101
|
Chen JJ, Gong YH, He L. Role of GPR40 in pathogenesis and treatment of Alzheimer's disease and type 2 diabetic dementia. J Drug Target 2018; 27:347-354. [PMID: 29929407 DOI: 10.1080/1061186x.2018.1491979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-protein coupled receptor 40 (GPR40) is also known as free fatty acid receptor 1. It is a typical 7 transmembrane receptor and currently the natural receptor of the saturated or unsaturated long-chain fatty acids. It could trigger the intracellular signalling pathway when combined with the free long-chain fatty acids, thereby controlling cells physiological function. In this review, we summarised the relationships and the potential mechanisms between the promising target GPR40, and pathogenesis and treatment of Alzheimer's disease and type 2 diabetic dementia. It may provide a theoretical reference for the development of clinical drug targeting GPR40.
Collapse
Affiliation(s)
- Jing-Jing Chen
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| | - Yu-Hang Gong
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| | - Ling He
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
102
|
Mohamed HE, Asker ME, Younis NN, Shaheen MA, Eissa RG. Modulation of brain insulin signaling in Alzheimer’s disease: New insight on the protective role of green coffee bean extract. Nutr Neurosci 2018; 23:27-36. [DOI: 10.1080/1028415x.2018.1468535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hoda E. Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
103
|
|
104
|
Gault VA, Hölscher C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018; 100:101-107. [PMID: 29412810 DOI: 10.1016/j.peptides.2017.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Enzyme-resistant receptor agonists of the incretin hormone glucagon-like peptide-1 (GLP-1) have shown positive therapeutic effects in people with type 2 diabetes mellitus (T2DM). T2DM has detrimental effects on brain function and impairment of cognition and memory formation has been described. One of the underlying mechanisms is most likely insulin de-sensitization in the brain, as insulin improves cognitive impairments and enhances learning. Treatment with GLP-1 receptor agonists improves memory formation and impairment of synaptic plasticity observed in animal models of diabetes-obesity. Furthermore, it has been shown that diabetes impairs growth factor signalling in the brain and reduces energy utilization in the cortex. Inflammation and apoptotic signalling was also increased. Treatment with GLP-1 receptor agonists improved neuronal growth and repair and reduced inflammation and apoptosis as well as oxidative stress. In comparison with the diabetes drug metformin, GLP-1 receptor agonists were able to improve glycemic control and reverse brain impairments, whereas metformin only normalized blood glucose levels. Clinical studies in non-diabetic patients with neurodegenerative disorders showed neuroprotective effects following administration with GLP-1 receptor agonists, demonstrating that neuroprotective effects are independent of blood glucose levels.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of University, Coleraine, BT52 1SA, UK
| | - Christian Hölscher
- Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
105
|
Ramesh S, Govindarajulu M, Lynd T, Briggs G, Adamek D, Jones E, Heiner J, Majrashi M, Moore T, Amin R, Suppiramaniam V, Dhanasekaran M. SIRT3 activator Honokiol attenuates β-Amyloid by modulating amyloidogenic pathway. PLoS One 2018; 13:e0190350. [PMID: 29324783 PMCID: PMC5764272 DOI: 10.1371/journal.pone.0190350] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/13/2017] [Indexed: 01/06/2023] Open
Abstract
Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator which exhibit antioxidant activity and augment mitochondrial functions in several experimental models. Modern evidence suggests the critical role of SIRT3 in the progression of several metabolic and neurodegenerative diseases. Amyloid beta (Aβ), the precursor to extracellular senile plaques, accumulates in the brains of patients with Alzheimer's disease (AD) and is related to the development of cognitive impairment and neuronal cell death. Aβ is generated from amyloid-β precursor protein (APP) through sequential cleavages, first by β-secretase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the most promising strategies for AD treatment. In the present study, we found that Honokiol significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby reducing Aβ and sAPPβ levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting β-secretase activity leading to reduced Aβ levels. These results suggest that Honokiol is an activator of SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while decreasing Aβ, thereby indicating it to be a lead compound for AD drug development.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Tyler Lynd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Gwyneth Briggs
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Danielle Adamek
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Ellery Jones
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Jake Heiner
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
106
|
Johnson SC. Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing and Age-Related Disease. Subcell Biochem 2018; 90:49-97. [PMID: 30779006 DOI: 10.1007/978-981-13-2835-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nutrient signaling through insulin/IGF-1 was the first pathway demonstrated to regulate ageing and age-related disease in model organisms. Pharmacological or dietary interventions targeting nutrient signaling pathways have been shown to robustly attenuate ageing in many organisms. Caloric restriction, the most widely studied longevity promoting intervention, works through multiple nutrient signaling pathways, while inhibition of mTOR through treatment with rapamycin reproducibly delays ageing and disease through specific inhibition of the mTOR complexes. Although the benefits of reduced insulin/IGF-1 in lifespan and health are well documented in model organisms, defining the precise role of the IGF-1 in human ageing and age-related disease has proven more difficult. Association studies provide some insight but also reveal paradoxes. Low serum IGF-1 predicts longevity, but IGF-1 decreases with age and IGF-1 therapy benefits some of age-related pathologies. Circulating IGF-1 has been associated both positively and negatively with risk of age-related diseases in humans, and in some cases both activation and inhibition of IGF-1 signaling have provided benefit in animal models of the same diseases. Interventions designed modulate the nutrient sensing signaling pathways positively or negatively are already available for clinical use, highlighting the need for a clear understanding of the role of nutrient signaling in ageing and age-related disease. This chapter examines data from model organisms and human genetic association studies, with a special emphasis on IGF-1 and mTOR, and discusses potential models for resolving the paradoxes surrounding IGF-1 data.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
107
|
Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, Dineley KT. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease. Neurobiol Aging 2017; 58:1-13. [PMID: 28688899 PMCID: PMC5819888 DOI: 10.1016/j.neurobiolaging.2017.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/23/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling.
Collapse
Affiliation(s)
- Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - An Tran
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Egide Ishimwe
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Larry Denner
- Internal Medicine, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Nikhil Dave
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Salvatore Oddo
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA.
| |
Collapse
|
108
|
Morsi M, Maher A, Aboelmagd O, Johar D, Bernstein L. A shared comparison of diabetes mellitus and neurodegenerative disorders. J Cell Biochem 2017; 119:1249-1256. [PMID: 28681964 DOI: 10.1002/jcb.26261] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is one of the most common diseases in the world population, associated with obesity, pancreatic endocrine changes, cardiovascular disease, renal glomerular disease, cerebrovascular disease, peripheral neuropathy, neurodegenerative disease, retinal disease, sleep apnea, some of which are bundled into the metabolic syndrome. The main characteristic of this disease is hyperglycemia, and often with albuminuria. Nevertheless, the classic features, with ketoacidosis in the extreme, are only a first layer of description of this condition. The description of the islet cells of the endocrine pancreas was first described by Opie, and the discovery of insulin by tying off the exocrine pancreatic ducts followed. We later find that the β-cells secrete insulin and glucagon, which synchronously stimulate or suppress glycogenolysis, and that insulin is essential for glucose intake into the cell. There are yet two other layers for our understanding of diabetes and the effects of its dysfunction, which is the basis for understanding the system-wide expression of the disease. We describe the molecular basis for the central nervous system neuropathic diseases that are associated with both Type 1 DM (T1DM) and Type 2 DM (T2DM), but more so with T2DM. T2DM is an autoimmune disease that destroys the insulin secreting islet cells. T2DM is the diabetes that is associated with an imbalance in the glucagon/insulin homeostasis that leads to the formation of amyloid deposits in the brain, pancreatic islet cells, and possibly the kidney glomerulus.
Collapse
Affiliation(s)
- Mahmoud Morsi
- Faculty of Medicine, Menoufia University, Shebin El-kom, Menoufia, Egypt
| | - Ahmed Maher
- Zoonotic Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Omnia Aboelmagd
- Faculty of Medicine, CairoUniversity, Kasr Al-Ainy, Cairo, Egypt
| | - Dina Johar
- Department of Biochemistry and Nutrition, Ain Shams University Faculty of Women for Arts, Sciences and Education, Heliopolis, Cairo, Egypt.,Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
109
|
Carelli-Alinovi C, Misiti F. Erythrocytes as Potential Link between Diabetes and Alzheimer's Disease. Front Aging Neurosci 2017; 9:276. [PMID: 28890694 PMCID: PMC5574872 DOI: 10.3389/fnagi.2017.00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
Many studies support the existence of an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD). In AD, in addition to brain, a number of peripheral tissues and cells are affected, including red blood cell (RBC) and because there are currently no reliable diagnostic biomarkers of AD in the blood, a gradually increasing attention has been given to the study of RBC's alterations. Recently it has been evidenced in diabetes, RBC alterations superimposable to the ones occurring in AD RBC. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of RBC's alterations and vice versa. Once again this represents a further evidence of a shared pathway between AD and T2DM. The present review summarizes the two disorders, highlighting the role of RBC in the postulated common biochemical links, and suggests RBC as a possible target for clinical trials.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- School of Medicine, Biochemistry and Clinical Biochemistry Institute, Università Cattolica del Sacro CuoreRome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio MeridionaleCassino, Italy
| |
Collapse
|
110
|
Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci 2017; 36:11851-11864. [PMID: 27881773 DOI: 10.1523/jneurosci.1700-16.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. SIGNIFICANCE STATEMENT The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long-term inhibition of GluT4 impaired long-term memory, short-term memory was enhanced. These data further our understanding of the molecular mechanisms of memory and have particular significance for type 2 diabetes (in which GluT4 activity in the periphery is impaired) and Alzheimer's disease (which is linked to impaired brain insulin signaling and for which type 2 diabetes is a key risk factor). Both diseases cause marked impairment of hippocampal memory linked to hippocampal hypometabolism, suggesting the possibility that brain GluT4 dysregulation may be one cause of cognitive impairment in these disease states.
Collapse
|
111
|
Song J, Whitcomb DJ, Kim BC. The role of melatonin in the onset and progression of type 3 diabetes. Mol Brain 2017; 10:35. [PMID: 28764741 PMCID: PMC5539639 DOI: 10.1186/s13041-017-0315-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is defined by the excessive accumulation of toxic peptides, such as beta amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFT). The risk factors associated with AD include genetic mutations, aging, insulin resistance, and oxidative stress. To date, several studies that have demonstrated an association between AD and diabetes have revealed that the common risk factors include insulin resistance, sleep disturbances, blood brain barrier (BBB) disruption, and altered glucose homeostasis. Many researchers have discovered that there are mechanisms common to both diabetes and AD. AD that results from insulin resistance in the brain is termed “type 3 diabetes”. Melatonin synthesized by the pineal gland is known to contribute to circadian rhythms, insulin resistance, protection of the BBB, and cell survival mechanisms. Here, we review the relationship between melatonin and type 3 diabetes, and suggest that melatonin might regulate the risk factors for type 3 diabetes. We suggest that melatonin is crucial for attenuating the onset of type 3 diabetes by intervening in Aβ accumulation, insulin resistance, glucose metabolism, and BBB permeability.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469, South Korea
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Healthy Sciences, University of Bristol, Whitson street, Bristol, BS1 3NY, UK
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|
112
|
Ruan Q, D'onofrio G, Wu T, Greco A, Sancarlo D, Yu Z. Sexual dimorphism of frailty and cognitive impairment: Potential underlying mechanisms (Review). Mol Med Rep 2017; 16:3023-3033. [PMID: 28713963 DOI: 10.3892/mmr.2017.6988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/01/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess systematically gender differences in susceptibility to frailty and cognitive performance decline, and the underlying mechanisms. A systematic assessment was performed of the identified reviews of cohort, mechanistic and epidemiological studies. The selection criteria of the present study included: i) Sexual dimorphism of frailty, ii) sexual dimorphism of subjective memory decline (impairment) and atrophy of hippocampus during early life, iii) sexual dimorphism of late‑onset Alzheimer's disease and iv) sexual dimorphism mechanisms underlying frailty and cognitive impairment. Males exhibit a susceptibility to poor memory performance and a severe atrophy of the hippocampus during early life and females demonstrate a higher prevalence for frailty and late‑life dementia. The different alterations within the hypothalamic‑pituitary‑gonadal/adrenal axis, particularly with regard to gonadal hormones, cortisol and dehydroepiandrosterone/sulfate‑bound dehydroepiandrosterone prior to and following andropause in males and menopause in females, serve important roles in sexual dimorphism of frailty and cognitive impairment. These endocrine changes may accelerate immunosenescence, weaken neuroprotective and neurotrophic effects, and promote muscle catabolism. The present study suggested that these age‑associated endocrine alterations interact with gender‑specific genetic and epigenetic factors, together with immunosenescence and iron accumulation. Environment factors, including psychological factors, are additional potential causes of the sexual dimorphism of frailty and cognitive impairment.
Collapse
Affiliation(s)
- Qingwei Ruan
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Grazia D'onofrio
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Tao Wu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Antonio Greco
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Daniele Sancarlo
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Zhuowei Yu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
113
|
Novak V, Gomez F, Dias AC, Pimentel DA, Alfaro FJ. Diabetes-Related Cognitive Decline, a Global Health Issue, and New Treatments Approaches. ACTA ACUST UNITED AC 2017; 5:58-70. [PMID: 30271671 DOI: 10.4018/ijphim.2017070104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The epidemic of type 2 diabetes (T2DM) is spreading around the globe and challenging the unprecedented success of health sciences in increasing longevity. T2DM has been linked to accelerated brain aging, functional decline in older adults and dementia. Brain insulin resistance and glycemic variability are potential mechanisms underlying T2DM-related brain damage and cognitive decline. Intranasal insulin therapy has emerged as a potential new treatment for T2DM-related cognitive impairment. Wearable technologies now allow better monitoring of behaviors and glycemic levels over several days and deliver real time feedback that can be used to improve self-management and lead to new prevention strategies and therapies for T2DM complications.
Collapse
Affiliation(s)
- Vera Novak
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
114
|
Ahmed AS, Elgharabawy RM, Al-Najjar AH. Ameliorating effect of anti-Alzheimer's drugs on the bidirectional association between type 2 diabetes mellitus and Alzheimer's disease. Exp Biol Med (Maywood) 2017; 242:1335-1344. [PMID: 28534431 DOI: 10.1177/1535370217711440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mild to severe forms of nervous system damage were exhibited by approximately 60-70% of diabetics. It is important to understand the association between type 2 diabetes mellitus and Alzheimer's disease. The aim of the present work is to understand the bidirectional association between type 2 diabetes and Alzheimer's disease pathogenesis, that was monitored by glycaemic status, lipid profile, amyloid beta 40 and 42 (Aβ40 and Aβ42), C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer and magnesium measurements, to assess the association between theses biochemical markers and each other, to estimate the possibility of utilizing the amyloid beta as biochemical marker of T2D in Alzheimer's patients, and to evaluate the effect of piracetam and memantine drugs on diabetes mellitus. This study involved 120 subjects divided into 20 healthy control (group I), 20 diabetic patients (group II), 20 Alzheimer's patients (group III), 20 diabetic Alzheimer's patients with symptomatic treatment (group IV), 20 diabetic Alzheimer's patients treated with memantine (group V), and 20 diabetic Alzheimer's patients treated with piracetam (group VI). The demographic characteristics, diabetic index, and lipid profile were monitored. Plasma amyloid beta 40 and amyloid beta 42, C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer, and magnesium were assayed. The levels of amyloid beta 40 and amyloid beta 42 were significantly elevated in diabetic Alzheimer's patients with symptomatic treatment (group IV) compared to group II (by 50.5 and 7.5 fold, respectively) and group III (by 25.4 and 2.8 fold, respectively). In groups II, III, IV, V and VI, significant and positive associations were monitored between insulin and amyloid beta 40, amyloid beta 42, C-reactive protein, total creatine kinase, and D-dimer. Diabetic markers were significantly decreased in diabetic Alzheimer's patients treated with anti-Alzheimer's drugs (especially piracetam) compared to group IV. This study reveals the role of amyloid beta 40, amyloid beta 42, insulin, HbA1c, lipid profile disturbance, C-reactive protein, D-dimer, and magnesium in the bidirectional correlation between T2D and pathogenesis of Alzheimer's disease, that is powered by their correlations, and therefore the possibility of utilizing Aβ as a biochemical marker of T2D in Alzheimer's patients is recommended. Impact statement Several aspects associated with T2D that contribute to AD and vice versa were investigated in this study. Additionally, this work reveals the role of Aβ40, Aβ42, insulin, HbA1c, lipid profile disturbance, CRP, D-dimer, and magnesium in the bidirectional association between T2D and the pathogenesis of AD, that is powered by their correlations, and therefore the possibility of utilizing Aβ as a biochemical marker of T2D in Alzheimer's patients is recommended. Furthermore, the ameloriating effect of anti-Alzheimer's drugs on diabetes mellitus confirms this association. Hereafter, a new approach for treating insulin resistance and diabetes may be developed by new therapeutic potentials such as neutralization of Aβ by anti-Aβ antibodies.
Collapse
Affiliation(s)
- Amira S Ahmed
- 1 Pharmacology and Toxicology Department, Faculty of Pharmacy, Qassim University, KSA 51431, Saudi Arabia.,2 Hormone Department, National Research Centre, Dokki 12311, Egypt
| | - Rehab M Elgharabawy
- 1 Pharmacology and Toxicology Department, Faculty of Pharmacy, Qassim University, KSA 51431, Saudi Arabia.,3 Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Amal H Al-Najjar
- 4 Drug and Poison Information Specialist, Pharmacy Services, Security Forces Hospital, Riyadh, KSA 11481, Saudi Arabia
| |
Collapse
|
115
|
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer's Disease. Front Aging Neurosci 2017; 9:118. [PMID: 28515688 PMCID: PMC5413582 DOI: 10.3389/fnagi.2017.00118] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Thomas C Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Chee W Chia
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| |
Collapse
|
116
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
117
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
118
|
Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, Huang RN, Chiang MC. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 2017; 352:75-83. [PMID: 28159472 DOI: 10.1016/j.yexcr.2017.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022]
Abstract
A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1β, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated hNSCs. These findings extend our understanding of the central role of AMPK in AGE induced inflammatory responses, which increase the risk of neurodegeneration in diabetic patients.
Collapse
Affiliation(s)
- Ming-Min Chung
- Department of Internal Medicine, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Christopher J Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Kuan-Hung Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Dee Pei
- Department of Internal Medicine, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Chien-Hung Lin
- Department of Pediatrics, Taipei City Hospital Zhongxing Branch, Taipei 103, Taiwan
| | - Yi-Nuo Shih
- Department of Occupational Therapy, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Chia-Hui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
119
|
Ponce-Lopez T, Hong E, Abascal-Díaz M, Meneses A. Role of GSK3<i>β</i> and PP2A on Regulation of Tau Phosphorylation in Hippocampus and Memory Impairment in ICV-STZ Animal Model of Alzheimer’s Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aad.2017.61002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
120
|
de la Monte SM. Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer's Disease. Drugs 2017; 77:47-65. [PMID: 27988872 PMCID: PMC5575843 DOI: 10.1007/s40265-016-0674-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) should be regarded as a degenerative metabolic disease caused by brain insulin resistance and deficiency, and overlapping with the molecular, biochemical, pathophysiological, and metabolic dysfunctions in diabetes mellitus, non-alcoholic fatty liver disease, and metabolic syndrome. Although most of the diagnostic and therapeutic approaches over the past several decades have focused on amyloid-beta (Aβ42) and aberrantly phosphorylated tau, which could be caused by consequences of brain insulin resistance, the broader array of pathologies including white matter atrophy with loss of myelinated fibrils and leukoaraiosis, non-Aβ42 microvascular disease, dysregulated lipid metabolism, mitochondrial dysfunction, astrocytic gliosis, neuro-inflammation, and loss of synapses vis-à-vis growth of dystrophic neurites, is not readily accounted for by Aβ42 accumulations, but could be explained by dysregulated insulin/IGF-1 signaling with attendant impairments in signal transduction and gene expression. This review covers the diverse range of brain abnormalities in AD and discusses how insulins, incretins, and insulin sensitizers could be utilized to treat at different stages of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Neurology, Rhode Island Hospital, and the Alpert Medical School of Brown University, Pierre Galletti Research Building, 55 Claverick Street, Room 419, Providence, RI, 02903, USA.
- Department of Neurosurgery, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Neuropathology, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pathology, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
121
|
Berger AL. Insulin resistance and reduced brain glucose metabolism in the aetiology of Alzheimer’s disease. JOURNAL OF INSULIN RESISTANCE 2016. [DOI: 10.4102/jir.v1i1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Significant epidemiological and clinical evidence has emerged that suggests Alzheimer’s disease (AD) can be added to the list of chronic illnesses that are primarily caused by modern diets and lifestyles at odds with human physiology. High intakes of refined carbohydrates insufficient physical activity, suboptimal sleep quantity and quality, and other factors that may contribute to insulin resistance combine to create a perfect storm of glycation and oxidative stress in the brain. Specific neurons lose the ability to metabolise and harness energy from glucose, ultimately resulting in neuronal degeneration and death. Simultaneously, chronic peripheral hyperinsulinaemia prevents ketogenesis, thus depriving struggling neurons of a highly efficient alternative fuel substrate. The intimate association between type 2 diabetes and AD suggests that they have common underlying causes, namely insulin resistance and perturbed glucose metabolism. Preclinical evidence of AD is detectable decades before over symptoms appear, indicating that AD progresses over time, with observable signs manifesting only after the brain’s compensatory mechanisms have failed and widespread neuronal atrophy begins to interfere with cognition and performance of daily life tasks. That dietary and environmental triggers play pivotal roles in causing AD suggests that nutrition and lifestyle based interventions may hold the key to ameliorating or preventing this debilitating condition for which conventional pharmaceutical treatments are largely ineffective. Results from small scale clinical studies indicate that dietary and lifestyle strategies may be effective for reversing dementia and cognitive impairment. Increased research efforts should be dedicated towards this promising avenue in the future.
Collapse
|
122
|
Yan W, Ku T, Yue H, Li G, Sang N. NO 2 inhalation causes tauopathy by disturbing the insulin signaling pathway. CHEMOSPHERE 2016; 165:248-256. [PMID: 27657817 DOI: 10.1016/j.chemosphere.2016.09.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Air pollution has been evidenced as a risk factor for neurodegenerative tauopathies. NO2, a primary component of air pollution, is negatively linked to neurodegenerative disorders, but its independent and direct association with tau lesion remains to be elucidated. Considering the fact that the insulin signaling pathway can be targeted by air pollutants and regulate tau function, this study focused on the role of insulin signaling in this NO2-induced tauopathy. Using a dynamic inhalation treatment, we demonstrated that exposure to NO2 induced a disruption of insulin signaling in skeletal muscle, liver, and brain, with associated p38 MAPK and/or JNK activation. We also found that in parallel with these kinase signaling cascades, the compensatory hyperinsulinemia triggered by whole-body insulin resistance (IR) further attenuated the IRS-1/AKT/GSK-3β signaling pathway in the central nervous system, which consequently increased the phosphorylation of tau and reduced the expression of synaptic proteins that contributed to the development of the tau pathology. These findings provide new insight into the possible mechanisms involved in the etiopathogenesis of NO2-induced tauopathy, suggesting that the targeting of insulin signaling may be a promising therapeutic strategy to prevent this disease.
Collapse
Affiliation(s)
- Wei Yan
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
123
|
Deochand C, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration. J Alzheimers Dis 2016; 50:373-86. [PMID: 26682684 DOI: 10.3233/jad-150664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Human studies suggest tobacco smoking is a risk factor for cognitive impairment and neurodegeneration, including Alzheimer's disease (AD). However, experimental data linking tobacco smoke exposures to underlying mediators of neurodegeneration, including impairments in brain insulin and insulin-like growth factor (IGF) signaling in AD are lacking. OBJECTIVE This study tests the hypothesis that cigarette smoke (CS) exposures can impair brain insulin/IGF signaling and alter expression of AD-associated proteins. METHODS Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 or 8 weeks (CS4, CS8), or CS8 followed by 2 weeks recovery (CS8+R). Gene expression was measured by qRT-PCR analysis and proteins were measured by multiplex bead-based or direct binding duplex ELISAs. RESULTS CS exposure effects on insulin/IGF and insulin receptor substrate (IRS) proteins and phosphorylated proteins were striking compared with the mRNA. The main consequences of CS4 or CS8 exposures were to significantly reduce insulin R, IGF-1R, IRS-1, and tyrosine phosphorylated insulin R and IGF-1R proteins. Paradoxically, these effects were even greater in the CS8+R group. In addition, relative levels of S312-IRS-1, which inhibits downstream signaling, were increased in the CS4, CS8, and CS8+R groups. Correspondingly, CS and CS8+R exposures inhibited expression of proteins and phosphoproteins required for signaling through Akt, PRAS40, and/or p70S6K, increased AβPP-Aβ, and reduced ASPH protein, which is a target of insulin/IGF-1 signaling. CONCLUSION Secondhand CS exposures caused molecular and biochemical abnormalities in brain that overlap with the findings in AD, and many of these effects were sustained or worsened despite short-term CS withdrawal.
Collapse
Affiliation(s)
- Chetram Deochand
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M de la Monte
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Neuropathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
124
|
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer's disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1078-1089. [PMID: 27567931 DOI: 10.1016/j.bbadis.2016.08.018] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Recently researchers proposed the term 'Type-3-Diabetes' for Alzheimer's disease (ad) because of the shared molecular and cellular features among Type-1-Diabetes, Type-2-Diabetes and insulin resistance associated with memory deficits and cognitive decline in elderly individuals. Recent clinical and basic studies on patients with diabetes and AD revealed previously unreported cellular and pathological among diabetes, insulin resistance and AD. These studies are also strengthened by various basic biological studies that decipher the effects of insulin in the pathology of AD through cellular and molecular mechanisms. For instance, insulin is involved in the activation of glycogen synthase kinase 3β, which in turn causes phosphorylation of tau, which involved in the formation of neurofibrillary tangles. Interestingly, insulin also plays a crucial role in the formation amyloid plaques. In this review, we discussed significant shared mechanisms between AD and diabetes and we also provided therapeutic avenues for diabetes and AD. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Vani Thirumala
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; BSA Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Departments of Cell Biology & Biochemistry, Neuroscience & Pharmacology and Neurology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| |
Collapse
|
125
|
Salmina AB, Komleva YK, Lopatina OL, Kuvacheva NV, Gorina YV, Panina YA, Uspenskaya YA, Petrova MM, Demko IV, Zamay AS, Malinovskaya NA. Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. Rev Neurosci 2016; 26:143-59. [PMID: 25528762 DOI: 10.1515/revneuro-2014-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/16/2014] [Indexed: 01/06/2023]
Abstract
Neuroinflammation is as an important component of pathogenesis in many types of brain pathology. Immune mechanisms regulate neuroplasticity, memory formation, neurogenesis, behavior, brain development, cognitive functions, and brain metabolism. It is generally believed that essential homeostatic functions of astrocytes - astroglia-neuron metabolic coupling, gliovascular control, regulation of proliferation, and migration of cells in the neurogenic niches - are compromised in neuroinflammation resulting in excitotoxicity, neuronal and glial cell death, and alterations of intercellular communication. Viral neuroinfection, release of non-coding RNAs from the cells at the sites of brain injury or degeneration, and application of siRNA or RNA aptamers as therapeutic agents would require dsRNA-sensing pathways in the cells of neuronal and non-neuronal origin. In this review, we analyze the data regarding the role of astrocytes in dsRNA-initiated innate immune response in neuroinflammation and their contribution to progression of neurodegenerative and neurodevelopmental pathology.
Collapse
|
126
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
127
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:102-30. [PMID: 27335702 PMCID: PMC4913220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
128
|
Ribarič S. The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules 2016; 21:molecules21060689. [PMID: 27240327 PMCID: PMC6273626 DOI: 10.3390/molecules21060689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a prevalence that increases with age. By 2050, the worldwide number of patients with AD is projected to reach more than 140 million. The prominent signs of AD are progressive memory loss, accompanied by a gradual decline in cognitive function and premature death. AD is the clinical manifestation of altered proteostasis. The initiating step of altered proteostasis in most AD patients is not known. The progression of AD is accelerated by several chronic disorders, among which the contribution of diabetes to AD is well understood at the cell biology level. The pathological mechanisms of AD and diabetes interact and tend to reinforce each other, thus accelerating cognitive impairment. At present, only symptomatic interventions are available for treating AD. To optimise symptomatic treatment, a personalised therapy approach has been suggested. Intranasal insulin administration seems to open the possibility for a safe, and at least in the short term, effective symptomatic intervention that delays loss of cognition in AD patients. This review summarizes the interactions of AD and diabetes from the cell biology to the patient level and the clinical results of intranasal insulin treatment of cognitive decline in AD.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
129
|
Rani V, Deshmukh R, Jaswal P, Kumar P, Bariwal J. Alzheimer's disease: Is this a brain specific diabetic condition? Physiol Behav 2016; 164:259-67. [PMID: 27235734 DOI: 10.1016/j.physbeh.2016.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2DM) are the two major health issues affecting millions of elderly people worldwide, with major impacts in the patient's daily life. Numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The principal biological mechanisms that associate with the progression of diabetes and AD are not completely understood. Impaired insulin signaling, uncontrolled glucose metabolism, oxidative stress, abnormal protein processing, and the stimulation of inflammatory pathways are common features to both AD and T2DM. In recent years brain specific abnormalities in insulin and insulin like growth factor (IGF) signaling considered as a major trigger involved in the etiopathogenesis of AD, showing T2DM like milieu. This review summarizes the pathways that might link diabetes and AD and the effect of diminished insulin.
Collapse
Affiliation(s)
- Vanita Rani
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Rahul Deshmukh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| | - Priya Jaswal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Puneet Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Jitender Bariwal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
130
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:1-28. [PMID: 27073740 PMCID: PMC4788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
131
|
Shi Y, Sun X, Sun Y, Hou L, Yao M, Lian K, Li J, Lu X, Jiang L. Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats. Neuroscience 2016; 315:125-35. [DOI: 10.1016/j.neuroscience.2015.11.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/07/2015] [Accepted: 11/30/2015] [Indexed: 01/23/2023]
|
132
|
Sharma S, Taliyan R. Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice. Neuropharmacology 2016; 105:285-297. [PMID: 26805421 DOI: 10.1016/j.neuropharm.2016.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 01/04/2023]
Abstract
Insulin resistance has been reported as a strong risk factor for Alzheimer's disease. However the molecular mechanisms of association between these still remain elusive. Various studies have highlighted the involvement of histone deacetylases (HDACs) in insulin resistance and cognitive deficits. Thus, the present study was designed to investigate the possible neuroprotective role of HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA) in insulin resistance induced cognitive impairment in mice. Mice were subjected to either normal pellet diet (NPD) or high fat diet (HFD) for 8 weeks. HFD fed mice were treated with SAHA at 25 and 50 mg/kg i.p. once daily for 2 weeks. Serum insulin, glucose, triglycerides, total cholesterol and HDL-cholesterol levels were measured. A battery of behavioral parameters was performed to assess cognitive functions. Level of tumour necrosis factor (TNF-α) was measured in hippocampus to assess neuroinflammation. To further explore the molecular mechanisms we measured the histone H3 acetylation and brain derived neurotrophic factor (BDNF) level. HFD fed mice exhibit characteristic features of insulin resistance. These mice also showed a severe deficit in learning and memory along with reduced histone H3 acetylation and BDNF levels. In contrast, the mice treated with SAHA showed significant and dose dependent improvement in insulin resistant condition. These mice also showed improved learning and memory performance. SAHA treatment ameliorates the HFD induced reduction in histone H3 acetylation and BDNF levels. Based upon these results, it could be suggested that HDAC inhibitors exert neuroprotective effects by increasing H3 acetylation and subsequently BDNF level.
Collapse
Affiliation(s)
- Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rajeev Taliyan
- Neuropharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
133
|
Schilling MA. Unraveling Alzheimer's: Making Sense of the Relationship between Diabetes and Alzheimer's Disease1. J Alzheimers Dis 2016; 51:961-77. [PMID: 26967215 PMCID: PMC4927856 DOI: 10.3233/jad-150980] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Numerous studies have documented a strong association between diabetes and Alzheimer's disease (AD). The nature of the relationship, however, has remained a puzzle, in part because of seemingly incongruent findings. For example, some studies have concluded that insulin deficiency is primarily at fault, suggesting that intranasal insulin or inhibiting the insulin-degrading enzyme (IDE) could be beneficial. Other research has concluded that hyperinsulinemia is to blame, which implies that intranasal insulin or the inhibition of IDE would exacerbate the disease. Such antithetical conclusions pose a serious obstacle to making progress on treatments. However, careful integration of multiple strands of research, with attention to the methods used in different studies, makes it possible to disentangle the research on AD. This integration suggests that there is an important relationship between insulin, IDE, and AD that yields multiple pathways to AD depending on the where deficiency or excess in the cycle occurs. I review evidence for each of these pathways here. The results suggest that avoiding excess insulin, and supporting robust IDE levels, could be important ways of preventing and lessening the impact of AD. I also describe what further tests need to be conducted to verify the arguments made in the paper, and their implications for treating AD.
Collapse
|
134
|
Yu R, Deochand C, Krotow A, Leão R, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Tobacco Smoke-Induced Brain White Matter Myelin Dysfunction: Potential Co-Factor Role of Smoking in Neurodegeneration. J Alzheimers Dis 2016; 50:133-48. [PMID: 26639972 PMCID: PMC5577392 DOI: 10.3233/jad-150751] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Meta-analysis studies showed that smokers have increased risk for developing Alzheimer's disease (AD) compared with non-smokers, and neuroimaging studies revealed that smoking damages white matter structural integrity. OBJECTIVE The present study characterizes the effects of side-stream (second hand) cigarette smoke (CS) exposures on the expression of genes that regulate oligodendrocyte myelin-synthesis, maturation, and maintenance and neuroglial functions. METHODS Adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). The frontal lobes were used for histology and qRT-PCR analysis. RESULTS Luxol fast blue, Hematoxylin and Eosin stained histological sections revealed CS-associated reductions in myelin staining intensity and narrowing of the corpus callosum. CS exposures broadly decreased mRNA levels of immature and mature oligodendrocyte myelin-associated, neuroglial, and oligodendrocyte-related transcription factors. These effects were more prominent in the CS8 compared with CS4 group, suggesting that molecular abnormalities linked to white matter atrophy and myelin loss worsen with duration of CS exposure. Recovery normalized or upregulated less than 25% of the suppressed genes; in most cases, inhibition of gene expression was either sustained or exacerbated. CONCLUSION CS exposures broadly inhibit expression of genes needed for myelin synthesis and maintenance. These adverse effects often were not reversed by short-term CS withdrawal. The results support the hypothesis that smoking contributes to white matter degeneration, and therefore could be a key risk factor for a number of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Rosa Yu
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Chetram Deochand
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology and Physiology Graduate Program at Brown University, Providence, RI, USA
| | - Alexander Krotow
- Molecular Pharmacology and Physiology Graduate Program at Brown University, Providence, RI, USA
| | - Raiane Leão
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ming Tong
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neuropathology, and Departments of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
135
|
Akinola OB, Biliaminu SA, Adediran RA, Adeniye KA, Abdulquadir FC. Characterization of prefrontal cortex microstructure and antioxidant status in a rat model of neurodegeneration induced by aluminium chloride and multiple low-dose streptozotocin. Metab Brain Dis 2015; 30:1531-6. [PMID: 26307418 DOI: 10.1007/s11011-015-9719-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/17/2015] [Indexed: 01/24/2023]
Abstract
Diabetes mellitus (DM) is a risk factor for Alzheimer's disease (AD), and several individuals with AD are diabetic. Most non-transgenic animal models of AD make use of oral treatment with aluminium chloride (AlCl(3)) to induce brain lesions pathognomonic of the disease. Moreover, streptozotocin (STZ) can induce pathological features of either AD or DM depending on the mode of treatment. In the present study, we characterised prefrontal microanatomy and antioxidant defence system in a rat model of AD confounded by DM, with the objective of assessing the suitability of this model in the study of sporadic AD with DM co-morbidity. Adult Wistar rats were randomly assigned to receive either intraperitoneal STZ (30 mg/kg/day for 3 days; to induce DM), oral AlCl(3) (500 mg/kg/day for 4 weeks; to induce some brain lesions characteristic of AD); or both STZ and AlCl(3) (to induce AD with DM co-morbidity). Untreated rats served as controls. During treatment, blood glucose levels and body weights were evaluated repeatedly in all rats. At euthanasia, prefrontal cortex was homogenized in phosphate buffer solution and the supernatants assayed for some antioxidant enzymes (catalase, CAT; superoxide dismutase, SOD; and reduced glutathione, GSH). Moreover, following perfusion-fixation of the brain, frontal lobes were processed by the haematoxylin and eosin (H&E) or Congo red technique. Our findings showed that in rats co-administered AlCl(3) and STZ (AD + DM rats), prefrontal levels of GSH reduced significantly (p < 0.05), while reductions in SOD and CAT were not significant (p > 0.05) compared with the controls. Moreover, in this model of AD with DM co-morbidity, extensive neuronal cell loss was observed in the prefrontal cortex, but Congophilic deposits were not present. The neurodegenerative lesions and antioxidant deficits characteristic of this AlCl(3) + STZ (AD + DM) rat model were more pronounced than similar lesions associated with mono-treatment with either STZ (DM) or AlCl(3) (AD) alone; and this makes the AlCl(3) + STZ model a suitable option for the study of neurodegenerative diseases (such as AD) with DM co-morbidity.
Collapse
Affiliation(s)
- Oluwole B Akinola
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Sikiru A Biliaminu
- Chemical Pathology and Immunology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Rianat A Adediran
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kehinde A Adeniye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Fatimah C Abdulquadir
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
136
|
Kuo SC, Lai SW, Hung HC, Muo CH, Hung SC, Liu LL, Chang CW, Hwu YJ, Chen SL, Sung FC. Association between comorbidities and dementia in diabetes mellitus patients: population-based retrospective cohort study. J Diabetes Complications 2015; 29:1071-6. [PMID: 26233574 DOI: 10.1016/j.jdiacomp.2015.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 01/02/2023]
Abstract
AIMS Most diabetes mellitus (DM) patients have several comorbidities; the correlation of these comorbidities with dementia in DM requires clarification. METHODS Using claims data from Taiwan National Health Insurance, we identified 33,709 DM adults before the year 2000 and randomly selected 67,066 non-DM patients matched by sex and age. Subjects were followed until diagnosis with dementia, excluded due to death/withdrawal from the insurance program, or followed until 2011. We compared the incidence and hazard ratio (HR) for dementia in both cohorts. RESULTS Comorbidities were more prevalent in DM patients, including hypertension, hyperlipidemia, stroke, coronary artery and/or kidney disease. The HR was higher for the DM cohort with comorbidities than those without: 1.88 vs. 1.46 with hypertension; 1.56 vs. 1.39 with hyperlipidemia; 1.73 vs. 1.37 with coronary artery disease; 2.36 vs. 2.29 with stroke and 1.88 vs. 1.50 with kidney disease. The HR for dementia in diabetics rose from 1.41 in those without comorbidities to 2.49 in those with ≥4 comorbidities. In the DM cohort, HR was 1.22 for non-insulin-users and 1.41 for insulin-users, and 1.49 for type 1 DM and 1.23 for type 2 DM. CONCLUSION Diabetic patients have an elevated risk of dementia, and comorbidity increases this risk.
Collapse
Affiliation(s)
- Shu-Chen Kuo
- Department of Nursing, Lo-Sheng Sanatorium and Hospital, Ministry of Health and Welfare, New Taipei, 242, Taiwan; Department of Business Administration, Asia University, Taichung, 413, Taiwan
| | - Shih-Wei Lai
- College of Medicine, China Medical University, Taichung, 404, Taiwan; Department of Family Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hung-Chang Hung
- Department of Internal Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou, 540, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shih-Chang Hung
- Department of Emergency Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou, 540, Taiwan.
| | - Ling-Ling Liu
- Department of Emergency Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou, 540, Taiwan
| | - Chia-Wei Chang
- Department of Neurology, Nantou Hospital, Ministry of Health and Welfare, Nantou, 540, Taiwan
| | - Yueh-Juen Hwu
- College of Nursing, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Shieh-Liang Chen
- Department of Business Administration, Asia University, Taichung, 413, Taiwan
| | - Fung-Chung Sung
- Management Office for Health Data, China Medical University Hospital, Taichung, 404, Taiwan; Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
137
|
Ly H, Despa F. Hyperamylinemia as a risk factor for accelerated cognitive decline in diabetes. Expert Rev Proteomics 2015; 12:575-7. [PMID: 26503000 DOI: 10.1586/14789450.2015.1104251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type II diabetes increases the risk for cognitive decline via multiple traits. Amylin is a pancreatic hormone that has amyloidogenic and cytotoxic properties similar to the amyloid-β peptide. The amylin hormone is overexpressed in individuals with pre-diabetic insulin resistance or obesity leading to amylin oligomerization and deposition in pancreatic islets. Amylin oligomerization was implicated in the apoptosis of the insulin-producing β-cells. Recent studies showed that brain tissue from diabetic patients with cerebrovascular dementia or Alzheimer's disease contains significant deposits of oligomerized amylin. It has also been reported that the brain amylin deposition reduced exploratory drive, recognition memory and vestibulomotor function in a rat model that overexpresses human amylin in the pancreas. These novel findings are reviewed here and the hypothesis that type II diabetes is linked with cognitive decline by amylin accumulation in the brain is proposed. Deciphering the impact of hyperamylinemia on the brain is critical for both etiology and treatment of dementia.
Collapse
Affiliation(s)
- Han Ly
- a Department of Pharmacology and Nutritional Sciences , University of Kentucky, College of Medicine , Lexington , KY 40536 , USA
| | | |
Collapse
|
138
|
Chung SJ, Kim MJ, Kim J, Ryu HS, Kim YJ, Kim SY, Lee JH. Association of type 2 diabetes GWAS loci and the risk of Parkinson's and Alzheimer's diseases. Parkinsonism Relat Disord 2015; 21:1435-40. [PMID: 26499758 DOI: 10.1016/j.parkreldis.2015.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Insulin and insulin-like growth factor contribute to normal brain function. Recent experimental and clinical studies showed that type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) or Alzheimer's disease (AD) share several dysregulated pathways. OBJECTIVE We aimed to investigate whether genome-wide significant loci of T2DM are associated with the risk of PD and AD as well as the severity of cognitive impairment. METHODS Study subjects were 500 PD patients, 400 AD patients, and 500 unrelated controls. We selected 32 genetic variants from 11 genes (CDC123, CDKAL1, CDKN2B, FTO, GLIS3, HHEX, IGF2BP2, KCNJ11, KCNQ1, SLC30A8, and TCF7L2) and intergenic regions based on results of recent genome-wide association studies (GWAS) in T2DM. These variants were reported to be T2DM-susceptibility loci and have been replicated in other independent studies. All association analyses were performed using logistic regression models, adjusting for age and sex. RESULTS KCNQ1 SNP rs163182 showed the strongest association with AD, but it was not significant after Bonferroni correction (OR = 1.30, 95% CI = 1.07-1.59, Pcorrected = 0.32). In PD patients, CDC123 SNP rs11257655 showed modest association with MMSE score <26, and CDKN2B SNPs (rs2383208, rs10965250, and rs10811661) showed modest association with MoCA score <26, which were not significant after Bonferroni correction. Other genetic variants had no association with the risk of PD or AD and the severity of cognitive impairment. CONCLUSIONS Our results suggest that genome-wide significant loci of T2DM play no major role in the risk and cognitive impairment of PD and AD.
Collapse
Affiliation(s)
- Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Mi-Jung Kim
- Department of Neurology, Bobath Memorial Hospital, Seongnam, Republic of Korea
| | - Juyeon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ho-Sung Ryu
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Jin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
139
|
Kwon B, Gamache T, Lee HK, Querfurth HW. Synergistic effects of β-amyloid and ceramide-induced insulin resistance on mitochondrial metabolism in neuronal cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1810-23. [DOI: 10.1016/j.bbadis.2015.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
|
140
|
Cai Z, Xiao M, Chang L, Yan LJ. Role of insulin resistance in Alzheimer's disease. Metab Brain Dis 2015; 30:839-51. [PMID: 25399337 DOI: 10.1007/s11011-014-9631-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
A critical role of insulin resistance (IR) in Alzheimer's disease (AD) includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles (NFTs), failure of synaptic transmission and neuronal degeneration. Aβ is sequentially cleavaged from APP by two proteolytic enzymes: β-secretase and γ-secretase. IR could regulate Aβ production via enhancing β- and γ-secretase activity. Meanwhile, IR induces oxidative stress and inflammation in the brain which contributes to Aβ and tau pathology. Aβ accumulation can enhance IR through Aβ-mediated inflammation and oxidative stress. IR is a possible linking between amyloid plaques and NFTs pathology via oxidative stress and neuroinflammation. Additionally, IR could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that insulin could be useful in the treatment of AD. Thus, an effective measure to inhibit IR may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China,
| | | | | | | |
Collapse
|
141
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
142
|
Insulin Regulates the Activity of the High-Affinity Choline Transporter CHT. PLoS One 2015; 10:e0132934. [PMID: 26161852 PMCID: PMC4498808 DOI: 10.1371/journal.pone.0132934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/21/2015] [Indexed: 12/22/2022] Open
Abstract
Studies in humans and animal models show that neuronal insulin resistance increases the risk of developing Alzheimer’s Disease (AD), and that insulin treatment may promote memory function. Cholinergic neurons play a critical role in cognitive and attentional processing and their dysfunction early in AD pathology may promote the progression of AD pathology. Synthesis and release of the neurotransmitter acetylcholine (ACh) is closely linked to the activity of the high-affinity choline transporter protein (CHT), but the impact of insulin receptor signaling and neuronal insulin resistance on these aspects of cholinergic function are unknown. In this study, we used differentiated SH-SY5Y cells stably-expressing CHT proteins to study the effect of insulin signaling on CHT activity and function. We find that choline uptake activity measured after acute addition of 20 nM insulin is significantly lower in cells that were grown for 24 h in media containing insulin compared to cells grown in the absence of insulin. This coincides with loss of ability to increase phospho-Protein Kinase B (PKB)/Akt levels in response to acute insulin stimulation in the chronic insulin-treated cells. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3-kinase) in cells significantly lowers phospho-PKB/Akt levels and decreases choline uptake activity. We show total internal reflection microscopy (TIRF) imaging of the dynamic movement of CHT proteins in live cells in response to depolarization and drug treatments. These data show that acute exposure of depolarized cells to insulin is coupled to transiently increased levels of CHT proteins at the cell surface, and that this is attenuated by chronic insulin exposure. Moreover, prolonged inhibition of PI3-kinase results in enhanced levels of CHT proteins at the cell surface by decreasing their rate of internalization.
Collapse
|
143
|
Lutz TA, Meyer U. Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci 2015; 9:216. [PMID: 26136651 PMCID: PMC4468610 DOI: 10.3389/fnins.2015.00216] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
The pancreatic peptide amylin is best known for its role as a satiation hormone in the control of food intake and as the major component of islet amyloid deposits in the pancreatic islets of patients with type 2 diabetes mellitus (T2DM). Epidemiological studies have established a clear association between metabolic and neurodegenerative disorders in general, and between T2DM and Alzheimer's disease (AD) in particular. Here, we discuss that amylin may be an important player acting at the interface between these metabolic and neurodegenerative disorders. Abnormal amylin production is a hallmark peripheral pathology both in the early (pre-diabetic) and late phases of T2DM, where hyperamylinemic (early phase) and hypoamylinemic (late phase) conditions coincide with hyper- and hypo-insulinemia, respectively. Moreover, there are notable biochemical similarities between amylin and β-amyloids (Aβ), which are both prone to amyloid plaque formation and to cytotoxic effects. Amylin's propensity to form amyloid plaques is not restricted to pancreatic islet cells, but readily extends to the CNS, where it has been found to co-localize with Aβ plaques in at least a subset of AD patients. Hence, amylin may constitute a “second amyloid” in neurodegenerative disorders such as AD. We further argue that hyperamylinemic conditions may be more relevant for the early processes of amyloid formation in the CNS, whereas hypoamylinemic conditions may be more strongly associated with late stages of central amyloid pathologies. Advancing our understanding of these temporal relationships may help to establish amylin-based interventions in the treatment of AD and other neurodegenerative disorders with metabolic comorbidities.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland ; Zurich Center of Integrative Human Physiology, University of Zurich Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
144
|
Bedse G, Di Domenico F, Serviddio G, Cassano T. Aberrant insulin signaling in Alzheimer's disease: current knowledge. Front Neurosci 2015; 9:204. [PMID: 26136647 PMCID: PMC4468388 DOI: 10.3389/fnins.2015.00204] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting elderly people. AD is a multifaceted pathology characterized by accumulation of extracellular neuritic plaques, intracellular neurofibrillary tangles (NFTs) and neuronal loss mainly in the cortex and hippocampus. AD etiology appears to be linked to a multitude of mechanisms that have not been yet completely elucidated. For long time, it was considered that insulin signaling has only peripheral actions but now it is widely accepted that insulin has neuromodulatory actions in the brain. Insulin signaling is involved in numerous brain functions including cognition and memory that are impaired in AD. Recent studies suggest that AD may be linked to brain insulin resistance and patients with diabetes have an increased risk of developing AD compared to healthy individuals. Indeed insulin resistance, increased inflammation and impaired metabolism are key pathological features of both AD and diabetes. However, the precise mechanisms involved in the development of AD in patients with diabetes are not yet fully understood. In this review we will discuss the role played by aberrant brain insulin signaling in AD. In detail, we will focus on the role of insulin signaling in the deposition of neuritic plaques and intracellular NFTs. Considering that insulin mitigates beta-amyloid deposition and phosphorylation of tau, pharmacological strategies restoring brain insulin signaling, such as intranasal delivery of insulin, could have significant therapeutic potential in AD treatment.
Collapse
Affiliation(s)
- Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome Rome, Italy ; Department of Biochemical Sciences, Sapienza University of Rome Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome Rome, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia Foggia, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
145
|
Abstract
Several studies have indicated that Diabetes Mellitus (DM) can increase the risk
of developing Alzheimer's disease (AD). This review briefly describes current
concepts in mechanisms linking DM and insulin resistance/deficiency to AD.
Insulin/insulin-like growth factor (IGF) resistance can contribute to
neurodegeneration by several mechanisms which involve: energy and metabolism
deficits, impairment of Glucose transporter-4 function, oxidative and
endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs,
ROS and RNS with increased production of neuro-inflammation and activation of
pro-apoptosis cascade. Impairment in insulin receptor function and increased
expression and activation of insulin-degrading enzyme (IDE) have also been
described. These processes compromise neuronal and glial function, with a
reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the
accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger
aggregated fibrils in the form of plaques that are neurotoxic. Additionally,
there is production and accumulation of hyper-phosphorylated insoluble fibrillar
tau which can exacerbate cytoskeletal collapse and synaptic disconnection.
Collapse
Affiliation(s)
- Maria Niures P S Matioli
- Pós-graduanda, nível de Doutorado, Departamento de Neurologia da Faculdade de Medicina da Universidade de São Paulo
| | - Ricardo Nitrini
- Professor Titular da Disciplina de Neurologia da Faculdade de Medicina da Universidade de São Paulo. Orientador e Professor Responsável pela Pós-graduação do Departamento de Neurologia da Faculdade de Medicina da Universidade de São Paulo
| |
Collapse
|
146
|
Willette AA, Johnson SC, Birdsill AC, Sager MA, Christian B, Baker LD, Craft S, Oh J, Statz E, Hermann BP, Jonaitis EM, Koscik RL, La Rue A, Asthana S, Bendlin BB. Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimers Dement 2015; 11:504-510.e1. [PMID: 25043908 PMCID: PMC4297592 DOI: 10.1016/j.jalz.2014.03.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insulin resistance (IR) increases Alzheimer's disease (AD) risk. IR is related to greater amyloid burden post-mortem and increased deposition within areas affected by early AD. No studies have examined if IR is associated with an in vivo index of amyloid in the human brain in late middle-aged participants at risk for AD. METHODS Asymptomatic, late middle-aged adults (N = 186) from the Wisconsin Registry for Alzheimer's Prevention underwent [C-11]Pittsburgh compound B (PiB) positron emission tomography. The cross-sectional design tested the interaction between insulin resistance and glycemic status on PiB distribution volume ratio in three regions of interest (frontal, parietal, and temporal). RESULTS In participants with normoglycemia but not hyperglycemia, higher insulin resistance corresponded to higher PiB uptake in frontal and temporal areas, reflecting increased amyloid deposition. CONCLUSIONS This is the first human study to demonstrate that insulin resistance may contribute to amyloid deposition in brain regions affected by AD.
Collapse
Affiliation(s)
- Auriel A Willette
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alex C Birdsill
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bradley Christian
- Department of Medical Physics, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura D Baker
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer Oh
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Eric Statz
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Asenath La Rue
- Wisconsin Alzheimer's Institute, Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
147
|
The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 2015; 84:22-38. [PMID: 25926349 DOI: 10.1016/j.nbd.2015.04.008] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence links type-2 diabetes (T2D) with dementia and neurodegenerative diseases such as Alzheimer's disease (AD). AD is the most common form of dementia and is characterised neuropathologically by the accumulation of extracellular beta amyloid (Aβ) peptide aggregates and intracellular hyper-phosphorylated tau protein, which are thought to drive and/or accelerate inflammatory and oxidative stress processes leading to neurodegeneration. Although the precise mechanism remains unclear, T2D can exacerbate these neurodegenerative processes. Brain atrophy, reduced cerebral glucose metabolism and CNS insulin resistance are features of both AD and T2D. Cell culture and animal studies have indicated that the early accumulation of Aβ may play a role in CNS insulin resistance and impaired insulin signalling. From the viewpoint of insulin resistance and impaired insulin signalling in the brain, these are also believed to initiate other aspects of brain injury, including inflammatory and oxidative stress processes. Here we review the clinical and experimental pieces of evidence that link these two chronic diseases of ageing, and discuss underlying mechanisms. The evaluation of treatments for the management of diabetes in preclinical, and clinical studies and trials for AD will also be discussed.
Collapse
|
148
|
Li X, Song D, Leng SX. Link between type 2 diabetes and Alzheimer's disease: from epidemiology to mechanism and treatment. Clin Interv Aging 2015; 10:549-60. [PMID: 25792818 PMCID: PMC4360697 DOI: 10.2147/cia.s74042] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this paper is to provide a comprehensive review of the epidemiological evidence linking type 2 diabetes mellitus and its related conditions, including obesity, hyperinsulinemia, and metabolic syndrome, to Alzheimer’s disease (AD). Several mechanisms could help to explain this proposed link; however, our focus is on insulin resistance and deficiency. Studies have shown that insulin resistance and deficiency can interact with amyloid-β protein and tau protein phosphorylation, each leading to the onset and development of AD. Based on those epidemiological data and basic research, it was recently proposed that AD can be considered as “type 3 diabetes”. Special attention has been paid to determining whether antidiabetic agents might be effective in treating AD. There has been much research both experimental and clinical on this topic. We mainly discuss the clinical trials on insulin, metformin, thiazolidinediones, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors in the treatment of AD. Although the results of these trials seem to be contradictory, this approach is also full of promise. It is worth mentioning that the therapeutic effects of these drugs are influenced by the apolipoprotein E (APOE)-ε4 genotype. Patients without the APOE-ε4 allele showed better treatment effects than those with this allele.
Collapse
Affiliation(s)
- Xiaohua Li
- Dalian Medical University, Dalian, People's Republic of China
| | - Dalin Song
- Department of Geriatrics, Qingdao Municipal Hospital, Qingdao, People's Republic of China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
149
|
Parrott MD, Winocur G, Bazinet RP, Ma DW, Greenwood CE. Whole-food diet worsened cognitive dysfunction in an Alzheimer's disease mouse model. Neurobiol Aging 2015; 36:90-9. [DOI: 10.1016/j.neurobiolaging.2014.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
|
150
|
de la Monte SM. Type 3 diabetes is sporadic Alzheimer׳s disease: mini-review. Eur Neuropsychopharmacol 2014; 24:1954-60. [PMID: 25088942 PMCID: PMC4444430 DOI: 10.1016/j.euroneuro.2014.06.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 01/16/2023]
Abstract
Alzheimer׳s disease (AD) is the most common cause of dementia in North America. Growing evidence supports the concept that AD is a metabolic disease mediated by impairments in brain insulin responsiveness, glucose utilization, and energy metabolism, which lead to increased oxidative stress, inflammation, and worsening of insulin resistance. In addition, metabolic derangements directly contribute to the structural, functional, molecular, and biochemical abnormalities that characterize AD, including neuronal loss, synaptic disconnection, tau hyperphosphorylation, and amyloid-beta accumulation. Because the fundamental abnormalities in AD represent effects of brain insulin resistance and deficiency, and the molecular and biochemical consequences overlap with Type 1 and Type 2 diabetes, we suggest the term "Type 3 diabetes" to account for the underlying abnormalities associated with AD-type neurodegeneration. In light of the rapid increases in sporadic AD prevalence rates and vastly expanded use of nitrites and nitrates in foods and agricultural products over the past 30-40 years, the potential role of nitrosamine exposures as mediators of Type 3 diabetes is discussed.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Medicine, Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 419, Providence, RI 02903, USA.
| |
Collapse
|