101
|
Janigro D, Kawata K, Silverman E, Marchi N, Diaz-Arrastia R. Is Salivary S100B a Biomarker of Traumatic Brain Injury? A Pilot Study. Front Neurol 2020; 11:528. [PMID: 32595592 PMCID: PMC7303321 DOI: 10.3389/fneur.2020.00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) results in short and long-term disability neurodegeneration. Mild traumatic brain injury (mTBI) represents up to 85% of head injuries; diagnosis and early management is based on computed tomography (CT) or in-hospital observation, which are time- and cost- intensive. CT involves exposure to potentially harmful ionizing radiation and >90% of the scans are negative. Blood-brain barrier (BBB) damage is suspected pathological event post-TBI contributing to long-term sequelae and a reliable and rapid point-of-care test to screen those who can safely forego acute head CT would be of great help in evaluating patients with an acute mTBI. In this pilot study, 15 adult patients with suspected TBI (mean age = 47 years, range 18–79) and 15 control subjects (mean age = 33 years, range 23–53) were enrolled. We found that the average salivary S100B level was 3.9 fold higher than blood S100B, regardless of the presence of pathology. [S100B]saliva positively correlated with [S100B]serum (Pearson' coefficient = 0.79; p < 0.01). Salivary S100B levels were as effective in differentiating TBI patients from control subjects as serum levels (Control vs. TBI: p < 0.01; Serum ROCAUC = 0.94 and Saliva ROCAUC = 0.75). I These initial results suggest that measuring salivary S100B could represent an alternative to serum S100B in the diagnosis of TBI. Larger and confirmatory trials are needed to define salivary biomarker kinetics in relation to TBI severity and the possible roles of gender, ethnicity and age in influencing salivary S100B levels.
Collapse
Affiliation(s)
- Damir Janigro
- FloTBI Inc., Cleveland, OH, United States.,Department of Physiology, Case Western Reserve University, Cleveland, OH, United States
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (CNRS/INSERM), University of Montpellier, Montpellier, France
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
102
|
Hossain I, Mohammadian M, Takala RSK, Tenovuo O, Azurmendi Gil L, Frantzén J, van Gils M, Hutchinson PJ, Katila AJ, Maanpää HR, Menon DK, Newcombe VF, Tallus J, Hrusovsky K, Wilson DH, Gill J, Blennow K, Sanchez JC, Zetterberg H, Posti JP. Admission Levels of Total Tau and β-Amyloid Isoforms 1-40 and 1-42 in Predicting the Outcome of Mild Traumatic Brain Injury. Front Neurol 2020; 11:325. [PMID: 32477238 PMCID: PMC7237639 DOI: 10.3389/fneur.2020.00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mehrbod Mohammadian
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Leire Azurmendi Gil
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jussi Tallus
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital, Turku, Finland
| | | | | | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
103
|
Schindler CR, Lustenberger T, Woschek M, Störmann P, Henrich D, Radermacher P, Marzi I. Severe Traumatic Brain Injury (TBI) Modulates the Kinetic Profile of the Inflammatory Response of Markers for Neuronal Damage. J Clin Med 2020; 9:jcm9061667. [PMID: 32492963 PMCID: PMC7356222 DOI: 10.3390/jcm9061667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response plays an important role in the pathophysiology of multiple injuries. This study examines the effects of severe trauma and inflammatory response on markers of neuronal damage. A retrospective analysis of prospectively collected data in 445 trauma patients (Injury Severity Score (ISS) ≥ 16) is provided. Levels of neuronal biomarkers (calcium-binding Protein B (S100b), Enolase2 (NSE), glial fibrillary acidic protein (GFAP)) and Interleukins (IL-6, IL-10) in severely injured patients (with polytrauma (PT)) without traumatic brain injury (TBI) or with severe TBI (PT+TBI) and patients with isolated TBI (isTBI) were measured upon arrival until day 5. S100b, NSE, GFAP levels showed a time-dependent decrease in all cohorts. Their expression was higher after multiple injuries (p = 0.038) comparing isTBI. Positive correlation of marker level after concomitant TBI and isTBI (p = 0.001) was noted, while marker expression after PT appears to be independent. Highest levels of IL-6 and -10 were associated to PT und lowest to isTBI (p < 0.001). In all groups pro-inflammatory response (IL-6/-10 ratio) peaked on day 2 and at a lower level on day 4. Severe TBI modulates kinetic profile of inflammatory response by reducing interleukin expression following trauma. Potential markers for neuronal damage have a limited diagnostic value after severe trauma because undifferentiated increase.
Collapse
Affiliation(s)
- Cora Rebecca Schindler
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
- Correspondence: ; Tel./Fax: +49-69-6301-83304
| | - Thomas Lustenberger
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Mathias Woschek
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, 89070 Ulm, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| |
Collapse
|
104
|
Rui T, Li Q, Song S, Gao Y, Luo C. Ferroptosis-relevant mechanisms and biomarkers for therapeutic interventions in traumatic brain injury. Histol Histopathol 2020; 35:1105-1113. [PMID: 32459001 DOI: 10.14670/hh-18-229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the most significant health care problems worldwide, causing disability and death especially among young individuals. Although a large range of agents and therapies have been proved beneficial to lesions post-TBI to some extent, effective treatments have not been translated to the clinic. As a newly discovered form of iron-dependent regulated cell death, ferroptosis has been implicated in TBI. In this review, we update the current state of knowledge related to second injuries post-TBI, including ferroptosis, oxidative stress, mitochondrial dysfunction, neuroinflammation and so on, which often lead to chronic symptoms and long-term disability. This review systematically summarizes the latest progress in the pathophysiological mechanisms of TBI, with a focus on providing references for proposing new multi-molecular targets for comprehensive therapeutic strategies based on ferroptosis-relevant mechanisms. In addition, biomarkers are essential diagnostic and prognostic tools in TBI. Several biomarkers associated with the outcome of TBI have been listed in this article, such as Pde10a, MDA, UCH-L1, S100A9, S100B, ALDOC, ACSL4, MBP and F2-Isoprostane. Therefore, the understating of ferroptosis-relevant mechanisms and biomarkers may contribute to development of promising therapies for TBI clinical trials.
Collapse
Affiliation(s)
- Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yaxuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
105
|
Kumar S, Fritz Z, Sulakhiya K, Theis T, Berthiaume F. Transcriptional Factors and Protein Biomarkers as Target Therapeutics in Traumatic Spinal Cord and Brain Injury. Curr Neuropharmacol 2020; 18:1092-1105. [PMID: 32442086 PMCID: PMC7709155 DOI: 10.2174/1570159x18666200522203542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Traumatic injury to the spinal cord (SCI) and brain (TBI) are serious health problems and affect many people every year throughout the world. These devastating injuries are affecting not only patients but also their families socially as well as financially. SCI and TBI lead to neurological dysfunction besides continuous inflammation, ischemia, and necrosis followed by progressive neurodegeneration. There are well-established changes in several other processes such as gene expression as well as protein levels that are the important key factors to control the progression of these diseases. We are not yet able to collect enough knowledge on the underlying mechanisms leading to the altered gene expression profiles and protein levels in SCI and TBI. Cell loss is hastened by the induction or imbalance of pro- or anti-inflammatory expression profiles and transcription factors for cell survival after or during trauma. There is a sequence of events of dysregulation of these factors from early to late stages of trauma that opens a therapeutic window for new interventions to prevent/restrict the progression of these diseases. There has been increasing interest in the modulation of these factors for improving the patient’s quality of life by targeting both SCI and TBI. Here, we review some of the recent transcriptional factors and protein biomarkers that have been developed and discovered in the last decade in the context of targeted therapeutics for SCI and TBI patients.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Thomas Theis
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The
State University of New Jersey, Piscataway, New Jersey, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
106
|
Piscitelli F, Guida F, Luongo L, Iannotti FA, Boccella S, Verde R, Lauritano A, Imperatore R, Smoum R, Cristino L, Lichtman AH, Parker LA, Mechoulam R, Maione S, Di Marzo V. Protective Effects of N-Oleoylglycine in a Mouse Model of Mild Traumatic Brain Injury. ACS Chem Neurosci 2020; 11:1117-1128. [PMID: 32017529 DOI: 10.1021/acschemneuro.9b00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the main causes of death in young people for which currently no efficacious treatment exists. Recently, we have reported that mice with mild-TBI with a specific injury in the insula showed elevated levels of a little investigated N-acyl amino acid, N-oleoylglycine (OlGly). N-acyl amino acids have recently experienced an increased interest because of their important biological activities. They belong to the endocannabinoidome family of lipids with structural similarities with the endocannabinoids (eCBs). The aim of this study was to test the neuroprotective and antihyperalgesic actions of OlGly in a model of mouse mild-TBI (mTBI) and its effect on levels of eCBs and N-acylethanolamines at the end of treatment. Following mTBI, mice were administered a daily injection of OlGly (10-50-100 mg/kg i.p.) for 14 days. Treatment with OlGly normalized motor impairment and behavior in the light/dark box test, ameliorated TBI-induced thermal hyperalgesia and mechanical allodynia, and normalized aggressiveness and depression. Moreover, levels of eCBs and some N-acylethanolamines underwent significant changes 60 days after TBI, especially in the prefrontal cortex and hypothalamus, and OlGly reversed some of these changes. In conclusion, our findings reveal that OlGly ameliorates the behavioral alterations associated with mTBI in mice, while concomitantly modulating eCB and eCB-like mediator tone.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Fabio Arturo Iannotti
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberta Verde
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Anna Lauritano
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Roberta Imperatore
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Reem Smoum
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem 91120, Israel
| | - Luigia Cristino
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Linda A. Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem 91120, Israel
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Di Marzo
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
107
|
Rana P, Rama Rao KV, Ravula A, Trivedi R, D'Souza M, Singh AK, Gupta RK, Chandra N. Oxidative stress contributes to cerebral metabolomic profile changes in animal model of blast-induced traumatic brain injury. Metabolomics 2020; 16:39. [PMID: 32166461 DOI: 10.1007/s11306-020-1649-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/02/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Blast-induced neurotrauma (BINT) has been recognized as the common mode of traumatic brain injury amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from this laboratory have identified three major pathological events following BINT which include blood brain barrier disruption the earliest event, followed by oxidative stress and neuroinflammation as secondary events occurring a few hours following blast. OBJECTIVES Our recent studies have also identified an increase in oxidative stress mediated by the activation of superoxide producing enzyme NADPH oxidase (NOX) in different brain regions at varying levels with neurons displaying higher oxidative stress (NOX activation) compared to any other neural cell. Since neurons have higher energy demands in brain and are more prone to oxidative damage, this study evaluated the effect of oxidative stress on blast-blast induced changes in metabolomics profiles in different brain regions. METHODS Animals were exposed to mild/moderate blast injury (180 kPa) and examined the metabolites of energy metabolism, amino acid metabolism as well as the profiles of plasma membrane metabolites in different brain regions at different time points (24 h, 3 day and 7 day) after blast using 1H NMR spectroscopy. Effect of apocynin, an inhibitor of superoxide producing enzyme NADPH oxidase on cerebral metabalomics profiles was also examined. RESULTS Several metabolomic profile changes were observed in frontal cortex and hippocampus with concomitant decrease in energy metabolism. In addition, glutamate/glutamine and other amino acid metabolism as well as metabolites involved in plasma membrane integrity were also altered. Hippocampus appears metabolically more vulnerable than the frontal cortex. A post-treatment of animals with apocynin, an inhibitor of NOX activation significantly prevented the changes in metabolite profiles. CONCLUSION Together these studies indicate that blast injury reduces both cerebral energy and neurotransmitter amino acid metabolism and that oxidative stress contributes to these processes. Thus, strategies aimed at reducing oxidative stress can have a therapeutic benefit in mitigating metabolic changes following BINT.
Collapse
Affiliation(s)
- Poonam Rana
- Metabolomics Research Facility, Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Arunreddy Ravula
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Richa Trivedi
- Metabolomics Research Facility, Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Maria D'Souza
- Department of NMR, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ajay K Singh
- Metabolomics Research Facility, Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj K Gupta
- US Department of Defense Blast Injury Research Program Coordinating Office, US Army MRMC, 504 Scott Street, Fort Detrick, MD, USA.
| | - Namas Chandra
- US Department of Defense Blast Injury Research Program Coordinating Office, US Army MRMC, 504 Scott Street, Fort Detrick, MD, USA.
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA.
| |
Collapse
|
108
|
Huguenard CJC, Cseresznye A, Evans JE, Oberlin S, Langlois H, Ferguson S, Darcey T, Nkiliza A, Dretsch M, Mullan M, Crawford F, Abdullah L. Plasma Lipidomic Analyses in Cohorts With mTBI and/or PTSD Reveal Lipids Differentially Associated With Diagnosis and APOE ε4 Carrier Status. Front Physiol 2020; 11:12. [PMID: 32082186 PMCID: PMC7005602 DOI: 10.3389/fphys.2020.00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
The differential diagnosis between mild Traumatic Brain Injury (mTBI) sequelae and Post-Traumatic Stress Disorder (PTSD) is challenging due to their symptomatic overlap and co-morbidity. As such, there is a need to develop biomarkers which can help with differential diagnosis of these two conditions. Studies from our group and others suggest that blood and brain lipids are chronically altered in both mTBI and PTSD. Therefore, examining blood lipids presents a minimally invasive and cost-effective approach to identify promising biomarkers of these conditions. Using liquid chromatography-mass spectrometry (LC-MS) we examined hundreds of lipid species in the blood of healthy active duty soldiers (n = 52) and soldiers with mTBI (n = 21), PTSD (n = 34) as well as co-morbid mTBI and PTSD (n = 13) to test whether lipid levels were differentially altered with each. We also examined if the apolipoprotein E (APOE) ε4 allele can affect the association between diagnosis and peripheral lipid levels in this cohort. We show that several lipid classes are altered with diagnosis and that there is an interaction between diagnosis and the ε4 carrier status on these lipids. Indeed, total lipid levels as well as both the degree of unsaturation and chain lengths are differentially altered with diagnosis and ε4 status, specifically long chain unsaturated triglycerides (TG) and both saturated and mono-unsaturated diglycerides (DG). Additionally, an examination of lipid species reveals distinct profiles in each diagnostic group stratified by ε4 status, mainly in TG, saturated DG species and polyunsaturated phosphatidylserines. In summary, we show that peripheral lipids are promising biomarker candidates to assist with the differential diagnosis of mTBI and PTSD. Further, ε4 carrier status alone and in interaction with diagnosis has a strong influence on peripheral lipid levels. Therefore, examining ε4 status along with peripheral lipid levels could help with differential diagnosis of mTBI and PTSD.
Collapse
Affiliation(s)
- Claire J C Huguenard
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Adam Cseresznye
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - James E Evans
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Sarah Oberlin
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Heather Langlois
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Teresa Darcey
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Aurore Nkiliza
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Michael Dretsch
- US Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Tacoma, WA, United States.,U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| |
Collapse
|
109
|
Rickard JJS, Di-Pietro V, Smith DJ, Davies DJ, Belli A, Oppenheimer PG. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nat Biomed Eng 2020; 4:610-623. [DOI: 10.1038/s41551-019-0510-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
|
110
|
McCrea M, Broglio SP, McAllister TW, Gill J, Giza CC, Huber DL, Harezlak J, Cameron KL, Houston MN, McGinty G, Jackson JC, Guskiewicz K, Mihalik J, Brooks MA, Duma S, Rowson S, Nelson LD, Pasquina P, Meier TB. Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium. JAMA Netw Open 2020; 3:e1919771. [PMID: 31977061 PMCID: PMC6991302 DOI: 10.1001/jamanetworkopen.2019.19771] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). OBJECTIVE To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. DESIGN, SETTING, AND PARTICIPANTS This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. MAIN OUTCOMES AND MEASURES Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. RESULTS A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). CONCLUSIONS AND RELEVANCE The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC.
Collapse
Affiliation(s)
- Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | | | | | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Christopher C. Giza
- UCLA Steve Tisch BrainSPORT Program, Departments of Neurosurgery and Pediatrics, University of California, Los Angeles
| | - Daniel L. Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health–Bloomington, Indiana University, Bloomington
| | | | | | | | | | - Kevin Guskiewicz
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill
| | - Jason Mihalik
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill
| | - M. Alison Brooks
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Stephan Duma
- Department of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg
| | - Steven Rowson
- Department of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg
| | | | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, Maryland
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | | |
Collapse
|
111
|
Dynamics of clusterin protein expression in the brain and plasma following experimental traumatic brain injury. Sci Rep 2019; 9:20208. [PMID: 31882899 PMCID: PMC6934775 DOI: 10.1038/s41598-019-56683-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Progress in the preclinical and clinical development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI) necessitates the discovery of prognostic biomarkers for post-injury outcome. Our previous mRNA-seq data revealed a 1.8–2.5 fold increase in clusterin mRNA expression in lesioned brain areas in rats with lateral fluid-percussion injury (FPI)-induced TBI. On this basis, we hypothesized that TBI leads to increases in the brain levels of clusterin protein, and consequently, increased plasma clusterin levels. For evaluation, we induced TBI in adult male Sprague-Dawley rats (n = 80) by lateral FPI. We validated our mRNA-seq findings with RT-qPCR, confirming increased clusterin mRNA levels in the perilesional cortex (FC 3.3, p < 0.01) and ipsilateral thalamus (FC 2.4, p < 0.05) at 3 months post-TBI. Immunohistochemistry revealed a marked increase in extracellular clusterin protein expression in the perilesional cortex and ipsilateral hippocampus (7d to 1 month post-TBI), and ipsilateral thalamus (14d to 12 months post-TBI). In the thalamus, punctate immunoreactivity was most intense around activated microglia and mitochondria. Enzyme-linked immunoassays indicated that an acute 15% reduction, rather than an increase in plasma clusterin levels differentiated animals with TBI from sham-operated controls (AUC 0.851, p < 0.05). Our findings suggest that plasma clusterin is a candidate biomarker for acute TBI diagnosis.
Collapse
|
112
|
Bhattrai A, Irimia A, Van Horn JD. Neuroimaging of traumatic brain injury in military personnel: An overview. J Clin Neurosci 2019; 70:1-10. [PMID: 31331746 PMCID: PMC6861663 DOI: 10.1016/j.jocn.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/04/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The incidence of blunt-force traumatic brain injury (TBI) is especially prevalent in the military, where the emergency care admission rate has been reported to be 24.6-41.8 per 10,000 soldier-years. Given substantial advancements in modern neuroimaging techniques over the past decade in terms of structural, functional, and connectomic approaches, this mode of exploration can be viewed as best suited for understanding the underlying pathology and for providing proper intervention at effective time-points. APPROACH Here we survey neuroimaging studies of mild-to-severe TBI in military veterans with the intent to aid the field in the creation of a roadmap for clinicians and researchers whose aim is to understand TBI progression. DISCUSSION Recent advancements on the quantification of neurocognitive dysfunction, cellular dysfunction, intracranial pressure, cerebral blood flow, inflammation, post-traumatic neuropathophysiology, on blood serum biomarkers and on their correlation to neuroimaging findings are reviewed to hypothesize how they can be used in conjunction with one another. This may allow clinicians and scientists to comprehensively study TBI in military service members, leading to new treatment strategies for both currently-serving as well as veteran personnel, and to improve the study of TBI more broadly.
Collapse
Affiliation(s)
- Avnish Bhattrai
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, SHN, Los Angeles, CA 90033, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Room 228C, Los Angeles, CA 90089-0191, USA.
| | - John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, SHN, Los Angeles, CA 90033, USA.
| |
Collapse
|
113
|
Ischemia-modified Albumin as a Biomarker for Prediction of Poor Outcome in Patients With Traumatic Brain Injury: An Observational Cohort Study. J Neurosurg Anesthesiol 2019; 33:254-257. [PMID: 31584483 DOI: 10.1097/ana.0000000000000647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biomarkers can assist in outcome prediction and therapeutic decision making after traumatic brain injury (TBI). The aim of this study was to evaluate the role of ischemia-modified albumin (IMA) in the prediction of mortality in patients with TBI. METHODS In this observational study IMA was measured on admission to intensive care unit (D0) and 24 hours later (D1) in a cohort of patients with mixed TBI severity. The primary outcome was the correlation between IMA and 28-day mortality. Secondary outcomes included the incidence of elevated IMA, and the correlation between the severity of TBI and IMA, and between IMA and change in Glasgow coma score (GCS). The area under receiver operating characteristic curve analysis was performed to detect optimal IMA cut-off value for the detection of mortality. RESULTS Fifty-four patients were included in the study; IMA was elevated in 49 (90.7%) on admission to the intensive care unit. Of the 49 patients with elevated IMA, 22 had a decrease in IMA while 27 had an increase by 24 hours. IMA levels were higher at D0 and D1 (P<0.001 for both) in patients who died compared with those who survived. Twenty-one patients died (mortality rate 38.9%); all had elevated IMA on D0 and D1 and higher IMA levels at D1 compared with D0. Optimal cut-off values for IMA predicted mortality with 76.2% sensitivity and 81.8% specificity at D0 and with 100% sensitivity and specificity at D1. IMA values at D0 and D1 were correlated with D0 and D1 GCS, respectively (both P<0.001). CONCLUSION IMA levels were elevated in patients following TBI, and can predict mortality with high sensitivity and specificity.
Collapse
|
114
|
Psychological Intervention in Traumatic Brain Injury Patients. Behav Neurol 2019; 2019:6937832. [PMID: 31191738 PMCID: PMC6525953 DOI: 10.1155/2019/6937832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Objective To provide a brief and comprehensive summary of recent research regarding psychological interventions for patients surviving a traumatic brain injury. Methods A bibliographical search was performed in PubMed, Cochrane Library, PsycNET, Scopus, ResearchGate, and Google Scholar online databases. Analysis included distribution by year of publication, age stage of participants (paediatric, adult), location of the research team, study design, type of intervention, and main outcome variables. Results The initial search eliciting 1541 citations was reduced to 62 relevant papers. Most publications had adult samples (88.7%). The United States outstands as the country with more research (58.1%); Latin America countries provided no results. Cognitive behavioural therapy (CBT) was the most widely used approach for treatment of (sub)clinical mental disturbances (41.9%). Neuropsychological interventions were scarce (4.8%). Outcome measures included psychiatric disorders (e.g., posttraumatic stress disorder (PTSD), depression, and anxiety) (37.1%), postconcussive symptoms (16.1%), cognitive and functional deficits (48.1%), and social and psychological dimensions (62.9%). Conclusions CBT outstands as the preferred therapeutic approach for treating behavioural and emotional disturbances. Also, other related therapies such as dialectical behaviour, mindfulness, and acceptance and commitment therapies have been proposed, and probably in the years to come, more literature regarding their effectiveness will be available. On the other hand, evidence showed that interventions from the field of neuropsychology are minimal if compared with its contribution to assessment. Future research should be aimed at performing studies on more diverse populations (e.g., nonmilitary communities and paediatric and Latin American populations) and at controlling designs to examine the therapeutic efficacy of psychotherapeutic and neurocognitive rehabilitation interventions and compare amelioration by injury severity, age of patients, and clinical profile, in the hopes of creating better guidelines for practitioners.
Collapse
|