101
|
Blagosklonny MV. Common drugs and treatments for cancer and age-related diseases: revitalizing answers to NCI's provocative questions. Oncotarget 2013; 3:1711-24. [PMID: 23565531 PMCID: PMC3681506 DOI: 10.18632/oncotarget.890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2011, The National Cancer Institute (NCI) has announced 24 provocative questions on cancer. Some of these questions have been already answered in “NCI's provocative questions on cancer: some answers to ignite discussion” (published in Oncotarget, 2011, 2: 1352.) The questions included “Why do many cancer cells die when suddenly deprived of a protein encoded by an oncogene?” “Can we extend patient survival by using approaches that keep tumors static?” “Why are some disseminated cancers cured by chemotherapy alone?” “Can we develop methods to rapidly test interventions for cancer treatment or prevention?” “Can we use our knowledge of aging to enhance prevention or treatment of cancer?” “What is the mechanism by which some drugs commonly and chronically used for other indications protect against cancer?” “How does obesity contribute to cancer risk?” I devoted a single subchapter to each the answer. As expected, the provocative questions were very diverse and numerous. Now I choose and combine, as a single problem, only three last questions, all related to common mechanisms and treatment of age-related diseases including obesity and cancer. Can we use common existing drugs for cancer prevention and treatment? Can we use some targeted “cancer-selective” agents for other diseases and … aging itself.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA.
| |
Collapse
|
102
|
Martinez-Outschoorn UE, Whitaker-Menezes D, Valsecchi M, Martinez-Cantarin MP, Dulau-Florea A, Gong J, Howell A, Flomenberg N, Pestell RG, Wagner J, Arana-Yi C, Sharma M, Sotgia F, Lisanti MP. Reverse Warburg Effect in a Patient With Aggressive B-Cell Lymphoma: Is Lactic Acidosis a Paraneoplastic Syndrome? Semin Oncol 2013; 40:403-18. [DOI: 10.1053/j.seminoncol.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
103
|
Yen CY, Chiang WF, Liu SY, Cheng PC, Lee SY, Hong WZ, Lin PY, Lin MH, Liu YC. Long-term stimulation of areca nut components results in increased chemoresistance through elevated autophagic activity. J Oral Pathol Med 2013; 43:91-6. [PMID: 23795940 DOI: 10.1111/jop.12102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously demonstrated the autophagy-inducing activity in the crude extract of areca nut (ANE) and its 30-100 kDa fraction (ANE 30-100 K). This study aimed to analyze whether chronic ANE and ANE 30-100 K stimulations lead to higher stress resistance and autophagic activity in oral cells, and whether the resulting autophagic status in stimulated cells correlates with stress resistance. MATERIALS AND METHODS Malignant cells from the mouth oral epidermoid carcinoma Meng-1 (OECM-1) and blood (Jurkat T) origins were stimulated with non-cytotoxic ANE and ANE 30-100 K for 3 months. Sensitivity to anticancer drugs of and autophagy status in stimulated cells, analyzed respectively by XTT assay and calculating microtubule-associated protein 1 light chain 3-II LC3-II/β-actin ratios from Western blot, were compared to non-treated cells. Autophagy inhibitors, 3-methyladenine (3-MA) and chloroquine (CQ), were used to assess whether autophagy inhibition interferes the altered chemoresistance. RESULTS Areca nut extract-stimulated (ANE-s) and ANE 30-100 K-stimulated (30-100 K-s) OECM-1 and Jurkat T cells generally exhibited higher cisplatin and 5-fluorouracil (5-FU) resistances, compared to non-stimulated cells. Most stimulated cells expressed significantly higher levels of LC3-II and Atg4B proteins. Interestingly, these cells also showed stronger tolerances against hypoxia environment and expressed higher LC3-II levels under glucose-deprived and hypoxia conditions. Finally, both 3-MA and CQ alleviated, albeit to different degrees, the increased chemoresistance in ANE-s and/or 30-100 K-s cells. CONCLUSIONS Chronic stimulations of ANE or ANE 30-100 K may increase tolerance of oral cancer and leukemia T cells to anticancer drugs, as well as to glucose deprivation and hypoxia conditions, and cause an elevation of autophagy activity responsible for increased drug resistance.
Collapse
Affiliation(s)
- Ching-Yu Yen
- Department of Dentistry, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, National Defense Medical Center, Taipei, Taiwan; Oral and Maxillofacial Surgery Section, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Autophagy is a tightly controlled self-degradation process utilised by cells to sustain cellular homeostasis and to support cell survival in response to metabolic stress and starvation. Thus, autophagy plays a critical role in promoting cell integrity and maintaining proper function of cellular processes. Defects in autophagy, however, can have drastic implications in human health and diseases, including cancer. Described as a double-edged sword in the context of cancer, autophagy can act as both suppressor and facilitator of tumorigenesis. As such, defining the precise role of autophagy in a multistep event like cancer progression can be complex. Recent findings have implicated a role for components of the autophagy pathway in oncogene-mediated cell transformation, tumour growth, and survival. Notably, aggressive cancers driven by Ras oncoproteins rely on autophagy to sustain a reprogrammed mitochondrial metabolic signature and evade cell death. In this review, we summarize our current understanding of the role of oncogene-induced autophagy in cancer progression and discuss how modulators of autophagic responses can bring about therapeutic benefit and eradication of a subset of cancers that are addicted to this ancient recycling machinery.
Collapse
|
105
|
Deng L, Lei Y, Liu R, Li J, Yuan K, Li Y, Chen Y, Liu Y, Lu Y, Edwards CK, Huang C, Wei Y. Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis 2013; 4:e614. [PMID: 23640456 PMCID: PMC3674351 DOI: 10.1038/cddis.2013.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Longfei Deng
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Bellot GL, Liu D, Pervaiz S. ROS, autophagy, mitochondria and cancer: Ras, the hidden master? Mitochondrion 2013; 13:155-62. [DOI: 10.1016/j.mito.2012.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/22/2012] [Indexed: 12/31/2022]
|
107
|
Abstract
Hypoxia in the microenvironment of many solid tumours is an important determinant of malignant progression. The ISR (integrated stress response) protects cells from the ER (endoplasmic reticulum) stress caused by severe hypoxia. Likewise, autophagy is a mechanism by which cancer cells can evade hypoxic cell death. In the present paper we report that the autophagy-initiating kinase ULK1 (UNC51-like kinase 1) is a direct transcriptional target of ATF4 (activating transcription factor 4), which drives the expression of ULK1 mRNA and protein in severe hypoxia and ER stress. We demonstrate that ULK1 is required for autophagy in severe hypoxia and that ablation of ULK1 causes caspase-3/7-independent cell death. Furthermore, we report that ULK1 expression is associated with a poor prognosis in breast cancer. Collectively, the findings of the present study identify transcriptional up-regulation of ULK1 as a novel arm of the ISR, and suggest ULK1 as a potentially effective target for cancer therapy.
Collapse
|
108
|
Abstract
Nonsense-mediated RNA decay (NMD) is an mRNA surveillance mechanism which rapidly degrades select cytoplasmic mRNAs. We and others have shown that NMD is a dynamically regulated process inhibited by amino acid deprivation, hypoxia, and other cellular stresses commonly generated by the tumor microenvironment. This inhibition of NMD can result in the accumulation of misfolded, mutated, and aggregated proteins, but how cells adapt to these aberrant proteins is unknown. Here we demonstrate that the inhibition of NMD activates autophagy, an established protein surveillance mechanism, both in vitro and in vivo. Conversely, the hyperactivation of NMD blunts the induction of autophagy in response to a variety of cellular stresses. The regulation of autophagy by NMD is due, in part, to stabilization of the documented NMD target ATF4. NMD inhibition increases intracellular amino acids, a hallmark of autophagy, and the concomitant inhibition of autophagy and NMD, either molecularly or pharmacologically, leads to synergistic cell death. Together these studies indicate that autophagy is an adaptive response to NMD inhibition and uncover a novel relationship between an mRNA surveillance system and a protein surveillance system, with important implications for the treatment of cancer.
Collapse
|
109
|
Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J. Autophagy in stem cells. Autophagy 2013; 9:830-49. [PMID: 23486312 DOI: 10.4161/auto.24132] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.
Collapse
Affiliation(s)
- Jun-Lin Guan
- Division of Molecular Medicine, Department of Internal Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2013; 3:1068-111. [PMID: 23085539 PMCID: PMC3717945 DOI: 10.18632/oncotarget.659] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Bessadottir M, Egilsson M, Einarsdottir E, Magnusdottir IH, Ogmundsdottir MH, Omarsdottir S, Ogmundsdottir HM. Proton-shuttling lichen compound usnic acid affects mitochondrial and lysosomal function in cancer cells. PLoS One 2012; 7:e51296. [PMID: 23227259 PMCID: PMC3515546 DOI: 10.1371/journal.pone.0051296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/31/2012] [Indexed: 01/11/2023] Open
Abstract
The lichen compound usnic acid (UA) is a lipophilic weak acid that acts as a proton shuttle and causes loss of mitochondrial inner membrane potential. In the current study we show that UA treatment induced the formation of autophagosomes in human cancer cells, but had minimal effects on normal human fibroblasts. However, autophagic flux was incomplete, degradation of autophagosomal content did not occur and acidification was defective. UA-treated cells showed reduced ATP levels and activation of AMP kinase as well as signs of cellular stress. UA is thus likely to trigger autophagosome formation both by energy depletion and stress conditions. Our findings indicate that the H(+)-shuttling effect of UA operates not only in mitochondria as previously shown, but also in lysosomes, and have implications for therapeutic manipulation of autophagy and pH-determined drug distribution.
Collapse
Affiliation(s)
- Margret Bessadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Mar Egilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eydis Einarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
112
|
Chappell WH, Abrams SL, Franklin RA, LaHair MM, Montalto G, Cervello M, Martelli AM, Nicoletti F, Candido S, Libra M, Polesel J, Talamini R, Milella M, Tafuri A, Steelman LS, McCubrey JA. Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle 2012; 11:4447-61. [PMID: 23159854 PMCID: PMC3552927 DOI: 10.4161/cc.22786] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC 50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/Dox (R) cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.
Collapse
Affiliation(s)
- William H. Chappell
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Stephen L. Abrams
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Richard A. Franklin
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Michelle M. LaHair
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Giuseppe Montalto
- Department of Internal Medicine and Specialties; University of Palermo; Palermo, Italy
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences; Università di Bologna; Bologna, Italy
- Institute of Molecular Genetics; National Research Council-Rizzoli Orthopedic Institute; Bologna, Italy
| | | | - Saverio Candido
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Jerry Polesel
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | - Renato Talamini
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | | | - Agostino Tafuri
- Department of Cellular Biotechnology and Hematology; University of Rome, Sapienza; Rome, Italy
| | - Linda S. Steelman
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - James A. McCubrey
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
113
|
McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D'Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN. Advances in targeting signal transduction pathways. Oncotarget 2012; 3:1505-21. [PMID: 23455493 PMCID: PMC3681490 DOI: 10.18632/oncotarget.802] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Verschooten L, Barrette K, Van Kelst S, Rubio Romero N, Proby C, De Vos R, Agostinis P, Garmyn M. Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. PLoS One 2012; 7:e48264. [PMID: 23110223 PMCID: PMC3482182 DOI: 10.1371/journal.pone.0048264] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/21/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Flavonoids are widely proposed as very interesting compounds with possible chemopreventive and therapeutic capacities. METHODS & RESULTS In this study, we showed that in vitro treatment with the flavonoid Luteolin induced caspase-dependent cell death in a model of human cutaneous squamous cell carcinoma (SCC) derived cells, representing a matched pair of primary tumor and its metastasis. Notably, no cytotoxic effects were observed in normal human keratinocytes when treated with similar doses of Luteolin. Luteolin-induced apoptosis was accompanied by inhibition of AKT signaling, and sensitivity decreased with tumor progression, as the primary MET1 SCC cells were considerably more sensitive to Luteolin than the isogenic metastatic MET4 cells. Extensive intracellular vacuolization was observed in Luteolin-treated MET4 cells, which were characterized as acidic lysosomal vacuoles, suggesting the involvement of autophagy. Transmission electron microscopy, mRFP-GFP-LC3 assay and p62 protein degradation, confirmed that Luteolin stimulated the autophagic process in the metastatic MET4 cells. Blocking autophagy using chloroquine magnified Luteolin-induced apoptosis in the metastatic SCC cells. CONCLUSION Together, these results suggest that Luteolin has the capacity to induce selectively apoptotic cell death both in primary cutaneous SCC cells and in metastatic SCC cells in combination with chloroquine, an inhibitor of autophagosomal degradation. Hence, Luteolin might be a promising agent for the treatment of cutaneous SCC.
Collapse
Affiliation(s)
- Lien Verschooten
- Dermatology, University Hospitals Leuven, & Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathleen Barrette
- Dermatology, University Hospitals Leuven, & Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sofie Van Kelst
- Dermatology, University Hospitals Leuven, & Department of Oncology, KU Leuven, Leuven, Belgium
| | - Noemí Rubio Romero
- Cellular and Molecular Medicine, Laboratory for Cell Death and Therapy, KU Leuven, Leuven, Belgium
| | - Charlotte Proby
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, Scotland
| | - Rita De Vos
- Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cellular and Molecular Medicine, Laboratory for Cell Death and Therapy, KU Leuven, Leuven, Belgium
| | - Marjan Garmyn
- Dermatology, University Hospitals Leuven, & Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
115
|
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11:709-30. [PMID: 22935804 PMCID: PMC3518431 DOI: 10.1038/nrd3802] [Citation(s) in RCA: 1170] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation.
Collapse
Affiliation(s)
- David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 OXY, UK
| | - Patrice Codogno
- Faculté de Pharmacie, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR984, Université Paris-Sud 11, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Beth Levine
- Departments of Internal Medicine and Microbiology, Center for Autophagy Research, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
116
|
Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng X, Xia B, Lin J. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 2012; 8:1215-26. [PMID: 22647982 DOI: 10.4161/auto.20284] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Monitoring autophagic flux is important for the analysis of autophagy. Tandem fluorescent-tagged LC3 (mRFP-EGFP-LC3) is a convenient assay for monitoring autophagic flux based on different pH stability of EGFP and mRFP fluorescent proteins. However, it has been reported that there is still weak fluorescence of EGFP in acidic environments (pH between 4 and 5) or acidic lysosomes. So it is possible that autolysosomes are labeled with yellow signals (GFP(+)RFP(+) puncta), which results in misinterpreting autophagic flux results. Therefore, it is desirable to choose a monomeric green fluorescent protein that is more acid sensitive than EGFP in the assay of autophagic flux. Here, we report on an mTagRFP-mWasabi-LC3 reporter, in which mWasabi is more acid sensitive than EGFP and has no fluorescence in acidic lysosomes. Meanwhile, mTagRFP-mWasabi-LC3ΔG was constructed as the negative control for this assay. Compared with mRFP-EGFP-LC3, our results showed that this reporter is more sensitive and accurate in detecting the accumulation of autophagosomes and autolysosomes. Using this reporter, we find that high-dose rapamycin (30 μM) will impair autophagic flux, inducing many more autophagosomes than autolysosomes in HeLa cells, while low-dose rapamycin (500 nM) has an opposite effect. In addition, other chemical autophagy inducers (cisplatin, staurosporine and Z18) also elicit much more autophagosomes at high doses than those at low doses. Our results suggest that the dosage of chemical autophagy inducers would obviously influence autophagic flux in cells.
Collapse
Affiliation(s)
- Cuihong Zhou
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Biomedical Engineering, Beihang University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhao S, Ma CM, Liu CX, Wei W, Sun Y, Yan H, Wu YL. Autophagy inhibition enhances isobavachalcone-induced cell death in multiple myeloma cells. Int J Mol Med 2012; 30:939-44. [PMID: 22824846 DOI: 10.3892/ijmm.2012.1066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/13/2012] [Indexed: 11/06/2022] Open
Abstract
Despite recent advancements in therapeutic drugs, multiple myeloma remains an incurable disease. Therefore, a more effective treatment is urgently required. In this study, we show that isobavachalcone (IBC), a natural chalcone compound, induces apoptosis- and autophagy-related cell death in myeloma cells. The inhibition of autophagy by knocking down beclin-1 or by using autophagy inhibitors, such as 3-methyladenine, bafilomycin A and chloroquine significantly enhanced IBC-induced cell death, as demonstrated by the increased number of Annexin V-positive cells. Moreover, we demonstrate that the collapse of the mitochondrial membrane potential contributes to chloroquine and IBC-induced cell death, which is accompanied by the activation of caspase-9, and -3, the cleavage of poly (ADP-ribose) polymerase (PARP) and the proteolytic activation of protein kinase Cδ (PKCδ). Furthermore, the inhibition of the activation of PKCδ by rottlerin, an inhibitor of PKCδ, not only suppressed the activation of PKCδ, but also the apoptosis induced by the co-treatment of chloroquine and IBC, indicating the involvement of PKCδ in chloroquine plus IBC-induced cell death. Finally, the combination of chloroquine and IBC had little effect on the viability of normal peripheral blood mononuclear cells. As both chloroquine and IBC have been shown to be relatively specific for cancer cells, the combination of these two agents at non-toxic or sub-toxic concentrations represents an attractive novel regimen for myeloma treatment and warrants further investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai 200025, PR China
| | | | | | | | | | | | | |
Collapse
|
118
|
Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX. Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett 2012; 320:171-9. [PMID: 22406827 DOI: 10.1016/j.canlet.2012.03.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 12/22/2022]
Abstract
Induction of cell death and inhibition of cell growth are the main targets of cancer therapy. Here we evaluated the role of autophagy on chemoresistance of human hepatocarcinoma (HCC) cell lines, focusing on its crosstalk with cell apoptosis and proliferation. In this study, a chemotherapeutic agent (cisplatin or 5FU) induced the formation of autophagosomes in three human HCC cell lines and upregulated the expression of autophagy protein LC3-II. Inhibition of autophagy by 3-methyladenine or si-beclin 1 increased chemotherapy-induced apoptosis in HCC cells. Meanwhile, increased damage of the mitochondrial membrane potential was also observed in HCC cells when autophagy was inhibited. Furthermore, inhibition of autophagy reduced clone formation and impaired cell growth of HCC cells when treated with chemotherapy. Co-administration of an autophagy inhibitor (chloroquine) and chemotherapy significantly inhibited tumor growth in a mouse xenograft tumor model, with greater extent of apoptosis and impaired proliferation of tumor cells. This study suggests that autophagy is a potential novel target to improve therapy efficiency of conventional chemotherapeutics towards HCC.
Collapse
Affiliation(s)
- Xian-Ling Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Autophagy is a catabolic process that allows cellular macromolecules to be broken down and recycled into metabolic precursors. It is a highly conserved, critical process, allowing cells to gain survival advantages under various stress situations due to growth and environmental changes. In the past few years, mounting evidence indicates that the post-transcriptional and translational controls mediated by non-coding miRNAs contribute significantly to autophagy in cancer. Such acute modulation of protein synthesis mediated by miRNAs provides cells with advantages in response to starvation, genotoxic stress and hypoxia. In this review, we highlight some of the important discoveries and molecular insights of miRNAs in regulating autophagy based on various cancer models.
Collapse
Affiliation(s)
- Haiyan Zhai
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|