101
|
Hessmann E, Johnsen SA, Siveke JT, Ellenrieder V. Epigenetic treatment of pancreatic cancer: is there a therapeutic perspective on the horizon? Gut 2017; 66:168-179. [PMID: 27811314 PMCID: PMC5256386 DOI: 10.1136/gutjnl-2016-312539] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most aggressive malignancies with a 5-year survival rate of <7%. Due to growing incidence, late diagnosis and insufficient treatment options, PDAC is predicted to soon become one of the leading causes of cancer-related death. Although intensified cytostatic combinations, particularly gemcitabine plus nab-paclitaxel and the folinic acid, fluorouracil, irinotecan, oxaliplatin (FOLFIRINOX) protocol, provide some improvement in efficacy and survival compared with gemcitabine alone, a breakthrough in the treatment of metastatic pancreatic cancer remains out of sight. Nevertheless, recent translational research activities propose that either modulation of the immune response or pharmacological targeting of epigenetic modifications alone, or in combination with chemotherapy, might open highly powerful therapeutic avenues in GI cancer entities, including pancreatic cancer. Deregulation of key epigenetic factors and chromatin-modifying proteins, particularly those responsible for the addition, removal or recognition of post-translational histone modifications, are frequently found in human pancreatic cancer and hence constitute particularly exciting treatment opportunities. This review summarises both current clinical trial activities and discovery programmes initiated throughout the biopharma landscape, and critically discusses the chances, hurdles and limitations of epigenetic-based therapy in future PDAC treatment.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany,West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
102
|
Nicholas DA, Andrieu G, Strissel KJ, Nikolajczyk BS, Denis GV. BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol Life Sci 2017; 74:231-243. [PMID: 27491296 PMCID: PMC5222701 DOI: 10.1007/s00018-016-2320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Guillaume Andrieu
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Katherine J Strissel
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Gerald V Denis
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA.
- Section of Hematology/Oncology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, K520, Boston, MA, 02118, USA.
| |
Collapse
|
103
|
Jiang H, Xing J, Wang C, Zhang H, Yue L, Wan X, Chen W, Ding H, Xie Y, Tao H, Chen Z, Jiang H, Chen K, Chen S, Zheng M, Zhang Y, Luo C. Discovery of novel BET inhibitors by drug repurposing of nitroxoline and its analogues. Org Biomol Chem 2017; 15:9352-9361. [DOI: 10.1039/c7ob02369c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The BET family of bromodomain-containing proteins (BRDs) is believed to be a promising drug target for therapeutic intervention in a number of diseases.
Collapse
|
104
|
Niu N, Shao R, Yan G, Zou W. Bromodomain and Extra-terminal (BET) Protein Inhibitors Suppress Chondrocyte Differentiation and Restrain Bone Growth. J Biol Chem 2016; 291:26647-26657. [PMID: 27821592 DOI: 10.1074/jbc.m116.749697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/05/2016] [Indexed: 12/19/2022] Open
Abstract
Small molecule inhibitors for bromodomain and extra-terminal (BET) proteins have recently emerged as potential therapeutic agents in clinical trials for various cancers. However, to date, it is unknown whether these inhibitors have side effects on bone structures. Here, we report that inhibition of BET bromodomain proteins may suppress chondrocyte differentiation and restrain bone growth. We generated a luciferase reporter system using the chondrogenic cell line ATDC5 in which the luciferase gene was driven by the promoter of Col2a1, an elementary collagen of the chondrocyte. The Col2a1-luciferase ATDC5 system was used for rapidly screening both activators and repressors of human collagen Col2a1 gene expression, and we found that BET bromodomain inhibitors reduce the Col2a1-luciferase. Consistent with the luciferase assay, BET inhibitors decrease the expression of Col2a1 Furthermore, we constructed a zebrafish line in which the enhanced green fluorescent protein (EGFP) expression was driven by col2a1 promoter. The transgenic (col2a1-EGFP) zebrafish line demonstrated that BET inhibitors I-BET151 and (+)-JQ1 may affect EGFP expression in zebrafish. Furthermore, we found that I-BET151 and (+)-JQ1 may affect chondrocyte differentiation in vitro and inhibit zebrafish growth in vivo Mechanistic analysis revealed that BET inhibitors influenced the depletion of RNA polymerase II from the Col2a1 promoter. Collectively, these results suggest that BET bromodomain inhibition may have side effects on skeletal bone structures.
Collapse
Affiliation(s)
- Ningning Niu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Shao
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Yan
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiguo Zou
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
105
|
Hao T, Gaerig VC, Brooks TA. Nucleic acid clamp-mediated recognition and stabilization of the physiologically relevant MYC promoter G-quadruplex. Nucleic Acids Res 2016; 44:11013-11023. [PMID: 27789698 PMCID: PMC5159522 DOI: 10.1093/nar/gkw1006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/24/2023] Open
Abstract
The MYC proto-oncogene is upregulated, often at the transcriptional level, in ∼80% of all cancers. MYC's promoter is governed by a higher order G-quadruplex (G4) structure in the NHE III1 region. Under a variety of conditions, multiple isoforms have been described to form from the first four continuous guanine runs (G41–4) predominating under the physiologically relevant supercoiled conditions. In the current study, short oligonucleotides complementing the 5′- and 3′-regions flanking the G4 have been connected by an abasic linker to form G4 clamps, varying both linker length and G4 isoform being targeted. Clamp A with an 18 Å linker was found to have marked affinity for its target isomer (G41–4) over the other major structures (G42–5 and G41–5, recognized by clamps B and C, respectively), and to be able to shift equilibrating DNA to foster greater G4 formation. In addition, clamp A, but not B or C, is able to modulate MYC promoter activity with a significant and dose-dependent effect on transcription driven by the Del4 plasmid. This linked clamp-mediated approach to G4 recognition represents a novel therapeutic mechanism with specificity for an individual promoter structure, amenable to a large array of promoters.
Collapse
Affiliation(s)
- Taisen Hao
- BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Vanessa C Gaerig
- Pharmacy, Charleston Area Medical Center Memorial Hospital, Charleston, WV 25304, USA
| | - Tracy A Brooks
- BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
106
|
Xiong C, Masucci MV, Zhou X, Liu N, Zang X, Tolbert E, Zhao TC, Zhuang S. Pharmacological targeting of BET proteins inhibits renal fibroblast activation and alleviates renal fibrosis. Oncotarget 2016; 7:69291-69308. [PMID: 27732564 PMCID: PMC5342478 DOI: 10.18632/oncotarget.12498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Bromodomain and extra-terminal (BET) protein inhibitors have been shown to effectively inhibit tumorgenesis and ameliorate pulmonary fibrosis by targeting bromodomain proteins that bind acetylated chromatin markers. However, their pharmacological effects in renal fibrosis remain unclear. In this study, we examined the effect of I-BET151, a selective and potent BET inhibitor, on renal fibroblast activation and renal fibrosis. In cultured renal interstitial fibroblasts, exposure of cells to I-BET151, or silencing of bromodoma in-containing protein 4 (Brd4), a key BET protein isoform, significantly reduced their activation as indicated by decreased expression of α-smooth muscle actin, collagen 1 and fibronectin. In a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO), administration of I-BET151 suppressed the deposition of extracellular matrix proteins, renal fibroblast activation and macrophage infiltration. Mechanistically, I-BET151 treatment abrogated UUO-induced phosphorylation of epidermal growth factor receptor and platelet growth factor receptor-β. It also inhibited the activation of Smad-3, STAT3 and NF-κB pathways, as well as the expression of c-Myc and P53 transcription factors in the kidney. Moreover, BET inhibition resulted in the reduction of renal epithelial cells arrested at the G2/M phase of cell cycle after UUO injury. Finally, injury to the kidney up-regulated Brd4, and I-BET151 treatment abrogated its expression. Brd4 was also highly expressed in human fibrotic kidneys. These data indicate that BET proteins are implicated in the regulation of signaling pathways and transcription factors associated with renal fibrogenesis, and suggest that pharmacological inhibition of BET proteins could be a potential treatment for renal fibrosis.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Monica V. Masucci
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Ting C. Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University, Providence, RI, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
107
|
Udager AM, Ishikawa MK, Lucas DR, McHugh JB, Patel RM. MYC immunohistochemistry in angiosarcoma and atypical vascular lesions: practical considerations based on a single institutional experience. Pathology 2016; 48:697-704. [PMID: 27780597 DOI: 10.1016/j.pathol.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 10/20/2022]
Abstract
Angiosarcoma (AS) is an uncommon vascular malignancy with an aggressive clinical course. Radiation-associated angiosarcoma (RAAS) and Stewart-Treves syndrome are associated with MYC gene amplification and protein overexpression, while other radiation-associated vascular lesions including atypical vascular lesions (AVL) are not associated with MYC overexpression. In contrast, de novo AS represent a group of molecularly heterogeneous tumours, for which MYC expression has not been extensively examined. In this study, MYC immunohistochemistry (IHC) was performed on representative whole tissue sections of a large retrospective cohort of de novo AS, RAAS, Stewart-Treves syndrome, and AVL and evaluated using a semi-quantitative scoring method. MYC is strongly expressed in the majority of RAAS and Stewart-Treves syndrome. De novo AS demonstrate variable MYC expression, with high-grade tumours showing significantly higher MYC expression than low-grade tumours. In contrast, MYC expression in AVL is predominantly negative but may occasionally show focal staining. These results indicate that unequivocal strong MYC IHC staining supports the diagnosis of RAAS. In rare cases of RAAS without strong MYC expression, however, particularly relatively low-grade tumours for which the differential diagnosis includes AVL, the distinction between these lesions should be made on morphological grounds using previously established criteria (i.e., significant atypia, deep invasion, infiltrative growth, etc.). Increased MYC expression in high-grade de novo AS suggests that MYC overexpression may play a role in the pathogenesis of these tumours, and MYC IHC may be a prognostic and/or therapeutic biomarker in a subset of these tumours.
Collapse
Affiliation(s)
- Aaron M Udager
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Martin K Ishikawa
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States
| | - David R Lucas
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Rajiv M Patel
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States.
| |
Collapse
|
108
|
Yang Y, Zhao L, Xu B, Yang L, Zhang J, Zhang H, Zhou J. Design, synthesis and biological evaluation of dihydroquinoxalinone derivatives as BRD4 inhibitors. Bioorg Chem 2016; 68:236-44. [DOI: 10.1016/j.bioorg.2016.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/01/2022]
|
109
|
Shen H, Xu W, Guo R, Rong B, Gu L, Wang Z, He C, Zheng L, Hu X, Hu Z, Shao ZM, Yang P, Wu F, Shi YG, Shi Y, Lan F. Suppression of Enhancer Overactivation by a RACK7-Histone Demethylase Complex. Cell 2016; 165:331-42. [PMID: 27058665 DOI: 10.1016/j.cell.2016.02.064] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 12/29/2022]
Abstract
Regulation of enhancer activity is important for controlling gene expression programs. Here, we report that a biochemical complex containing a potential chromatin reader, RACK7, and the histone lysine 4 tri-methyl (H3K4me3)-specific demethylase KDM5C occupies many active enhancers, including almost all super-enhancers. Loss of RACK7 or KDM5C results in overactivation of enhancers, characterized by the deposition of H3K4me3 and H3K27Ac, together with increased transcription of eRNAs and nearby genes. Furthermore, loss of RACK7 or KDM5C leads to de-repression of S100A oncogenes and various cancer-related phenotypes. Our findings reveal a RACK7/KDM5C-regulated, dynamic interchange between histone H3K4me1 and H3K4me3 at active enhancers, representing an additional layer of regulation of enhancer activity. We propose that RACK7/KDM5C functions as an enhancer "brake" to ensure appropriate enhancer activity, which, when compromised, could contribute to tumorigenesis.
Collapse
Affiliation(s)
- Hongjie Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenqi Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Rui Guo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bowen Rong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Gu
- Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhentian Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lijuan Zheng
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhen Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Department of System Biology, Institutes of Biomedical Sciences, Fudan University, 138 Yixue Yuan Road, Shanghai 200032, China
| | - Feizhen Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujiang Geno Shi
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China; Division of Endocrinology, Brigham and Women Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Shi
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China; Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Fei Lan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
110
|
Lori L, Pasquo A, Lori C, Petrosino M, Chiaraluce R, Tallant C, Knapp S, Consalvi V. Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability. PLoS One 2016; 11:e0159180. [PMID: 27403962 PMCID: PMC4942050 DOI: 10.1371/journal.pone.0159180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023] Open
Abstract
Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding.
Collapse
Affiliation(s)
- Laura Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | | | - Clorinda Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Roberta Chiaraluce
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
- * E-mail:
| | - Cynthia Tallant
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Valerio Consalvi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
111
|
NMR-based platform for fragment-based lead discovery used in screening BRD4-targeted compounds. Acta Pharmacol Sin 2016; 37:984-93. [PMID: 27238211 DOI: 10.1038/aps.2016.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
AIM Fragment-based lead discovery (FBLD) is a complementary approach in drug research and development. In this study, we established an NMR-based FBLD platform that was used to screen novel scaffolds targeting human bromodomain of BRD4, and investigated the binding interactions between hit compounds and the target protein. METHODS 1D NMR techniques were primarily used to generate the fragment library and to screen compounds. The inhibitory activity of hits on the first bromodomain of BRD4 [BRD4(I)] was examined using fluorescence anisotropy binding assay. 2D NMR and X-ray crystallography were applied to characterize the binding interactions between hit compounds and the target protein. RESULTS An NMR-based fragment library containing 539 compounds was established, which were clustered into 56 groups (8-10 compounds in each group). Eight hits with new scaffolds were found to inhibit BRD4(I). Four out of the 8 hits (compounds 1, 2, 8 and 9) had IC50 values of 100-260 μmol/L, demonstrating their potential for further BRD4-targeted hit-to-lead optimization. Analysis of the binding interactions revealed that compounds 1 and 2 shared a common quinazolin core structure and bound to BRD4(I) in a non-acetylated lysine mimetic mode. CONCLUSION An NMR-based platform for FBLD was established and used in discovery of BRD4-targeted compounds. Four potential hit-to-lead optimization candidates have been found, two of them bound to BRD4(I) in a non-acetylated lysine mimetic mode, being selective BRD4(I) inhibitors.
Collapse
|
112
|
Scarfò I, Pellegrino E, Mereu E, Inghirami G, Piva R. Transposable elements: The enemies within. Exp Hematol 2016; 44:913-6. [PMID: 27377925 DOI: 10.1016/j.exphem.2016.06.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/28/2022]
Abstract
Understanding transformation mechanisms other than genetic aberrations has recently captured the attention of cancer researchers. To date, the role of transposable elements (TEs) in tumor development remains largely undefined. However, an increasing number of studies have reported that loss of epigenetic control causes TE reactivation and consequent oncogenic transcription. Here, we discuss principal examples of TEs-driven oncogenesis. Available data suggest that long terminal repeats and long interspersed nuclear elements play a pivotal role as alternative promoters. These findings provide definitive experimental evidence that repetitive elements are a powerful underestimated force toward oncogenesis and open the possibility to new therapeutic treatments.
Collapse
Affiliation(s)
- Irene Scarfò
- Department of Molecular Biotechnology and Health Sciences; Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Elisa Pellegrino
- Department of Molecular Biotechnology and Health Sciences; Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences; Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Sciences; Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences; Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy.
| |
Collapse
|
113
|
Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016; 352:aad9780. [PMID: 27257261 DOI: 10.1126/science.aad9780] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.
Collapse
Affiliation(s)
- Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
114
|
Udager AM, De Marzo AM, Shi Y, Hicks JL, Cao X, Siddiqui J, Jiang H, Chinnaiyan AM, Mehra R. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics. Prostate 2016; 76:845-53. [PMID: 27159573 PMCID: PMC4975940 DOI: 10.1002/pros.23175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/16/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recurrent ERG gene fusions, the most common genetic alterations in prostate cancer, drive overexpression of the nuclear transcription factor ERG, and are early clonal events in prostate cancer progression. The nuclear transcription factor MYC is also frequently overexpressed in prostate cancer and may play a role in tumor initiation and/or progression. The relationship between nuclear ERG and MYC protein overexpression in prostate cancer, as well as the clinicopathologic characteristics and prognosis of ERG-positive/MYC high tumors, is not well understood. METHODS Immunohistochemistry (IHC) for ERG and MYC was performed on formalin-fixed, paraffin-embedded tissue from prostate cancer tissue microarrays (TMAs), and nuclear staining was scored semi-quantitatively (IHC product score range = 0-300). Correlation between nuclear ERG and MYC protein expression and association with clinicopathologic parameters and biochemical recurrence after radical prostatectomy was assessed. RESULTS 29.1% of all tumor nodules showed concurrent nuclear ERG and MYC protein overexpression (i.e., ERG-positive/MYC high), including 35.0% of secondary nodules. Overall, there was weak positive correlation between ERG and MYC expression across all tumor nodules (rpb = 0.149, P = 0.045), although this correlation was strongest in secondary nodules (rpb = 0.520, P = 0.019). In radical prostatectomy specimens, ERG-positive/MYC high tumors were positively associated with the presence of extraprostatic extension (EPE), relative to all other ERG/MYC expression subgroups, however, there was no significant association between concurrent nuclear ERG and MYC protein overexpression and time to biochemical recurrence. CONCLUSIONS Concurrent nuclear ERG and MYC protein overexpression is common in prostate cancer and defines a subset of locally advanced tumors. Recent data indicates that BET bromodomain proteins regulate ERG gene fusion and MYC gene expression in prostate cancer, suggesting possible synergistic targeted therapeutics in ERG-positive/MYC high tumors. Prostate 76:845-853, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aaron M. Udager
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI
| | - Angelo M. De Marzo
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center and The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Yang Shi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
- Michigan Center for Translational Pathology, Ann Arbor, MI
| | - Jessica L. Hicks
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center and The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Ann Arbor, MI
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, Ann Arbor, MI
| | - Hui Jiang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI
- Michigan Center for Translational Pathology, Ann Arbor, MI
- Department of Urology, University of Michigan Health System, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, MI
- Howard Hughes Medical Institute, Ann Arbor, MI
| | - Rohit Mehra
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI
- Michigan Center for Translational Pathology, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, MI
| |
Collapse
|
115
|
Li J, Wang P, Zhou B, Shi J, Liu J, Li X, Fan L, Zheng Y, Ouyang L. Development of 4,5-dihydro-benzodiazepinone derivatives as a new chemical series of BRD4 inhibitors. Eur J Med Chem 2016; 121:294-299. [PMID: 27266999 DOI: 10.1016/j.ejmech.2016.05.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 02/05/2023]
Abstract
Bromodomains (BRDs) are protein interaction modules that selectively recognize ε -N-lysine residues, serving as key epigenetic readers and play a key role in epigenetic regulation of gene transcription. Bromodomain-containing protein 4 (BRD4), a protein containing two BRDs termed BD1 and BD2, has emerged as an attractive candidate for the development of inhibitors targeting gene transcription in several types of cancers. In this study, we made structural modifications of previously reported BRD4 inhibitors, to develop new chemical scaffold 3,4-dihydroquinoxalin-2(1H)-one. Four series of compounds (compounds 7-10) were synthesized, and the BRD4-inhibitory activity and anti-proliferative effect of these compounds were evaluated. We found compound 10d has remarkable anti-proliferative activities toward leukemia cells and could induce apoptosis by mitochondrial pathways. Notably, the analysis of molecular docking suggested that hydrophobic interaction was essential for compound 10d to bind to BD1. In conclusion, these results demonstrate the potential of compound 10d to be utilized as a BRD4 inhibitor with apoptosis inducing effect in future leukemia therapy.
Collapse
Affiliation(s)
- Jie Li
- School of Medicine, Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Peiqi Wang
- State Key Laboratory of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bihui Zhou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Jianyou Shi
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Xiangrong Li
- School of Medicine, Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Limei Fan
- School of Medicine, Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Yaxin Zheng
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| |
Collapse
|
116
|
Gerstenberger BS, Trzupek JD, Tallant C, Fedorov O, Filippakopoulos P, Brennan PE, Fedele V, Martin S, Picaud S, Rogers C, Parikh M, Taylor A, Samas B, O'Mahony A, Berg E, Pallares G, Torrey AD, Treiber DK, Samardjiev IJ, Nasipak BT, Padilla-Benavides T, Wu Q, Imbalzano AN, Nickerson JA, Bunnage ME, Müller S, Knapp S, Owen DR. Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit. J Med Chem 2016; 59:4800-11. [PMID: 27115555 DOI: 10.1021/acs.jmedchem.6b00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acetyl post-translational modification of chromatin at selected histone lysine residues is interpreted by an acetyl-lysine specific interaction with bromodomain reader modules. Here we report the discovery of the potent, acetyl-lysine-competitive, and cell active inhibitor PFI-3 that binds to certain family VIII bromodomains while displaying significant, broader bromodomain family selectivity. The high specificity of PFI-3 for family VIII was achieved through a novel bromodomain binding mode of a phenolic headgroup that led to the unusual displacement of water molecules that are generally retained by most other bromodomain inhibitors reported to date. The medicinal chemistry program that led to PFI-3 from an initial fragment screening hit is described in detail, and additional analogues with differing family VIII bromodomain selectivity profiles are also reported. We also describe the full pharmacological characterization of PFI-3 as a chemical probe, along with phenotypic data on adipocyte and myoblast cell differentiation assays.
Collapse
Affiliation(s)
- Brian S Gerstenberger
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - John D Trzupek
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Cynthia Tallant
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Oleg Fedorov
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Panagis Filippakopoulos
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Ludwig Institute for Cancer Research, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Paul E Brennan
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Vita Fedele
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sarah Martin
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sarah Picaud
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Catherine Rogers
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Mihir Parikh
- Pfizer Pharmaceutical Sciences , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alexandria Taylor
- Pfizer Pharmaceutical Sciences , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brian Samas
- Pfizer Worldwide Medicinal Chemistry , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alison O'Mahony
- Bioseek Inc., Division of DiscoveRx , 310 Utah Avenue, South San Francisco, California 94080, United States
| | - Ellen Berg
- Bioseek Inc., Division of DiscoveRx , 310 Utah Avenue, South San Francisco, California 94080, United States
| | - Gabriel Pallares
- KinomeScan, Division of DiscoveRx , 11180 Roselle Street, Suite D, San Diego, California 92121, United States
| | - Adam D Torrey
- KinomeScan, Division of DiscoveRx , 11180 Roselle Street, Suite D, San Diego, California 92121, United States
| | - Daniel K Treiber
- KinomeScan, Division of DiscoveRx , 11180 Roselle Street, Suite D, San Diego, California 92121, United States
| | - Ivan J Samardjiev
- Eurofins Lancaster PPS , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Mark E Bunnage
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Susanne Müller
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Stefan Knapp
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences (BMLS), Johann Wolfgang Goethe University , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Dafydd R Owen
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
117
|
Chen J, Wang Z, Hu X, Chen R, Romero-Gallo J, Peek RM, Chen LF. BET Inhibition Attenuates Helicobacter pylori-Induced Inflammatory Response by Suppressing Inflammatory Gene Transcription and Enhancer Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:4132-42. [PMID: 27084101 DOI: 10.4049/jimmunol.1502261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori infection causes chronic gastritis and peptic ulceration. H. pylori-initiated chronic gastritis is characterized by enhanced expression of many NF-κB-regulated inflammatory cytokines. Brd4 has emerged as an important NF-κB regulator and regulates the expression of many NF-κB-dependent inflammatory genes. In this study, we demonstrated that Brd4 was not only actively involved in H. pylori-induced inflammatory gene mRNA transcription but also H. pylori-induced inflammatory gene enhancer RNA (eRNA) synthesis. Suppression of H. pylori-induced eRNA synthesis impaired H. pylori-induced mRNA synthesis. Furthermore, H. pylori stimulated NF-κB-dependent recruitment of Brd4 to the promoters and enhancers of inflammatory genes to facilitate the RNA polymerase II-mediated eRNA and mRNA synthesis. Inhibition of Brd4 by JQ1 attenuated H. pylori-induced eRNA and mRNA synthesis for a subset of NF-κB-dependent inflammatory genes. JQ1 also inhibited H. pylori-induced interaction between Brd4 and RelA and the recruitment of Brd4 and RNA polymerase II to the promoters and enhancers of inflammatory genes. Finally, we demonstrated that JQ1 suppressed inflammatory gene expression, inflammation, and cell proliferation in H. pylori-infected mice. These studies highlight the importance of Brd4 in H. pylori-induced inflammatory gene expression and suggest that Brd4 could be a potential therapeutic target for the treatment of H. pylori-triggered inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Jinjing Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiangming Hu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361101, China
| | - Judith Romero-Gallo
- Division of Gastroenterology, Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Medical Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
118
|
Lee DU, Katavolos P, Palanisamy G, Katewa A, Sioson C, Corpuz J, Pang J, DeMent K, Choo E, Ghilardi N, Diaz D, Danilenko DM. Nonselective inhibition of the epigenetic transcriptional regulator BET induces marked lymphoid and hematopoietic toxicity in mice. Toxicol Appl Pharmacol 2016; 300:47-54. [PMID: 27078884 DOI: 10.1016/j.taap.2016.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/06/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022]
Abstract
Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are epigenetic transcriptional regulators required for efficient expression of growth promoting, cell cycle progression and antiapoptotic genes. Through their bromodomain, these proteins bind to acetylated lysine residues of histones and are recruited to transcriptionally active chromatin. Inhibition of the BET-histone interaction provides a tractable therapeutic strategy to treat diseases that may have epigenetic dysregulation. JQ1 is a small molecule that blocks BET interaction with histones. It has been shown to decrease proliferation of patient-derived multiple myeloma in vitro and to decrease tumor burden in vivo in xenograft mouse models. While targeting BET appears to be a viable and efficacious approach, the nonclinical safety profile of BET inhibition remains to be well-defined. We report that mice dosed with JQ1 at efficacious exposures demonstrate dose-dependent decreases in their lymphoid and immune cell compartments. At higher doses, JQ1 was not tolerated and due to induction of significant body weight loss led to early euthanasia. Flow cytometry analysis of lymphoid tissues showed a decrease in both B- and T-lymphocytes with a concomitant decrease in peripheral white blood cells that was confirmed by hematology. Further investigation with the inactive enantiomer of JQ1 showed that these in vivo effects were on-target mediated and not elicited through secondary pharmacology due to chemical structure.
Collapse
Affiliation(s)
- Dong U Lee
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Paula Katavolos
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Gopinath Palanisamy
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Arna Katewa
- Department of Research Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Charly Sioson
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Janice Corpuz
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jodie Pang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Kevin DeMent
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Edna Choo
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Research Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Dolores Diaz
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Dimitry M Danilenko
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
119
|
Galardy PJ, Bedekovics T, Hermiston ML. Targeting childhood, adolescent and young adult non-Hodgkin lymphoma: therapeutic horizons. Br J Haematol 2016; 173:625-36. [PMID: 27019108 DOI: 10.1111/bjh.14016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is the third most common malignancy in children, adolescents and young adults (CAYA). NHL is a diverse set of diseases that arise at key regulatory checkpoints during B or T cell development in the bone marrow, germinal centre or thymus. While advances in the use of conventional cytotoxic agents have led to dramatic improvements in survival, these cures are associated with significant acute and long-term toxicities. Moreover, the prognosis for CAYA patients with relapsed or refractory NHL remains dismal, with the vast majority dying of their disease. Thanks to a large number of candidate-based biological studies, together with large-scale sequencing efforts, there has been an explosion of knowledge regarding the molecular pathophysiology of B- and T-NHL. This has ushered development of a flurry of novel therapeutic approaches that may simultaneously provide new hope for relapsed patients and an opportunity to reduce the therapeutic burden in newly diagnosed CAYA. Here we review a selection of the most promising new therapeutic approaches to these diseases. While the vast majority of these agents are untested in children, on-going work from many cooperative groups will soon explore their use in paediatric disease, in hope of further improving outcomes while maximizing quality of life.
Collapse
Affiliation(s)
- Paul J Galardy
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tibor Bedekovics
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michelle L Hermiston
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
120
|
Abstract
The bromodomain (BrD) is a conserved protein modular domain found in many chromatin- and transcription-associated proteins that has the ability to recognize acetylated lysine residues. This activity allows bromodomains to play a vital role in many acetylation-mediated protein-protein interactions in the cell, ranging from substrate recruitment for histone acetyltransferases (HATs) to aiding in multiple-protein complex assembly for gene transcriptional activation or suppression in chromatin. In recent years, considerable efforts have been made to develop chemical inhibitors of these bromodomains in an effort to probe their cellular functions. Potent and selective inhibitors have been extensively developed for one group of the bromodomain family termed BET proteins that consist of tandem bromodomains followed by an extra terminal domain. Drug developers are actively designing inhibitors of other bromodomains and working to move the most successful inhibitors into the clinic.
Collapse
Affiliation(s)
- Steven G. Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
121
|
Fernandez-Salas E, Wang S, Chinnaiyan AM. Role of BET proteins in castration-resistant prostate cancer. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:29-38. [PMID: 27769354 DOI: 10.1016/j.ddtec.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/29/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Castration resistant prostate cancer (CRPC) is a deadly disease with few therapeutic options once patients become resistant to second generation drugs targeting the AR-transcriptional program. The BET-BRD readers of chromatin are key regulators of AR-, ERG-, and c-Myc-mediated transcription in CRPC. BET-BRD inhibitors have demonstrated pre-clinical efficacy in models of CRPC and are currently being evaluated in several clinical trials. These novel drugs have the potential to transform the way we treat CRPC in the near future.
Collapse
Affiliation(s)
- Ester Fernandez-Salas
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
122
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
123
|
Gelato KA, Shaikhibrahim Z, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets 2016; 20:783-99. [DOI: 10.1517/14728222.2016.1134490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Matthias Ocker
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
- Department of Gastroenterology/Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|