101
|
Jardim DP, Poço PCE, Campos AH. Dact1, a Wnt-Pathway Inhibitor, Mediates Human Mesangial Cell TGF-β1-Induced Apoptosis. J Cell Physiol 2017; 232:2104-2111. [PMID: 27714812 DOI: 10.1002/jcp.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/05/2016] [Indexed: 01/16/2023]
Abstract
Chronic kidney disease (CKD) is a worldwide public health problem that affects millions of men and women of all ages and racial groups. Loss of mesangial cells (MC) represents an early common feature in the pathogenesis of CKD. Transforming growth factor-β1 (TGF-β1) is a key inducer of kidney damage and triggers several pathological changes in renal cells, notably MC apoptosis. However, the mechanism of MC apoptosis induced by TGF-β1 remains elusive. Here, we demonstrate for the first time a novel regulatory pathway in which the disheveled-binding antagonist of β-catenin 1 (Dact1) gene is upregulated by TGF-β1, inducing MC apoptosis. We also show that the inhibitory effect of Dact1 and TGF-β1 on the transcriptional activation of the pro-survival Wnt pathway is the mechanism of death induction. In addition, Dact1 mRNA/protein levels are increased in kidney remnants from 5/6 nephrectomized rats and strongly correlate with TGF-β1 expression. Together, our results point to Dact1 as a novel element controlling MC survival that is causally related to CKD progression. J. Cell. Physiol. 232: 2104-2111, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniele Pereira Jardim
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.,Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Cristina Eiras Poço
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Alexandre Holthausen Campos
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| |
Collapse
|
102
|
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway. Sci Rep 2017; 7:40183. [PMID: 28098144 PMCID: PMC5241801 DOI: 10.1038/srep40183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.
Collapse
|
103
|
Dai H, Liu Q, Liu B. Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy. J Diabetes Res 2017; 2017:2615286. [PMID: 28791309 PMCID: PMC5534294 DOI: 10.1155/2017/2615286] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/05/2017] [Accepted: 03/05/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) together with glomerular hyperfiltration has been implicated in the development of diabetic microangiopathy in the initial stage of diabetic diseases. Increased amounts of urinary protein in DN may be associated with functional and morphological alterations of podocyte, mainly including podocyte hypertrophy, epithelial-mesenchymal transdifferentiation (EMT), podocyte detachment, and podocyte apoptosis. Accumulating studies have revealed that disruption in multiple renal signaling pathways had been critical in the progression of these pathological damages, such as adenosine monophosphate-activated kinase signaling pathways (AMPK), wnt/β-catenin signaling pathways, endoplasmic reticulum stress-related signaling pathways, mammalian target of rapamycin (mTOR)/autophagy pathway, and Rho GTPases. In this review, we highlight new molecular insights underlying podocyte injury in the progression of DN, which offer new therapeutic targets to develop important renoprotective treatments for DN over the next decade.
Collapse
Affiliation(s)
- Haoran Dai
- Department of Nephrology, Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
| | - Qingquan Liu
- Department of Nephrology, Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- *Qingquan Liu: and
| | - Baoli Liu
- Department of Nephrology, Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- *Baoli Liu:
| |
Collapse
|
104
|
XU Z, FAN J. Islet transplantation promotes podocyte regeneration in a model of diabetic nephropathy. Turk J Med Sci 2017; 47:1925-1930. [DOI: 10.3906/sag-1704-102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
105
|
Clinical features of CKD-MBD in Japan: cohort studies and registry. Clin Exp Nephrol 2016; 21:9-20. [PMID: 27942882 DOI: 10.1007/s10157-016-1367-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 12/29/2022]
Abstract
Randomized controlled trials (RCTs) are essential for evidence-based medicine; however, cohort studies and registries provide an important information about risk factors and, hence, shed light on the target of laboratory parameters. The uniqueness of the current Japanese CKD-MBD guidelines lies in the lower target range of intact parathyroid hormone levels than those used in other countries, which is based on analyses of the nationwide Japan Renal Data Registry. Cohort studies were also useful in exploring risk factors of renal outcome in predialysis patients. It was revealed that low vitamin D status (very prevalent in Japan) and high fibroblast growth factor 23 (FGF23) levels predict poor renal outcome. The reported association of FGF23 levels with left ventricular hypertrophy (LVH) and heart failure observed in cohort studies may support the idea of adding the 4th component of CKD-MBD, namely, "LVH" to the three original components. When it is not feasible to conduct RCTs regarding intervention, we have no choice but to rely on observational studies with sophisticated analysis methods, such as facility-level analysis and marginal structural model minimizing indication bias. Observational studies conducted in Japan revealed that the side effects of medications for CKD-MBD, resultant compliance, and effective doses in terms of hard outcome in Japanese patients were found to be different from those in other countries. For example, the MBD-5D study confirmed the benefit of cinacalcet in terms of mortality despite its median dose of only 25 mg/day. These data are very helpful for future guidelines specific to Japanese patients with CKD.
Collapse
|
106
|
He X, Cheng R, Park K, Benyajati S, Moiseyev G, Sun C, Olson LE, Yang Y, Eby BK, Lau K, Ma JX. Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney Int 2016; 91:642-657. [PMID: 27914705 DOI: 10.1016/j.kint.2016.09.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/23/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022]
Abstract
Pigment epithelium-derived factor (PEDF) expression is downregulated in the kidneys of diabetic rats, and delivery of PEDF suppressed renal fibrotic factors in these animals. PEDF has multiple functions including anti-angiogenic, anti-inflammatory and antifibrotic activities. Since the mechanism underlying its antifibrotic effect remains unclear, we studied this in several murine models of renal disease. Renal PEDF levels were significantly reduced in genetic models of type 1 and type 2 diabetes (Akita and db/db, respectively), negatively correlating with Wnt signaling activity in the kidneys. In unilateral ureteral obstruction, an acute renal injury model, there were significant decreases of renal PEDF levels. The kidneys of PEDF knockout mice with ureteral obstruction displayed exacerbated expression of fibrotic and inflammatory factors, oxidative stress, tubulointerstitial fibrosis, and tubule epithelial cell apoptosis, compared to the kidneys of wild-type mice with obstruction. PEDF knockout enhanced Wnt signaling activation induced by obstruction, while PEDF inhibited the Wnt pathway-mediated fibrosis in primary renal proximal tubule epithelial cells. Additionally, oxidative stress was aggravated in renal proximal tubule epithelial cells isolated from knockout mice and suppressed by PEDF treatment of renal proximal tubule epithelial cells. PEDF also reduced oxidation-induced apoptosis in renal proximal tubule epithelial cells. Thus, the renoprotective effects of PEDF are mediated, at least partially, by inhibition of the Wnt pathway. Hence, restoration of renal PEDF levels may have therapeutic potential for renal fibrosis.
Collapse
Affiliation(s)
- Xuemin He
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rui Cheng
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Siribhinya Benyajati
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Gennadiy Moiseyev
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chengyi Sun
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Lorin E Olson
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yanhui Yang
- Key Laboratory of Hormones and Development, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bonnie K Eby
- Section of Nephrology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kai Lau
- Section of Nephrology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jian-Xing Ma
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
107
|
Keyzer CA, van Breda GF, Vervloet MG, de Jong MA, Laverman GD, Hemmelder MH, Janssen WMT, Lambers Heerspink HJ, Kwakernaak AJ, Bakker SJL, Navis G, de Borst MH. Effects of Vitamin D Receptor Activation and Dietary Sodium Restriction on Residual Albuminuria in CKD: The ViRTUE-CKD Trial. J Am Soc Nephrol 2016; 28:1296-1305. [PMID: 27856633 DOI: 10.1681/asn.2016040407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/11/2016] [Indexed: 12/26/2022] Open
Abstract
Reduction of residual albuminuria during single-agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)-controlled, crossover trial, 45 patients with nondiabetic CKD stages 1-3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μg/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI (P=0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h (P<0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h (P<0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant (P=0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction (P=0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na+ per day in the combined RS groups and 108±61 mmol Na+ per day in the LS groups (P<0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin-converting enzyme inhibition. The additional effect of PARI was small and nonsignificant.
Collapse
Affiliation(s)
| | - G Fenna van Breda
- Department of Nephrology and Institute for Cardiovascular Research, Vrije University Medical Centre, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology and Institute for Cardiovascular Research, Vrije University Medical Centre, Amsterdam, The Netherlands
| | | | - Gozewijn D Laverman
- Department of Internal Medicine, Division of Nephrology, Zorggroep Twente Hospital, Almelo, The Netherlands
| | - Marc H Hemmelder
- Department of Internal Medicine, Division of Nephrology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands; and
| | - Wilbert M T Janssen
- Department of Internal Medicine, Division of Nephrology, Martini Hospital Groningen, Groningen, The Netherlands
| | - Hiddo J Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology and
| | | | | |
Collapse
|
108
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
109
|
Shin JH, Chung MJ, Seo JG. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of CD4 +Foxp3 + T cells. Food Nutr Res 2016; 60:32550. [PMID: 27802847 PMCID: PMC5090133 DOI: 10.3402/fnr.v60.32550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by chronic inflammation of the skin. AD develops mainly in infants and young children. It induces skin disorders and signals the initiation of the allergic march including allergic asthma and rhinitis. Probiotics modify intestinal microbial populations in a beneficial way for human and animal hosts by reducing inflammatory cytokines. OBJECTIVE As a result of their immunomodulatory properties, probiotics have been considered a promising therapeutic option for the prevention and treatment of AD. DESIGN In this study, we examined the effects of GI7, a potential probiotic mixture consisting of seven strains of bifidobacteria and lactic acid bacteria, on AD in a mouse model. RESULTS Administration of GI7 for 8 weeks reduced AD-like skin lesions and induced changes in the levels of serum markers such as immunoglobulin E and cytokines related to T helper (Th)1 and Th2 cells, and in skin barrier genes. Alleviation of AD seems to be associated with GI7-induced generation of CD4+Foxp3+ regulatory T cells. CONCLUSIONS The probiotic mixture may have potential to improve symptoms of AD.
Collapse
Affiliation(s)
- Joo-Hyun Shin
- R&D Center, Cell Biotech Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Myung-Jun Chung
- R&D Center, Cell Biotech Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Cell Biotech Co., Ltd., Gyeonggi-do, Republic of Korea;
| |
Collapse
|
110
|
Zou XR, Wang XQ, Hu YL, Zhou HL. Effects of Shen'an granules on Wnt signaling pathway in mouse models of diabetic nephropathy. Exp Ther Med 2016; 12:3515-3520. [PMID: 28105085 PMCID: PMC5228428 DOI: 10.3892/etm.2016.3800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
The effect of Shen'an granules on the Wnt signaling pathway in renal tissues of mouse models of streptozotocin (STZ)-induced diabetic nephropathy was investigated in the present study. A total of 62 BALB/c mice were randomly divided into the normal control (A group), model (B group), losartan (C group), low-dose Shen'an granules (D group), and high-dose Shen'an granules (E group) groups. The mouse model of diabetic nephropathy was established by a single intraperitoneal injection of STZ (150 mg/kg). The animals were treated with drugs for 8 weeks, and blood creatinine, blood urea nitrogen, triglycerides (TG), and total cholesterol (CHOL) were measured prior to and after treatment. PAS staining was performed for observation of glomerular microstructure by light microscope, and western blot analysis was performed to detect Wnt1 protein and β-catenin protein. The results indicated that the quantification of 24-h microalbuminuria, and levels of blood creatinine, urea nitrogen, TG, and CHOL were significantly lower in the high- and low-dose Shen'an granules groups than those in the model group (p<0.05). The expression levels of Wnt1 protein and β-catenin protein in the high- and low-dose Shen'an granules groups were significantly lower than those in the model group (p<0.05). In conclusion, proteinuria, renal dysfunction, and dyslipidemias are closely associated with the abnormal activation of the Wnt signaling pathway in the mouse model of diabetic nephropathy. The mechanism by which Shen'an granules regulate proteinuria, renal function, and blood lipids may be associated with inhibition of the abnormally activated Wnt signaling pathway.
Collapse
Affiliation(s)
- Xin-Rong Zou
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Qin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Ying-Lin Hu
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Hui-Lan Zhou
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
111
|
Hu M, Fan M, Zhen J, Lin J, Wang Q, Lv Z, Wang R. FAK contributes to proteinuria in hypercholesterolaemic rats and modulates podocyte F-actin re-organization via activating p38 in response to ox-LDL. J Cell Mol Med 2016; 21:552-567. [PMID: 27704688 PMCID: PMC5323874 DOI: 10.1111/jcmm.13001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that regulates cell adhesion, proliferation and differentiation. In the present study, a rat model of high fat diet-induced hypercholesterolaemia was established to investigate the involvement of FAK in lipid disorder-related kidney diseases. We showed focal fusion of podocyte foot process that occurred at as early as 4 weeks in rats consuming high fat diet, preceding the onset of proteinuria when aberrant phosphorylation of FAK was found. These abnormalities were ameliorated by dietary intervention of TAE226, a reported inhibitor of FAK. FAK is also an adaptor protein initiating cascades of intracellular signals including c-Src, Rho GTPase and mitogen-activated protein kinase (MAPK). P38 MAPK belongs to the latter and is centrally involved in kidney diseases. Our cell culture data revealed oxidized low-density lipoprotein (ox-LDL) triggered hyper-phosphorylation of FAK and p38, ectopic expression of cellular markers (manifested as decreased WT1, podocin and NEPH1, and increased vimentin and mmp9), and re-arrangement of F-actin filaments with enhanced cell motility; these mutations were significantly rectified by FAK shRNA. Notably, pre-treatment of p38 inhibitor did not alter FAK activation, albeit its deletion of p38 hyper-activity and attenuation of cellular abnormalities, demonstrating that p38 acted as a downstream effector of FAK signalling and ox-LDL damaged podocytes in a FAK/p38-dependent manner. This was further identified by animal data that p38 activation was also abrogated by TAE226 treatment in hypercholesterolaemic rats, suggesting that FAK/p38 axis might also be involved in in vivo events. These findings provided a potential early mechanism of hypercholesterolaemia-related podocyte damage and proteinuria.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qun Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
112
|
Zhou Z, Hu Z, Li M, Zhu F, Zhang H, Nie J, Ai J. QiShenYiQi Attenuates Renal Interstitial Fibrosis by Blocking the Activation of β-Catenin. PLoS One 2016; 11:e0162873. [PMID: 27636716 PMCID: PMC5026381 DOI: 10.1371/journal.pone.0162873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/26/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic kidney disease (CKD) is becoming a worldwide problem. However, current treatment options are limited. In the current study we showed that QiShenYiQi (QSYQ), a water-ethanol extract from several Chinese medicines, is a potent inhibitor of renal interstitial fibrosis. QSYQ inhibited transforming growth factor-β1 (TGF-β1)-responsive α-smooth muscle actin (α-SMA), collagen I, and fibronectin up-regulation in obstructive nephropathy and cultured cells. Administration of QSYQ also inhibited the established renal interstitial fibrosis in obstructive nephropathy. Interestingly, QSYQ selectively inhibited TGF-β1-induced β-catenin up-regulation and downstream gene transcription. Taken together, our study suggests that QSYQ selectively inhibits TGF-β1-induced β-catenin up-regulation and might have significant therapeutic potential for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hao Zhang
- Tasly R&D Institute, Tianjin, P.R. China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
113
|
Filipov JJ, Zlatkov BK, Dimitrov EP, Svinarov DA. Higher 25-Hydroxyvitamin D Levels Are Associated With Lower Proteinuria in Kidney Transplant Recipients. EXP CLIN TRANSPLANT 2016; 14:629-633. [PMID: 27483020 DOI: 10.6002/ect.2015.0344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Proteinuria is associated with decreased graft and patient survival after kidney transplantation. Increasing evidence shows that vitamin D has antiproteinuric and renoprotective effects. The aim of our study was to assess the influence of 25-hydroxyvitamin D levels on proteinuria after kidney transplantation. MATERIAL AND METHODS Between May 1, 2012, and November 30, 2012, we tested 395 kidney transplant recipients for 25-hydroxyvitamin D levels during their regular visits to our transplant center together with routine blood sampling and proteinuria testing. Patients within 12 months of transplant, who had undergone parathyroidectomy, had unstable graft function, had concomitant intake of calcineurin inhibitors and mammalian target of rapamycin inhibitors were not included in the study. Subjects with advanced liver disease, or receiving vitamin D supplementation were also excluded. All laboratory, clinical, and therapeutic factors for proteinuria were taken into consideration. Statistical analyses included descriptive statistics and univariate and multivariate log-log regression with backward selection (SPSS version 22.0; SPSS Inc., Chicago, IL, USA), with significance at P < .05. Determination of total 25-hydroxyvitamin D levels was performed by a validated liquid chromatography-tandem mass spectrometry method. RESULTS Our study group included 230 patients (148 men, 82 women). Positive association was established between proteinuria and history of diabetes mellitus, rejection episode 12 months within testing for 25-hydroxyvitamin D levels, and use of mammalian target of rapamycin inhibitors (P < .05). Significant negative relations were detected for patient age, graft function, and 25-hydroxyvitamin D concentrations (P < .05). CONCLUSIONS Our study established that better vitamin D status is associated with lower proteinuria. However, further research is needed to clarify the possible renoprotective properties of vitamin D.
Collapse
Affiliation(s)
- Jean J Filipov
- From the Department of Nephrology and Transplantation, and University Hospital "Alexandrovska," and the Medical University, Sofia, Bulgaria
| | | | | | | |
Collapse
|
114
|
Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem 2016; 22:2858-70. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
| | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Zhu F, Liu W, Li T, Wan J, Tian J, Zhou Z, Li H, Liu Y, Hou FF, Nie J. Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M. Oncotarget 2016; 7:25604-19. [PMID: 27016419 PMCID: PMC5041930 DOI: 10.18632/oncotarget.8238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/06/2016] [Indexed: 12/17/2022] Open
Abstract
Numb is a multifunctional protein involved in diverse cellular processes. However, the function of Numb in kidney remains unclear. Here, we reported that Numb is expressed in renal tubules and glomeruli in normal adult kidney. Numb expression was upregulated in fibrotic kidneys induced by unilateral ureteral obstruction (UUO) in mice as well as in human fibrotic kidney tissues. Numb overexpression in cultured proximal tubular cells increased the G2/M cell population and upregulated the expression of TGF-β1 and CTGF. Whereas, proximal tubule Numb knockout (PEPCK-Numb-KO) mice showed reduced G2/M arrest, decreased expression of TGF-β1 and CTGF, and attenuated fibrotic lesions due to either UUO or unilateral ischemia reperfusion nephropathy. Inhibiting p53 activity by pifithrin-` dramatically mitigated Numb-induced G2/M arrest, indicating that Numb potentiates G2/M arrest via stabilizing p53 protein. Together, these data suggest that Numb is a potential target for anti-fibrosis therapy.
Collapse
Affiliation(s)
- Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wei Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, P.R. China
| | - Tang Li
- The VIP Medical Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jiao Wan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hao Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
116
|
Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 2016; 12:426-39. [PMID: 27140856 DOI: 10.1038/nrneph.2016.54] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kidney fibrosis is a common histological manifestation of functional decline in the kidney. Fibrosis is a reactive process that develops in response to excessive epithelial injury and inflammation, leading to myofibroblast activation and an accumulation of extracellular matrix. Here, we describe how three key developmental signalling pathways - Notch, Wnt and Hedgehog (Hh) - are reactivated in response to kidney injury and contribute to the fibrotic response. Although transient activation of these pathways is needed for repair of injured tissue, their sustained activation is thought to promote fibrosis. Excessive Wnt and Notch expression prohibit epithelial differentiation, whereas increased Wnt and Hh expression induce fibroblast proliferation and myofibroblastic transdifferentiation. Notch, Wnt and Hh are fundamentally different signalling pathways, but their choreographed activation seems to be just as important for fibrosis as it is for embryonic kidney development. Decreasing the activity of Notch, Wnt or Hh signalling could potentially provide a new therapeutic strategy to ameliorate the development of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Maria Edeling
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA.,Department of Molecular Nephrology, Internal Medicine D, University Hospital Albert-Schweitzer-Straße 33, Münster 48149, Germany
| | - Grace Ragi
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | - Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | - Hermann Pavenstädt
- Department of Molecular Nephrology, Internal Medicine D, University Hospital Albert-Schweitzer-Straße 33, Münster 48149, Germany
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
117
|
Johnson AL, Zinser GM, Waltz SE. Vitamin D3-dependent VDR signaling delays ron-mediated breast tumorigenesis through suppression of β-catenin activity. Oncotarget 2016; 6:16304-20. [PMID: 26008979 PMCID: PMC4599271 DOI: 10.18632/oncotarget.4059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
The Ron receptor is upregulated in human breast cancers and correlates with enhanced metastasis and reduced patient survival. Ron overexpression drives mammary tumorigenesis through direct β-catenin activation and augmented tumor cell proliferation, migration and invasion. Ron and β-catenin are also coordinately elevated in breast cancers. The vitamin D receptor (VDR) antagonizes β-catenin signaling. Herein, we examined mammary tumor onset and progression using a Ron-driven murine model of breast tumorigenesis crossed with VDR deficient mice. VDR ablation accelerated mammary tumor onset and led to tumors that exhibited a desmoplastic phenotype and enhanced metastases. Tumor levels of active β-catenin were markedly increased in the absence of VDR. In vitro, VDR activation in breast cancer cells reduced β-catenin activation and transcriptional activity leading to elevated expression of the extracellular Wnt inhibitor dickkopf-related protein 1, and a reduction in the interaction of β-catenin with the cyclin D1 promoter. Expression of a stabilized form or β-catenin ablated the protective effects of VDR activation. Collectively, these studies delineate a protective role for VDR signaling in Ron-induced mammary tumorigenesis through disruption of β-catenin activation.
Collapse
Affiliation(s)
- Abby L Johnson
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Glendon M Zinser
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
118
|
Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY, Zhang Y, Yu X, Li NJ, Sun JP, Yi F. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 2016; 7:e2183. [PMID: 27054338 PMCID: PMC4855668 DOI: 10.1038/cddis.2016.89] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
β-Arrestins are multifunctional proteins originally identified as negative adaptors of G protein-coupled receptors (GPCRs). Emerging evidence has also indicated that β-arrestins can activate signaling pathways independent of GPCR activation. This study was to elucidate the role of β-arrestins in diabetic nephropathy (DN) and hypothesized that β-arrestins contribute to diabetic renal injury by mediating podocyte autophagic process. We first found that both β-arrestin-1 and β-arrestin-2 were upregulated in the kidney from streptozotocin-induced diabetic mice, diabetic db/db mice and kidney biopsies from diabetic patients. We further revealed that either β-arrestin-1 or β-arrestin-2 deficiency (Arrb1−/− or Arrb2−/−) ameliorated renal injury in diabetic mice. In vitro, we observed that podocytes increased both β-arrestin-1 and β-arrestin-2 expression levels under hyperglycemia condition and further demonstrated that β-arrestin-1 and β-arrestin-2 shared common mechanisms to suppress podocyte autophagy by negative regulation of ATG12–ATG5 conjugation. Collectively, this study for the first time demonstrates that β-arrestin-1 and β-arrestin-2 mediate podocyte autophagic activity, indicating that β-arrestins are critical components of signal transduction pathways that link renal injury to reduce autophagy in DN. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with DN.
Collapse
Affiliation(s)
- J Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Q X Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X J Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - C Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Q Duan
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Z Y Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Y Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X Yu
- Department of Physiology, Shandong University School of Medicine, Jinan 250012, China
| | - N J Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J P Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - F Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China.,Institute of Nephrology, Shandong University, Jinan 250012, China
| |
Collapse
|
119
|
Chang YC, Hsu SY, Yang CC, Sung PH, Chen YL, Huang TH, Kao GS, Chen SY, Chen KH, Chiang HJ, Yip HK, Lee FY. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood) 2016; 241:1588-602. [PMID: 27037275 DOI: 10.1177/1535370216642528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/20/2016] [Indexed: 01/24/2023] Open
Abstract
We tested the hypothesis that combined treatment with melatonin, an anti-oxidant, and exendin-4, an anti-inflammatory agent, was superior to either alone for protecting the kidney from ischemia-reperfusion (IR) injury. Male adult Sprague-Dawley rats (n=40) were equally divided into group 1 (sham-operated control), group 2 (IR only, IR=1h/72h), group 3 (IR-exendin-4, 10 µg/kg at 30 min, 24 h, 48 h after IR procedure), group 4 (IR-melatonin, i.p. 50 mg at 30 min, then 20 mg at 6 and 18 h after IR procedure), and group 5 (combined IR-exendin-4-melatonin). All animals were sacrificed by 72 h after IR/sham procedure. The results showed that the kidney injury score, plasma creatinine, and blood urea nitrogen (BUN) levels were highest in group 2 and lowest in group 1, significantly higher in groups 3 and 4 than those in group 5 and significantly higher in group 3 than those in group 4 (all p < 0.001). The protein expressions of inflammatory (toll-like receptor 4, inducible nitric oxide synthase, interleukin-1β), apoptotic (mitochondrial Bax, cleaved caspase-3 and poly(ADP-ribose) polymerase, p53), podocyte integrity (E-cadherin, P-cadherin), and cell survival (phosphatidylinositol-3-kinase/AKT/mammalian target of rapamycin) biomarkers, as well the podocyte dysfunction biomarkers (Wnt1/Wnt4/β-catenin) displayed a pattern identical to that of creatinine level among the five groups (all p < 0.001). Microscopic findings demonstrated that podocyte dysfunction (Wnt1/Wnt4/β-catenin expression) and inflammatory (CD14 and F4/80-positively stained cells) biomarkers exhibited an identical pattern, whereas that of antioxidant (HO-1(+), NQO-1(+) cells) biomarkers showed an opposite pattern compared to that of creatinine level among the five groups (all p < 0.001). Combined melatonin-exendin-4 therapy offered an additional benefit in protecting the kidney from acute IR injury.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Memorial Hospital, Fujian 361028, China
| | - Shu-Yuan Hsu
- Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Gour-Shenq Kao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Sheng-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hsin-Ju Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Fan-Yen Lee
- Division of thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
120
|
El-Shemi AG, Refaat B, Kensara OA, Mohamed AM, Idris S, Ahmad J. Paricalcitol Enhances the Chemopreventive Efficacy of 5-Fluorouracil on an Intermediate-Term Model of Azoxymethane-Induced Colorectal Tumors in Rats. Cancer Prev Res (Phila) 2016; 9:491-501. [DOI: 10.1158/1940-6207.capr-15-0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
|
121
|
Madan B, Patel MB, Zhang J, Bunte RM, Rudemiller NP, Griffiths R, Virshup DM, Crowley SD. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney Int 2016; 89:1062-1074. [PMID: 27083283 DOI: 10.1016/j.kint.2016.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/09/2023]
Abstract
Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.
| | - Mehul B Patel
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Jiandong Zhang
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Ralph M Bunte
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Nathan P Rudemiller
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Robert Griffiths
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore; Department of Biochemistry, National University of Singapore, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven D Crowley
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA.
| |
Collapse
|
122
|
Brandenburg VM, D'Haese P, Deck A, Mekahli D, Meijers B, Neven E, Evenepoel P. From skeletal to cardiovascular disease in 12 steps-the evolution of sclerostin as a major player in CKD-MBD. Pediatr Nephrol 2016; 31:195-206. [PMID: 25735207 DOI: 10.1007/s00467-015-3069-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
Canonical Wnt signaling activity contributes to physiological and adaptive bone mineralization and is an essential player in bone remodeling. Sclerostin is a prototypic soluble canonical Wnt signaling pathway inhibitor that is produced in osteocytes and blocks osteoblast differentiation and function. Therefore, sclerostin is a potent inhibitor of bone formation and mineralization. Accordingly, rodent sclerostin-deficiency models exhibit a strong bone phenotype. Moreover, blocking sclerostin represents a promising treatment perspective against osteoporosis. Beyond the bone field novel data definitely associate Wnt signaling in general and sclerostin in particular with ectopic extraosseous mineralization processes, as is evident in cardiovascular calcification or calciphylaxis. Uremia is characterized by parallel occurrence of disordered bone mineralization and accelerated cardiovascular calcification (chronic kidney disease - mineral and bone disorder, CKD-MBD), linking skeletal and cardiovascular disease-the so-called bone-vascular calcification paradox. In consequence, sclerostin may qualify as an emerging player in CKD-MBD. We present a stepwise review approach regarding the rapidly evolving field sclerostin participation in CKD-MBD. Starting from data originating in the classical bone field we look separately at three major areas of CKD-MBD: disturbed mineral metabolism, renal osteodystrophy, and uremic cardiovascular disease. Our review is intended to help the nephrologist revise the potential importance of sclerostin in CKD by focusing on how sclerostin research is gradually evolving from the classical osteoporosis niche into the area of CKD-MBD. In particular, we integrate the limited amount of available data in the context of pediatric nephrology.
Collapse
Affiliation(s)
- Vincent M Brandenburg
- Department of Cardiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52057, Aachen, Germany.
| | - Patrick D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Annika Deck
- Department of Cardiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52057, Aachen, Germany
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Björn Meijers
- Department of Immunology and Microbiology, Laboratory of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
123
|
Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-67. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
|
124
|
Zhang Q, Li M, Zhang T, Chen J. Effect of Vitamin D Receptor Activators on Glomerular Filtration Rate: A Meta-Analysis and Systematic Review. PLoS One 2016; 11:e0147347. [PMID: 26812502 PMCID: PMC4727919 DOI: 10.1371/journal.pone.0147347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022] Open
Abstract
Background Vitamin D receptor activators (VDRAs) can protect against mineral bone disease, but they are reported to elevate serum creatinine (SCr) and may also reduce glomerular filtration rate (GFR). Methods We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) to evaluate the effect of VDRAs on kidney function and adverse events. MEDLINE, EMBASE, the Cochrane Controlled Trials Register were searched for RCTs that evaluate vitamin D receptor activators (alfacalcidol, calcitriol, doxercalciferol, falecalcitriol, maxacalcitol and paricalcitol) up to March 2015. Results We included 31 studies, all of which were performed between 1976 and 2015, which enrolled 2621 patients. Patients receiving VDRAs had lower eGFR (weighted mean difference WMD -1.29 mL/min /1.73 m2, 95% CI -2.42 to -0.17) and elevated serum creatinine (WMD 7.03 μmol/L, 95% CI 0.61 to 13.46) in sensitivity analysis excluding studies with dropout rate more than 30%. Subgroup analysis of the 5 studies that not use SCr-based measures did not indicated lower GFR in the VDRAs group(WMD -0.97 mL/min/1.73 m2, 95% CI -4.85 to 2.92). Compared with control groups, there was no difference in all-cause mortality (relative risk RR 1.41, 95% CI 0.58 to 3.80), cardiovascular disease (RR 0.84, 95% CI 0.42 to 1.71), and severe adverse events (RR 1.15, 95% CI 0.75 to 1.77) for the VDRAs groups. Episodes of hypercalcemia (RR 3.29, 95% CI 2.02 to 5.38) were more common in the VDRAs group than in the control group. Conclusions Administration of VDRAs increased serum creatinine levels. Subgroup analysis of studies that did not use SCr-based measures did not indicate a lower GFR in the VDRA group. Future studies with non-SCr-based measures are needed to assess whether the mild elevations of serum creatinine are of clinical significance.
Collapse
Affiliation(s)
- Qian Zhang
- Division of Nephrology, Huashan Hospital and Huashan Hospital North, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Tiansong Zhang
- Department of TCM, Jing’an District centre hospital of Shanghai, Shanghai, China
| | - Jing Chen
- Division of Nephrology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
125
|
Federico G, Meister M, Mathow D, Heine GH, Moldenhauer G, Popovic ZV, Nordström V, Kopp-Schneider A, Hielscher T, Nelson PJ, Schaefer F, Porubsky S, Fliser D, Arnold B, Gröne HJ. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight 2016; 1:e84916. [PMID: 27699213 DOI: 10.1172/jci.insight.84916] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Renal tubular atrophy and interstitial fibrosis are common hallmarks of etiologically different progressive chronic kidney diseases (CKD) that eventually result in organ failure. Even though these pathological manifestations constitute a major public health problem, diagnostic tests, as well as therapeutic options, are currently limited. Members of the dickkopf (DKK) family, DKK1 and -2, have been associated with inhibition of Wnt signaling and organ fibrosis. Here, we identify DKK3 as a stress-induced, tubular epithelia-derived, secreted glycoprotein that mediates kidney fibrosis. Genetic as well as antibody-mediated abrogation of DKK3 led to reduced tubular atrophy and decreased interstitial matrix accumulation in two mouse models of renal fibrosis. This was facilitated by an amplified, antifibrogenic, inflammatory T cell response and diminished canonical Wnt/β-catenin signaling in stressed tubular epithelial cells. Moreover, in humans, urinary DKK3 levels specifically correlated with the extent of tubular atrophy and interstitial fibrosis in different glomerular and tubulointerstitial diseases. In summary, our data suggest that DKK3 constitutes an immunosuppressive and a profibrotic epithelial protein that might serve as a potential therapeutic target and diagnostic marker in renal fibrosis.
Collapse
Affiliation(s)
| | - Michael Meister
- Department of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Gunnar H Heine
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Gerhard Moldenhauer
- Department of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine and Policlinic IV, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| | | | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Bernd Arnold
- Department of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
126
|
Zhu Y, Tan J, Xie H, Wang J, Meng X, Wang R. HIF-1α regulates EMT via the Snail and β-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol Med 2016; 20:688-97. [PMID: 26781174 PMCID: PMC5126389 DOI: 10.1111/jcmm.12769] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022] Open
Abstract
Paraquat (PQ) poisoning‐induced pulmonary fibrosis is one of the primary causes of death in patients with PQ poisoning. Hypoxia‐inducible factor‐1α (HIF‐1α) and epithelial‐mesenchymal transition (EMT) are involved in the progression of pulmonary fibrosis. Snail and β‐catenin are two other factors involved in promoting EMT. However, the relationship among HIF‐1α, Snail and β‐catenin in PQ poisoning‐induced pulmonary fibrosis is not clear. Our research aimed to determine whether the regulation of HIF‐1α in EMT occurs via the Snail and β‐catenin pathways in PQ poisoning‐induced pulmonary fibrosis. Sixty‐six Sprague–Dawley rats were randomly and evenly divided into a control group and a PQ group. The PQ group was treated with an intragastric infusion of a 20% PQ solution (50 mg/kg) for 2, 6, 12, 24, 48 and 72 hrs. A549 and RLE‐6TN cell lines were transfected with HIF‐1α siRNA for 48 hrs before being exposed to PQ. Western blotting, real‐time quantitative PCR, immunofluorescence, immunohistochemistry and other assays were used in our research. In vivo, the protein levels of HIF‐1α and α‐SMA were increased at 2 hrs and the level of ZO‐1 (Zonula Occluden‐1) was reduced at 12 hrs. In vitro, the transient transfection of HIF‐1α siRNA resulted in a decrease in the degree of EMT. The expression levels of Snail and β‐catenin were significantly reduced when HIF‐α was silenced. These data demonstrate that EMT may be involved in PQ poisoning‐induced pulmonary fibrosis and regulated by HIF‐1α via the Snail and β‐catenin pathways. Hypoxia‐inducible factor‐1α may be a therapeutic target for the treatment of PQ poisoning‐induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiuting Tan
- Department of Critical Care Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinfeng Wang
- Department of Critical Care Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
127
|
Zhou L, Mo H, Miao J, Zhou D, Tan RJ, Hou FF, Liu Y. Klotho Ameliorates Kidney Injury and Fibrosis and Normalizes Blood Pressure by Targeting the Renin-Angiotensin System. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3211-23. [PMID: 26475416 DOI: 10.1016/j.ajpath.2015.08.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Loss of Klotho and activation of the renin-angiotensin system (RAS) are common pathological findings in chronic kidney diseases. However, whether these two events are intricately connected is poorly understood. We hypothesized that Klotho might protect kidneys by targeted inhibition of RAS activation in diseased kidneys. To test this hypothesis, mouse models of remnant kidney, as well as adriamycin nephropathy and unilateral ureteral obstruction, were utilized. At 6 weeks after 5/6 nephrectomy, kidney injury was evident, characterized by elevated albuminuria and serum creatinine levels, and excessive deposition of interstitial matrix proteins. These lesions were accompanied by loss of renal Klotho expression, up-regulation of RAS components, and development of hypertension. In vivo expression of exogenous Klotho through hydrodynamic-based gene delivery abolished the induction of multiple RAS proteins, including angiotensinogen, renin, angiotensin-converting enzyme, and angiotensin II type 1 receptor, and normalized blood pressure. Klotho also inhibited β-catenin activation and ameliorated renal fibrotic lesions. Similar results were obtained in mouse models of adriamycin and obstructive nephropathy. In cultured kidney tubular epithelial cells, Klotho dose-dependently blocked Wnt1-triggered RAS activation. Taken together, these results demonstrate that Klotho exerts its renal protection by targeted inhibition of RAS, a pathogenic pathway known to play a key role in the evolution and progression of hypertension and chronic kidney disorders.
Collapse
Affiliation(s)
- Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hongyan Mo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
128
|
Keyzer CA, Lambers-Heerspink HJ, Joosten MM, Deetman PE, Gansevoort RT, Navis G, Kema IP, de Zeeuw D, Bakker SJL, de Borst MH. Plasma Vitamin D Level and Change in Albuminuria and eGFR According to Sodium Intake. Clin J Am Soc Nephrol 2015; 10:2119-27. [PMID: 26450935 DOI: 10.2215/cjn.03830415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Low circulating 25-hydroxyvitamin D [25(OH)D] and high sodium intake are both associated with progressive albuminuria and renal function loss in CKD. Both vitamin D and sodium intake interact with the renin-angiotensin-aldosterone system. We investigated whether plasma 25(OH)D or 1,25-dihydroxyvitamin D [1,25(OH)2D] is associated with developing increased albuminuria or reduced renal function and whether these associations depend on sodium intake. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Baseline plasma 25(OH)D and 1,25(OH)2D were measured by liquid chromatography tandem mass spectrometry, and sodium intake was assessed by 24-hour urine collections in the general population-based Prevention of Renal and Vascular End-Stage Disease cohort (n=5051). Two primary outcomes were development of urinary albumin excretion >30 mg/24 h and eGFR (creatinine/cystatin C-based CKD Epidemiology Collaboration) <60 ml/min per 1.73 m(2). Participants with CKD at baseline were excluded. In Cox regression analyses, we assessed associations of vitamin D with developing increased albuminuria or reduced eGFR and potential interaction with sodium intake. RESULTS During a median follow-up of 10.4 (6.2-11.4) years, 641 (13%) participants developed increased albuminuria, and 268 (5%) participants developed reduced eGFR. Plasma 25(OH)D was inversely associated with increased albuminuria (fully adjusted hazard ratio [HR] per SD higher, 0.86; 95% confidence interval [95% CI], 0.78 to 0.95; P=0.003) but not reduced eGFR (HR, 0.99; 95% CI, 0.87 to 1.12; P=0.85). There was interaction between 25(OH)D and sodium intake for risk of developing increased albuminuria (P interaction =0.03). In participants with high sodium intake, risk of developing increased albuminuria was inversely associated with 25(OH)D (lowest versus highest quartile: adjusted HR, 1.81; 95% CI, 1.20 to 2.73, P<0.01), whereas this association was nonsignificant in participants with low sodium intake (HR, 1.29; 95% CI, 0.94 to 1.77; P=0.12). Plasma 1,25(OH)2D was not significantly associated with increased albuminuria or reduced eGFR. CONCLUSIONS Low plasma 25(OH)D is associated with higher risk of developing increased albuminuria, particularly in individuals with high sodium intake, but not of developing reduced eGFR. Plasma 1,25(OH)2D is not associated with risk of developing increased albuminuria or reduced eGFR.
Collapse
Affiliation(s)
| | | | - Michel M Joosten
- Department of Internal Medicine, Division of Nephrology, and Top Institute Food and Nutrition, Wageningen, The Netherlands
| | | | | | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, and
| | - Ido P Kema
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands; and
| | - Dick de Zeeuw
- Departments of Clinical Pharmacy and Pharmacology and
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, and Top Institute Food and Nutrition, Wageningen, The Netherlands
| | | | | |
Collapse
|
129
|
Rauhauser AA, Ren C, Lu D, Li B, Zhu J, McEnery K, Vadnagara K, Zepeda-Orozco D, Zhou XJ, Lin F, Jetten AM, Attanasio M. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am J Physiol Renal Physiol 2015; 309:F770-8. [PMID: 26290370 DOI: 10.1152/ajprenal.00232.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023] Open
Abstract
Hedgehog (Hh) is an evolutionary conserved signaling pathway that has important functions in kidney morphogenesis and adult organ maintenance. Recent work has shown that Hh signaling is reactivated in the kidney after injury and is an important mediator of progressive fibrosis. Pericytes and fibroblasts have been proposed to be the principal cells that respond to Hh ligands, and pharmacological attenuation of Hh signaling has been considered as a possible treatment for fibrosis, but the effect of Hh inhibition on tubular epithelial cells after kidney injury has not been reported. Using genetically modified mice in which tubule-derived hedgehog signaling is increased and mice in which this pathway is conditionally suppressed in pericytes that express the proteoglycan neuron glial protein 2 (NG2), we found that suppression of Hh signaling is associated with decreased macrophage infiltration and tubular proliferation but also increased tubular apoptosis, an effect that correlated with the reduction of tubular β-catenin activity. Collectively, our data suggest a complex function of hedgehog signaling after kidney injury in initiating both reparative and proproliferative, prosurvival processes.
Collapse
Affiliation(s)
- Alysha A Rauhauser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Binghua Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Jili Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas; Department of Nephrology, Wuhan University, Hubei, Wuhan, China
| | - Kayla McEnery
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | | | - Xin J Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories and Department of Pathology, Baylor University Medical Center, Dallas, Texas
| | - Fangming Lin
- Department of Pediatrics, Pathology, and Cell Biology, Columbia University, New York, New York
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Massimo Attanasio
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas; Eugene McDermott Center for Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
130
|
Gurel A, Atli H, Kaya N, Onalan E, Kuloglu T, Aygen B. Effects of vitamin D on kidney histology and trpv1 channels in doxorubicin-induced nephropathy. Int J Clin Exp Med 2015; 8:13548-13555. [PMID: 26550293 PMCID: PMC4612978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Doxorubicin (DXR) is an antineoplastic agent of the anthracycline group, and may show nephrotoxic effects in animal models and humans. We investigated changes in kidney tissue following doxorubicin treatment and the effects of vitamin D on kidney tissue and TRPV1 channels. In this study, 24 adult male Wistar Albino rats were used. The animals were divided into four groups of six animals. During the 14-day experiment period, Group I did not have any application. 200 IU/day cholecalciferol was administered orally to Group II. Group III received 10 mg/kg single dose of DXR intraperitoneally (IP); and Group IV had a single 10 mg/kg dose of IP DXR and 200 IU/day of oral cholecalciferol. At the end of the experiment, the rats were decapitated, and their kidney tissues were removed. TRPV1 expression and apoptosis were detected in the tissue section by using immunohistochemical, TUNEL and real time-PCR (RT-PCR) techniques. The findings were examined and photographed with BH2 Olympus photomicroscope. As result of immunohistochemical staining, RT-PCR and examination with light microscope, it was found that the TRPV 1 immunoreactivity of the DXR group decreased in comparison with the control group, and the vitamin D application did not reverse this effect. Apoptosis detected by the TUNEL method tended to increase in the doxorubicin group and was relatively reversed with the administration of vitamin D. Tissue malondialdehyde (MDA) levels were observed to correlate with the findings of apoptosis. This study showed that vitamin D has anti- apoptotic and antioxidant effects on kidney tissue after DXR-induced injury.
Collapse
Affiliation(s)
- Ali Gurel
- Nephrology Department, Mengucek Gazi Training and Research HospitalErzincan, Turkey
| | - Hasan Atli
- Internal Medicine Department, Firat University Medical SchoolElazig, Turkey
| | - Nalan Kaya
- Histology and Embryology Department, Firat University Medical SchoolElazig, Turkey
| | - Ebru Onalan
- Medical Biology Department, Firat University Medical SchoolElazig, Turkey
| | - Tuncay Kuloglu
- Histology and Embryology Department, Firat University Medical SchoolElazig, Turkey
| | - Bilge Aygen
- Nephrology Department, Firat University Medical SchoolElazig, Turkey
| |
Collapse
|
131
|
Gajjala PR, Sanati M, Jankowski J. Cellular and Molecular Mechanisms of Chronic Kidney Disease with Diabetes Mellitus and Cardiovascular Diseases as Its Comorbidities. Front Immunol 2015. [PMID: 26217336 PMCID: PMC4495338 DOI: 10.3389/fimmu.2015.00340] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD), diabetes mellitus (DM), and cardiovascular diseases (CVD) are complex disorders of partly unknown genesis and mostly known progression factors. CVD and DM are the risk factors of CKD and are strongly intertwined since DM can lead to both CKD and/or CVD, and CVD can lead to kidney disease. In recent years, our knowledge of CKD, DM, and CVD has been expanded and several important experimental, clinical, and epidemiological associations have been reported. The tight cellular and molecular interactions between the renal, diabetic, and cardiovascular systems in acute or chronic disease settings are becoming increasingly evident. However, the (patho-) physiological basis of the interactions of CKD, DM, and CVD with involvement of multiple endogenous and environmental factors is highly complex and our knowledge is still at its infancy. Not only single pathways and mediators of progression of these diseases have to be considered in these processes but also the mutual interactions of these factors are essential. The recent advances in proteomics and integrative analysis technologies have allowed rapid progress in analyzing complex disorders and clearly show the opportunity for new efficient and specific therapies. More than a dozen pathways have been identified so far, including hyperactivity of the renin–angiotensin (RAS)–aldosterone system, osmotic sodium retention, endothelial dysfunction, dyslipidemia, RAS/RAF/extracellular-signal-regulated kinase pathway, modification of the purinergic system, phosphatidylinositol 3-kinase (PI 3-kinase)-dependent signaling pathways, and inflammation, all leading to histomorphological alterations of the kidney and vessels of diabetic and non-diabetic patients. Since a better understanding of the common cellular and molecular mechanisms of these diseases may be a key to successful identification of new therapeutic targets, we review in this paper the current literature about cellular and molecular mechanisms of CKD.
Collapse
Affiliation(s)
- Prathibha Reddy Gajjala
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| | - Maryam Sanati
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| |
Collapse
|
132
|
Bunel V, Antoine MH, Nortier J, Duez P, Stévigny C. Potential nephroprotective effects of the Chinese herb Angelica sinensis against cisplatin tubulotoxicity. PHARMACEUTICAL BIOLOGY 2015; 53:985-994. [PMID: 25495691 DOI: 10.3109/13880209.2014.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Acute kidney injury (AKI) is often encountered in patients receiving cisplatin (CisPt), a chemotherapeutic drug that induces numerous toxic side effects. Techniques used to limit nephrotoxicity during CisPt treatment are not fully effective; about a third of patients experience AKI. New nephroprotective strategies, including pharmacological approaches, must be developed. OBJECTIVE The present study investigated the nephroprotective potential of Angelica sinensis (Oliv.) Diels (Apiaceae) root towards CisPt tubulotoxicity. MATERIALS AND METHODS HK-2 cells were incubated with CisPt (10 µM) and/or with a methanolic extract of A. sinensis (AS). Nephroprotective capacity was evaluated by means of cellular viability (resazurin assay) and apoptosis (annexin-V/PI staining), oxidative stress generation (H2DCF-DA oxidation), Ki-67 index (immunofluorescence), cell cycle analysis (DNA staining), cell migration rate (scratch assay), extracellular matrix deposition (collagen determination), and β-catenin relocalization. RESULTS CisPt decreased cell viability [76% versus Ctrl], which was associated with an increased apoptosis. Simultaneous treatment with 50 µg/ml AS enhanced cell survival [84% versus Ctrl] and decreased the apoptosis rate. AS could not alleviate CisPt-induced oxidative stress; but doses of 5 and 50 µg/ml raised the Ki-67 index [135 and 244% versus Ctrl] and cell migration rates [1.2 and 1.3-fold versus Ctrl]. Finally, both doses of AS limited the amount of collagen deposition [121.6 and 119.6% for 5 and 50 µg/ml, respectively, versus 131.0% for CisPt-treated cells] and prevented the relocalization of β-catenin from the membrane to the nucleus. CONCLUSION These results confirm the nephroprotective potential of A. sinensis and require further investigations aiming at identifying its active compounds.
Collapse
Affiliation(s)
- Valérian Bunel
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | | | | | | | | |
Collapse
|
133
|
Meredith A, Boroomand S, Carthy J, Luo Z, McManus B. 1,25 Dihydroxyvitamin D3 Inhibits TGFβ1-Mediated Primary Human Cardiac Myofibroblast Activation. PLoS One 2015; 10:e0128655. [PMID: 26061181 PMCID: PMC4462580 DOI: 10.1371/journal.pone.0128655] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/29/2015] [Indexed: 01/02/2023] Open
Abstract
Aims Epidemiological and interventional studies have suggested a protective role for vitamin D in cardiovascular disease, and basic research has implicated vitamin D as a potential inhibitor of fibrosis in a number of organ systems; yet little is known regarding direct effects of vitamin D on human cardiac cells. Given the critical role of fibrotic responses in end stage cardiac disease, we examined the effect of active vitamin D treatment on fibrotic responses in primary human adult ventricular cardiac fibroblasts (HCF-av), and investigated the relationship between circulating vitamin D (25(OH)D3) and cardiac fibrosis in human myocardial samples. Methods and Results Interstitial cardiac fibrosis in end stage HF was evaluated by image analysis of picrosirius red stained myocardial sections. Serum 25(OH)D3 levels were assayed using mass spectrometry. Commercially available HCF-av were treated with transforming growth factor (TGF)β1 to induce activation, in the presence or absence of active vitamin D (1,25(OH)2D3). Functional responses of fibroblasts were analyzed by in vitro collagen gel contraction assay. 1,25(OH)2D3 treatment significantly inhibited TGFβ1-mediated cell contraction, and confocal imaging demonstrated reduced stress fiber formation in the presence of 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced alpha-smooth muscle actin expression to control levels and inhibited SMAD2 phosphorylation. Conclusions Our results demonstrate that active vitamin D can prevent TGFβ1-mediated biochemical and functional pro-fibrotic changes in human primary cardiac fibroblasts. An inverse relationship between vitamin D status and cardiac fibrosis in end stage heart failure was observed. Collectively, our data support an inhibitory role for vitamin D in cardiac fibrosis.
Collapse
Affiliation(s)
- Anna Meredith
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Seti Boroomand
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jon Carthy
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | - Zongshu Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce McManus
- Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- PROOF Centre of Excellence, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
134
|
Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 2015; 11:535-45. [PMID: 26055352 DOI: 10.1038/nrneph.2015.88] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that are integral components of the kidney glomerular filtration barrier. Podocytes are vulnerable to a variety of injuries and in response they undergo a series of changes ranging from hypertrophy, autophagy, dedifferentiation, mesenchymal transition and detachment to apoptosis, depending on the nature and extent of the insult. Emerging evidence indicates that Wnt/β-catenin signalling has a central role in mediating podocyte dysfunction and proteinuria. Wnts are induced and β-catenin is activated in podocytes in various proteinuric kidney diseases. Genetic or pharmacologic activation of β-catenin is sufficient to impair podocyte integrity and causes proteinuria in healthy mice, whereas podocyte-specific ablation of β-catenin protects against proteinuria after kidney injury. Mechanistically, Wnt/β-catenin controls the expression of several key mediators implicated in podocytopathies, including Snail1, the renin-angiotensin system and matrix metalloproteinase 7. Wnt/β-catenin also negatively regulates Wilms tumour protein, a crucial transcription factor that safeguards podocyte integrity. Targeted inhibition of Wnt/β-catenin signalling preserves podocyte integrity and ameliorates proteinuria in animal models. This Review highlights advances in our understanding of the pathomechanisms of Wnt/β-catenin signalling in mediating podocyte injury, and describes the therapeutic potential of targeting this pathway for the treatment of proteinuric kidney disease.
Collapse
|
135
|
Mo L, Xiao X, Song S, Miao H, Liu S, Guo D, Li X, Bu C, Hou L, Yang X. Protective effect of Huang Gan formula in 5/6 nephrectomized rats by depressing the Wnt/β-catenin signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2867-81. [PMID: 26082617 PMCID: PMC4461094 DOI: 10.2147/dddt.s81157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huang Gan formula (HGF) is a new traditional Chinese herbal medicine created according to the basic theory of traditional Chinese medicine. The aim of this study is to evaluate the effects of HGF on chronic kidney disease and determine the mechanisms of action. The extract of HGF was prepared, and qualitative and quantitative determination of phytochemical was performed with quadrupole time-of-flight mass spectrometer and high-performance liquid chromatography. Sprague-Dawley rats (n=72) were submitted to 5/6 nephrectomy (Nx), and then respectively treated with uremic clearance granule, losartan, HGF low dose, HGF middle dose, and HGF high dose once per day for 12 weeks. The sham group of operated rats (n=22) was treated with normal saline or HGF middle dose as a background control group. Blood and urine biochemical parameters, renal tissue morphology, and mRNA and proteins of Wnt/β-catenin signaling pathways were investigated. The results showed that the quality of the extraction process could be controlled, and a total of eight major compounds were identified and quantified. HGF could decrease the level of serum creatinine, blood urea nitrogen, and urine protein and increase the renal index and creatinine clearance rate in a dose-dependent manner. HGF also remarkably reduced the glomerulosclerosis and tubulointerstitial fibrosis by blocking the Wnt/β-catenin signaling pathway through inhibiting the Wnt1, β-catenin, transcription factor 4, and fibronectin 1 expressions, simultaneously measured through mRNA and protein levels in the remnant kidney. These results suggest that extraction of HGF could improve remnant renal function and possibly ameliorate glomerulosclerosis and tubulointerstitial fibrosis by depressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Xiaoyan Xiao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Shaolian Song
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Qingdao, People's Republic of China
| | - Shiting Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Xiao Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University Medical School, Qingdao, People's Republic of China
| | - Can Bu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| | - Xixiao Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Qingdao, People's Republic of China
| |
Collapse
|
136
|
Abstract
Fibrosis is defined as an excessive accumulation of extracellular matrix components that lead to the destruction of organ architecture and impairment of organ function. Moreover, fibrosis is an intricate process attributable to a variety of interlaced fibrogenic signals and intrinsic mechanisms of activation of myofibroblasts. Being the dominant matrix-producing cells in organ fibrosis, myofibroblasts may be differentiated from various types of precursor cells. Identification of the signal pathways that play a key role in the pathogenesis of fibrotic diseases may suggest potential therapeutic targets. Here, we emphasize several intracellular signaling pathways that control the activation of myofibroblasts and matrix production.
Collapse
Affiliation(s)
- Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 China
| |
Collapse
|
137
|
Li L, Chen L, Zang J, Tang X, Liu Y, Zhang J, Bai L, Yin Q, Lu Y, Cheng J, Fu P, Liu F. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 2015; 64:597-610. [PMID: 25682062 DOI: 10.1016/j.metabol.2015.01.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Endothelial-myofibroblast transition (EndMT) has been implicated in the pathogenesis of diabetic renal fibrosis. In this study, the effect of the complement fragments C3a/C5a and their receptor antagonists C3aRA and C5aRA on EndMT in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The coexpression of CD31 with α-smooth muscle (α-SMA), C3a receptor (C3aR) and C5a receptor (C5aR) was detected in human renal biopsy tissue obtained from patients with early and advanced DKD and in normal renal tissues from patients with renal-cell carcinoma. The effects of C3aRA and C5aRA on EndMT and the expression of C3a/C3aR, C5a/C5aR, α-SMA, CD31, TGFβ, FN and β-catenin were examined in a streptozotocin (STZ)-induced rat model of DKD and in human renal glomerular endothelial cells (HRGECs) cultured in high glucose and with C3a/C5a, and DKK1 (a Wnt/β-catenin inhibitor). RESULTS Double-labeling of α-SMA, C3aR, C5aR and CD31 was detected in the glomerulus of renal tissues obtained from biopsies of patients with DKD. Upregulated expression of α-SMA, TGF-β, FN and β-catenin and downregulated expression of CD31 were detected in the GECs of diabetic rats. The expression of these proteins was inhibited by treatment with C3aRA/C5aRA. In vitro, C3aRA/C5aRA and DKK1 ameliorated the high glucose-induced EndMT and the subsequent expression of α-SMA, TGFβ, FN and β-catenin in HRGECs. CONCLUSIONS The blockade of C3aR/C5aR and the downstream Wnt/β-catenin pathway may prevent EndMT and alleviate fibrosis in the glomeruli of individuals with DKD.
Collapse
Affiliation(s)
- Ling Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lijia Chen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Zang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xi Tang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Liu
- Laboratory Animal Center of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Bai
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qinghua Yin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
138
|
Saito S, Tampe B, Müller GA, Zeisberg M. Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney. FIBROGENESIS & TISSUE REPAIR 2015; 8:6. [PMID: 25901180 PMCID: PMC4404279 DOI: 10.1186/s13069-015-0024-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/20/2015] [Indexed: 01/02/2023]
Abstract
Background While kidney injury is associated with re-expression of numerous Wnt ligands and receptors, molecular mechanisms which underlie regulation of distinct Wnt signaling pathways and ensuing biological consequences remain incompletely understood. Primary cilia are increasingly being recognized as cellular ‘antennae’ which sense and transduce signals from the microenvironment, particularly through Wnt signaling. Here, we explored the role of cilia as modulators of canonical and non-canonical Wnt signaling activities involving tubular epithelial cells in the injured kidney. Results We demonstrate that in the mouse model of unilateral ureter obstruction, progression of kidney injury correlates with increased expression of numerous Wnt ligands, and that increased expression of Wnt ligands corresponded with over-activation of canonical Wnt signaling. In contrast, non-canonical Wnt signaling dropped significantly during the course of kidney injury despite gradually increased expression of typical non-canonical and intermediate Wnt signaling ligands. We further demonstrate that in cultured tubular epithelial cells, cilia modulate balance between canonical and non-canonical signaling responses upon exposure to Wnt ligands. Conclusions We provide evidence that in the context of renal injury, primary cilia act as molecular switches between canonical and non-canonical Wnt signaling activity, possibly determining between regenerative and pro-fibrotic effects of Wnt re-expression in the injured kidney. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0024-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
139
|
Li SY, Huang PH, Tarng DC, Lin TP, Yang WC, Chang YH, Yang AH, Lin CC, Yang MH, Chen JW, Schmid-Schönbein GW, Chien S, Chu PH, Lin SJ. Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. J Am Soc Nephrol 2015; 26:3072-84. [PMID: 25855776 DOI: 10.1681/asn.2014100989] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/23/2015] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication that leads to kidney dysfunction and ESRD, but the underlying mechanisms remain unclear. Podocyte Wnt-pathway activation has been demonstrated to be a trigger mechanism for various proteinuric diseases. Notably, four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in urogenital systems and has been implicated in Wnt/β-catenin signaling. Here, we used in vitro podocyte culture experiments and a streptozotocin-induced DKD model in FHL2 gene-knockout mice to determine the possible role of FHL2 in DKD and to clarify its association with the Wnt pathway. In human and mouse kidney tissues, FHL2 protein was abundantly expressed in podocytes but not in renal tubular cells. Treatment with high glucose or diabetes-related cytokines, including angiotensin II and TGF-β1, activated FHL2 protein and Wnt/β-catenin signaling in cultured podocytes. This activation also upregulated FHL2 expression and promoted FHL2 translocation from cytosol to nucleus. Genetic deletion of the FHL2 gene mitigated the podocyte dedifferentiation caused by activated Wnt/β-catenin signaling under Wnt-On, but not under Wnt-Off, conditions. Diabetic FHL2(+/+) mice developed markedly increased albuminuria and thickening of the glomerular basement membrane compared with nondiabetic FHL2(+/+) mice. However, FHL2 knockout significantly attenuated these DKD-induced changes. Furthermore, kidney samples from patients with diabetes had a higher degree of FHL2 podocyte nuclear translocation, which was positively associated with albuminuria and progressive renal function deterioration. Therefore, we conclude that FHL2 has both structural and functional protein-protein interactions with β-catenin in the podocyte nucleus and that FHL2 protein inhibition can mitigate Wnt/β-catenin-induced podocytopathy.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Chang Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hwa Chang
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Hang Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, and Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Geert W Schmid-Schönbein
- The Institute of Engineering in Medicine, University of California San Diego, La Jolla, California
| | - Shu Chien
- Departments of Bioengineering, Nanoengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California; and
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine; Healthcare Center; Heart Failure Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Shing-Jong Lin
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
140
|
Maquigussa E, Arnoni CP, Pereira LG, Boim MA. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep 2015; 12:1009-15. [PMID: 25823676 PMCID: PMC4438961 DOI: 10.3892/mmr.2015.3555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/05/2015] [Indexed: 12/24/2022] Open
Abstract
Proteinuria is critical in the tubulointerstitial changes that ultimately lead to renal insufficiency. Increased protein filtration has direct toxic effects on tubular epithelial cells, leading to epithelial mesenchymal transition (EMT) to a myofibroblast phenotype. Angiotensin II and transforming growth factor (TGF)-β1 are the main mediators of EMT. Calcitriol may exert a potential renoprotective effect by reducing the activity of the renin angiotensin system by suppressing renin gene expression and also by inhibiting the proinflammatory nuclear factor-κB pathway. The present study investigated the benefits of calcitriol treatment in a puromycin-induced protein-uric nephropathy model. Uninephrectomized adult male Wistar rats received intraperitoneal administration of a single dose of puromycin (100 mg/kg) or vehicle. After eight weeks, the animals were divided into two groups and received vehicle or calcitriol (0.5 μg/kg) for four weeks. The vehicle-treated, proteinuric rats developed progressive proteinuria and tubulointerstitial fibrosis after 12 weeks. Increased collagen deposition and fibrosis were significantly ameliorated by calcitriol treatment. Calcitriol was effective in preventing an increase in the EMT markers, α-smooth muscle actin and fibroblast-specific protein 1, reducing macrophage infiltration as evidenced by levels of ED-1. In addition, calcitriol increased the anti-inflammatory cytokine interleukin-10 and reduced the pro-oxidant p47 phox enzyme. These effects were paralleled by a reduction in TGF-β/Smad3 expression. Calcitriol may have therapeutic potential in the proteinuric nephropathy model used in the present study by inhibiting the TGF-β1 axis.
Collapse
Affiliation(s)
- Edgar Maquigussa
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo 04339‑032, Brazil
| | - Carine P Arnoni
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo 04339‑032, Brazil
| | - Luciana G Pereira
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo 04339‑032, Brazil
| | - Mirian A Boim
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo 04339‑032, Brazil
| |
Collapse
|
141
|
New insights into glomerular parietal epithelial cell activation and its signaling pathways in glomerular diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:318935. [PMID: 25866774 PMCID: PMC4383425 DOI: 10.1155/2015/318935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.
Collapse
|
142
|
|
143
|
Tan RJ, Zhou D, Xiao L, Zhou L, Li Y, Bastacky SI, Oury TD, Liu Y. Extracellular Superoxide Dismutase Protects against Proteinuric Kidney Disease. J Am Soc Nephrol 2015; 26:2447-59. [PMID: 25644107 DOI: 10.1681/asn.2014060613] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/09/2014] [Indexed: 02/02/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD), also known as SOD3, is an antioxidant expressed at high levels in normal adult kidneys. Because oxidative stress contributes to a variety of kidney injuries, we hypothesized that EC-SOD may be protective in CKD progression. To study this hypothesis, we used a murine model of ADR nephropathy characterized by albuminuria and renal dysfunction. We found that levels of EC-SOD diminished throughout the course of disease progression and were associated with increased levels of NADPH oxidase and oxidative stress markers. EC-SOD null mice were sensitized to ADR injury, as evidenced by increases in albuminuria, serum creatinine, histologic damage, and oxidative stress. The absence of EC-SOD led to increased levels of NADPH oxidase and an increase in β-catenin signaling, which has been shown to be pathologic in a variety of kidney injuries. Exposure of EC-SOD null mice to either chronic angiotensin II infusion or to daily albumin injections also caused increased proteinuria. In contrast, EC-SOD null mice subjected to nonproteinuric CKD induced by unilateral ureteral obstruction exhibited no differences compared with wild-type mice. Finally, we also found a decrease in EC-SOD in human CKD biopsy samples, similar to our findings in mice. Therefore, we conclude that EC-SOD is protective in CKDs characterized by proteinuria.
Collapse
Affiliation(s)
| | - Dong Zhou
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Liangxiang Xiao
- Division of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjian Li
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Sheldon I Bastacky
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Tim D Oury
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Youhua Liu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Division of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
144
|
Andersen LB, Przybyl L, Haase N, von Versen-Höynck F, Qadri F, Jørgensen JS, Sorensen GL, Fruekilde P, Poglitsch M, Szijarto I, Gollasch M, Peters J, Muller DN, Christesen HT, Dechend R. Vitamin D depletion aggravates hypertension and target-organ damage. J Am Heart Assoc 2015; 4:jah3789. [PMID: 25630909 PMCID: PMC4345870 DOI: 10.1161/jaha.114.001417] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background We tested the controversial hypothesis that vitamin D depletion aggravates hypertension and target‐organ damage by influencing renin. Methods and Results Four‐week‐old double‐transgenic rats (dTGR) with excess angiotensin (Ang) II production due to overexpression of the human renin (hREN) and angiotensinogen (hAGT) genes received vitamin D‐depleted (n=18) or standard chow (n=15) for 3 weeks. The depleted group had very low serum 25‐hydroxyvitamin D levels (mean±SEM; 3.8±0.29 versus 40.6±1.19 nmol/L) and had higher mean systolic BP at week 5 (158±3.5 versus 134.6±3.7 mm Hg, P<0.001), week 6 (176.6±3.3 versus 162.3±3.8 mm Hg, P<0.01), and week 7 (171.6±5.1 versus 155.9±4.3 mm Hg, P<0.05). Vitamin D depletion led to increased relative heart weights and increased serum creatinine concentrations. Furthermore, the mRNAs of natriuretic peptides, neutrophil gelatinase‐associated lipocalin, hREN, and rRen were increased by vitamin D depletion. Regulatory T cells in the spleen and in the circulation were not affected. Ang metabolites, including Ang II and the counter‐regulatory breakdown product Ang 1 to 7, were significantly up‐regulated in the vitamin D‐depleted groups, while ACE‐1 and ACE‐2 activities were not affected. Conclusions Short‐term severe vitamin D depletion aggravated hypertension and target‐organ damage in dTGR. Our data suggest that even short‐term severe vitamin D deficiency may directly promote hypertension and impacts on renin‐angiotensin system components that could contribute to target‐organ damage. The findings add to the evidence that vitamin D deficiency could also affect human hypertension.
Collapse
Affiliation(s)
- Louise Bjørkholt Andersen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark (L.B.A., H.T.C.) Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (L.B.A., J.S., H.T.C.)
| | - Lukasz Przybyl
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.)
| | - Nadine Haase
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.)
| | | | - Fatimunnisa Qadri
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.)
| | - Jan Stener Jørgensen
- Department of Obstetrics and Gynecology, Odense University Hospital, Denmark (J.S.) Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (L.B.A., J.S., H.T.C.)
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (G.L.S.)
| | - Palle Fruekilde
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark (P.F.)
| | | | - István Szijarto
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) Max-Delbruck Center for Molecular Medicine, Berlin, Germany (I.S., M.G., D.N.M.)
| | - Maik Gollasch
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) Max-Delbruck Center for Molecular Medicine, Berlin, Germany (I.S., M.G., D.N.M.)
| | - Joerg Peters
- Institute of Physiology, University Medicine Greifswald, Germany (J.P.)
| | - Dominik N Muller
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) Max-Delbruck Center for Molecular Medicine, Berlin, Germany (I.S., M.G., D.N.M.)
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark (L.B.A., H.T.C.) Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (L.B.A., J.S., H.T.C.)
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbruck Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (L.P., N.H., F.Q., I.S., M.G., D.N.M., R.D.) HELIOS-Klinikum Berlin, Berlin, Germany (R.D.)
| |
Collapse
|
145
|
Li L, Zhang T, Diao W, Jin F, Shi L, Meng J, Liu H, Zhang J, Zeng CH, Zhang MC, Liang S, Liu Y, Zhang CY, Liu Z, Zen K. Role of Myeloid-Derived Suppressor Cells in Glucocorticoid-Mediated Amelioration of FSGS. J Am Soc Nephrol 2015; 26:2183-97. [PMID: 25568177 DOI: 10.1681/asn.2014050468] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/06/2014] [Indexed: 11/03/2022] Open
Abstract
The mechanism by which glucocorticoids alleviate renal inflammatory disorders remains incompletely understood. Here, we report that the efficacy of glucocorticoids in ameliorating FSGS depends on the capacity to expand myeloid-derived suppressor cells (MDSCs). After glucocorticoid treatment, the frequency of CD11b(+)HLA-DR(-)CD14(-)CD15(+) MDSCs in peripheral blood rapidly increased in patients with glucocorticoid-sensitive FSGS but remained unchanged in patients with glucocorticoid-resistant FSGS. The frequency of CD11b(+)Gr-1(+) MDSCs in mouse peripheral blood, bone marrow, spleen, kidney-draining lymph nodes (KDLNs), and kidney also increased after glucocorticoid treatment. The induced MDSCs from glucocorticoid-treated mice strongly suppressed T cells, dendritic cells, and macrophages but induced regulatory T cells in spleen, KDLNs, and kidney. Moreover, glucocorticoid treatment suppressed doxorubicin-induced T cell proliferation, dendritic cell and macrophage infiltration, and proinflammatory cytokine production, whereas this protective effect was largely abolished by depleting MDSCs using anti-Gr-1 antibody. Finally, the adoptive transfer of induced MDSCs into the doxorubicin-treated mice not only confirmed the protective role of MDSCs in doxorubicin-induced renal injury but also showed that the transferred MDSCs rapidly migrated into the lymphocyte-accumulating organs, such as the spleen and KDLNs, where they suppressed T cell proliferation. Taken together, these results demonstrate that glucocorticoid treatment ameliorates FSGS by expanding functional MDSCs and that this rapid elevation of MDSCs in peripheral blood may serve as an indicator for predicting the efficacy of glucocorticoid treatment.
Collapse
Affiliation(s)
- Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China
| | - Tao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Wenli Diao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China
| | - Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China
| | - Lei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China; Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jiao Meng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Huan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China
| | - Cai-Hong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Ming-Chao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Yuan Liu
- Center for Inflammation, Immunity and Infection, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China;
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology, Nanjing, China; National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| |
Collapse
|
146
|
Bunel V, Antoine MH, Nortier J, Duez P, Stévigny C. Nephroprotective effects of ferulic acid, Z-ligustilide and E-ligustilide isolated from Angelica sinensis against cisplatin toxicity in vitro. Toxicol In Vitro 2015; 29:458-67. [PMID: 25561245 DOI: 10.1016/j.tiv.2014.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/20/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
Cisplatin (CisPt), a chemotherapeutic drug applied against solid tumors, is highly detrimental to the kidney. The risk of acute kidney injury implies adequate patient hydration to ensure sufficient diuresis; this strategy, now implemented in clinical practice, remains however incompletely satisfactory. New pharmacological approaches relying on the discovery of bioactive compounds need to be developed. Based on previous studies reporting renoprotective activities for extracts of Angelica sinensis (Oliv.) Diels roots, three of its major active compounds, ferulic acid, Z-ligustilide and E-ligustilide, were investigated for possible alleviation of CisPt-induced nephrotoxicity. Five phenomena involved in acute kidney injury and subsequent fibrosis were investigated: (i) modulation of cell survival via reduction of the apoptosis rate; (ii) reduction of oxidative stress; (iii) improvement of tubular regeneration capacities through proliferation and migration; (iv) limitation of extracellular matrix and collagen deposition; and (v) prevention of the dedifferentiation processes via the β-catenin pathway. Ferulic acid emerged as the most potent compound for alleviating cell death and collagen deposition, and for enhancing cell regeneration capacities. It also partially inhibited the β-catenin pathway, but was ineffective in lowering oxidative stress. Z- and E-ligustilides, however, were effective for limiting the oxidative stress, but only moderately affected other parameters. Ferulic acid appears to be a promising nephroprotective drug lead deserving further preclinical investigation.
Collapse
Affiliation(s)
- Valérian Bunel
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Joëlle Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Duez
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Therapeutical Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
| | - Caroline Stévigny
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
147
|
Schneider J, Arraf AA, Grinstein M, Yelin R, Schultheiss TM. Wnt signaling orients the proximal-distal axis of kidney nephrons. Development 2015; 142:2686-95. [DOI: 10.1242/dev.123968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/18/2015] [Indexed: 01/03/2023]
Abstract
The nephron is the fundamental structural and functional unit of the kidney. Each mature nephron is patterned along a proximal-distal axis, with blood filtered at the proximal end and urine emerging from the distal end. In order to filter the blood and produce urine, specialized structures are formed at specific proximal-distal locations along the nephron, including the glomerulus at the proximal end, the tubule in the middle, and the collecting duct at the distal end. The developmental processes that specify these different nephron segments are very incompletely understood. Wnt ligands, which are expressed in the nephric duct and later in the nascent nephron itself, are well-characterized inducers of nephrons, being both required and sufficient for initiation of nephron formation from nephrogenic mesenchyme. Here we present evidence that Wnt signaling also patterns the proximal-distal nephron axis. Using the chick mesonephros as a model system, a Wnt ligand was ectopically expressed in the coelomic lining, thereby introducing a source of Wnt signaling that is at right angles to the endogenous Wnt signal of the nephric duct. Under these conditions, the nephron axis was re-oriented, such that the glomerulus was always located at a position farthest from the Wnt sources. This re-orientation occurred within hours of exposure to ectopic Wnt signaling, and was accompanied initially by a repression of the early glomerular podocyte markers Wt1 and Pod1, followed by their re-emergence at a position distant from the Wnt signals. In parallel, an increase in the number of tubules was observed, and some tubules were seen fusing with the Wnt-expressing coelomic epithelium instead of their normal target, the nephric duct. Activation of the Wnt signaling pathway in mesonephric explant cultures resulted in strong and specific repression of early and late glomerular markers. Together, these data indicate that Wnt signaling patterns the proximal-distal axis of the nephron, with glomeruli differentiating in regions of lowest Wnt signaling.
Collapse
Affiliation(s)
- Jenny Schneider
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Alaa A. Arraf
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Grinstein
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
148
|
Martinez-Alonso M, Dusso A, Ariza G, Nabal M. The effect on quality of life of vitamin D administration for advanced cancer treatment (VIDAFACT study): protocol of a randomised controlled trial. BMJ Open 2014; 4:e006128. [PMID: 25552610 PMCID: PMC4281528 DOI: 10.1136/bmjopen-2014-006128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Vitamin D is related to resistance to chronic diseases, physiological parameters and functional measures. All of these relationships underscore the potential benefits of cholecalciferol or D3 (nutritional vitamin D) in cancer. This is the first study designed to obtain conclusive evidence on the effect of cholecalciferol in advanced patients with cancer. The main goal is to assess its effects on the patient's perceived quality of life. Cholecalciferol's impact on fatigue and physical performance, as well as its cost utility, will also be assessed. METHODS AND ANALYSIS A randomised triple-blind phase II/III placebo-controlled multicentre trial has been designed. Patients satisfying the inclusion and exclusion criteria will be randomly assigned to receive cholecalciferol or placebo. Eligible patients will be adults with a locally advanced or metastatic or inoperable solid cancer in palliative care, who have given signed informed consent and have matched inclusion and exclusion criteria. The randomisation will be based on a computer-generated procedure and centralised by the pharmacy service of the coordinating centre. The assigned treatment will be administered by the hospital's pharmacy to conceal group allocation for patients and healthcare providers. Cholecalciferol (4000 IU/day) or placebo, starting at day 15 and continuing up to day 42, will be added to palliative care treatment. Outpatient visits will be scheduled every 14 days. ETHICS AND DISSEMINATION Ethical approval was received from the Medical Ethical Commitee of the HUAV (CEIC-1169). Participants and their families will receive the research findings which will also be disseminated on local and national media, presented at national and international meetings of the specialty, and published in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER EudraCT: 2013-003478-29.
Collapse
Affiliation(s)
- Montserrat Martinez-Alonso
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Biostatistics and Methodological Support, IRBLLEIDA, Lleida, Spain
| | | | - Gemma Ariza
- Rehabilitation Unit, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Maria Nabal
- Palliative Care Supportive Team, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
149
|
Cui R, Chen X, Peng L, Ma J, Zhu D, Li T, Wei Q, Li B. Multiple Mechanisms in Renal Artery Stenosis-Induced Renal Interstitial Fibrosis. ACTA ACUST UNITED AC 2014; 128:57-66. [DOI: 10.1159/000366481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
|
150
|
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin-angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.
Collapse
|