which seek to model the etiology and/or the pathophysiology of schizophrenia or specific behaviors associated with the disease. Developmental models specific to schizophrenia have focused on epidemiological risk factors (e.g., prenatal viral insult, birth complications) or more heuristic models aimed at understanding the developmental neuropathology of the disease (e.g., ventral hippocampal lesions). The combined approach of behavioral and neuroanatomical evaluation of these models strengthens their utility in improving our understanding of the pathophysiology of schizophrenia and developing new treatment strategies.
Collapse
Affiliation(s)
- Susan B Powell
- University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, USA.
| |
Collapse
|
105
|
Dong H, Csernansky JG. Effects of stress and stress hormones on amyloid-beta protein and plaque deposition. J Alzheimers Dis 2009; 18:459-69. [PMID: 19584430 DOI: 10.3233/jad-2009-1152] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence indicates that physical and psychosocial stressors, in part acting through the hypothalamic-pituitary-adrenal (HPA) axis, may accelerate the process of Alzheimer's disease (AD). In this review, we summarize recent research related to the effects of stress and stress hormones on the various disease process elements associated with AD. Specifically, we focus on the relationships among chronic stressors, HPA axis activity, amyloid-beta protein, and amyloid-beta plaque deposition in mouse models of AD. The potential mechanisms by which stress and stress-related components, especially corticotrophin-releasing factor and its receptors, influence the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
106
|
Turnock-Jones JJ, Jennings CA, Robbins MJ, Cluderay JE, Cilia J, Reid JL, Taylor A, Jones DN, Emson PC, Southam E. Increased expression of the NR2A NMDA receptor subunit in the prefrontal cortex of rats reared in isolation. Synapse 2009; 63:836-46. [DOI: 10.1002/syn.20665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
107
|
Oliver PL, Davies KE. Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Hum Mol Genet 2009; 18:4576-89. [PMID: 19729413 PMCID: PMC2773274 DOI: 10.1093/hmg/ddp425] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To understand the pathophysiology of neuropsychiatric disorders such as schizophrenia requires consideration of multiple genetic and non-genetic factors. However, very little is known about the consequences of combining models of synaptic dysfunction with controlled environmental manipulations. Therefore, to generate new insights into gene–environment interactions and complex behaviour, we examined the influence of variable prenatal stress (PNS) on two mouse lines with mutations in synaptosomal-associated protein of 25 kDa (Snap-25): the blind-drunk (Bdr) point mutant and heterozygous Snap-25 knockout mice. Neonatal development was analysed in addition to an assessment of adult behavioural phenotypes relevant to the psychotic, cognitive and negative aspects of schizophrenia. These data show that PNS influenced specific anxiety-related behaviour in all animals. In addition, sensorimotor gating deficits previously noted in Bdr mutants were markedly enhanced by PNS; significantly, these effects could be reversed with the application of anti-psychotic drugs. Moreover, social interaction abnormalities were observed only in Bdr animals from stressed dams but not in wild-type littermates or mutants from non-stressed mothers. These results show for the first time that combining a synaptic mouse point mutant with a controlled prenatal stressor paradigm produces both modified and previously unseen phenotypes, generating new insights into the interactions between genetics and the environment relevant to the study of psychiatric disease.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
108
|
Van Waes V, Enache M, Zuena A, Mairesse J, Nicoletti F, Vinner E, Lhermitte M, Maccari S, Darnaudéry M. Ethanol Attenuates Spatial Memory Deficits and Increases mGlu1a Receptor Expression in the Hippocampus of Rats Exposed to Prenatal Stress. Alcohol Clin Exp Res 2009; 33:1346-54. [DOI: 10.1111/j.1530-0277.2009.00964.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
109
|
Abstract
While the development of personalized or molecular medicine is a laudable goal, there remain multiple barriers to its implementation. For example, little is known about the functions of noncoding regions of DNA, as well as the interplay of drug response, environmental factors, and the patient's genetic profile. In addition, there is a constant influx of new information on genetic factors such as epigenetic variation that could further complicate the development of medications based on the genetic profile, as well as the cost of profiling. However, assuming that clinically relevant genetic factors will be discovered and that drugs can be developed based on the molecular changes induced by those genetic factors, I suggest that the costs involved may substantially exceed the savings brought about by abandoning our current "one drug fits all" approach. While there is no doubt that our current approach is inefficient and expensive, remarkably little attention has been paid to the potential costs of molecular medicine. Given the current economic crisis, the time is ripe for a debate on this issue.
Collapse
Affiliation(s)
- Charles E Dean
- Tardive Dyskinesia Assessment Clinic, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN 55417, USA.
| |
Collapse
|
110
|
Abstract
The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
111
|
Mesquita AR, Wegerich Y, Patchev AV, Oliveira M, Leão P, Sousa N, Almeida OFX. Glucocorticoids and neuro- and behavioural development. Semin Fetal Neonatal Med 2009; 14:130-5. [PMID: 19084485 DOI: 10.1016/j.siny.2008.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiological evidence links exposure to stress hormones during fetal or early postnatal development with lifetime prevalence of cardiac, metabolic, auto-immune, neurological and psychiatric disorders. This has led to the concept of 'developmental programming through stress'. Importantly, these effects (specifically, hypertension, hyperglycaemia and neurodevelopmental and behavioural abnormalities) can be reproduced by exposure to high glucocorticoid levels, indicating a crucial role of glucocorticoids in their causation. However, there can be important differences in outcome, depending on the exact time of exposure, as well as duration and receptor selectivity of the glucocorticoid applied. The mechanisms underlying programming by stress are still unclear but it appears that these environmental perturbations exploit epigenetic modifications of DNA and/or histones to induce stable modifications of gene expression. Programming of neuro- and behavioural development by glucocorticoids and stress are important determinants of lifetime health and should be a consideration when choosing treatments in obstetric and neonatal medicine.
Collapse
Affiliation(s)
- Ana Raquel Mesquita
- Life & Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
112
|
Fumagalli F, Pasini M, Frasca A, Drago F, Racagni G, Riva MA. Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex. J Neurochem 2009; 109:1733-44. [DOI: 10.1111/j.1471-4159.2009.06088.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
113
|
The long-lasting effects of cross-fostering on the emotional behavior in ICR mice. Behav Brain Res 2009; 198:172-8. [DOI: 10.1016/j.bbr.2008.10.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 11/20/2022]
|
114
|
Suñol C, Babot Z, Fonfría E, Galofré M, García D, Herrera N, Iraola S, Vendrell I. Studies with neuronal cells: From basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity. Toxicol In Vitro 2008; 22:1350-5. [PMID: 18467072 DOI: 10.1016/j.tiv.2008.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/14/2008] [Accepted: 03/23/2008] [Indexed: 02/02/2023]
Abstract
Neurotoxicology considers that chemicals perturb neurological functions by interfering with the structure or function of neural pathways, circuits and systems. Using in vitro methods for neurotoxicity studies should include evaluation of specific targets for the functionalism of the nervous system and general cellular targets. In this review we present the neuronal characteristics of primary cultures of cortical neurons and of cerebellar granule cells and their use in neurotoxicity studies. Primary cultures of cortical neurons are constituted by around 40% of GABAergic neurons, whereas primary cultures of cerebellar granule cells are mainly constituted by glutamatergic neurons. Both cultures express functional GABAA and ionotropic glutamate receptors. We present neurotoxicity studies performed in these cell cultures, where specific neural targets related to GABA and glutamate neurotransmission are evaluated. The effects of convulsant polychlorocycloalkane pesticides on the GABAA, glycine and NMDA receptors points to the GABAA receptor as the neural target that accounts for their in vivo acute toxicity, whereas NMDA disturbance might be relevant for long-term toxicity. Several compounds from a list of reference compounds, whose severe human poisoning result in convulsions, inhibited the GABAA receptor. We also present cell proteomic studies showing that the neurotoxic contaminant methylmercury affect mitochondrial proteins. We conclude that the in vitro assays that have been developed can be useful for their inclusion in an in vitro test battery to predict human toxicity.
Collapse
Affiliation(s)
- C Suñol
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, CSIC-IDIBAPS, c/Rosselló 161, 08036 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 2008; 32:1073-86. [PMID: 18423592 DOI: 10.1016/j.neubiorev.2008.03.002] [Citation(s) in RCA: 697] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 12/28/2022]
Abstract
UNLABELLED Maternal distress during pregnancy increases plasma levels of cortisol and corticotrophin releasing hormone in the mother and foetus. These may contribute to insulin resistance and behaviour disorders in their offspring that include attention and learning deficits, generalized anxiety and depression. The changes in behaviour, with or independent of alterations in the function of the hypothalamic pituitary adrenal (HPA) axis, can be induced by prenatal stress in laboratory rodents and non-human primates. The appearance of such changes depends on the timing of the maternal stress, its intensity and duration, gender of the offspring and is associated with structural changes in the hippocampus, frontal cortex, amygdala and nucleus accumbens. The dysregulation of the HPA axis and behaviour changes can be prevented by maternal adrenalectomy. However, only the increased anxiety and alterations in HPA axis are re-instated by maternal injection of corticosterone. CONCLUSION Excess circulating maternal stress hormones alter the programming of foetal neurons, and together with genetic factors, the postnatal environment and quality of maternal attention, determine the behaviour of the offspring.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University, Medical Centre, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
116
|
Blaise JH, Koranda JL, Chow U, Haines KE, Dorward EC. Neonatal isolation stress alters bidirectional long-term synaptic plasticity in amygdalo-hippocampal synapses in freely behaving adult rats. Brain Res 2008; 1193:25-33. [DOI: 10.1016/j.brainres.2007.11.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/29/2007] [Accepted: 11/27/2007] [Indexed: 01/08/2023]
|
117
|
Kim J, Lee S, Park K, Hong I, Song B, Son G, Park H, Kim WR, Park E, Choe HK, Kim H, Lee C, Sun W, Kim K, Shin KS, Choi S. Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A 2007; 104:20955-60. [PMID: 18165656 PMCID: PMC2409248 DOI: 10.1073/pnas.0710548105] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Indexed: 11/18/2022] Open
Abstract
Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy, which involves enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction; however, a direct link between depotentiation and extinction has not yet been tested. To address this issue, we applied both ex vivo and in vivo approaches to rats in which fear memory had been consolidated. A unique form of depotentiation reversed conditioning-induced potentiation at thalamic input synapses onto the LA (T-LA synapses) ex vivo. Extinction returned the enhanced T-LA synaptic efficacy observed in conditioned rats to baseline and occluded the depotentiation. Consistently, extinction reversed conditioning-induced enhancement of surface expression of AMPAR subunits in LA synaptosomal preparations. A GluR2-derived peptide that blocks regulated AMPAR endocytosis inhibited depotentiation, and microinjection of a cell-permeable form of the peptide into the LA attenuated extinction. Our results are consistent with the use of depotentiation to weaken potentiated synaptic inputs onto the LA during extinction and provide strong evidence that AMPAR removal at excitatory synapses in the LA underlies extinction.
Collapse
Affiliation(s)
- Jeongyeon Kim
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sukwon Lee
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kyungjoon Park
- Departments of Biology and Biological and Nanopharmaceutical Sciences, Kyunghee University, Seoul 130-701, Korea
| | - Ingie Hong
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Beomjong Song
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Gihoon Son
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Heewoo Park
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Woon Ryoung Kim
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-701, Korea; and
| | - Eunjin Park
- Department of Biological Sciences, College of Natural Sciences, Inha University, 253 Yong-Hyun Dong, Nam-Gu, Inchon 402-751, Korea
| | - Han Kyung Choe
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyun Kim
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-701, Korea; and
| | - Changjoong Lee
- Department of Biological Sciences, College of Natural Sciences, Inha University, 253 Yong-Hyun Dong, Nam-Gu, Inchon 402-751, Korea
| | - Woong Sun
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-701, Korea; and
| | - Kyungjin Kim
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ki Soon Shin
- Departments of Biology and Biological and Nanopharmaceutical Sciences, Kyunghee University, Seoul 130-701, Korea
| | - Sukwoo Choi
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
118
|
Maj PF, Collu M, Fadda P, Cattaneo A, Racagni G, Riva MA. Long-term reduction of brain-derived neurotrophic factor levels and signaling impairment following prenatal treatment with the cannabinoid receptor 1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1- naphthalenylmethanone. Eur J Neurosci 2007; 25:3305-11. [PMID: 17552998 DOI: 10.1111/j.1460-9568.2007.05565.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well accepted that adverse life events occurring early in development may alter the correct program of brain maturation leading to enhanced vulnerability to neuropsychiatric disorders. It has recently been demonstrated that prenatal exposure to the cannabinoid receptor 1 agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN 55,212-2) produces memory deficit in adulthood, an effect associated with a reduced functionality of the glutamatergic system. The aim of our study was to identify molecular changes produced by prenatal exposure to WIN 55,212-2 that might contribute to late disruption in synaptic plasticity and cognition. For this purpose, WIN 55,212-2 was injected in pregnant wistar rats from gestation day 5 to 20 and a detailed analysis of the levels of the neurotrophin brain-derived neurotrophic factor (BDNF) as well as of the signaling molecules extracellular signal-regulated kinase (ERK)1/2 and alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII) was carried out in adult offspring. We found that exposure to WIN 55,212-2 significantly reduced BDNF levels in hippocampus and frontal cortex. This effect was associated with decreased activation of pathways linked to neurotrophin and glutamate receptor signaling. In particular, prenatal cannabinoid treatment reduced the phosphorylated levels of ERK1/2 in selected subcellular compartments of hippocampus, frontal and prefrontal cortex, whereas no changes were observed in the total levels of these proteins. Furthermore, a robust reduction of total and phospho-alpha-CaMKII was found in the hippocampus of rats prenatally exposed to WIN 55,212-2. In summary, the present data suggest that deficits of BDNF levels and signaling through ERK1/2 and alpha-CaMKII might contribute to cognitive and neuroplastic defects associated with prenatal exposure to cannabinoids.
Collapse
Affiliation(s)
- Paola Francesca Maj
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
119
|
Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia--a synthesis and selective review. J Psychopharmacol 2007; 21:440-52. [PMID: 17259207 DOI: 10.1177/0269881106073126] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The dopamine hypothesis of schizophrenia is the principal explanatory model of antipsychotic drug action. Recent discoveries extend our understanding of the neurochemistry of schizophrenia, with increasing evidence of dysfunction in glutamate and GABA as well as dopamine systems. In this review, we study the evidence for dopaminergic dysfunction in schizophrenia, drawing data from neurochemical imaging studies. We also review the NMDA receptor hypofunction hypothesis of schizophrenia as a supplementary explanatory model for the illness. We examine predictions made by the NMDA receptor hypofunction hypothesis and consider how they fit with current neurochemical findings in patients and animal models. We consider the case for glutamatergic excitotoxicity as a key process in the development and progression of schizophrenia, and suggest ways in which glutamate and dopamine dysregulation may interact in the condition.
Collapse
Affiliation(s)
- James M Stone
- King's College London Institute of Psychiatry, London, UK.
| | | | | |
Collapse
|
120
|
Mueller BR, Bale TL. Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol Behav 2007; 91:55-65. [PMID: 17367828 DOI: 10.1016/j.physbeh.2007.01.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/23/2007] [Accepted: 01/31/2007] [Indexed: 11/24/2022]
Abstract
Diseases involving cognitive disorders and maladaptive stress-coping behaviors including autism and schizophrenia are present in children born to mothers exposed to stress during pregnancy. To determine the gestational time window when stress exposure produces the greatest impact on cognition, dams were exposed to chronic variable stress (CVS) early, mid-, or late in gestation and offspring learning performance and navigation strategies assessed. These studies utilized a modified version of the Barnes maze to allow investigation of coping responses to stress stimuli. In our study, males exposed to early gestational stress showed significantly impaired learning performance, requiring twice as long to locate the target following training. In stark contrast, early prenatal stress enhanced female performance, where these females located the target in a quarter of the time required by controls. Differences in search strategies whether cued, random, or serial accounted for divergent performances between sex and CVS groups. While control males' behavior expectedly evolved to a cued strategy, the early stressed offspring continued to rely on serial and random searching. Surprisingly, in a long-term memory recall test 6 weeks following previous maze exposure, these early stressed offspring now located the target significantly faster than controls suggesting gestational effects of stress on memory retention that were specific to prenatal time window of stress exposure. Overall, these results provide important insight into the temporal specificity of the effects of prenatal CVS revealing a remarkable vulnerability during early development and a sexually dichotomous influence on cognitive abilities and stress-coping strategies.
Collapse
Affiliation(s)
- Bridget R Mueller
- Department of Animal Biology, University of Pennsylvania, 201E Vet School, 3800 Spruce Street, Philadelphia, PA 19104, United States
| | | |
Collapse
|
121
|
Lanté F, Meunier J, Guiramand J, Maurice T, Cavalier M, de Jesus Ferreira MC, Aimar R, Cohen-Solal C, Vignes M, Barbanel G. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic Biol Med 2007; 42:1231-45. [PMID: 17382204 DOI: 10.1016/j.freeradbiomed.2007.01.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/19/2006] [Accepted: 01/15/2007] [Indexed: 01/01/2023]
Abstract
Prenatal infection is a major risk responsible for the occurrence of psychiatric conditions in infants. Mimicking maternal infection by exposing pregnant rodents to bacterial endotoxin lipopolysaccharide (LPS) also leads to major brain disorders in the offspring. The mechanisms of LPS action remain, however, unknown. Here, we show that LPS injection during pregnancy in rats, 2 days before delivery, triggered an oxidative stress in the hippocampus of male fetuses, evidenced by a rapid rise in protein carbonylation and by decreases in alpha-tocopherol levels and in the ratio of reduced/oxidized forms of glutathione (GSH/GSSG). Neither protein carbonylation increase nor decreases in alpha-tocopherol levels and GSH/GSSG ratio were observed in female fetuses. NMDA synaptic currents and long-term potentiation in CA1, as well as spatial recognition in the water maze, were also impaired in male but not in female 28-day-old offspring. Pretreatment with the antioxidant N-acetylcysteine prevented the LPS-induced changes in the biochemical markers of oxidative stress in male fetuses, and the delayed detrimental effects in male 28-day-old offspring, completely restoring both long-term potentiation in the hippocampus and spatial recognition performance. Oxidative stress in the hippocampus of male fetuses may thus participate in the neurodevelopmental damage induced by a prenatal LPS challenge.
Collapse
Affiliation(s)
- Fabien Lanté
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Fumagalli F, Molteni R, Racagni G, Riva MA. Stress during development: Impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 2007; 81:197-217. [PMID: 17350153 DOI: 10.1016/j.pneurobio.2007.01.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 02/05/2023]
Abstract
Development represents a critical moment for shaping adult behavior and may set the stage to disease vulnerability later in life. There is now compelling evidence that stressful experiences during gestation or early in life can lead to enhanced susceptibility for mental illness. In this paper we review the data from experimental studies aimed at investigating behavioral, hormonal, functional and molecular consequences of exposure to stressful events during prenatal or early postnatal life that might contribute to later psychopathology. The use of the newest methodology in the field and the intensive efforts produced by researchers have opened the possibility to reveal the complex, finely tuned and previously unappreciated sets of molecular interactions between different factors that are critical for neurodevelopment thus leading to important discoveries regarding perinatal life. The major focus of our work has been to revise and discuss data from animal studies supporting the role of neuronal plasticity in the long-term effects produced by developmental adversities on brain function as well as the possible implications for disease vulnerability. We believe these studies might prove useful for the identification of novel targets for more effective pharmacological treatments of mental illnesses.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
123
|
Yaka R, Salomon S, Matzner H, Weinstock M. Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. Behav Brain Res 2007; 179:126-32. [PMID: 17320196 DOI: 10.1016/j.bbr.2007.01.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/03/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Some but not other forms of prenatal stress have been shown to impair spatial memory in adult male offspring. It is not clear if this is because of the intensity of the stress, age of rats, or the way in which learning is assessed. We examined the effect of daily varied prenatal stress consisting of 30 min restraint, saline injections and 15 min forced swim on day 17-21 of gestation on spatial learning, synaptic plasticity and the expression of key proteins of the post synaptic density (PSD) in the hippocampus of males aged 4-5 weeks. Prenatal stress impaired spatial learning in the Morris water maze and induced a significant decrease in long-term potentiation (LTP) in hippocampal slices. There was no change in the paired pulse facilitation ratio but there was a significant reduction in the expression of the NR2B subunit of the glutamate type NMDA receptor and the GluR1 subunit of the AMPA receptor, both of which are important modulators of LTP. These changes were accompanied by a remarkable increase in the scaffolding protein PSD95, which interacts with the intracellular carboxy terminal domains of the NR2 subunits. The high levels of PSD95 may have contributed to the impairment of LTP by disrupting the clustering of NMDA receptors in CA1 synapses. The alteration by prenatal stress in the relative amounts of scaffolding proteins and those which compose glutamate receptors could explain the depression of LTP and impairment in the acquisition of spatial learning.
Collapse
Affiliation(s)
- Rami Yaka
- Department of Pharmacology, School of Pharmacy, Hebrew University Medical Centre Jerusalem, Israel
| | | | | | | |
Collapse
|
124
|
Babot Z, Vilaró MT, Suñol C. Long-term exposure to dieldrin reduces γ-aminobutyric acid type A and N-methyl-D-aspartate receptor function in primary cultures of mouse cerebellar granule cells. J Neurosci Res 2007; 85:3687-95. [PMID: 17663462 DOI: 10.1002/jnr.21433] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organochlorine pesticide dieldrin is a persistent organic pollutant that accumulates in the fatty tissue of living organisms. In mammals, it antagonizes the GABA(A) receptor, producing convulsions after acute exposure. Although accumulation in human brain has been reported, little is known about the effects of long-term exposure to dieldrin in the nervous system. Homeostatic control of the balance between excitation and inhibition has been reported when neuronal activity is chronically altered. We hypothesized that noncytotoxic concentrations of dieldrin could decrease glutamatergic neurotransmission as a consequence of a prolonged reduction in GABA(A) receptor function. Long-term exposure of primary cerebellar granule cell cultures to 3 microM dieldrin reduced the GABA(A) receptor function to 55% of control, as measured by the GABA-induced (36)Cl(-) uptake. This exposure produced a significant reduction (approximately 35%) of the NMDA-induced increase in [Ca(2+)](i) and of the [(3)H]MK-801 binding, which was not accompanied by a reduction in the NMDA receptor subunit NR1, as determined by Western blot. Consistent with the decreased NMDA receptor function, dieldrin-treated cultures were insensitive to an excitotoxic stimulus induced by exposure to high potassium. In summary, we report that the chronic reduction of GABA(A) receptor function induced by dieldrin decreases the number of functional NMDA receptors, which may be attributable to a mechanism of synaptic scaling. These effects could underlie neural mechanisms involved in cognitive impairment produced by low-level exposure to dieldrin.
Collapse
Affiliation(s)
- Zoila Babot
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, CSIC-IDIBAPS, Rosselló 161, Barcelona, Spain
| | | | | |
Collapse
|
125
|
Son GH, Chung S, Geum D, Kang SS, Choi WS, Kim K, Choi S. Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochem Biophys Res Commun 2006; 352:823-9. [PMID: 17150178 DOI: 10.1016/j.bbrc.2006.11.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
We recently demonstrated that prolonged maternal stress produces profound and long-lasting deficits in brain functions by programming a subset of target genes. We have now examined the possible effects of prenatal stress on the motility of adult offspring and dopamine (DA)-related gene expression in their midbrains, one of the target brain regions of stress hormones. Maternally stressed adult male mice showed impaired response habituation to novelty, and increased wheel-running activity associated with altered responses to DA receptor and DA transporter (DAT) blockers. Along with the behavioral changes, the expression profiles of several genes of the midbrain DAergic system appeared to be altered. Expression of DAT was reduced and expression of DA receptors and striatal DA-regulated neuropeptide genes was also affected. Taken together, the present findings indicate that maternal stress can cause hyperactivity in adult offspring associated with alterations in the midbrain DAergic system suggestive of a functional hyperdopaminergic state.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
126
|
Takahashi M, Kakita A, Futamura T, Watanabe Y, Mizuno M, Sakimura K, Castren E, Nabeshima T, Someya T, Nawa H. Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment. J Neurochem 2006; 99:770-80. [PMID: 16903871 DOI: 10.1111/j.1471-4159.2006.04106.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in synaptic development and plasticity, and alterations in BDNF expression or signaling are implicated in drug addiction and psychiatric diseases, such as depression and schizophrenia. In this study, we administered phencyclidine to postnatal and adult rats with different time schedules, and determined the correlations between BDNF expression and the behavioral effects. Both single and repeated phencyclidine injections into adult rats induced BDNF up-regulation in the corticolimbic system and a decrease in prepulse inhibition, both of which were transient. In contrast, subchronic postnatal administration increased BDNF protein and mRNA levels in the hippocampus and entorhinal cortex, which were sustained until 8 weeks of age. In parallel, the postnatal rats treated with phencyclidine developed a persistent decrease in prepulse inhibition at the adult stage. The chronic BDNF increase appeared to contribute to the prepulse inhibition abnormality, as subchronic BDNF infusion into the hippocampus of normal rats mimicked the prepulse inhibition deficits. This study suggests that phencyclidine exposure during brain development induces sustained BDNF up-regulation in the limbic system with a biological link to sensorimotor gating deficits.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn/physiology
- Blotting, Northern
- Blotting, Western
- Brain/pathology
- Brain Chemistry/drug effects
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/pharmacology
- Brain-Derived Neurotrophic Factor/physiology
- Hallucinogens/pharmacology
- Hippocampus
- Immunoenzyme Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microinjections
- Phencyclidine/pharmacology
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/genetics
- Reflex, Startle/drug effects
- Signal Transduction/drug effects
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Makoto Takahashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|